|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Watchdog support on powerpc systems. | 
|  | * | 
|  | * Copyright 2017, IBM Corporation. | 
|  | * | 
|  | * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "watchdog: " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/param.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/sched/debug.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/smp.h> | 
|  |  | 
|  | #include <asm/paca.h> | 
|  |  | 
|  | /* | 
|  | * The powerpc watchdog ensures that each CPU is able to service timers. | 
|  | * The watchdog sets up a simple timer on each CPU to run once per timer | 
|  | * period, and updates a per-cpu timestamp and a "pending" cpumask. This is | 
|  | * the heartbeat. | 
|  | * | 
|  | * Then there are two systems to check that the heartbeat is still running. | 
|  | * The local soft-NMI, and the SMP checker. | 
|  | * | 
|  | * The soft-NMI checker can detect lockups on the local CPU. When interrupts | 
|  | * are disabled with local_irq_disable(), platforms that use soft-masking | 
|  | * can leave hardware interrupts enabled and handle them with a masked | 
|  | * interrupt handler. The masked handler can send the timer interrupt to the | 
|  | * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI | 
|  | * interrupt, and can be used to detect CPUs stuck with IRQs disabled. | 
|  | * | 
|  | * The soft-NMI checker will compare the heartbeat timestamp for this CPU | 
|  | * with the current time, and take action if the difference exceeds the | 
|  | * watchdog threshold. | 
|  | * | 
|  | * The limitation of the soft-NMI watchdog is that it does not work when | 
|  | * interrupts are hard disabled or otherwise not being serviced. This is | 
|  | * solved by also having a SMP watchdog where all CPUs check all other | 
|  | * CPUs heartbeat. | 
|  | * | 
|  | * The SMP checker can detect lockups on other CPUs. A gobal "pending" | 
|  | * cpumask is kept, containing all CPUs which enable the watchdog. Each | 
|  | * CPU clears their pending bit in their heartbeat timer. When the bitmask | 
|  | * becomes empty, the last CPU to clear its pending bit updates a global | 
|  | * timestamp and refills the pending bitmask. | 
|  | * | 
|  | * In the heartbeat timer, if any CPU notices that the global timestamp has | 
|  | * not been updated for a period exceeding the watchdog threshold, then it | 
|  | * means the CPU(s) with their bit still set in the pending mask have had | 
|  | * their heartbeat stop, and action is taken. | 
|  | * | 
|  | * Some platforms implement true NMI IPIs, which can be used by the SMP | 
|  | * watchdog to detect an unresponsive CPU and pull it out of its stuck | 
|  | * state with the NMI IPI, to get crash/debug data from it. This way the | 
|  | * SMP watchdog can detect hardware interrupts off lockups. | 
|  | */ | 
|  |  | 
|  | static cpumask_t wd_cpus_enabled __read_mostly; | 
|  |  | 
|  | static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */ | 
|  | static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */ | 
|  |  | 
|  | static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */ | 
|  |  | 
|  | static DEFINE_PER_CPU(struct timer_list, wd_timer); | 
|  | static DEFINE_PER_CPU(u64, wd_timer_tb); | 
|  |  | 
|  | /* SMP checker bits */ | 
|  | static unsigned long __wd_smp_lock; | 
|  | static cpumask_t wd_smp_cpus_pending; | 
|  | static cpumask_t wd_smp_cpus_stuck; | 
|  | static u64 wd_smp_last_reset_tb; | 
|  |  | 
|  | static inline void wd_smp_lock(unsigned long *flags) | 
|  | { | 
|  | /* | 
|  | * Avoid locking layers if possible. | 
|  | * This may be called from low level interrupt handlers at some | 
|  | * point in future. | 
|  | */ | 
|  | raw_local_irq_save(*flags); | 
|  | hard_irq_disable(); /* Make it soft-NMI safe */ | 
|  | while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) { | 
|  | raw_local_irq_restore(*flags); | 
|  | spin_until_cond(!test_bit(0, &__wd_smp_lock)); | 
|  | raw_local_irq_save(*flags); | 
|  | hard_irq_disable(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void wd_smp_unlock(unsigned long *flags) | 
|  | { | 
|  | clear_bit_unlock(0, &__wd_smp_lock); | 
|  | raw_local_irq_restore(*flags); | 
|  | } | 
|  |  | 
|  | static void wd_lockup_ipi(struct pt_regs *regs) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  | u64 tb = get_tb(); | 
|  |  | 
|  | pr_emerg("CPU %d Hard LOCKUP\n", cpu); | 
|  | pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n", | 
|  | cpu, tb, per_cpu(wd_timer_tb, cpu), | 
|  | tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000); | 
|  | print_modules(); | 
|  | print_irqtrace_events(current); | 
|  | if (regs) | 
|  | show_regs(regs); | 
|  | else | 
|  | dump_stack(); | 
|  |  | 
|  | /* Do not panic from here because that can recurse into NMI IPI layer */ | 
|  | } | 
|  |  | 
|  | static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb) | 
|  | { | 
|  | cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask); | 
|  | cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask); | 
|  | if (cpumask_empty(&wd_smp_cpus_pending)) { | 
|  | wd_smp_last_reset_tb = tb; | 
|  | cpumask_andnot(&wd_smp_cpus_pending, | 
|  | &wd_cpus_enabled, | 
|  | &wd_smp_cpus_stuck); | 
|  | } | 
|  | } | 
|  | static void set_cpu_stuck(int cpu, u64 tb) | 
|  | { | 
|  | set_cpumask_stuck(cpumask_of(cpu), tb); | 
|  | } | 
|  |  | 
|  | static void watchdog_smp_panic(int cpu, u64 tb) | 
|  | { | 
|  | unsigned long flags; | 
|  | int c; | 
|  |  | 
|  | wd_smp_lock(&flags); | 
|  | /* Double check some things under lock */ | 
|  | if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb) | 
|  | goto out; | 
|  | if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) | 
|  | goto out; | 
|  | if (cpumask_weight(&wd_smp_cpus_pending) == 0) | 
|  | goto out; | 
|  |  | 
|  | pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n", | 
|  | cpu, cpumask_pr_args(&wd_smp_cpus_pending)); | 
|  | pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n", | 
|  | cpu, tb, wd_smp_last_reset_tb, | 
|  | tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000); | 
|  |  | 
|  | if (!sysctl_hardlockup_all_cpu_backtrace) { | 
|  | /* | 
|  | * Try to trigger the stuck CPUs, unless we are going to | 
|  | * get a backtrace on all of them anyway. | 
|  | */ | 
|  | for_each_cpu(c, &wd_smp_cpus_pending) { | 
|  | if (c == cpu) | 
|  | continue; | 
|  | smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000); | 
|  | } | 
|  | smp_flush_nmi_ipi(1000000); | 
|  | } | 
|  |  | 
|  | /* Take the stuck CPUs out of the watch group */ | 
|  | set_cpumask_stuck(&wd_smp_cpus_pending, tb); | 
|  |  | 
|  | wd_smp_unlock(&flags); | 
|  |  | 
|  | printk_safe_flush(); | 
|  | /* | 
|  | * printk_safe_flush() seems to require another print | 
|  | * before anything actually goes out to console. | 
|  | */ | 
|  | if (sysctl_hardlockup_all_cpu_backtrace) | 
|  | trigger_allbutself_cpu_backtrace(); | 
|  |  | 
|  | if (hardlockup_panic) | 
|  | nmi_panic(NULL, "Hard LOCKUP"); | 
|  |  | 
|  | return; | 
|  |  | 
|  | out: | 
|  | wd_smp_unlock(&flags); | 
|  | } | 
|  |  | 
|  | static void wd_smp_clear_cpu_pending(int cpu, u64 tb) | 
|  | { | 
|  | if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) { | 
|  | if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) { | 
|  | struct pt_regs *regs = get_irq_regs(); | 
|  | unsigned long flags; | 
|  |  | 
|  | wd_smp_lock(&flags); | 
|  |  | 
|  | pr_emerg("CPU %d became unstuck TB:%lld\n", | 
|  | cpu, tb); | 
|  | print_irqtrace_events(current); | 
|  | if (regs) | 
|  | show_regs(regs); | 
|  | else | 
|  | dump_stack(); | 
|  |  | 
|  | cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck); | 
|  | wd_smp_unlock(&flags); | 
|  | } | 
|  | return; | 
|  | } | 
|  | cpumask_clear_cpu(cpu, &wd_smp_cpus_pending); | 
|  | if (cpumask_empty(&wd_smp_cpus_pending)) { | 
|  | unsigned long flags; | 
|  |  | 
|  | wd_smp_lock(&flags); | 
|  | if (cpumask_empty(&wd_smp_cpus_pending)) { | 
|  | wd_smp_last_reset_tb = tb; | 
|  | cpumask_andnot(&wd_smp_cpus_pending, | 
|  | &wd_cpus_enabled, | 
|  | &wd_smp_cpus_stuck); | 
|  | } | 
|  | wd_smp_unlock(&flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void watchdog_timer_interrupt(int cpu) | 
|  | { | 
|  | u64 tb = get_tb(); | 
|  |  | 
|  | per_cpu(wd_timer_tb, cpu) = tb; | 
|  |  | 
|  | wd_smp_clear_cpu_pending(cpu, tb); | 
|  |  | 
|  | if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb) | 
|  | watchdog_smp_panic(cpu, tb); | 
|  | } | 
|  |  | 
|  | void soft_nmi_interrupt(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long flags; | 
|  | int cpu = raw_smp_processor_id(); | 
|  | u64 tb; | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, &wd_cpus_enabled)) | 
|  | return; | 
|  |  | 
|  | nmi_enter(); | 
|  |  | 
|  | __this_cpu_inc(irq_stat.soft_nmi_irqs); | 
|  |  | 
|  | tb = get_tb(); | 
|  | if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) { | 
|  | wd_smp_lock(&flags); | 
|  | if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) { | 
|  | wd_smp_unlock(&flags); | 
|  | goto out; | 
|  | } | 
|  | set_cpu_stuck(cpu, tb); | 
|  |  | 
|  | pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n", | 
|  | cpu, (void *)regs->nip); | 
|  | pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n", | 
|  | cpu, tb, per_cpu(wd_timer_tb, cpu), | 
|  | tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000); | 
|  | print_modules(); | 
|  | print_irqtrace_events(current); | 
|  | show_regs(regs); | 
|  |  | 
|  | wd_smp_unlock(&flags); | 
|  |  | 
|  | if (sysctl_hardlockup_all_cpu_backtrace) | 
|  | trigger_allbutself_cpu_backtrace(); | 
|  |  | 
|  | if (hardlockup_panic) | 
|  | nmi_panic(regs, "Hard LOCKUP"); | 
|  | } | 
|  | if (wd_panic_timeout_tb < 0x7fffffff) | 
|  | mtspr(SPRN_DEC, wd_panic_timeout_tb); | 
|  |  | 
|  | out: | 
|  | nmi_exit(); | 
|  | } | 
|  |  | 
|  | static void wd_timer_reset(unsigned int cpu, struct timer_list *t) | 
|  | { | 
|  | t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms); | 
|  | if (wd_timer_period_ms > 1000) | 
|  | t->expires = __round_jiffies_up(t->expires, cpu); | 
|  | add_timer_on(t, cpu); | 
|  | } | 
|  |  | 
|  | static void wd_timer_fn(struct timer_list *t) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | watchdog_timer_interrupt(cpu); | 
|  |  | 
|  | wd_timer_reset(cpu, t); | 
|  | } | 
|  |  | 
|  | void arch_touch_nmi_watchdog(void) | 
|  | { | 
|  | unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000; | 
|  | int cpu = smp_processor_id(); | 
|  | u64 tb = get_tb(); | 
|  |  | 
|  | if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) { | 
|  | per_cpu(wd_timer_tb, cpu) = tb; | 
|  | wd_smp_clear_cpu_pending(cpu, tb); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(arch_touch_nmi_watchdog); | 
|  |  | 
|  | static void start_watchdog_timer_on(unsigned int cpu) | 
|  | { | 
|  | struct timer_list *t = per_cpu_ptr(&wd_timer, cpu); | 
|  |  | 
|  | per_cpu(wd_timer_tb, cpu) = get_tb(); | 
|  |  | 
|  | timer_setup(t, wd_timer_fn, TIMER_PINNED); | 
|  | wd_timer_reset(cpu, t); | 
|  | } | 
|  |  | 
|  | static void stop_watchdog_timer_on(unsigned int cpu) | 
|  | { | 
|  | struct timer_list *t = per_cpu_ptr(&wd_timer, cpu); | 
|  |  | 
|  | del_timer_sync(t); | 
|  | } | 
|  |  | 
|  | static int start_wd_on_cpu(unsigned int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) { | 
|  | WARN_ON(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED)) | 
|  | return 0; | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, &watchdog_cpumask)) | 
|  | return 0; | 
|  |  | 
|  | wd_smp_lock(&flags); | 
|  | cpumask_set_cpu(cpu, &wd_cpus_enabled); | 
|  | if (cpumask_weight(&wd_cpus_enabled) == 1) { | 
|  | cpumask_set_cpu(cpu, &wd_smp_cpus_pending); | 
|  | wd_smp_last_reset_tb = get_tb(); | 
|  | } | 
|  | wd_smp_unlock(&flags); | 
|  |  | 
|  | start_watchdog_timer_on(cpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stop_wd_on_cpu(unsigned int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, &wd_cpus_enabled)) | 
|  | return 0; /* Can happen in CPU unplug case */ | 
|  |  | 
|  | stop_watchdog_timer_on(cpu); | 
|  |  | 
|  | wd_smp_lock(&flags); | 
|  | cpumask_clear_cpu(cpu, &wd_cpus_enabled); | 
|  | wd_smp_unlock(&flags); | 
|  |  | 
|  | wd_smp_clear_cpu_pending(cpu, get_tb()); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void watchdog_calc_timeouts(void) | 
|  | { | 
|  | wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq; | 
|  |  | 
|  | /* Have the SMP detector trigger a bit later */ | 
|  | wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2; | 
|  |  | 
|  | /* 2/5 is the factor that the perf based detector uses */ | 
|  | wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5; | 
|  | } | 
|  |  | 
|  | void watchdog_nmi_stop(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_cpu(cpu, &wd_cpus_enabled) | 
|  | stop_wd_on_cpu(cpu); | 
|  | } | 
|  |  | 
|  | void watchdog_nmi_start(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | watchdog_calc_timeouts(); | 
|  | for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask) | 
|  | start_wd_on_cpu(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invoked from core watchdog init. | 
|  | */ | 
|  | int __init watchdog_nmi_probe(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, | 
|  | "powerpc/watchdog:online", | 
|  | start_wd_on_cpu, stop_wd_on_cpu); | 
|  | if (err < 0) { | 
|  | pr_warn("could not be initialized"); | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } |