|  | /* | 
|  | * Linux Socket Filter - Kernel level socket filtering | 
|  | * | 
|  | * Based on the design of the Berkeley Packet Filter. The new | 
|  | * internal format has been designed by PLUMgrid: | 
|  | * | 
|  | *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com | 
|  | * | 
|  | * Authors: | 
|  | * | 
|  | *	Jay Schulist <jschlst@samba.org> | 
|  | *	Alexei Starovoitov <ast@plumgrid.com> | 
|  | *	Daniel Borkmann <dborkman@redhat.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * Andi Kleen - Fix a few bad bugs and races. | 
|  | * Kris Katterjohn - Added many additional checks in bpf_check_classic() | 
|  | */ | 
|  |  | 
|  | #include <linux/filter.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/moduleloader.h> | 
|  | #include <linux/bpf.h> | 
|  | #include <linux/frame.h> | 
|  | #include <linux/rbtree_latch.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/perf_event.h> | 
|  |  | 
|  | #include <asm/unaligned.h> | 
|  |  | 
|  | /* Registers */ | 
|  | #define BPF_R0	regs[BPF_REG_0] | 
|  | #define BPF_R1	regs[BPF_REG_1] | 
|  | #define BPF_R2	regs[BPF_REG_2] | 
|  | #define BPF_R3	regs[BPF_REG_3] | 
|  | #define BPF_R4	regs[BPF_REG_4] | 
|  | #define BPF_R5	regs[BPF_REG_5] | 
|  | #define BPF_R6	regs[BPF_REG_6] | 
|  | #define BPF_R7	regs[BPF_REG_7] | 
|  | #define BPF_R8	regs[BPF_REG_8] | 
|  | #define BPF_R9	regs[BPF_REG_9] | 
|  | #define BPF_R10	regs[BPF_REG_10] | 
|  |  | 
|  | /* Named registers */ | 
|  | #define DST	regs[insn->dst_reg] | 
|  | #define SRC	regs[insn->src_reg] | 
|  | #define FP	regs[BPF_REG_FP] | 
|  | #define ARG1	regs[BPF_REG_ARG1] | 
|  | #define CTX	regs[BPF_REG_CTX] | 
|  | #define IMM	insn->imm | 
|  |  | 
|  | /* No hurry in this branch | 
|  | * | 
|  | * Exported for the bpf jit load helper. | 
|  | */ | 
|  | void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) | 
|  | { | 
|  | u8 *ptr = NULL; | 
|  |  | 
|  | if (k >= SKF_NET_OFF) | 
|  | ptr = skb_network_header(skb) + k - SKF_NET_OFF; | 
|  | else if (k >= SKF_LL_OFF) | 
|  | ptr = skb_mac_header(skb) + k - SKF_LL_OFF; | 
|  |  | 
|  | if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) | 
|  | return ptr; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) | 
|  | { | 
|  | gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; | 
|  | struct bpf_prog_aux *aux; | 
|  | struct bpf_prog *fp; | 
|  |  | 
|  | size = round_up(size, PAGE_SIZE); | 
|  | fp = __vmalloc(size, gfp_flags, PAGE_KERNEL); | 
|  | if (fp == NULL) | 
|  | return NULL; | 
|  |  | 
|  | aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags); | 
|  | if (aux == NULL) { | 
|  | vfree(fp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | fp->pages = size / PAGE_SIZE; | 
|  | fp->aux = aux; | 
|  | fp->aux->prog = fp; | 
|  | fp->jit_requested = ebpf_jit_enabled(); | 
|  |  | 
|  | INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode); | 
|  |  | 
|  | return fp; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bpf_prog_alloc); | 
|  |  | 
|  | struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, | 
|  | gfp_t gfp_extra_flags) | 
|  | { | 
|  | gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; | 
|  | struct bpf_prog *fp; | 
|  | u32 pages, delta; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(fp_old == NULL); | 
|  |  | 
|  | size = round_up(size, PAGE_SIZE); | 
|  | pages = size / PAGE_SIZE; | 
|  | if (pages <= fp_old->pages) | 
|  | return fp_old; | 
|  |  | 
|  | delta = pages - fp_old->pages; | 
|  | ret = __bpf_prog_charge(fp_old->aux->user, delta); | 
|  | if (ret) | 
|  | return NULL; | 
|  |  | 
|  | fp = __vmalloc(size, gfp_flags, PAGE_KERNEL); | 
|  | if (fp == NULL) { | 
|  | __bpf_prog_uncharge(fp_old->aux->user, delta); | 
|  | } else { | 
|  | memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); | 
|  | fp->pages = pages; | 
|  | fp->aux->prog = fp; | 
|  |  | 
|  | /* We keep fp->aux from fp_old around in the new | 
|  | * reallocated structure. | 
|  | */ | 
|  | fp_old->aux = NULL; | 
|  | __bpf_prog_free(fp_old); | 
|  | } | 
|  |  | 
|  | return fp; | 
|  | } | 
|  |  | 
|  | void __bpf_prog_free(struct bpf_prog *fp) | 
|  | { | 
|  | kfree(fp->aux); | 
|  | vfree(fp); | 
|  | } | 
|  |  | 
|  | int bpf_prog_calc_tag(struct bpf_prog *fp) | 
|  | { | 
|  | const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64); | 
|  | u32 raw_size = bpf_prog_tag_scratch_size(fp); | 
|  | u32 digest[SHA_DIGEST_WORDS]; | 
|  | u32 ws[SHA_WORKSPACE_WORDS]; | 
|  | u32 i, bsize, psize, blocks; | 
|  | struct bpf_insn *dst; | 
|  | bool was_ld_map; | 
|  | u8 *raw, *todo; | 
|  | __be32 *result; | 
|  | __be64 *bits; | 
|  |  | 
|  | raw = vmalloc(raw_size); | 
|  | if (!raw) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sha_init(digest); | 
|  | memset(ws, 0, sizeof(ws)); | 
|  |  | 
|  | /* We need to take out the map fd for the digest calculation | 
|  | * since they are unstable from user space side. | 
|  | */ | 
|  | dst = (void *)raw; | 
|  | for (i = 0, was_ld_map = false; i < fp->len; i++) { | 
|  | dst[i] = fp->insnsi[i]; | 
|  | if (!was_ld_map && | 
|  | dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) && | 
|  | dst[i].src_reg == BPF_PSEUDO_MAP_FD) { | 
|  | was_ld_map = true; | 
|  | dst[i].imm = 0; | 
|  | } else if (was_ld_map && | 
|  | dst[i].code == 0 && | 
|  | dst[i].dst_reg == 0 && | 
|  | dst[i].src_reg == 0 && | 
|  | dst[i].off == 0) { | 
|  | was_ld_map = false; | 
|  | dst[i].imm = 0; | 
|  | } else { | 
|  | was_ld_map = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | psize = bpf_prog_insn_size(fp); | 
|  | memset(&raw[psize], 0, raw_size - psize); | 
|  | raw[psize++] = 0x80; | 
|  |  | 
|  | bsize  = round_up(psize, SHA_MESSAGE_BYTES); | 
|  | blocks = bsize / SHA_MESSAGE_BYTES; | 
|  | todo   = raw; | 
|  | if (bsize - psize >= sizeof(__be64)) { | 
|  | bits = (__be64 *)(todo + bsize - sizeof(__be64)); | 
|  | } else { | 
|  | bits = (__be64 *)(todo + bsize + bits_offset); | 
|  | blocks++; | 
|  | } | 
|  | *bits = cpu_to_be64((psize - 1) << 3); | 
|  |  | 
|  | while (blocks--) { | 
|  | sha_transform(digest, todo, ws); | 
|  | todo += SHA_MESSAGE_BYTES; | 
|  | } | 
|  |  | 
|  | result = (__force __be32 *)digest; | 
|  | for (i = 0; i < SHA_DIGEST_WORDS; i++) | 
|  | result[i] = cpu_to_be32(digest[i]); | 
|  | memcpy(fp->tag, result, sizeof(fp->tag)); | 
|  |  | 
|  | vfree(raw); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta, | 
|  | u32 curr, const bool probe_pass) | 
|  | { | 
|  | const s64 imm_min = S32_MIN, imm_max = S32_MAX; | 
|  | s64 imm = insn->imm; | 
|  |  | 
|  | if (curr < pos && curr + imm + 1 > pos) | 
|  | imm += delta; | 
|  | else if (curr > pos + delta && curr + imm + 1 <= pos + delta) | 
|  | imm -= delta; | 
|  | if (imm < imm_min || imm > imm_max) | 
|  | return -ERANGE; | 
|  | if (!probe_pass) | 
|  | insn->imm = imm; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta, | 
|  | u32 curr, const bool probe_pass) | 
|  | { | 
|  | const s32 off_min = S16_MIN, off_max = S16_MAX; | 
|  | s32 off = insn->off; | 
|  |  | 
|  | if (curr < pos && curr + off + 1 > pos) | 
|  | off += delta; | 
|  | else if (curr > pos + delta && curr + off + 1 <= pos + delta) | 
|  | off -= delta; | 
|  | if (off < off_min || off > off_max) | 
|  | return -ERANGE; | 
|  | if (!probe_pass) | 
|  | insn->off = off; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta, | 
|  | const bool probe_pass) | 
|  | { | 
|  | u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0); | 
|  | struct bpf_insn *insn = prog->insnsi; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | u8 code; | 
|  |  | 
|  | /* In the probing pass we still operate on the original, | 
|  | * unpatched image in order to check overflows before we | 
|  | * do any other adjustments. Therefore skip the patchlet. | 
|  | */ | 
|  | if (probe_pass && i == pos) { | 
|  | i += delta + 1; | 
|  | insn++; | 
|  | } | 
|  | code = insn->code; | 
|  | if (BPF_CLASS(code) != BPF_JMP || | 
|  | BPF_OP(code) == BPF_EXIT) | 
|  | continue; | 
|  | /* Adjust offset of jmps if we cross patch boundaries. */ | 
|  | if (BPF_OP(code) == BPF_CALL) { | 
|  | if (insn->src_reg != BPF_PSEUDO_CALL) | 
|  | continue; | 
|  | ret = bpf_adj_delta_to_imm(insn, pos, delta, i, | 
|  | probe_pass); | 
|  | } else { | 
|  | ret = bpf_adj_delta_to_off(insn, pos, delta, i, | 
|  | probe_pass); | 
|  | } | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, | 
|  | const struct bpf_insn *patch, u32 len) | 
|  | { | 
|  | u32 insn_adj_cnt, insn_rest, insn_delta = len - 1; | 
|  | const u32 cnt_max = S16_MAX; | 
|  | struct bpf_prog *prog_adj; | 
|  |  | 
|  | /* Since our patchlet doesn't expand the image, we're done. */ | 
|  | if (insn_delta == 0) { | 
|  | memcpy(prog->insnsi + off, patch, sizeof(*patch)); | 
|  | return prog; | 
|  | } | 
|  |  | 
|  | insn_adj_cnt = prog->len + insn_delta; | 
|  |  | 
|  | /* Reject anything that would potentially let the insn->off | 
|  | * target overflow when we have excessive program expansions. | 
|  | * We need to probe here before we do any reallocation where | 
|  | * we afterwards may not fail anymore. | 
|  | */ | 
|  | if (insn_adj_cnt > cnt_max && | 
|  | bpf_adj_branches(prog, off, insn_delta, true)) | 
|  | return NULL; | 
|  |  | 
|  | /* Several new instructions need to be inserted. Make room | 
|  | * for them. Likely, there's no need for a new allocation as | 
|  | * last page could have large enough tailroom. | 
|  | */ | 
|  | prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt), | 
|  | GFP_USER); | 
|  | if (!prog_adj) | 
|  | return NULL; | 
|  |  | 
|  | prog_adj->len = insn_adj_cnt; | 
|  |  | 
|  | /* Patching happens in 3 steps: | 
|  | * | 
|  | * 1) Move over tail of insnsi from next instruction onwards, | 
|  | *    so we can patch the single target insn with one or more | 
|  | *    new ones (patching is always from 1 to n insns, n > 0). | 
|  | * 2) Inject new instructions at the target location. | 
|  | * 3) Adjust branch offsets if necessary. | 
|  | */ | 
|  | insn_rest = insn_adj_cnt - off - len; | 
|  |  | 
|  | memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1, | 
|  | sizeof(*patch) * insn_rest); | 
|  | memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len); | 
|  |  | 
|  | /* We are guaranteed to not fail at this point, otherwise | 
|  | * the ship has sailed to reverse to the original state. An | 
|  | * overflow cannot happen at this point. | 
|  | */ | 
|  | BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false)); | 
|  |  | 
|  | return prog_adj; | 
|  | } | 
|  |  | 
|  | void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < fp->aux->func_cnt; i++) | 
|  | bpf_prog_kallsyms_del(fp->aux->func[i]); | 
|  | } | 
|  |  | 
|  | void bpf_prog_kallsyms_del_all(struct bpf_prog *fp) | 
|  | { | 
|  | bpf_prog_kallsyms_del_subprogs(fp); | 
|  | bpf_prog_kallsyms_del(fp); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BPF_JIT | 
|  | /* All BPF JIT sysctl knobs here. */ | 
|  | int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON); | 
|  | int bpf_jit_harden   __read_mostly; | 
|  | int bpf_jit_kallsyms __read_mostly; | 
|  |  | 
|  | static __always_inline void | 
|  | bpf_get_prog_addr_region(const struct bpf_prog *prog, | 
|  | unsigned long *symbol_start, | 
|  | unsigned long *symbol_end) | 
|  | { | 
|  | const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog); | 
|  | unsigned long addr = (unsigned long)hdr; | 
|  |  | 
|  | WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog)); | 
|  |  | 
|  | *symbol_start = addr; | 
|  | *symbol_end   = addr + hdr->pages * PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym) | 
|  | { | 
|  | const char *end = sym + KSYM_NAME_LEN; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof("bpf_prog_") + | 
|  | sizeof(prog->tag) * 2 + | 
|  | /* name has been null terminated. | 
|  | * We should need +1 for the '_' preceding | 
|  | * the name.  However, the null character | 
|  | * is double counted between the name and the | 
|  | * sizeof("bpf_prog_") above, so we omit | 
|  | * the +1 here. | 
|  | */ | 
|  | sizeof(prog->aux->name) > KSYM_NAME_LEN); | 
|  |  | 
|  | sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_"); | 
|  | sym  = bin2hex(sym, prog->tag, sizeof(prog->tag)); | 
|  | if (prog->aux->name[0]) | 
|  | snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name); | 
|  | else | 
|  | *sym = 0; | 
|  | } | 
|  |  | 
|  | static __always_inline unsigned long | 
|  | bpf_get_prog_addr_start(struct latch_tree_node *n) | 
|  | { | 
|  | unsigned long symbol_start, symbol_end; | 
|  | const struct bpf_prog_aux *aux; | 
|  |  | 
|  | aux = container_of(n, struct bpf_prog_aux, ksym_tnode); | 
|  | bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end); | 
|  |  | 
|  | return symbol_start; | 
|  | } | 
|  |  | 
|  | static __always_inline bool bpf_tree_less(struct latch_tree_node *a, | 
|  | struct latch_tree_node *b) | 
|  | { | 
|  | return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b); | 
|  | } | 
|  |  | 
|  | static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n) | 
|  | { | 
|  | unsigned long val = (unsigned long)key; | 
|  | unsigned long symbol_start, symbol_end; | 
|  | const struct bpf_prog_aux *aux; | 
|  |  | 
|  | aux = container_of(n, struct bpf_prog_aux, ksym_tnode); | 
|  | bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end); | 
|  |  | 
|  | if (val < symbol_start) | 
|  | return -1; | 
|  | if (val >= symbol_end) | 
|  | return  1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct latch_tree_ops bpf_tree_ops = { | 
|  | .less	= bpf_tree_less, | 
|  | .comp	= bpf_tree_comp, | 
|  | }; | 
|  |  | 
|  | static DEFINE_SPINLOCK(bpf_lock); | 
|  | static LIST_HEAD(bpf_kallsyms); | 
|  | static struct latch_tree_root bpf_tree __cacheline_aligned; | 
|  |  | 
|  | static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux) | 
|  | { | 
|  | WARN_ON_ONCE(!list_empty(&aux->ksym_lnode)); | 
|  | list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms); | 
|  | latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops); | 
|  | } | 
|  |  | 
|  | static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux) | 
|  | { | 
|  | if (list_empty(&aux->ksym_lnode)) | 
|  | return; | 
|  |  | 
|  | latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops); | 
|  | list_del_rcu(&aux->ksym_lnode); | 
|  | } | 
|  |  | 
|  | static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp) | 
|  | { | 
|  | return fp->jited && !bpf_prog_was_classic(fp); | 
|  | } | 
|  |  | 
|  | static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) | 
|  | { | 
|  | return list_empty(&fp->aux->ksym_lnode) || | 
|  | fp->aux->ksym_lnode.prev == LIST_POISON2; | 
|  | } | 
|  |  | 
|  | void bpf_prog_kallsyms_add(struct bpf_prog *fp) | 
|  | { | 
|  | if (!bpf_prog_kallsyms_candidate(fp) || | 
|  | !capable(CAP_SYS_ADMIN)) | 
|  | return; | 
|  |  | 
|  | spin_lock_bh(&bpf_lock); | 
|  | bpf_prog_ksym_node_add(fp->aux); | 
|  | spin_unlock_bh(&bpf_lock); | 
|  | } | 
|  |  | 
|  | void bpf_prog_kallsyms_del(struct bpf_prog *fp) | 
|  | { | 
|  | if (!bpf_prog_kallsyms_candidate(fp)) | 
|  | return; | 
|  |  | 
|  | spin_lock_bh(&bpf_lock); | 
|  | bpf_prog_ksym_node_del(fp->aux); | 
|  | spin_unlock_bh(&bpf_lock); | 
|  | } | 
|  |  | 
|  | static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr) | 
|  | { | 
|  | struct latch_tree_node *n; | 
|  |  | 
|  | if (!bpf_jit_kallsyms_enabled()) | 
|  | return NULL; | 
|  |  | 
|  | n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops); | 
|  | return n ? | 
|  | container_of(n, struct bpf_prog_aux, ksym_tnode)->prog : | 
|  | NULL; | 
|  | } | 
|  |  | 
|  | const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, | 
|  | unsigned long *off, char *sym) | 
|  | { | 
|  | unsigned long symbol_start, symbol_end; | 
|  | struct bpf_prog *prog; | 
|  | char *ret = NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | prog = bpf_prog_kallsyms_find(addr); | 
|  | if (prog) { | 
|  | bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end); | 
|  | bpf_get_prog_name(prog, sym); | 
|  |  | 
|  | ret = sym; | 
|  | if (size) | 
|  | *size = symbol_end - symbol_start; | 
|  | if (off) | 
|  | *off  = addr - symbol_start; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool is_bpf_text_address(unsigned long addr) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ret = bpf_prog_kallsyms_find(addr) != NULL; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, | 
|  | char *sym) | 
|  | { | 
|  | unsigned long symbol_start, symbol_end; | 
|  | struct bpf_prog_aux *aux; | 
|  | unsigned int it = 0; | 
|  | int ret = -ERANGE; | 
|  |  | 
|  | if (!bpf_jit_kallsyms_enabled()) | 
|  | return ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) { | 
|  | if (it++ != symnum) | 
|  | continue; | 
|  |  | 
|  | bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end); | 
|  | bpf_get_prog_name(aux->prog, sym); | 
|  |  | 
|  | *value = symbol_start; | 
|  | *type  = BPF_SYM_ELF_TYPE; | 
|  |  | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct bpf_binary_header * | 
|  | bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, | 
|  | unsigned int alignment, | 
|  | bpf_jit_fill_hole_t bpf_fill_ill_insns) | 
|  | { | 
|  | struct bpf_binary_header *hdr; | 
|  | unsigned int size, hole, start; | 
|  |  | 
|  | /* Most of BPF filters are really small, but if some of them | 
|  | * fill a page, allow at least 128 extra bytes to insert a | 
|  | * random section of illegal instructions. | 
|  | */ | 
|  | size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); | 
|  | hdr = module_alloc(size); | 
|  | if (hdr == NULL) | 
|  | return NULL; | 
|  |  | 
|  | /* Fill space with illegal/arch-dep instructions. */ | 
|  | bpf_fill_ill_insns(hdr, size); | 
|  |  | 
|  | hdr->pages = size / PAGE_SIZE; | 
|  | hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), | 
|  | PAGE_SIZE - sizeof(*hdr)); | 
|  | start = (get_random_int() % hole) & ~(alignment - 1); | 
|  |  | 
|  | /* Leave a random number of instructions before BPF code. */ | 
|  | *image_ptr = &hdr->image[start]; | 
|  |  | 
|  | return hdr; | 
|  | } | 
|  |  | 
|  | void bpf_jit_binary_free(struct bpf_binary_header *hdr) | 
|  | { | 
|  | module_memfree(hdr); | 
|  | } | 
|  |  | 
|  | /* This symbol is only overridden by archs that have different | 
|  | * requirements than the usual eBPF JITs, f.e. when they only | 
|  | * implement cBPF JIT, do not set images read-only, etc. | 
|  | */ | 
|  | void __weak bpf_jit_free(struct bpf_prog *fp) | 
|  | { | 
|  | if (fp->jited) { | 
|  | struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp); | 
|  |  | 
|  | bpf_jit_binary_unlock_ro(hdr); | 
|  | bpf_jit_binary_free(hdr); | 
|  |  | 
|  | WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp)); | 
|  | } | 
|  |  | 
|  | bpf_prog_unlock_free(fp); | 
|  | } | 
|  |  | 
|  | static int bpf_jit_blind_insn(const struct bpf_insn *from, | 
|  | const struct bpf_insn *aux, | 
|  | struct bpf_insn *to_buff) | 
|  | { | 
|  | struct bpf_insn *to = to_buff; | 
|  | u32 imm_rnd = get_random_int(); | 
|  | s16 off; | 
|  |  | 
|  | BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG); | 
|  | BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG); | 
|  |  | 
|  | if (from->imm == 0 && | 
|  | (from->code == (BPF_ALU   | BPF_MOV | BPF_K) || | 
|  | from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) { | 
|  | *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (from->code) { | 
|  | case BPF_ALU | BPF_ADD | BPF_K: | 
|  | case BPF_ALU | BPF_SUB | BPF_K: | 
|  | case BPF_ALU | BPF_AND | BPF_K: | 
|  | case BPF_ALU | BPF_OR  | BPF_K: | 
|  | case BPF_ALU | BPF_XOR | BPF_K: | 
|  | case BPF_ALU | BPF_MUL | BPF_K: | 
|  | case BPF_ALU | BPF_MOV | BPF_K: | 
|  | case BPF_ALU | BPF_DIV | BPF_K: | 
|  | case BPF_ALU | BPF_MOD | BPF_K: | 
|  | *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); | 
|  | *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); | 
|  | *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX); | 
|  | break; | 
|  |  | 
|  | case BPF_ALU64 | BPF_ADD | BPF_K: | 
|  | case BPF_ALU64 | BPF_SUB | BPF_K: | 
|  | case BPF_ALU64 | BPF_AND | BPF_K: | 
|  | case BPF_ALU64 | BPF_OR  | BPF_K: | 
|  | case BPF_ALU64 | BPF_XOR | BPF_K: | 
|  | case BPF_ALU64 | BPF_MUL | BPF_K: | 
|  | case BPF_ALU64 | BPF_MOV | BPF_K: | 
|  | case BPF_ALU64 | BPF_DIV | BPF_K: | 
|  | case BPF_ALU64 | BPF_MOD | BPF_K: | 
|  | *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); | 
|  | *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); | 
|  | *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX); | 
|  | break; | 
|  |  | 
|  | case BPF_JMP | BPF_JEQ  | BPF_K: | 
|  | case BPF_JMP | BPF_JNE  | BPF_K: | 
|  | case BPF_JMP | BPF_JGT  | BPF_K: | 
|  | case BPF_JMP | BPF_JLT  | BPF_K: | 
|  | case BPF_JMP | BPF_JGE  | BPF_K: | 
|  | case BPF_JMP | BPF_JLE  | BPF_K: | 
|  | case BPF_JMP | BPF_JSGT | BPF_K: | 
|  | case BPF_JMP | BPF_JSLT | BPF_K: | 
|  | case BPF_JMP | BPF_JSGE | BPF_K: | 
|  | case BPF_JMP | BPF_JSLE | BPF_K: | 
|  | case BPF_JMP | BPF_JSET | BPF_K: | 
|  | /* Accommodate for extra offset in case of a backjump. */ | 
|  | off = from->off; | 
|  | if (off < 0) | 
|  | off -= 2; | 
|  | *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); | 
|  | *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); | 
|  | *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off); | 
|  | break; | 
|  |  | 
|  | case BPF_LD | BPF_IMM | BPF_DW: | 
|  | *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm); | 
|  | *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); | 
|  | *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); | 
|  | *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX); | 
|  | break; | 
|  | case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */ | 
|  | *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm); | 
|  | *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); | 
|  | *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX); | 
|  | break; | 
|  |  | 
|  | case BPF_ST | BPF_MEM | BPF_DW: | 
|  | case BPF_ST | BPF_MEM | BPF_W: | 
|  | case BPF_ST | BPF_MEM | BPF_H: | 
|  | case BPF_ST | BPF_MEM | BPF_B: | 
|  | *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); | 
|  | *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); | 
|  | *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off); | 
|  | break; | 
|  | } | 
|  | out: | 
|  | return to - to_buff; | 
|  | } | 
|  |  | 
|  | static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other, | 
|  | gfp_t gfp_extra_flags) | 
|  | { | 
|  | gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; | 
|  | struct bpf_prog *fp; | 
|  |  | 
|  | fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL); | 
|  | if (fp != NULL) { | 
|  | /* aux->prog still points to the fp_other one, so | 
|  | * when promoting the clone to the real program, | 
|  | * this still needs to be adapted. | 
|  | */ | 
|  | memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | return fp; | 
|  | } | 
|  |  | 
|  | static void bpf_prog_clone_free(struct bpf_prog *fp) | 
|  | { | 
|  | /* aux was stolen by the other clone, so we cannot free | 
|  | * it from this path! It will be freed eventually by the | 
|  | * other program on release. | 
|  | * | 
|  | * At this point, we don't need a deferred release since | 
|  | * clone is guaranteed to not be locked. | 
|  | */ | 
|  | fp->aux = NULL; | 
|  | __bpf_prog_free(fp); | 
|  | } | 
|  |  | 
|  | void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other) | 
|  | { | 
|  | /* We have to repoint aux->prog to self, as we don't | 
|  | * know whether fp here is the clone or the original. | 
|  | */ | 
|  | fp->aux->prog = fp; | 
|  | bpf_prog_clone_free(fp_other); | 
|  | } | 
|  |  | 
|  | struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog) | 
|  | { | 
|  | struct bpf_insn insn_buff[16], aux[2]; | 
|  | struct bpf_prog *clone, *tmp; | 
|  | int insn_delta, insn_cnt; | 
|  | struct bpf_insn *insn; | 
|  | int i, rewritten; | 
|  |  | 
|  | if (!bpf_jit_blinding_enabled(prog) || prog->blinded) | 
|  | return prog; | 
|  |  | 
|  | clone = bpf_prog_clone_create(prog, GFP_USER); | 
|  | if (!clone) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | insn_cnt = clone->len; | 
|  | insn = clone->insnsi; | 
|  |  | 
|  | for (i = 0; i < insn_cnt; i++, insn++) { | 
|  | /* We temporarily need to hold the original ld64 insn | 
|  | * so that we can still access the first part in the | 
|  | * second blinding run. | 
|  | */ | 
|  | if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) && | 
|  | insn[1].code == 0) | 
|  | memcpy(aux, insn, sizeof(aux)); | 
|  |  | 
|  | rewritten = bpf_jit_blind_insn(insn, aux, insn_buff); | 
|  | if (!rewritten) | 
|  | continue; | 
|  |  | 
|  | tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten); | 
|  | if (!tmp) { | 
|  | /* Patching may have repointed aux->prog during | 
|  | * realloc from the original one, so we need to | 
|  | * fix it up here on error. | 
|  | */ | 
|  | bpf_jit_prog_release_other(prog, clone); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | clone = tmp; | 
|  | insn_delta = rewritten - 1; | 
|  |  | 
|  | /* Walk new program and skip insns we just inserted. */ | 
|  | insn = clone->insnsi + i + insn_delta; | 
|  | insn_cnt += insn_delta; | 
|  | i        += insn_delta; | 
|  | } | 
|  |  | 
|  | clone->blinded = 1; | 
|  | return clone; | 
|  | } | 
|  | #endif /* CONFIG_BPF_JIT */ | 
|  |  | 
|  | /* Base function for offset calculation. Needs to go into .text section, | 
|  | * therefore keeping it non-static as well; will also be used by JITs | 
|  | * anyway later on, so do not let the compiler omit it. This also needs | 
|  | * to go into kallsyms for correlation from e.g. bpftool, so naming | 
|  | * must not change. | 
|  | */ | 
|  | noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__bpf_call_base); | 
|  |  | 
|  | /* All UAPI available opcodes. */ | 
|  | #define BPF_INSN_MAP(INSN_2, INSN_3)		\ | 
|  | /* 32 bit ALU operations. */		\ | 
|  | /*   Register based. */			\ | 
|  | INSN_3(ALU, ADD, X),			\ | 
|  | INSN_3(ALU, SUB, X),			\ | 
|  | INSN_3(ALU, AND, X),			\ | 
|  | INSN_3(ALU, OR,  X),			\ | 
|  | INSN_3(ALU, LSH, X),			\ | 
|  | INSN_3(ALU, RSH, X),			\ | 
|  | INSN_3(ALU, XOR, X),			\ | 
|  | INSN_3(ALU, MUL, X),			\ | 
|  | INSN_3(ALU, MOV, X),			\ | 
|  | INSN_3(ALU, DIV, X),			\ | 
|  | INSN_3(ALU, MOD, X),			\ | 
|  | INSN_2(ALU, NEG),			\ | 
|  | INSN_3(ALU, END, TO_BE),		\ | 
|  | INSN_3(ALU, END, TO_LE),		\ | 
|  | /*   Immediate based. */		\ | 
|  | INSN_3(ALU, ADD, K),			\ | 
|  | INSN_3(ALU, SUB, K),			\ | 
|  | INSN_3(ALU, AND, K),			\ | 
|  | INSN_3(ALU, OR,  K),			\ | 
|  | INSN_3(ALU, LSH, K),			\ | 
|  | INSN_3(ALU, RSH, K),			\ | 
|  | INSN_3(ALU, XOR, K),			\ | 
|  | INSN_3(ALU, MUL, K),			\ | 
|  | INSN_3(ALU, MOV, K),			\ | 
|  | INSN_3(ALU, DIV, K),			\ | 
|  | INSN_3(ALU, MOD, K),			\ | 
|  | /* 64 bit ALU operations. */		\ | 
|  | /*   Register based. */			\ | 
|  | INSN_3(ALU64, ADD,  X),			\ | 
|  | INSN_3(ALU64, SUB,  X),			\ | 
|  | INSN_3(ALU64, AND,  X),			\ | 
|  | INSN_3(ALU64, OR,   X),			\ | 
|  | INSN_3(ALU64, LSH,  X),			\ | 
|  | INSN_3(ALU64, RSH,  X),			\ | 
|  | INSN_3(ALU64, XOR,  X),			\ | 
|  | INSN_3(ALU64, MUL,  X),			\ | 
|  | INSN_3(ALU64, MOV,  X),			\ | 
|  | INSN_3(ALU64, ARSH, X),			\ | 
|  | INSN_3(ALU64, DIV,  X),			\ | 
|  | INSN_3(ALU64, MOD,  X),			\ | 
|  | INSN_2(ALU64, NEG),			\ | 
|  | /*   Immediate based. */		\ | 
|  | INSN_3(ALU64, ADD,  K),			\ | 
|  | INSN_3(ALU64, SUB,  K),			\ | 
|  | INSN_3(ALU64, AND,  K),			\ | 
|  | INSN_3(ALU64, OR,   K),			\ | 
|  | INSN_3(ALU64, LSH,  K),			\ | 
|  | INSN_3(ALU64, RSH,  K),			\ | 
|  | INSN_3(ALU64, XOR,  K),			\ | 
|  | INSN_3(ALU64, MUL,  K),			\ | 
|  | INSN_3(ALU64, MOV,  K),			\ | 
|  | INSN_3(ALU64, ARSH, K),			\ | 
|  | INSN_3(ALU64, DIV,  K),			\ | 
|  | INSN_3(ALU64, MOD,  K),			\ | 
|  | /* Call instruction. */			\ | 
|  | INSN_2(JMP, CALL),			\ | 
|  | /* Exit instruction. */			\ | 
|  | INSN_2(JMP, EXIT),			\ | 
|  | /* Jump instructions. */		\ | 
|  | /*   Register based. */			\ | 
|  | INSN_3(JMP, JEQ,  X),			\ | 
|  | INSN_3(JMP, JNE,  X),			\ | 
|  | INSN_3(JMP, JGT,  X),			\ | 
|  | INSN_3(JMP, JLT,  X),			\ | 
|  | INSN_3(JMP, JGE,  X),			\ | 
|  | INSN_3(JMP, JLE,  X),			\ | 
|  | INSN_3(JMP, JSGT, X),			\ | 
|  | INSN_3(JMP, JSLT, X),			\ | 
|  | INSN_3(JMP, JSGE, X),			\ | 
|  | INSN_3(JMP, JSLE, X),			\ | 
|  | INSN_3(JMP, JSET, X),			\ | 
|  | /*   Immediate based. */		\ | 
|  | INSN_3(JMP, JEQ,  K),			\ | 
|  | INSN_3(JMP, JNE,  K),			\ | 
|  | INSN_3(JMP, JGT,  K),			\ | 
|  | INSN_3(JMP, JLT,  K),			\ | 
|  | INSN_3(JMP, JGE,  K),			\ | 
|  | INSN_3(JMP, JLE,  K),			\ | 
|  | INSN_3(JMP, JSGT, K),			\ | 
|  | INSN_3(JMP, JSLT, K),			\ | 
|  | INSN_3(JMP, JSGE, K),			\ | 
|  | INSN_3(JMP, JSLE, K),			\ | 
|  | INSN_3(JMP, JSET, K),			\ | 
|  | INSN_2(JMP, JA),			\ | 
|  | /* Store instructions. */		\ | 
|  | /*   Register based. */			\ | 
|  | INSN_3(STX, MEM,  B),			\ | 
|  | INSN_3(STX, MEM,  H),			\ | 
|  | INSN_3(STX, MEM,  W),			\ | 
|  | INSN_3(STX, MEM,  DW),			\ | 
|  | INSN_3(STX, XADD, W),			\ | 
|  | INSN_3(STX, XADD, DW),			\ | 
|  | /*   Immediate based. */		\ | 
|  | INSN_3(ST, MEM, B),			\ | 
|  | INSN_3(ST, MEM, H),			\ | 
|  | INSN_3(ST, MEM, W),			\ | 
|  | INSN_3(ST, MEM, DW),			\ | 
|  | /* Load instructions. */		\ | 
|  | /*   Register based. */			\ | 
|  | INSN_3(LDX, MEM, B),			\ | 
|  | INSN_3(LDX, MEM, H),			\ | 
|  | INSN_3(LDX, MEM, W),			\ | 
|  | INSN_3(LDX, MEM, DW),			\ | 
|  | /*   Immediate based. */		\ | 
|  | INSN_3(LD, IMM, DW) | 
|  |  | 
|  | bool bpf_opcode_in_insntable(u8 code) | 
|  | { | 
|  | #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true | 
|  | #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true | 
|  | static const bool public_insntable[256] = { | 
|  | [0 ... 255] = false, | 
|  | /* Now overwrite non-defaults ... */ | 
|  | BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), | 
|  | /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */ | 
|  | [BPF_LD | BPF_ABS | BPF_B] = true, | 
|  | [BPF_LD | BPF_ABS | BPF_H] = true, | 
|  | [BPF_LD | BPF_ABS | BPF_W] = true, | 
|  | [BPF_LD | BPF_IND | BPF_B] = true, | 
|  | [BPF_LD | BPF_IND | BPF_H] = true, | 
|  | [BPF_LD | BPF_IND | BPF_W] = true, | 
|  | }; | 
|  | #undef BPF_INSN_3_TBL | 
|  | #undef BPF_INSN_2_TBL | 
|  | return public_insntable[code]; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_BPF_JIT_ALWAYS_ON | 
|  | /** | 
|  | *	__bpf_prog_run - run eBPF program on a given context | 
|  | *	@ctx: is the data we are operating on | 
|  | *	@insn: is the array of eBPF instructions | 
|  | * | 
|  | * Decode and execute eBPF instructions. | 
|  | */ | 
|  | static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack) | 
|  | { | 
|  | u64 tmp; | 
|  | #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y | 
|  | #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z | 
|  | static const void *jumptable[256] = { | 
|  | [0 ... 255] = &&default_label, | 
|  | /* Now overwrite non-defaults ... */ | 
|  | BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL), | 
|  | /* Non-UAPI available opcodes. */ | 
|  | [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS, | 
|  | [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, | 
|  | }; | 
|  | #undef BPF_INSN_3_LBL | 
|  | #undef BPF_INSN_2_LBL | 
|  | u32 tail_call_cnt = 0; | 
|  |  | 
|  | #define CONT	 ({ insn++; goto select_insn; }) | 
|  | #define CONT_JMP ({ insn++; goto select_insn; }) | 
|  |  | 
|  | select_insn: | 
|  | goto *jumptable[insn->code]; | 
|  |  | 
|  | /* ALU */ | 
|  | #define ALU(OPCODE, OP)			\ | 
|  | ALU64_##OPCODE##_X:		\ | 
|  | DST = DST OP SRC;	\ | 
|  | CONT;			\ | 
|  | ALU_##OPCODE##_X:		\ | 
|  | DST = (u32) DST OP (u32) SRC;	\ | 
|  | CONT;			\ | 
|  | ALU64_##OPCODE##_K:		\ | 
|  | DST = DST OP IMM;		\ | 
|  | CONT;			\ | 
|  | ALU_##OPCODE##_K:		\ | 
|  | DST = (u32) DST OP (u32) IMM;	\ | 
|  | CONT; | 
|  |  | 
|  | ALU(ADD,  +) | 
|  | ALU(SUB,  -) | 
|  | ALU(AND,  &) | 
|  | ALU(OR,   |) | 
|  | ALU(LSH, <<) | 
|  | ALU(RSH, >>) | 
|  | ALU(XOR,  ^) | 
|  | ALU(MUL,  *) | 
|  | #undef ALU | 
|  | ALU_NEG: | 
|  | DST = (u32) -DST; | 
|  | CONT; | 
|  | ALU64_NEG: | 
|  | DST = -DST; | 
|  | CONT; | 
|  | ALU_MOV_X: | 
|  | DST = (u32) SRC; | 
|  | CONT; | 
|  | ALU_MOV_K: | 
|  | DST = (u32) IMM; | 
|  | CONT; | 
|  | ALU64_MOV_X: | 
|  | DST = SRC; | 
|  | CONT; | 
|  | ALU64_MOV_K: | 
|  | DST = IMM; | 
|  | CONT; | 
|  | LD_IMM_DW: | 
|  | DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; | 
|  | insn++; | 
|  | CONT; | 
|  | ALU64_ARSH_X: | 
|  | (*(s64 *) &DST) >>= SRC; | 
|  | CONT; | 
|  | ALU64_ARSH_K: | 
|  | (*(s64 *) &DST) >>= IMM; | 
|  | CONT; | 
|  | ALU64_MOD_X: | 
|  | div64_u64_rem(DST, SRC, &tmp); | 
|  | DST = tmp; | 
|  | CONT; | 
|  | ALU_MOD_X: | 
|  | tmp = (u32) DST; | 
|  | DST = do_div(tmp, (u32) SRC); | 
|  | CONT; | 
|  | ALU64_MOD_K: | 
|  | div64_u64_rem(DST, IMM, &tmp); | 
|  | DST = tmp; | 
|  | CONT; | 
|  | ALU_MOD_K: | 
|  | tmp = (u32) DST; | 
|  | DST = do_div(tmp, (u32) IMM); | 
|  | CONT; | 
|  | ALU64_DIV_X: | 
|  | DST = div64_u64(DST, SRC); | 
|  | CONT; | 
|  | ALU_DIV_X: | 
|  | tmp = (u32) DST; | 
|  | do_div(tmp, (u32) SRC); | 
|  | DST = (u32) tmp; | 
|  | CONT; | 
|  | ALU64_DIV_K: | 
|  | DST = div64_u64(DST, IMM); | 
|  | CONT; | 
|  | ALU_DIV_K: | 
|  | tmp = (u32) DST; | 
|  | do_div(tmp, (u32) IMM); | 
|  | DST = (u32) tmp; | 
|  | CONT; | 
|  | ALU_END_TO_BE: | 
|  | switch (IMM) { | 
|  | case 16: | 
|  | DST = (__force u16) cpu_to_be16(DST); | 
|  | break; | 
|  | case 32: | 
|  | DST = (__force u32) cpu_to_be32(DST); | 
|  | break; | 
|  | case 64: | 
|  | DST = (__force u64) cpu_to_be64(DST); | 
|  | break; | 
|  | } | 
|  | CONT; | 
|  | ALU_END_TO_LE: | 
|  | switch (IMM) { | 
|  | case 16: | 
|  | DST = (__force u16) cpu_to_le16(DST); | 
|  | break; | 
|  | case 32: | 
|  | DST = (__force u32) cpu_to_le32(DST); | 
|  | break; | 
|  | case 64: | 
|  | DST = (__force u64) cpu_to_le64(DST); | 
|  | break; | 
|  | } | 
|  | CONT; | 
|  |  | 
|  | /* CALL */ | 
|  | JMP_CALL: | 
|  | /* Function call scratches BPF_R1-BPF_R5 registers, | 
|  | * preserves BPF_R6-BPF_R9, and stores return value | 
|  | * into BPF_R0. | 
|  | */ | 
|  | BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, | 
|  | BPF_R4, BPF_R5); | 
|  | CONT; | 
|  |  | 
|  | JMP_CALL_ARGS: | 
|  | BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2, | 
|  | BPF_R3, BPF_R4, | 
|  | BPF_R5, | 
|  | insn + insn->off + 1); | 
|  | CONT; | 
|  |  | 
|  | JMP_TAIL_CALL: { | 
|  | struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; | 
|  | struct bpf_array *array = container_of(map, struct bpf_array, map); | 
|  | struct bpf_prog *prog; | 
|  | u32 index = BPF_R3; | 
|  |  | 
|  | if (unlikely(index >= array->map.max_entries)) | 
|  | goto out; | 
|  | if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT)) | 
|  | goto out; | 
|  |  | 
|  | tail_call_cnt++; | 
|  |  | 
|  | prog = READ_ONCE(array->ptrs[index]); | 
|  | if (!prog) | 
|  | goto out; | 
|  |  | 
|  | /* ARG1 at this point is guaranteed to point to CTX from | 
|  | * the verifier side due to the fact that the tail call is | 
|  | * handeled like a helper, that is, bpf_tail_call_proto, | 
|  | * where arg1_type is ARG_PTR_TO_CTX. | 
|  | */ | 
|  | insn = prog->insnsi; | 
|  | goto select_insn; | 
|  | out: | 
|  | CONT; | 
|  | } | 
|  | /* JMP */ | 
|  | JMP_JA: | 
|  | insn += insn->off; | 
|  | CONT; | 
|  | JMP_JEQ_X: | 
|  | if (DST == SRC) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JEQ_K: | 
|  | if (DST == IMM) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JNE_X: | 
|  | if (DST != SRC) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JNE_K: | 
|  | if (DST != IMM) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JGT_X: | 
|  | if (DST > SRC) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JGT_K: | 
|  | if (DST > IMM) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JLT_X: | 
|  | if (DST < SRC) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JLT_K: | 
|  | if (DST < IMM) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JGE_X: | 
|  | if (DST >= SRC) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JGE_K: | 
|  | if (DST >= IMM) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JLE_X: | 
|  | if (DST <= SRC) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JLE_K: | 
|  | if (DST <= IMM) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JSGT_X: | 
|  | if (((s64) DST) > ((s64) SRC)) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JSGT_K: | 
|  | if (((s64) DST) > ((s64) IMM)) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JSLT_X: | 
|  | if (((s64) DST) < ((s64) SRC)) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JSLT_K: | 
|  | if (((s64) DST) < ((s64) IMM)) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JSGE_X: | 
|  | if (((s64) DST) >= ((s64) SRC)) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JSGE_K: | 
|  | if (((s64) DST) >= ((s64) IMM)) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JSLE_X: | 
|  | if (((s64) DST) <= ((s64) SRC)) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JSLE_K: | 
|  | if (((s64) DST) <= ((s64) IMM)) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JSET_X: | 
|  | if (DST & SRC) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_JSET_K: | 
|  | if (DST & IMM) { | 
|  | insn += insn->off; | 
|  | CONT_JMP; | 
|  | } | 
|  | CONT; | 
|  | JMP_EXIT: | 
|  | return BPF_R0; | 
|  |  | 
|  | /* STX and ST and LDX*/ | 
|  | #define LDST(SIZEOP, SIZE)						\ | 
|  | STX_MEM_##SIZEOP:						\ | 
|  | *(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\ | 
|  | CONT;							\ | 
|  | ST_MEM_##SIZEOP:						\ | 
|  | *(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\ | 
|  | CONT;							\ | 
|  | LDX_MEM_##SIZEOP:						\ | 
|  | DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\ | 
|  | CONT; | 
|  |  | 
|  | LDST(B,   u8) | 
|  | LDST(H,  u16) | 
|  | LDST(W,  u32) | 
|  | LDST(DW, u64) | 
|  | #undef LDST | 
|  | STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */ | 
|  | atomic_add((u32) SRC, (atomic_t *)(unsigned long) | 
|  | (DST + insn->off)); | 
|  | CONT; | 
|  | STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */ | 
|  | atomic64_add((u64) SRC, (atomic64_t *)(unsigned long) | 
|  | (DST + insn->off)); | 
|  | CONT; | 
|  |  | 
|  | default_label: | 
|  | /* If we ever reach this, we have a bug somewhere. Die hard here | 
|  | * instead of just returning 0; we could be somewhere in a subprog, | 
|  | * so execution could continue otherwise which we do /not/ want. | 
|  | * | 
|  | * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable(). | 
|  | */ | 
|  | pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code); | 
|  | BUG_ON(1); | 
|  | return 0; | 
|  | } | 
|  | STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */ | 
|  |  | 
|  | #define PROG_NAME(stack_size) __bpf_prog_run##stack_size | 
|  | #define DEFINE_BPF_PROG_RUN(stack_size) \ | 
|  | static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \ | 
|  | { \ | 
|  | u64 stack[stack_size / sizeof(u64)]; \ | 
|  | u64 regs[MAX_BPF_REG]; \ | 
|  | \ | 
|  | FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ | 
|  | ARG1 = (u64) (unsigned long) ctx; \ | 
|  | return ___bpf_prog_run(regs, insn, stack); \ | 
|  | } | 
|  |  | 
|  | #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size | 
|  | #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \ | 
|  | static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \ | 
|  | const struct bpf_insn *insn) \ | 
|  | { \ | 
|  | u64 stack[stack_size / sizeof(u64)]; \ | 
|  | u64 regs[MAX_BPF_REG]; \ | 
|  | \ | 
|  | FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ | 
|  | BPF_R1 = r1; \ | 
|  | BPF_R2 = r2; \ | 
|  | BPF_R3 = r3; \ | 
|  | BPF_R4 = r4; \ | 
|  | BPF_R5 = r5; \ | 
|  | return ___bpf_prog_run(regs, insn, stack); \ | 
|  | } | 
|  |  | 
|  | #define EVAL1(FN, X) FN(X) | 
|  | #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y) | 
|  | #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y) | 
|  | #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y) | 
|  | #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y) | 
|  | #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y) | 
|  |  | 
|  | EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192); | 
|  | EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384); | 
|  | EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512); | 
|  |  | 
|  | EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192); | 
|  | EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384); | 
|  | EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512); | 
|  |  | 
|  | #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size), | 
|  |  | 
|  | static unsigned int (*interpreters[])(const void *ctx, | 
|  | const struct bpf_insn *insn) = { | 
|  | EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) | 
|  | EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) | 
|  | EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) | 
|  | }; | 
|  | #undef PROG_NAME_LIST | 
|  | #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size), | 
|  | static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, | 
|  | const struct bpf_insn *insn) = { | 
|  | EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) | 
|  | EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) | 
|  | EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) | 
|  | }; | 
|  | #undef PROG_NAME_LIST | 
|  |  | 
|  | void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth) | 
|  | { | 
|  | stack_depth = max_t(u32, stack_depth, 1); | 
|  | insn->off = (s16) insn->imm; | 
|  | insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] - | 
|  | __bpf_call_base_args; | 
|  | insn->code = BPF_JMP | BPF_CALL_ARGS; | 
|  | } | 
|  |  | 
|  | #else | 
|  | static unsigned int __bpf_prog_ret0_warn(const void *ctx, | 
|  | const struct bpf_insn *insn) | 
|  | { | 
|  | /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON | 
|  | * is not working properly, so warn about it! | 
|  | */ | 
|  | WARN_ON_ONCE(1); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool bpf_prog_array_compatible(struct bpf_array *array, | 
|  | const struct bpf_prog *fp) | 
|  | { | 
|  | if (fp->kprobe_override) | 
|  | return false; | 
|  |  | 
|  | if (!array->owner_prog_type) { | 
|  | /* There's no owner yet where we could check for | 
|  | * compatibility. | 
|  | */ | 
|  | array->owner_prog_type = fp->type; | 
|  | array->owner_jited = fp->jited; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return array->owner_prog_type == fp->type && | 
|  | array->owner_jited == fp->jited; | 
|  | } | 
|  |  | 
|  | static int bpf_check_tail_call(const struct bpf_prog *fp) | 
|  | { | 
|  | struct bpf_prog_aux *aux = fp->aux; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < aux->used_map_cnt; i++) { | 
|  | struct bpf_map *map = aux->used_maps[i]; | 
|  | struct bpf_array *array; | 
|  |  | 
|  | if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) | 
|  | continue; | 
|  |  | 
|  | array = container_of(map, struct bpf_array, map); | 
|  | if (!bpf_prog_array_compatible(array, fp)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bpf_prog_select_func(struct bpf_prog *fp) | 
|  | { | 
|  | #ifndef CONFIG_BPF_JIT_ALWAYS_ON | 
|  | u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); | 
|  |  | 
|  | fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1]; | 
|  | #else | 
|  | fp->bpf_func = __bpf_prog_ret0_warn; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bpf_prog_select_runtime - select exec runtime for BPF program | 
|  | *	@fp: bpf_prog populated with internal BPF program | 
|  | *	@err: pointer to error variable | 
|  | * | 
|  | * Try to JIT eBPF program, if JIT is not available, use interpreter. | 
|  | * The BPF program will be executed via BPF_PROG_RUN() macro. | 
|  | */ | 
|  | struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) | 
|  | { | 
|  | /* In case of BPF to BPF calls, verifier did all the prep | 
|  | * work with regards to JITing, etc. | 
|  | */ | 
|  | if (fp->bpf_func) | 
|  | goto finalize; | 
|  |  | 
|  | bpf_prog_select_func(fp); | 
|  |  | 
|  | /* eBPF JITs can rewrite the program in case constant | 
|  | * blinding is active. However, in case of error during | 
|  | * blinding, bpf_int_jit_compile() must always return a | 
|  | * valid program, which in this case would simply not | 
|  | * be JITed, but falls back to the interpreter. | 
|  | */ | 
|  | if (!bpf_prog_is_dev_bound(fp->aux)) { | 
|  | fp = bpf_int_jit_compile(fp); | 
|  | #ifdef CONFIG_BPF_JIT_ALWAYS_ON | 
|  | if (!fp->jited) { | 
|  | *err = -ENOTSUPP; | 
|  | return fp; | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | *err = bpf_prog_offload_compile(fp); | 
|  | if (*err) | 
|  | return fp; | 
|  | } | 
|  |  | 
|  | finalize: | 
|  | bpf_prog_lock_ro(fp); | 
|  |  | 
|  | /* The tail call compatibility check can only be done at | 
|  | * this late stage as we need to determine, if we deal | 
|  | * with JITed or non JITed program concatenations and not | 
|  | * all eBPF JITs might immediately support all features. | 
|  | */ | 
|  | *err = bpf_check_tail_call(fp); | 
|  |  | 
|  | return fp; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); | 
|  |  | 
|  | static unsigned int __bpf_prog_ret1(const void *ctx, | 
|  | const struct bpf_insn *insn) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct bpf_prog_dummy { | 
|  | struct bpf_prog prog; | 
|  | } dummy_bpf_prog = { | 
|  | .prog = { | 
|  | .bpf_func = __bpf_prog_ret1, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* to avoid allocating empty bpf_prog_array for cgroups that | 
|  | * don't have bpf program attached use one global 'empty_prog_array' | 
|  | * It will not be modified the caller of bpf_prog_array_alloc() | 
|  | * (since caller requested prog_cnt == 0) | 
|  | * that pointer should be 'freed' by bpf_prog_array_free() | 
|  | */ | 
|  | static struct { | 
|  | struct bpf_prog_array hdr; | 
|  | struct bpf_prog *null_prog; | 
|  | } empty_prog_array = { | 
|  | .null_prog = NULL, | 
|  | }; | 
|  |  | 
|  | struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags) | 
|  | { | 
|  | if (prog_cnt) | 
|  | return kzalloc(sizeof(struct bpf_prog_array) + | 
|  | sizeof(struct bpf_prog_array_item) * | 
|  | (prog_cnt + 1), | 
|  | flags); | 
|  |  | 
|  | return &empty_prog_array.hdr; | 
|  | } | 
|  |  | 
|  | void bpf_prog_array_free(struct bpf_prog_array __rcu *progs) | 
|  | { | 
|  | if (!progs || | 
|  | progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr) | 
|  | return; | 
|  | kfree_rcu(progs, rcu); | 
|  | } | 
|  |  | 
|  | int bpf_prog_array_length(struct bpf_prog_array __rcu *array) | 
|  | { | 
|  | struct bpf_prog_array_item *item; | 
|  | u32 cnt = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | item = rcu_dereference(array)->items; | 
|  | for (; item->prog; item++) | 
|  | if (item->prog != &dummy_bpf_prog.prog) | 
|  | cnt++; | 
|  | rcu_read_unlock(); | 
|  | return cnt; | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool bpf_prog_array_copy_core(struct bpf_prog_array __rcu *array, | 
|  | u32 *prog_ids, | 
|  | u32 request_cnt) | 
|  | { | 
|  | struct bpf_prog_array_item *item; | 
|  | int i = 0; | 
|  |  | 
|  | item = rcu_dereference_check(array, 1)->items; | 
|  | for (; item->prog; item++) { | 
|  | if (item->prog == &dummy_bpf_prog.prog) | 
|  | continue; | 
|  | prog_ids[i] = item->prog->aux->id; | 
|  | if (++i == request_cnt) { | 
|  | item++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return !!(item->prog); | 
|  | } | 
|  |  | 
|  | int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *array, | 
|  | __u32 __user *prog_ids, u32 cnt) | 
|  | { | 
|  | unsigned long err = 0; | 
|  | bool nospc; | 
|  | u32 *ids; | 
|  |  | 
|  | /* users of this function are doing: | 
|  | * cnt = bpf_prog_array_length(); | 
|  | * if (cnt > 0) | 
|  | *     bpf_prog_array_copy_to_user(..., cnt); | 
|  | * so below kcalloc doesn't need extra cnt > 0 check, but | 
|  | * bpf_prog_array_length() releases rcu lock and | 
|  | * prog array could have been swapped with empty or larger array, | 
|  | * so always copy 'cnt' prog_ids to the user. | 
|  | * In a rare race the user will see zero prog_ids | 
|  | */ | 
|  | ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN); | 
|  | if (!ids) | 
|  | return -ENOMEM; | 
|  | rcu_read_lock(); | 
|  | nospc = bpf_prog_array_copy_core(array, ids, cnt); | 
|  | rcu_read_unlock(); | 
|  | err = copy_to_user(prog_ids, ids, cnt * sizeof(u32)); | 
|  | kfree(ids); | 
|  | if (err) | 
|  | return -EFAULT; | 
|  | if (nospc) | 
|  | return -ENOSPC; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *array, | 
|  | struct bpf_prog *old_prog) | 
|  | { | 
|  | struct bpf_prog_array_item *item = array->items; | 
|  |  | 
|  | for (; item->prog; item++) | 
|  | if (item->prog == old_prog) { | 
|  | WRITE_ONCE(item->prog, &dummy_bpf_prog.prog); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array, | 
|  | struct bpf_prog *exclude_prog, | 
|  | struct bpf_prog *include_prog, | 
|  | struct bpf_prog_array **new_array) | 
|  | { | 
|  | int new_prog_cnt, carry_prog_cnt = 0; | 
|  | struct bpf_prog_array_item *existing; | 
|  | struct bpf_prog_array *array; | 
|  | bool found_exclude = false; | 
|  | int new_prog_idx = 0; | 
|  |  | 
|  | /* Figure out how many existing progs we need to carry over to | 
|  | * the new array. | 
|  | */ | 
|  | if (old_array) { | 
|  | existing = old_array->items; | 
|  | for (; existing->prog; existing++) { | 
|  | if (existing->prog == exclude_prog) { | 
|  | found_exclude = true; | 
|  | continue; | 
|  | } | 
|  | if (existing->prog != &dummy_bpf_prog.prog) | 
|  | carry_prog_cnt++; | 
|  | if (existing->prog == include_prog) | 
|  | return -EEXIST; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (exclude_prog && !found_exclude) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* How many progs (not NULL) will be in the new array? */ | 
|  | new_prog_cnt = carry_prog_cnt; | 
|  | if (include_prog) | 
|  | new_prog_cnt += 1; | 
|  |  | 
|  | /* Do we have any prog (not NULL) in the new array? */ | 
|  | if (!new_prog_cnt) { | 
|  | *new_array = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* +1 as the end of prog_array is marked with NULL */ | 
|  | array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL); | 
|  | if (!array) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Fill in the new prog array */ | 
|  | if (carry_prog_cnt) { | 
|  | existing = old_array->items; | 
|  | for (; existing->prog; existing++) | 
|  | if (existing->prog != exclude_prog && | 
|  | existing->prog != &dummy_bpf_prog.prog) { | 
|  | array->items[new_prog_idx++].prog = | 
|  | existing->prog; | 
|  | } | 
|  | } | 
|  | if (include_prog) | 
|  | array->items[new_prog_idx++].prog = include_prog; | 
|  | array->items[new_prog_idx].prog = NULL; | 
|  | *new_array = array; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array, | 
|  | u32 *prog_ids, u32 request_cnt, | 
|  | u32 *prog_cnt) | 
|  | { | 
|  | u32 cnt = 0; | 
|  |  | 
|  | if (array) | 
|  | cnt = bpf_prog_array_length(array); | 
|  |  | 
|  | *prog_cnt = cnt; | 
|  |  | 
|  | /* return early if user requested only program count or nothing to copy */ | 
|  | if (!request_cnt || !cnt) | 
|  | return 0; | 
|  |  | 
|  | /* this function is called under trace/bpf_trace.c: bpf_event_mutex */ | 
|  | return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC | 
|  | : 0; | 
|  | } | 
|  |  | 
|  | static void bpf_prog_free_deferred(struct work_struct *work) | 
|  | { | 
|  | struct bpf_prog_aux *aux; | 
|  | int i; | 
|  |  | 
|  | aux = container_of(work, struct bpf_prog_aux, work); | 
|  | if (bpf_prog_is_dev_bound(aux)) | 
|  | bpf_prog_offload_destroy(aux->prog); | 
|  | #ifdef CONFIG_PERF_EVENTS | 
|  | if (aux->prog->has_callchain_buf) | 
|  | put_callchain_buffers(); | 
|  | #endif | 
|  | for (i = 0; i < aux->func_cnt; i++) | 
|  | bpf_jit_free(aux->func[i]); | 
|  | if (aux->func_cnt) { | 
|  | kfree(aux->func); | 
|  | bpf_prog_unlock_free(aux->prog); | 
|  | } else { | 
|  | bpf_jit_free(aux->prog); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Free internal BPF program */ | 
|  | void bpf_prog_free(struct bpf_prog *fp) | 
|  | { | 
|  | struct bpf_prog_aux *aux = fp->aux; | 
|  |  | 
|  | INIT_WORK(&aux->work, bpf_prog_free_deferred); | 
|  | schedule_work(&aux->work); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bpf_prog_free); | 
|  |  | 
|  | /* RNG for unpriviledged user space with separated state from prandom_u32(). */ | 
|  | static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state); | 
|  |  | 
|  | void bpf_user_rnd_init_once(void) | 
|  | { | 
|  | prandom_init_once(&bpf_user_rnd_state); | 
|  | } | 
|  |  | 
|  | BPF_CALL_0(bpf_user_rnd_u32) | 
|  | { | 
|  | /* Should someone ever have the rather unwise idea to use some | 
|  | * of the registers passed into this function, then note that | 
|  | * this function is called from native eBPF and classic-to-eBPF | 
|  | * transformations. Register assignments from both sides are | 
|  | * different, f.e. classic always sets fn(ctx, A, X) here. | 
|  | */ | 
|  | struct rnd_state *state; | 
|  | u32 res; | 
|  |  | 
|  | state = &get_cpu_var(bpf_user_rnd_state); | 
|  | res = prandom_u32_state(state); | 
|  | put_cpu_var(bpf_user_rnd_state); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Weak definitions of helper functions in case we don't have bpf syscall. */ | 
|  | const struct bpf_func_proto bpf_map_lookup_elem_proto __weak; | 
|  | const struct bpf_func_proto bpf_map_update_elem_proto __weak; | 
|  | const struct bpf_func_proto bpf_map_delete_elem_proto __weak; | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_prandom_u32_proto __weak; | 
|  | const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak; | 
|  | const struct bpf_func_proto bpf_get_numa_node_id_proto __weak; | 
|  | const struct bpf_func_proto bpf_ktime_get_ns_proto __weak; | 
|  |  | 
|  | const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak; | 
|  | const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak; | 
|  | const struct bpf_func_proto bpf_get_current_comm_proto __weak; | 
|  | const struct bpf_func_proto bpf_sock_map_update_proto __weak; | 
|  | const struct bpf_func_proto bpf_sock_hash_update_proto __weak; | 
|  | const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak; | 
|  | const struct bpf_func_proto bpf_get_local_storage_proto __weak; | 
|  |  | 
|  | const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | u64 __weak | 
|  | bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, | 
|  | void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) | 
|  | { | 
|  | return -ENOTSUPP; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bpf_event_output); | 
|  |  | 
|  | /* Always built-in helper functions. */ | 
|  | const struct bpf_func_proto bpf_tail_call_proto = { | 
|  | .func		= NULL, | 
|  | .gpl_only	= false, | 
|  | .ret_type	= RET_VOID, | 
|  | .arg1_type	= ARG_PTR_TO_CTX, | 
|  | .arg2_type	= ARG_CONST_MAP_PTR, | 
|  | .arg3_type	= ARG_ANYTHING, | 
|  | }; | 
|  |  | 
|  | /* Stub for JITs that only support cBPF. eBPF programs are interpreted. | 
|  | * It is encouraged to implement bpf_int_jit_compile() instead, so that | 
|  | * eBPF and implicitly also cBPF can get JITed! | 
|  | */ | 
|  | struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog) | 
|  | { | 
|  | return prog; | 
|  | } | 
|  |  | 
|  | /* Stub for JITs that support eBPF. All cBPF code gets transformed into | 
|  | * eBPF by the kernel and is later compiled by bpf_int_jit_compile(). | 
|  | */ | 
|  | void __weak bpf_jit_compile(struct bpf_prog *prog) | 
|  | { | 
|  | } | 
|  |  | 
|  | bool __weak bpf_helper_changes_pkt_data(void *func) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call | 
|  | * skb_copy_bits(), so provide a weak definition of it for NET-less config. | 
|  | */ | 
|  | int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, | 
|  | int len) | 
|  | { | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* All definitions of tracepoints related to BPF. */ | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <linux/bpf_trace.h> | 
|  |  | 
|  | EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); |