| /* | 
 |  * Copyright (C) 2003 Christophe Saout <christophe@saout.de> | 
 |  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/crypto.h> | 
 | #include <linux/workqueue.h> | 
 | #include <asm/atomic.h> | 
 | #include <asm/scatterlist.h> | 
 | #include <asm/page.h> | 
 |  | 
 | #include "dm.h" | 
 |  | 
 | #define PFX	"crypt: " | 
 |  | 
 | /* | 
 |  * per bio private data | 
 |  */ | 
 | struct crypt_io { | 
 | 	struct dm_target *target; | 
 | 	struct bio *bio; | 
 | 	struct bio *first_clone; | 
 | 	struct work_struct work; | 
 | 	atomic_t pending; | 
 | 	int error; | 
 | }; | 
 |  | 
 | /* | 
 |  * context holding the current state of a multi-part conversion | 
 |  */ | 
 | struct convert_context { | 
 | 	struct bio *bio_in; | 
 | 	struct bio *bio_out; | 
 | 	unsigned int offset_in; | 
 | 	unsigned int offset_out; | 
 | 	unsigned int idx_in; | 
 | 	unsigned int idx_out; | 
 | 	sector_t sector; | 
 | 	int write; | 
 | }; | 
 |  | 
 | struct crypt_config; | 
 |  | 
 | struct crypt_iv_operations { | 
 | 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti, | 
 | 	           const char *opts); | 
 | 	void (*dtr)(struct crypt_config *cc); | 
 | 	const char *(*status)(struct crypt_config *cc); | 
 | 	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector); | 
 | }; | 
 |  | 
 | /* | 
 |  * Crypt: maps a linear range of a block device | 
 |  * and encrypts / decrypts at the same time. | 
 |  */ | 
 | struct crypt_config { | 
 | 	struct dm_dev *dev; | 
 | 	sector_t start; | 
 |  | 
 | 	/* | 
 | 	 * pool for per bio private data and | 
 | 	 * for encryption buffer pages | 
 | 	 */ | 
 | 	mempool_t *io_pool; | 
 | 	mempool_t *page_pool; | 
 |  | 
 | 	/* | 
 | 	 * crypto related data | 
 | 	 */ | 
 | 	struct crypt_iv_operations *iv_gen_ops; | 
 | 	char *iv_mode; | 
 | 	void *iv_gen_private; | 
 | 	sector_t iv_offset; | 
 | 	unsigned int iv_size; | 
 |  | 
 | 	struct crypto_tfm *tfm; | 
 | 	unsigned int key_size; | 
 | 	u8 key[0]; | 
 | }; | 
 |  | 
 | #define MIN_IOS        256 | 
 | #define MIN_POOL_PAGES 32 | 
 | #define MIN_BIO_PAGES  8 | 
 |  | 
 | static kmem_cache_t *_crypt_io_pool; | 
 |  | 
 | /* | 
 |  * Mempool alloc and free functions for the page | 
 |  */ | 
 | static void *mempool_alloc_page(gfp_t gfp_mask, void *data) | 
 | { | 
 | 	return alloc_page(gfp_mask); | 
 | } | 
 |  | 
 | static void mempool_free_page(void *page, void *data) | 
 | { | 
 | 	__free_page(page); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Different IV generation algorithms: | 
 |  * | 
 |  * plain: the initial vector is the 32-bit low-endian version of the sector | 
 |  *        number, padded with zeros if neccessary. | 
 |  * | 
 |  * ess_iv: "encrypted sector|salt initial vector", the sector number is | 
 |  *         encrypted with the bulk cipher using a salt as key. The salt | 
 |  *         should be derived from the bulk cipher's key via hashing. | 
 |  * | 
 |  * plumb: unimplemented, see: | 
 |  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 | 
 |  */ | 
 |  | 
 | static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector) | 
 | { | 
 | 	memset(iv, 0, cc->iv_size); | 
 | 	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, | 
 | 	                      const char *opts) | 
 | { | 
 | 	struct crypto_tfm *essiv_tfm; | 
 | 	struct crypto_tfm *hash_tfm; | 
 | 	struct scatterlist sg; | 
 | 	unsigned int saltsize; | 
 | 	u8 *salt; | 
 |  | 
 | 	if (opts == NULL) { | 
 | 		ti->error = PFX "Digest algorithm missing for ESSIV mode"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Hash the cipher key with the given hash algorithm */ | 
 | 	hash_tfm = crypto_alloc_tfm(opts, CRYPTO_TFM_REQ_MAY_SLEEP); | 
 | 	if (hash_tfm == NULL) { | 
 | 		ti->error = PFX "Error initializing ESSIV hash"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (crypto_tfm_alg_type(hash_tfm) != CRYPTO_ALG_TYPE_DIGEST) { | 
 | 		ti->error = PFX "Expected digest algorithm for ESSIV hash"; | 
 | 		crypto_free_tfm(hash_tfm); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	saltsize = crypto_tfm_alg_digestsize(hash_tfm); | 
 | 	salt = kmalloc(saltsize, GFP_KERNEL); | 
 | 	if (salt == NULL) { | 
 | 		ti->error = PFX "Error kmallocing salt storage in ESSIV"; | 
 | 		crypto_free_tfm(hash_tfm); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	sg.page = virt_to_page(cc->key); | 
 | 	sg.offset = offset_in_page(cc->key); | 
 | 	sg.length = cc->key_size; | 
 | 	crypto_digest_digest(hash_tfm, &sg, 1, salt); | 
 | 	crypto_free_tfm(hash_tfm); | 
 |  | 
 | 	/* Setup the essiv_tfm with the given salt */ | 
 | 	essiv_tfm = crypto_alloc_tfm(crypto_tfm_alg_name(cc->tfm), | 
 | 	                             CRYPTO_TFM_MODE_ECB | | 
 | 	                             CRYPTO_TFM_REQ_MAY_SLEEP); | 
 | 	if (essiv_tfm == NULL) { | 
 | 		ti->error = PFX "Error allocating crypto tfm for ESSIV"; | 
 | 		kfree(salt); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (crypto_tfm_alg_blocksize(essiv_tfm) | 
 | 	    != crypto_tfm_alg_ivsize(cc->tfm)) { | 
 | 		ti->error = PFX "Block size of ESSIV cipher does " | 
 | 			        "not match IV size of block cipher"; | 
 | 		crypto_free_tfm(essiv_tfm); | 
 | 		kfree(salt); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (crypto_cipher_setkey(essiv_tfm, salt, saltsize) < 0) { | 
 | 		ti->error = PFX "Failed to set key for ESSIV cipher"; | 
 | 		crypto_free_tfm(essiv_tfm); | 
 | 		kfree(salt); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	kfree(salt); | 
 |  | 
 | 	cc->iv_gen_private = (void *)essiv_tfm; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void crypt_iv_essiv_dtr(struct crypt_config *cc) | 
 | { | 
 | 	crypto_free_tfm((struct crypto_tfm *)cc->iv_gen_private); | 
 | 	cc->iv_gen_private = NULL; | 
 | } | 
 |  | 
 | static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector) | 
 | { | 
 | 	struct scatterlist sg = { NULL, }; | 
 |  | 
 | 	memset(iv, 0, cc->iv_size); | 
 | 	*(u64 *)iv = cpu_to_le64(sector); | 
 |  | 
 | 	sg.page = virt_to_page(iv); | 
 | 	sg.offset = offset_in_page(iv); | 
 | 	sg.length = cc->iv_size; | 
 | 	crypto_cipher_encrypt((struct crypto_tfm *)cc->iv_gen_private, | 
 | 	                      &sg, &sg, cc->iv_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct crypt_iv_operations crypt_iv_plain_ops = { | 
 | 	.generator = crypt_iv_plain_gen | 
 | }; | 
 |  | 
 | static struct crypt_iv_operations crypt_iv_essiv_ops = { | 
 | 	.ctr       = crypt_iv_essiv_ctr, | 
 | 	.dtr       = crypt_iv_essiv_dtr, | 
 | 	.generator = crypt_iv_essiv_gen | 
 | }; | 
 |  | 
 |  | 
 | static inline int | 
 | crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out, | 
 |                           struct scatterlist *in, unsigned int length, | 
 |                           int write, sector_t sector) | 
 | { | 
 | 	u8 iv[cc->iv_size]; | 
 | 	int r; | 
 |  | 
 | 	if (cc->iv_gen_ops) { | 
 | 		r = cc->iv_gen_ops->generator(cc, iv, sector); | 
 | 		if (r < 0) | 
 | 			return r; | 
 |  | 
 | 		if (write) | 
 | 			r = crypto_cipher_encrypt_iv(cc->tfm, out, in, length, iv); | 
 | 		else | 
 | 			r = crypto_cipher_decrypt_iv(cc->tfm, out, in, length, iv); | 
 | 	} else { | 
 | 		if (write) | 
 | 			r = crypto_cipher_encrypt(cc->tfm, out, in, length); | 
 | 		else | 
 | 			r = crypto_cipher_decrypt(cc->tfm, out, in, length); | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void | 
 | crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx, | 
 |                    struct bio *bio_out, struct bio *bio_in, | 
 |                    sector_t sector, int write) | 
 | { | 
 | 	ctx->bio_in = bio_in; | 
 | 	ctx->bio_out = bio_out; | 
 | 	ctx->offset_in = 0; | 
 | 	ctx->offset_out = 0; | 
 | 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0; | 
 | 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0; | 
 | 	ctx->sector = sector + cc->iv_offset; | 
 | 	ctx->write = write; | 
 | } | 
 |  | 
 | /* | 
 |  * Encrypt / decrypt data from one bio to another one (can be the same one) | 
 |  */ | 
 | static int crypt_convert(struct crypt_config *cc, | 
 |                          struct convert_context *ctx) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	while(ctx->idx_in < ctx->bio_in->bi_vcnt && | 
 | 	      ctx->idx_out < ctx->bio_out->bi_vcnt) { | 
 | 		struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in); | 
 | 		struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out); | 
 | 		struct scatterlist sg_in = { | 
 | 			.page = bv_in->bv_page, | 
 | 			.offset = bv_in->bv_offset + ctx->offset_in, | 
 | 			.length = 1 << SECTOR_SHIFT | 
 | 		}; | 
 | 		struct scatterlist sg_out = { | 
 | 			.page = bv_out->bv_page, | 
 | 			.offset = bv_out->bv_offset + ctx->offset_out, | 
 | 			.length = 1 << SECTOR_SHIFT | 
 | 		}; | 
 |  | 
 | 		ctx->offset_in += sg_in.length; | 
 | 		if (ctx->offset_in >= bv_in->bv_len) { | 
 | 			ctx->offset_in = 0; | 
 | 			ctx->idx_in++; | 
 | 		} | 
 |  | 
 | 		ctx->offset_out += sg_out.length; | 
 | 		if (ctx->offset_out >= bv_out->bv_len) { | 
 | 			ctx->offset_out = 0; | 
 | 			ctx->idx_out++; | 
 | 		} | 
 |  | 
 | 		r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length, | 
 | 		                              ctx->write, ctx->sector); | 
 | 		if (r < 0) | 
 | 			break; | 
 |  | 
 | 		ctx->sector++; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Generate a new unfragmented bio with the given size | 
 |  * This should never violate the device limitations | 
 |  * May return a smaller bio when running out of pages | 
 |  */ | 
 | static struct bio * | 
 | crypt_alloc_buffer(struct crypt_config *cc, unsigned int size, | 
 |                    struct bio *base_bio, unsigned int *bio_vec_idx) | 
 | { | 
 | 	struct bio *bio; | 
 | 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	int gfp_mask = GFP_NOIO | __GFP_HIGHMEM; | 
 | 	unsigned int i; | 
 |  | 
 | 	/* | 
 | 	 * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and | 
 | 	 * to fail earlier.  This is not necessary but increases throughput. | 
 | 	 * FIXME: Is this really intelligent? | 
 | 	 */ | 
 | 	if (base_bio) | 
 | 		bio = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC); | 
 | 	else | 
 | 		bio = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs); | 
 | 	if (!bio) | 
 | 		return NULL; | 
 |  | 
 | 	/* if the last bio was not complete, continue where that one ended */ | 
 | 	bio->bi_idx = *bio_vec_idx; | 
 | 	bio->bi_vcnt = *bio_vec_idx; | 
 | 	bio->bi_size = 0; | 
 | 	bio->bi_flags &= ~(1 << BIO_SEG_VALID); | 
 |  | 
 | 	/* bio->bi_idx pages have already been allocated */ | 
 | 	size -= bio->bi_idx * PAGE_SIZE; | 
 |  | 
 | 	for(i = bio->bi_idx; i < nr_iovecs; i++) { | 
 | 		struct bio_vec *bv = bio_iovec_idx(bio, i); | 
 |  | 
 | 		bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask); | 
 | 		if (!bv->bv_page) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * if additional pages cannot be allocated without waiting, | 
 | 		 * return a partially allocated bio, the caller will then try | 
 | 		 * to allocate additional bios while submitting this partial bio | 
 | 		 */ | 
 | 		if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1)) | 
 | 			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT; | 
 |  | 
 | 		bv->bv_offset = 0; | 
 | 		if (size > PAGE_SIZE) | 
 | 			bv->bv_len = PAGE_SIZE; | 
 | 		else | 
 | 			bv->bv_len = size; | 
 |  | 
 | 		bio->bi_size += bv->bv_len; | 
 | 		bio->bi_vcnt++; | 
 | 		size -= bv->bv_len; | 
 | 	} | 
 |  | 
 | 	if (!bio->bi_size) { | 
 | 		bio_put(bio); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Remember the last bio_vec allocated to be able | 
 | 	 * to correctly continue after the splitting. | 
 | 	 */ | 
 | 	*bio_vec_idx = bio->bi_vcnt; | 
 |  | 
 | 	return bio; | 
 | } | 
 |  | 
 | static void crypt_free_buffer_pages(struct crypt_config *cc, | 
 |                                     struct bio *bio, unsigned int bytes) | 
 | { | 
 | 	unsigned int i, start, end; | 
 | 	struct bio_vec *bv; | 
 |  | 
 | 	/* | 
 | 	 * This is ugly, but Jens Axboe thinks that using bi_idx in the | 
 | 	 * endio function is too dangerous at the moment, so I calculate the | 
 | 	 * correct position using bi_vcnt and bi_size. | 
 | 	 * The bv_offset and bv_len fields might already be modified but we | 
 | 	 * know that we always allocated whole pages. | 
 | 	 * A fix to the bi_idx issue in the kernel is in the works, so | 
 | 	 * we will hopefully be able to revert to the cleaner solution soon. | 
 | 	 */ | 
 | 	i = bio->bi_vcnt - 1; | 
 | 	bv = bio_iovec_idx(bio, i); | 
 | 	end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size; | 
 | 	start = end - bytes; | 
 |  | 
 | 	start >>= PAGE_SHIFT; | 
 | 	if (!bio->bi_size) | 
 | 		end = bio->bi_vcnt; | 
 | 	else | 
 | 		end >>= PAGE_SHIFT; | 
 |  | 
 | 	for(i = start; i < end; i++) { | 
 | 		bv = bio_iovec_idx(bio, i); | 
 | 		BUG_ON(!bv->bv_page); | 
 | 		mempool_free(bv->bv_page, cc->page_pool); | 
 | 		bv->bv_page = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * One of the bios was finished. Check for completion of | 
 |  * the whole request and correctly clean up the buffer. | 
 |  */ | 
 | static void dec_pending(struct crypt_io *io, int error) | 
 | { | 
 | 	struct crypt_config *cc = (struct crypt_config *) io->target->private; | 
 |  | 
 | 	if (error < 0) | 
 | 		io->error = error; | 
 |  | 
 | 	if (!atomic_dec_and_test(&io->pending)) | 
 | 		return; | 
 |  | 
 | 	if (io->first_clone) | 
 | 		bio_put(io->first_clone); | 
 |  | 
 | 	bio_endio(io->bio, io->bio->bi_size, io->error); | 
 |  | 
 | 	mempool_free(io, cc->io_pool); | 
 | } | 
 |  | 
 | /* | 
 |  * kcryptd: | 
 |  * | 
 |  * Needed because it would be very unwise to do decryption in an | 
 |  * interrupt context, so bios returning from read requests get | 
 |  * queued here. | 
 |  */ | 
 | static struct workqueue_struct *_kcryptd_workqueue; | 
 |  | 
 | static void kcryptd_do_work(void *data) | 
 | { | 
 | 	struct crypt_io *io = (struct crypt_io *) data; | 
 | 	struct crypt_config *cc = (struct crypt_config *) io->target->private; | 
 | 	struct convert_context ctx; | 
 | 	int r; | 
 |  | 
 | 	crypt_convert_init(cc, &ctx, io->bio, io->bio, | 
 | 	                   io->bio->bi_sector - io->target->begin, 0); | 
 | 	r = crypt_convert(cc, &ctx); | 
 |  | 
 | 	dec_pending(io, r); | 
 | } | 
 |  | 
 | static void kcryptd_queue_io(struct crypt_io *io) | 
 | { | 
 | 	INIT_WORK(&io->work, kcryptd_do_work, io); | 
 | 	queue_work(_kcryptd_workqueue, &io->work); | 
 | } | 
 |  | 
 | /* | 
 |  * Decode key from its hex representation | 
 |  */ | 
 | static int crypt_decode_key(u8 *key, char *hex, unsigned int size) | 
 | { | 
 | 	char buffer[3]; | 
 | 	char *endp; | 
 | 	unsigned int i; | 
 |  | 
 | 	buffer[2] = '\0'; | 
 |  | 
 | 	for(i = 0; i < size; i++) { | 
 | 		buffer[0] = *hex++; | 
 | 		buffer[1] = *hex++; | 
 |  | 
 | 		key[i] = (u8)simple_strtoul(buffer, &endp, 16); | 
 |  | 
 | 		if (endp != &buffer[2]) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (*hex != '\0') | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Encode key into its hex representation | 
 |  */ | 
 | static void crypt_encode_key(char *hex, u8 *key, unsigned int size) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for(i = 0; i < size; i++) { | 
 | 		sprintf(hex, "%02x", *key); | 
 | 		hex += 2; | 
 | 		key++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Construct an encryption mapping: | 
 |  * <cipher> <key> <iv_offset> <dev_path> <start> | 
 |  */ | 
 | static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) | 
 | { | 
 | 	struct crypt_config *cc; | 
 | 	struct crypto_tfm *tfm; | 
 | 	char *tmp; | 
 | 	char *cipher; | 
 | 	char *chainmode; | 
 | 	char *ivmode; | 
 | 	char *ivopts; | 
 | 	unsigned int crypto_flags; | 
 | 	unsigned int key_size; | 
 |  | 
 | 	if (argc != 5) { | 
 | 		ti->error = PFX "Not enough arguments"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	tmp = argv[0]; | 
 | 	cipher = strsep(&tmp, "-"); | 
 | 	chainmode = strsep(&tmp, "-"); | 
 | 	ivopts = strsep(&tmp, "-"); | 
 | 	ivmode = strsep(&ivopts, ":"); | 
 |  | 
 | 	if (tmp) | 
 | 		DMWARN(PFX "Unexpected additional cipher options"); | 
 |  | 
 | 	key_size = strlen(argv[1]) >> 1; | 
 |  | 
 | 	cc = kmalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); | 
 | 	if (cc == NULL) { | 
 | 		ti->error = | 
 | 			PFX "Cannot allocate transparent encryption context"; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	cc->key_size = key_size; | 
 | 	if ((!key_size && strcmp(argv[1], "-") != 0) || | 
 | 	    (key_size && crypt_decode_key(cc->key, argv[1], key_size) < 0)) { | 
 | 		ti->error = PFX "Error decoding key"; | 
 | 		goto bad1; | 
 | 	} | 
 |  | 
 | 	/* Compatiblity mode for old dm-crypt cipher strings */ | 
 | 	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) { | 
 | 		chainmode = "cbc"; | 
 | 		ivmode = "plain"; | 
 | 	} | 
 |  | 
 | 	/* Choose crypto_flags according to chainmode */ | 
 | 	if (strcmp(chainmode, "cbc") == 0) | 
 | 		crypto_flags = CRYPTO_TFM_MODE_CBC; | 
 | 	else if (strcmp(chainmode, "ecb") == 0) | 
 | 		crypto_flags = CRYPTO_TFM_MODE_ECB; | 
 | 	else { | 
 | 		ti->error = PFX "Unknown chaining mode"; | 
 | 		goto bad1; | 
 | 	} | 
 |  | 
 | 	if (crypto_flags != CRYPTO_TFM_MODE_ECB && !ivmode) { | 
 | 		ti->error = PFX "This chaining mode requires an IV mechanism"; | 
 | 		goto bad1; | 
 | 	} | 
 |  | 
 | 	tfm = crypto_alloc_tfm(cipher, crypto_flags | CRYPTO_TFM_REQ_MAY_SLEEP); | 
 | 	if (!tfm) { | 
 | 		ti->error = PFX "Error allocating crypto tfm"; | 
 | 		goto bad1; | 
 | 	} | 
 | 	if (crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER) { | 
 | 		ti->error = PFX "Expected cipher algorithm"; | 
 | 		goto bad2; | 
 | 	} | 
 |  | 
 | 	cc->tfm = tfm; | 
 |  | 
 | 	/* | 
 | 	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>". | 
 | 	 * See comments at iv code | 
 | 	 */ | 
 |  | 
 | 	if (ivmode == NULL) | 
 | 		cc->iv_gen_ops = NULL; | 
 | 	else if (strcmp(ivmode, "plain") == 0) | 
 | 		cc->iv_gen_ops = &crypt_iv_plain_ops; | 
 | 	else if (strcmp(ivmode, "essiv") == 0) | 
 | 		cc->iv_gen_ops = &crypt_iv_essiv_ops; | 
 | 	else { | 
 | 		ti->error = PFX "Invalid IV mode"; | 
 | 		goto bad2; | 
 | 	} | 
 |  | 
 | 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr && | 
 | 	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0) | 
 | 		goto bad2; | 
 |  | 
 | 	if (tfm->crt_cipher.cit_decrypt_iv && tfm->crt_cipher.cit_encrypt_iv) | 
 | 		/* at least a 64 bit sector number should fit in our buffer */ | 
 | 		cc->iv_size = max(crypto_tfm_alg_ivsize(tfm), | 
 | 		                  (unsigned int)(sizeof(u64) / sizeof(u8))); | 
 | 	else { | 
 | 		cc->iv_size = 0; | 
 | 		if (cc->iv_gen_ops) { | 
 | 			DMWARN(PFX "Selected cipher does not support IVs"); | 
 | 			if (cc->iv_gen_ops->dtr) | 
 | 				cc->iv_gen_ops->dtr(cc); | 
 | 			cc->iv_gen_ops = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cc->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab, | 
 | 				     mempool_free_slab, _crypt_io_pool); | 
 | 	if (!cc->io_pool) { | 
 | 		ti->error = PFX "Cannot allocate crypt io mempool"; | 
 | 		goto bad3; | 
 | 	} | 
 |  | 
 | 	cc->page_pool = mempool_create(MIN_POOL_PAGES, mempool_alloc_page, | 
 | 				       mempool_free_page, NULL); | 
 | 	if (!cc->page_pool) { | 
 | 		ti->error = PFX "Cannot allocate page mempool"; | 
 | 		goto bad4; | 
 | 	} | 
 |  | 
 | 	if (tfm->crt_cipher.cit_setkey(tfm, cc->key, key_size) < 0) { | 
 | 		ti->error = PFX "Error setting key"; | 
 | 		goto bad5; | 
 | 	} | 
 |  | 
 | 	if (sscanf(argv[2], SECTOR_FORMAT, &cc->iv_offset) != 1) { | 
 | 		ti->error = PFX "Invalid iv_offset sector"; | 
 | 		goto bad5; | 
 | 	} | 
 |  | 
 | 	if (sscanf(argv[4], SECTOR_FORMAT, &cc->start) != 1) { | 
 | 		ti->error = PFX "Invalid device sector"; | 
 | 		goto bad5; | 
 | 	} | 
 |  | 
 | 	if (dm_get_device(ti, argv[3], cc->start, ti->len, | 
 | 	                  dm_table_get_mode(ti->table), &cc->dev)) { | 
 | 		ti->error = PFX "Device lookup failed"; | 
 | 		goto bad5; | 
 | 	} | 
 |  | 
 | 	if (ivmode && cc->iv_gen_ops) { | 
 | 		if (ivopts) | 
 | 			*(ivopts - 1) = ':'; | 
 | 		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL); | 
 | 		if (!cc->iv_mode) { | 
 | 			ti->error = PFX "Error kmallocing iv_mode string"; | 
 | 			goto bad5; | 
 | 		} | 
 | 		strcpy(cc->iv_mode, ivmode); | 
 | 	} else | 
 | 		cc->iv_mode = NULL; | 
 |  | 
 | 	ti->private = cc; | 
 | 	return 0; | 
 |  | 
 | bad5: | 
 | 	mempool_destroy(cc->page_pool); | 
 | bad4: | 
 | 	mempool_destroy(cc->io_pool); | 
 | bad3: | 
 | 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) | 
 | 		cc->iv_gen_ops->dtr(cc); | 
 | bad2: | 
 | 	crypto_free_tfm(tfm); | 
 | bad1: | 
 | 	kfree(cc); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static void crypt_dtr(struct dm_target *ti) | 
 | { | 
 | 	struct crypt_config *cc = (struct crypt_config *) ti->private; | 
 |  | 
 | 	mempool_destroy(cc->page_pool); | 
 | 	mempool_destroy(cc->io_pool); | 
 |  | 
 | 	kfree(cc->iv_mode); | 
 | 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) | 
 | 		cc->iv_gen_ops->dtr(cc); | 
 | 	crypto_free_tfm(cc->tfm); | 
 | 	dm_put_device(ti, cc->dev); | 
 | 	kfree(cc); | 
 | } | 
 |  | 
 | static int crypt_endio(struct bio *bio, unsigned int done, int error) | 
 | { | 
 | 	struct crypt_io *io = (struct crypt_io *) bio->bi_private; | 
 | 	struct crypt_config *cc = (struct crypt_config *) io->target->private; | 
 |  | 
 | 	if (bio_data_dir(bio) == WRITE) { | 
 | 		/* | 
 | 		 * free the processed pages, even if | 
 | 		 * it's only a partially completed write | 
 | 		 */ | 
 | 		crypt_free_buffer_pages(cc, bio, done); | 
 | 	} | 
 |  | 
 | 	if (bio->bi_size) | 
 | 		return 1; | 
 |  | 
 | 	bio_put(bio); | 
 |  | 
 | 	/* | 
 | 	 * successful reads are decrypted by the worker thread | 
 | 	 */ | 
 | 	if ((bio_data_dir(bio) == READ) | 
 | 	    && bio_flagged(bio, BIO_UPTODATE)) { | 
 | 		kcryptd_queue_io(io); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	dec_pending(io, error); | 
 | 	return error; | 
 | } | 
 |  | 
 | static inline struct bio * | 
 | crypt_clone(struct crypt_config *cc, struct crypt_io *io, struct bio *bio, | 
 |             sector_t sector, unsigned int *bvec_idx, | 
 |             struct convert_context *ctx) | 
 | { | 
 | 	struct bio *clone; | 
 |  | 
 | 	if (bio_data_dir(bio) == WRITE) { | 
 | 		clone = crypt_alloc_buffer(cc, bio->bi_size, | 
 |                                  io->first_clone, bvec_idx); | 
 | 		if (clone) { | 
 | 			ctx->bio_out = clone; | 
 | 			if (crypt_convert(cc, ctx) < 0) { | 
 | 				crypt_free_buffer_pages(cc, clone, | 
 | 				                        clone->bi_size); | 
 | 				bio_put(clone); | 
 | 				return NULL; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * The block layer might modify the bvec array, so always | 
 | 		 * copy the required bvecs because we need the original | 
 | 		 * one in order to decrypt the whole bio data *afterwards*. | 
 | 		 */ | 
 | 		clone = bio_alloc(GFP_NOIO, bio_segments(bio)); | 
 | 		if (clone) { | 
 | 			clone->bi_idx = 0; | 
 | 			clone->bi_vcnt = bio_segments(bio); | 
 | 			clone->bi_size = bio->bi_size; | 
 | 			memcpy(clone->bi_io_vec, bio_iovec(bio), | 
 | 			       sizeof(struct bio_vec) * clone->bi_vcnt); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!clone) | 
 | 		return NULL; | 
 |  | 
 | 	clone->bi_private = io; | 
 | 	clone->bi_end_io = crypt_endio; | 
 | 	clone->bi_bdev = cc->dev->bdev; | 
 | 	clone->bi_sector = cc->start + sector; | 
 | 	clone->bi_rw = bio->bi_rw; | 
 |  | 
 | 	return clone; | 
 | } | 
 |  | 
 | static int crypt_map(struct dm_target *ti, struct bio *bio, | 
 | 		     union map_info *map_context) | 
 | { | 
 | 	struct crypt_config *cc = (struct crypt_config *) ti->private; | 
 | 	struct crypt_io *io = mempool_alloc(cc->io_pool, GFP_NOIO); | 
 | 	struct convert_context ctx; | 
 | 	struct bio *clone; | 
 | 	unsigned int remaining = bio->bi_size; | 
 | 	sector_t sector = bio->bi_sector - ti->begin; | 
 | 	unsigned int bvec_idx = 0; | 
 |  | 
 | 	io->target = ti; | 
 | 	io->bio = bio; | 
 | 	io->first_clone = NULL; | 
 | 	io->error = 0; | 
 | 	atomic_set(&io->pending, 1); /* hold a reference */ | 
 |  | 
 | 	if (bio_data_dir(bio) == WRITE) | 
 | 		crypt_convert_init(cc, &ctx, NULL, bio, sector, 1); | 
 |  | 
 | 	/* | 
 | 	 * The allocated buffers can be smaller than the whole bio, | 
 | 	 * so repeat the whole process until all the data can be handled. | 
 | 	 */ | 
 | 	while (remaining) { | 
 | 		clone = crypt_clone(cc, io, bio, sector, &bvec_idx, &ctx); | 
 | 		if (!clone) | 
 | 			goto cleanup; | 
 |  | 
 | 		if (!io->first_clone) { | 
 | 			/* | 
 | 			 * hold a reference to the first clone, because it | 
 | 			 * holds the bio_vec array and that can't be freed | 
 | 			 * before all other clones are released | 
 | 			 */ | 
 | 			bio_get(clone); | 
 | 			io->first_clone = clone; | 
 | 		} | 
 | 		atomic_inc(&io->pending); | 
 |  | 
 | 		remaining -= clone->bi_size; | 
 | 		sector += bio_sectors(clone); | 
 |  | 
 | 		generic_make_request(clone); | 
 |  | 
 | 		/* out of memory -> run queues */ | 
 | 		if (remaining) | 
 | 			blk_congestion_wait(bio_data_dir(clone), HZ/100); | 
 | 	} | 
 |  | 
 | 	/* drop reference, clones could have returned before we reach this */ | 
 | 	dec_pending(io, 0); | 
 | 	return 0; | 
 |  | 
 | cleanup: | 
 | 	if (io->first_clone) { | 
 | 		dec_pending(io, -ENOMEM); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* if no bio has been dispatched yet, we can directly return the error */ | 
 | 	mempool_free(io, cc->io_pool); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int crypt_status(struct dm_target *ti, status_type_t type, | 
 | 			char *result, unsigned int maxlen) | 
 | { | 
 | 	struct crypt_config *cc = (struct crypt_config *) ti->private; | 
 | 	const char *cipher; | 
 | 	const char *chainmode = NULL; | 
 | 	unsigned int sz = 0; | 
 |  | 
 | 	switch (type) { | 
 | 	case STATUSTYPE_INFO: | 
 | 		result[0] = '\0'; | 
 | 		break; | 
 |  | 
 | 	case STATUSTYPE_TABLE: | 
 | 		cipher = crypto_tfm_alg_name(cc->tfm); | 
 |  | 
 | 		switch(cc->tfm->crt_cipher.cit_mode) { | 
 | 		case CRYPTO_TFM_MODE_CBC: | 
 | 			chainmode = "cbc"; | 
 | 			break; | 
 | 		case CRYPTO_TFM_MODE_ECB: | 
 | 			chainmode = "ecb"; | 
 | 			break; | 
 | 		default: | 
 | 			BUG(); | 
 | 		} | 
 |  | 
 | 		if (cc->iv_mode) | 
 | 			DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode); | 
 | 		else | 
 | 			DMEMIT("%s-%s ", cipher, chainmode); | 
 |  | 
 | 		if (cc->key_size > 0) { | 
 | 			if ((maxlen - sz) < ((cc->key_size << 1) + 1)) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			crypt_encode_key(result + sz, cc->key, cc->key_size); | 
 | 			sz += cc->key_size << 1; | 
 | 		} else { | 
 | 			if (sz >= maxlen) | 
 | 				return -ENOMEM; | 
 | 			result[sz++] = '-'; | 
 | 		} | 
 |  | 
 | 		DMEMIT(" " SECTOR_FORMAT " %s " SECTOR_FORMAT, | 
 | 		       cc->iv_offset, cc->dev->name, cc->start); | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct target_type crypt_target = { | 
 | 	.name   = "crypt", | 
 | 	.version= {1, 1, 0}, | 
 | 	.module = THIS_MODULE, | 
 | 	.ctr    = crypt_ctr, | 
 | 	.dtr    = crypt_dtr, | 
 | 	.map    = crypt_map, | 
 | 	.status = crypt_status, | 
 | }; | 
 |  | 
 | static int __init dm_crypt_init(void) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	_crypt_io_pool = kmem_cache_create("dm-crypt_io", | 
 | 	                                   sizeof(struct crypt_io), | 
 | 	                                   0, 0, NULL, NULL); | 
 | 	if (!_crypt_io_pool) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	_kcryptd_workqueue = create_workqueue("kcryptd"); | 
 | 	if (!_kcryptd_workqueue) { | 
 | 		r = -ENOMEM; | 
 | 		DMERR(PFX "couldn't create kcryptd"); | 
 | 		goto bad1; | 
 | 	} | 
 |  | 
 | 	r = dm_register_target(&crypt_target); | 
 | 	if (r < 0) { | 
 | 		DMERR(PFX "register failed %d", r); | 
 | 		goto bad2; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | bad2: | 
 | 	destroy_workqueue(_kcryptd_workqueue); | 
 | bad1: | 
 | 	kmem_cache_destroy(_crypt_io_pool); | 
 | 	return r; | 
 | } | 
 |  | 
 | static void __exit dm_crypt_exit(void) | 
 | { | 
 | 	int r = dm_unregister_target(&crypt_target); | 
 |  | 
 | 	if (r < 0) | 
 | 		DMERR(PFX "unregister failed %d", r); | 
 |  | 
 | 	destroy_workqueue(_kcryptd_workqueue); | 
 | 	kmem_cache_destroy(_crypt_io_pool); | 
 | } | 
 |  | 
 | module_init(dm_crypt_init); | 
 | module_exit(dm_crypt_exit); | 
 |  | 
 | MODULE_AUTHOR("Christophe Saout <christophe@saout.de>"); | 
 | MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); | 
 | MODULE_LICENSE("GPL"); |