|  | /* | 
|  | * linux/arch/unicore32/include/asm/pgtable.h | 
|  | * | 
|  | * Code specific to PKUnity SoC and UniCore ISA | 
|  | * | 
|  | * Copyright (C) 2001-2010 GUAN Xue-tao | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #ifndef __UNICORE_PGTABLE_H__ | 
|  | #define __UNICORE_PGTABLE_H__ | 
|  |  | 
|  | #define __ARCH_USE_5LEVEL_HACK | 
|  | #include <asm-generic/pgtable-nopmd.h> | 
|  | #include <asm/cpu-single.h> | 
|  |  | 
|  | #include <asm/memory.h> | 
|  | #include <asm/pgtable-hwdef.h> | 
|  |  | 
|  | /* | 
|  | * Just any arbitrary offset to the start of the vmalloc VM area: the | 
|  | * current 8MB value just means that there will be a 8MB "hole" after the | 
|  | * physical memory until the kernel virtual memory starts.  That means that | 
|  | * any out-of-bounds memory accesses will hopefully be caught. | 
|  | * The vmalloc() routines leaves a hole of 4kB between each vmalloced | 
|  | * area for the same reason. ;) | 
|  | * | 
|  | * Note that platforms may override VMALLOC_START, but they must provide | 
|  | * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space, | 
|  | * which may not overlap IO space. | 
|  | */ | 
|  | #ifndef VMALLOC_START | 
|  | #define VMALLOC_OFFSET		SZ_8M | 
|  | #define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) \ | 
|  | & ~(VMALLOC_OFFSET-1)) | 
|  | #define VMALLOC_END		(0xff000000UL) | 
|  | #endif | 
|  |  | 
|  | #define PTRS_PER_PTE		1024 | 
|  | #define PTRS_PER_PGD		1024 | 
|  |  | 
|  | /* | 
|  | * PGDIR_SHIFT determines what a third-level page table entry can map | 
|  | */ | 
|  | #define PGDIR_SHIFT		22 | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | extern void __pte_error(const char *file, int line, unsigned long val); | 
|  | extern void __pgd_error(const char *file, int line, unsigned long val); | 
|  |  | 
|  | #define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte_val(pte)) | 
|  | #define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd_val(pgd)) | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | #define PGDIR_SIZE		(1UL << PGDIR_SHIFT) | 
|  | #define PGDIR_MASK		(~(PGDIR_SIZE-1)) | 
|  |  | 
|  | /* | 
|  | * This is the lowest virtual address we can permit any user space | 
|  | * mapping to be mapped at.  This is particularly important for | 
|  | * non-high vector CPUs. | 
|  | */ | 
|  | #define FIRST_USER_ADDRESS	PAGE_SIZE | 
|  |  | 
|  | #define FIRST_USER_PGD_NR	1 | 
|  | #define USER_PTRS_PER_PGD	((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR) | 
|  |  | 
|  | /* | 
|  | * section address mask and size definitions. | 
|  | */ | 
|  | #define SECTION_SHIFT		22 | 
|  | #define SECTION_SIZE		(1UL << SECTION_SHIFT) | 
|  | #define SECTION_MASK		(~(SECTION_SIZE-1)) | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  |  | 
|  | /* | 
|  | * The pgprot_* and protection_map entries will be fixed up in runtime | 
|  | * to include the cachable bits based on memory policy, as well as any | 
|  | * architecture dependent bits. | 
|  | */ | 
|  | #define _PTE_DEFAULT		(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE) | 
|  |  | 
|  | extern pgprot_t pgprot_user; | 
|  | extern pgprot_t pgprot_kernel; | 
|  |  | 
|  | #define PAGE_NONE		pgprot_user | 
|  | #define PAGE_SHARED		__pgprot(pgprot_val(pgprot_user | PTE_READ \ | 
|  | | PTE_WRITE)) | 
|  | #define PAGE_SHARED_EXEC	__pgprot(pgprot_val(pgprot_user | PTE_READ \ | 
|  | | PTE_WRITE \ | 
|  | | PTE_EXEC)) | 
|  | #define PAGE_COPY		__pgprot(pgprot_val(pgprot_user | PTE_READ) | 
|  | #define PAGE_COPY_EXEC		__pgprot(pgprot_val(pgprot_user | PTE_READ \ | 
|  | | PTE_EXEC)) | 
|  | #define PAGE_READONLY		__pgprot(pgprot_val(pgprot_user | PTE_READ)) | 
|  | #define PAGE_READONLY_EXEC	__pgprot(pgprot_val(pgprot_user | PTE_READ \ | 
|  | | PTE_EXEC)) | 
|  | #define PAGE_KERNEL		pgprot_kernel | 
|  | #define PAGE_KERNEL_EXEC	__pgprot(pgprot_val(pgprot_kernel | PTE_EXEC)) | 
|  |  | 
|  | #define __PAGE_NONE		__pgprot(_PTE_DEFAULT) | 
|  | #define __PAGE_SHARED		__pgprot(_PTE_DEFAULT | PTE_READ \ | 
|  | | PTE_WRITE) | 
|  | #define __PAGE_SHARED_EXEC	__pgprot(_PTE_DEFAULT | PTE_READ \ | 
|  | | PTE_WRITE \ | 
|  | | PTE_EXEC) | 
|  | #define __PAGE_COPY		__pgprot(_PTE_DEFAULT | PTE_READ) | 
|  | #define __PAGE_COPY_EXEC	__pgprot(_PTE_DEFAULT | PTE_READ \ | 
|  | | PTE_EXEC) | 
|  | #define __PAGE_READONLY		__pgprot(_PTE_DEFAULT | PTE_READ) | 
|  | #define __PAGE_READONLY_EXEC	__pgprot(_PTE_DEFAULT | PTE_READ \ | 
|  | | PTE_EXEC) | 
|  |  | 
|  | #endif /* __ASSEMBLY__ */ | 
|  |  | 
|  | /* | 
|  | * The table below defines the page protection levels that we insert into our | 
|  | * Linux page table version.  These get translated into the best that the | 
|  | * architecture can perform.  Note that on UniCore hardware: | 
|  | *  1) We cannot do execute protection | 
|  | *  2) If we could do execute protection, then read is implied | 
|  | *  3) write implies read permissions | 
|  | */ | 
|  | #define __P000  __PAGE_NONE | 
|  | #define __P001  __PAGE_READONLY | 
|  | #define __P010  __PAGE_COPY | 
|  | #define __P011  __PAGE_COPY | 
|  | #define __P100  __PAGE_READONLY_EXEC | 
|  | #define __P101  __PAGE_READONLY_EXEC | 
|  | #define __P110  __PAGE_COPY_EXEC | 
|  | #define __P111  __PAGE_COPY_EXEC | 
|  |  | 
|  | #define __S000  __PAGE_NONE | 
|  | #define __S001  __PAGE_READONLY | 
|  | #define __S010  __PAGE_SHARED | 
|  | #define __S011  __PAGE_SHARED | 
|  | #define __S100  __PAGE_READONLY_EXEC | 
|  | #define __S101  __PAGE_READONLY_EXEC | 
|  | #define __S110  __PAGE_SHARED_EXEC | 
|  | #define __S111  __PAGE_SHARED_EXEC | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | /* | 
|  | * ZERO_PAGE is a global shared page that is always zero: used | 
|  | * for zero-mapped memory areas etc.. | 
|  | */ | 
|  | extern struct page *empty_zero_page; | 
|  | #define ZERO_PAGE(vaddr)		(empty_zero_page) | 
|  |  | 
|  | #define pte_pfn(pte)			(pte_val(pte) >> PAGE_SHIFT) | 
|  | #define pfn_pte(pfn, prot)		(__pte(((pfn) << PAGE_SHIFT) \ | 
|  | | pgprot_val(prot))) | 
|  |  | 
|  | #define pte_none(pte)			(!pte_val(pte)) | 
|  | #define pte_clear(mm, addr, ptep)	set_pte(ptep, __pte(0)) | 
|  | #define pte_page(pte)			(pfn_to_page(pte_pfn(pte))) | 
|  | #define pte_offset_kernel(dir, addr)	(pmd_page_vaddr(*(dir)) \ | 
|  | + __pte_index(addr)) | 
|  |  | 
|  | #define pte_offset_map(dir, addr)	(pmd_page_vaddr(*(dir)) \ | 
|  | + __pte_index(addr)) | 
|  | #define pte_unmap(pte)			do { } while (0) | 
|  |  | 
|  | #define set_pte(ptep, pte)	cpu_set_pte(ptep, pte) | 
|  |  | 
|  | #define set_pte_at(mm, addr, ptep, pteval)	\ | 
|  | do {					\ | 
|  | set_pte(ptep, pteval);          \ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * The following only work if pte_present() is true. | 
|  | * Undefined behaviour if not.. | 
|  | */ | 
|  | #define pte_present(pte)	(pte_val(pte) & PTE_PRESENT) | 
|  | #define pte_write(pte)		(pte_val(pte) & PTE_WRITE) | 
|  | #define pte_dirty(pte)		(pte_val(pte) & PTE_DIRTY) | 
|  | #define pte_young(pte)		(pte_val(pte) & PTE_YOUNG) | 
|  | #define pte_exec(pte)		(pte_val(pte) & PTE_EXEC) | 
|  | #define pte_special(pte)	(0) | 
|  |  | 
|  | #define PTE_BIT_FUNC(fn, op) \ | 
|  | static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } | 
|  |  | 
|  | PTE_BIT_FUNC(wrprotect, &= ~PTE_WRITE); | 
|  | PTE_BIT_FUNC(mkwrite,   |= PTE_WRITE); | 
|  | PTE_BIT_FUNC(mkclean,   &= ~PTE_DIRTY); | 
|  | PTE_BIT_FUNC(mkdirty,   |= PTE_DIRTY); | 
|  | PTE_BIT_FUNC(mkold,     &= ~PTE_YOUNG); | 
|  | PTE_BIT_FUNC(mkyoung,   |= PTE_YOUNG); | 
|  |  | 
|  | static inline pte_t pte_mkspecial(pte_t pte) { return pte; } | 
|  |  | 
|  | /* | 
|  | * Mark the prot value as uncacheable. | 
|  | */ | 
|  | #define pgprot_noncached(prot)		\ | 
|  | __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE) | 
|  | #define pgprot_writecombine(prot)	\ | 
|  | __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE) | 
|  | #define pgprot_dmacoherent(prot)	\ | 
|  | __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE) | 
|  |  | 
|  | #define pmd_none(pmd)		(!pmd_val(pmd)) | 
|  | #define pmd_present(pmd)	(pmd_val(pmd) & PMD_PRESENT) | 
|  | #define pmd_bad(pmd)		(((pmd_val(pmd) &		\ | 
|  | (PMD_PRESENT | PMD_TYPE_MASK))	\ | 
|  | != (PMD_PRESENT | PMD_TYPE_TABLE))) | 
|  |  | 
|  | #define set_pmd(pmdpd, pmdval)		\ | 
|  | do {				\ | 
|  | *(pmdpd) = pmdval;	\ | 
|  | } while (0) | 
|  |  | 
|  | #define pmd_clear(pmdp)			\ | 
|  | do {				\ | 
|  | set_pmd(pmdp, __pmd(0));\ | 
|  | clean_pmd_entry(pmdp);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define pmd_page_vaddr(pmd) ((pte_t *)__va(pmd_val(pmd) & PAGE_MASK)) | 
|  | #define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd))) | 
|  |  | 
|  | /* | 
|  | * Conversion functions: convert a page and protection to a page entry, | 
|  | * and a page entry and page directory to the page they refer to. | 
|  | */ | 
|  | #define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot) | 
|  |  | 
|  | /* to find an entry in a page-table-directory */ | 
|  | #define pgd_index(addr)		((addr) >> PGDIR_SHIFT) | 
|  |  | 
|  | #define pgd_offset(mm, addr)	((mm)->pgd+pgd_index(addr)) | 
|  |  | 
|  | /* to find an entry in a kernel page-table-directory */ | 
|  | #define pgd_offset_k(addr)	pgd_offset(&init_mm, addr) | 
|  |  | 
|  | /* Find an entry in the third-level page table.. */ | 
|  | #define __pte_index(addr)	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | 
|  |  | 
|  | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | 
|  | { | 
|  | const unsigned long mask = PTE_EXEC | PTE_WRITE | PTE_READ; | 
|  | pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; | 
|  |  | 
|  | /* | 
|  | * Encode and decode a swap entry.  Swap entries are stored in the Linux | 
|  | * page tables as follows: | 
|  | * | 
|  | *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | 
|  | *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | 
|  | *   <--------------- offset --------------> <--- type --> 0 0 0 0 0 | 
|  | * | 
|  | * This gives us up to 127 swap files and 32GB per swap file.  Note that | 
|  | * the offset field is always non-zero. | 
|  | */ | 
|  | #define __SWP_TYPE_SHIFT	5 | 
|  | #define __SWP_TYPE_BITS		7 | 
|  | #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1) | 
|  | #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) | 
|  |  | 
|  | #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT)		\ | 
|  | & __SWP_TYPE_MASK) | 
|  | #define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT) | 
|  | #define __swp_entry(type, offset) ((swp_entry_t) {			\ | 
|  | ((type) << __SWP_TYPE_SHIFT) |		\ | 
|  | ((offset) << __SWP_OFFSET_SHIFT) }) | 
|  |  | 
|  | #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) }) | 
|  | #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val }) | 
|  |  | 
|  | /* | 
|  | * It is an error for the kernel to have more swap files than we can | 
|  | * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES | 
|  | * is increased beyond what we presently support. | 
|  | */ | 
|  | #define MAX_SWAPFILES_CHECK()	\ | 
|  | BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) | 
|  |  | 
|  | /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ | 
|  | /* FIXME: this is not correct */ | 
|  | #define kern_addr_valid(addr)	(1) | 
|  |  | 
|  | #include <asm-generic/pgtable.h> | 
|  |  | 
|  | #define pgtable_cache_init() do { } while (0) | 
|  |  | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | #endif /* __UNICORE_PGTABLE_H__ */ |