| /* | 
 |  * handle transition of Linux booting another kernel | 
 |  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com> | 
 |  * | 
 |  * This source code is licensed under the GNU General Public License, | 
 |  * Version 2.  See the file COPYING for more details. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt)	"kexec: " fmt | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/string.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/numa.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/io.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #include <asm/init.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/io_apic.h> | 
 | #include <asm/debugreg.h> | 
 | #include <asm/kexec-bzimage64.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/set_memory.h> | 
 |  | 
 | #ifdef CONFIG_KEXEC_FILE | 
 | const struct kexec_file_ops * const kexec_file_loaders[] = { | 
 | 		&kexec_bzImage64_ops, | 
 | 		NULL | 
 | }; | 
 | #endif | 
 |  | 
 | static void free_transition_pgtable(struct kimage *image) | 
 | { | 
 | 	free_page((unsigned long)image->arch.p4d); | 
 | 	image->arch.p4d = NULL; | 
 | 	free_page((unsigned long)image->arch.pud); | 
 | 	image->arch.pud = NULL; | 
 | 	free_page((unsigned long)image->arch.pmd); | 
 | 	image->arch.pmd = NULL; | 
 | 	free_page((unsigned long)image->arch.pte); | 
 | 	image->arch.pte = NULL; | 
 | } | 
 |  | 
 | static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) | 
 | { | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 | 	unsigned long vaddr, paddr; | 
 | 	int result = -ENOMEM; | 
 |  | 
 | 	vaddr = (unsigned long)relocate_kernel; | 
 | 	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); | 
 | 	pgd += pgd_index(vaddr); | 
 | 	if (!pgd_present(*pgd)) { | 
 | 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); | 
 | 		if (!p4d) | 
 | 			goto err; | 
 | 		image->arch.p4d = p4d; | 
 | 		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); | 
 | 	} | 
 | 	p4d = p4d_offset(pgd, vaddr); | 
 | 	if (!p4d_present(*p4d)) { | 
 | 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL); | 
 | 		if (!pud) | 
 | 			goto err; | 
 | 		image->arch.pud = pud; | 
 | 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); | 
 | 	} | 
 | 	pud = pud_offset(p4d, vaddr); | 
 | 	if (!pud_present(*pud)) { | 
 | 		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); | 
 | 		if (!pmd) | 
 | 			goto err; | 
 | 		image->arch.pmd = pmd; | 
 | 		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); | 
 | 	} | 
 | 	pmd = pmd_offset(pud, vaddr); | 
 | 	if (!pmd_present(*pmd)) { | 
 | 		pte = (pte_t *)get_zeroed_page(GFP_KERNEL); | 
 | 		if (!pte) | 
 | 			goto err; | 
 | 		image->arch.pte = pte; | 
 | 		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); | 
 | 	} | 
 | 	pte = pte_offset_kernel(pmd, vaddr); | 
 | 	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC)); | 
 | 	return 0; | 
 | err: | 
 | 	return result; | 
 | } | 
 |  | 
 | static void *alloc_pgt_page(void *data) | 
 | { | 
 | 	struct kimage *image = (struct kimage *)data; | 
 | 	struct page *page; | 
 | 	void *p = NULL; | 
 |  | 
 | 	page = kimage_alloc_control_pages(image, 0); | 
 | 	if (page) { | 
 | 		p = page_address(page); | 
 | 		clear_page(p); | 
 | 	} | 
 |  | 
 | 	return p; | 
 | } | 
 |  | 
 | static int init_pgtable(struct kimage *image, unsigned long start_pgtable) | 
 | { | 
 | 	struct x86_mapping_info info = { | 
 | 		.alloc_pgt_page	= alloc_pgt_page, | 
 | 		.context	= image, | 
 | 		.page_flag	= __PAGE_KERNEL_LARGE_EXEC, | 
 | 		.kernpg_flag	= _KERNPG_TABLE_NOENC, | 
 | 	}; | 
 | 	unsigned long mstart, mend; | 
 | 	pgd_t *level4p; | 
 | 	int result; | 
 | 	int i; | 
 |  | 
 | 	level4p = (pgd_t *)__va(start_pgtable); | 
 | 	clear_page(level4p); | 
 |  | 
 | 	if (direct_gbpages) | 
 | 		info.direct_gbpages = true; | 
 |  | 
 | 	for (i = 0; i < nr_pfn_mapped; i++) { | 
 | 		mstart = pfn_mapped[i].start << PAGE_SHIFT; | 
 | 		mend   = pfn_mapped[i].end << PAGE_SHIFT; | 
 |  | 
 | 		result = kernel_ident_mapping_init(&info, | 
 | 						 level4p, mstart, mend); | 
 | 		if (result) | 
 | 			return result; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * segments's mem ranges could be outside 0 ~ max_pfn, | 
 | 	 * for example when jump back to original kernel from kexeced kernel. | 
 | 	 * or first kernel is booted with user mem map, and second kernel | 
 | 	 * could be loaded out of that range. | 
 | 	 */ | 
 | 	for (i = 0; i < image->nr_segments; i++) { | 
 | 		mstart = image->segment[i].mem; | 
 | 		mend   = mstart + image->segment[i].memsz; | 
 |  | 
 | 		result = kernel_ident_mapping_init(&info, | 
 | 						 level4p, mstart, mend); | 
 |  | 
 | 		if (result) | 
 | 			return result; | 
 | 	} | 
 |  | 
 | 	return init_transition_pgtable(image, level4p); | 
 | } | 
 |  | 
 | static void set_idt(void *newidt, u16 limit) | 
 | { | 
 | 	struct desc_ptr curidt; | 
 |  | 
 | 	/* x86-64 supports unaliged loads & stores */ | 
 | 	curidt.size    = limit; | 
 | 	curidt.address = (unsigned long)newidt; | 
 |  | 
 | 	__asm__ __volatile__ ( | 
 | 		"lidtq %0\n" | 
 | 		: : "m" (curidt) | 
 | 		); | 
 | }; | 
 |  | 
 |  | 
 | static void set_gdt(void *newgdt, u16 limit) | 
 | { | 
 | 	struct desc_ptr curgdt; | 
 |  | 
 | 	/* x86-64 supports unaligned loads & stores */ | 
 | 	curgdt.size    = limit; | 
 | 	curgdt.address = (unsigned long)newgdt; | 
 |  | 
 | 	__asm__ __volatile__ ( | 
 | 		"lgdtq %0\n" | 
 | 		: : "m" (curgdt) | 
 | 		); | 
 | }; | 
 |  | 
 | static void load_segments(void) | 
 | { | 
 | 	__asm__ __volatile__ ( | 
 | 		"\tmovl %0,%%ds\n" | 
 | 		"\tmovl %0,%%es\n" | 
 | 		"\tmovl %0,%%ss\n" | 
 | 		"\tmovl %0,%%fs\n" | 
 | 		"\tmovl %0,%%gs\n" | 
 | 		: : "a" (__KERNEL_DS) : "memory" | 
 | 		); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KEXEC_FILE | 
 | /* Update purgatory as needed after various image segments have been prepared */ | 
 | static int arch_update_purgatory(struct kimage *image) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!image->file_mode) | 
 | 		return 0; | 
 |  | 
 | 	/* Setup copying of backup region */ | 
 | 	if (image->type == KEXEC_TYPE_CRASH) { | 
 | 		ret = kexec_purgatory_get_set_symbol(image, | 
 | 				"purgatory_backup_dest", | 
 | 				&image->arch.backup_load_addr, | 
 | 				sizeof(image->arch.backup_load_addr), 0); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		ret = kexec_purgatory_get_set_symbol(image, | 
 | 				"purgatory_backup_src", | 
 | 				&image->arch.backup_src_start, | 
 | 				sizeof(image->arch.backup_src_start), 0); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		ret = kexec_purgatory_get_set_symbol(image, | 
 | 				"purgatory_backup_sz", | 
 | 				&image->arch.backup_src_sz, | 
 | 				sizeof(image->arch.backup_src_sz), 0); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | #else /* !CONFIG_KEXEC_FILE */ | 
 | static inline int arch_update_purgatory(struct kimage *image) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_KEXEC_FILE */ | 
 |  | 
 | int machine_kexec_prepare(struct kimage *image) | 
 | { | 
 | 	unsigned long start_pgtable; | 
 | 	int result; | 
 |  | 
 | 	/* Calculate the offsets */ | 
 | 	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; | 
 |  | 
 | 	/* Setup the identity mapped 64bit page table */ | 
 | 	result = init_pgtable(image, start_pgtable); | 
 | 	if (result) | 
 | 		return result; | 
 |  | 
 | 	/* update purgatory as needed */ | 
 | 	result = arch_update_purgatory(image); | 
 | 	if (result) | 
 | 		return result; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void machine_kexec_cleanup(struct kimage *image) | 
 | { | 
 | 	free_transition_pgtable(image); | 
 | } | 
 |  | 
 | /* | 
 |  * Do not allocate memory (or fail in any way) in machine_kexec(). | 
 |  * We are past the point of no return, committed to rebooting now. | 
 |  */ | 
 | void machine_kexec(struct kimage *image) | 
 | { | 
 | 	unsigned long page_list[PAGES_NR]; | 
 | 	void *control_page; | 
 | 	int save_ftrace_enabled; | 
 |  | 
 | #ifdef CONFIG_KEXEC_JUMP | 
 | 	if (image->preserve_context) | 
 | 		save_processor_state(); | 
 | #endif | 
 |  | 
 | 	save_ftrace_enabled = __ftrace_enabled_save(); | 
 |  | 
 | 	/* Interrupts aren't acceptable while we reboot */ | 
 | 	local_irq_disable(); | 
 | 	hw_breakpoint_disable(); | 
 |  | 
 | 	if (image->preserve_context) { | 
 | #ifdef CONFIG_X86_IO_APIC | 
 | 		/* | 
 | 		 * We need to put APICs in legacy mode so that we can | 
 | 		 * get timer interrupts in second kernel. kexec/kdump | 
 | 		 * paths already have calls to restore_boot_irq_mode() | 
 | 		 * in one form or other. kexec jump path also need one. | 
 | 		 */ | 
 | 		clear_IO_APIC(); | 
 | 		restore_boot_irq_mode(); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	control_page = page_address(image->control_code_page) + PAGE_SIZE; | 
 | 	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); | 
 |  | 
 | 	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); | 
 | 	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; | 
 | 	page_list[PA_TABLE_PAGE] = | 
 | 	  (unsigned long)__pa(page_address(image->control_code_page)); | 
 |  | 
 | 	if (image->type == KEXEC_TYPE_DEFAULT) | 
 | 		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) | 
 | 						<< PAGE_SHIFT); | 
 |  | 
 | 	/* | 
 | 	 * The segment registers are funny things, they have both a | 
 | 	 * visible and an invisible part.  Whenever the visible part is | 
 | 	 * set to a specific selector, the invisible part is loaded | 
 | 	 * with from a table in memory.  At no other time is the | 
 | 	 * descriptor table in memory accessed. | 
 | 	 * | 
 | 	 * I take advantage of this here by force loading the | 
 | 	 * segments, before I zap the gdt with an invalid value. | 
 | 	 */ | 
 | 	load_segments(); | 
 | 	/* | 
 | 	 * The gdt & idt are now invalid. | 
 | 	 * If you want to load them you must set up your own idt & gdt. | 
 | 	 */ | 
 | 	set_gdt(phys_to_virt(0), 0); | 
 | 	set_idt(phys_to_virt(0), 0); | 
 |  | 
 | 	/* now call it */ | 
 | 	image->start = relocate_kernel((unsigned long)image->head, | 
 | 				       (unsigned long)page_list, | 
 | 				       image->start, | 
 | 				       image->preserve_context, | 
 | 				       sme_active()); | 
 |  | 
 | #ifdef CONFIG_KEXEC_JUMP | 
 | 	if (image->preserve_context) | 
 | 		restore_processor_state(); | 
 | #endif | 
 |  | 
 | 	__ftrace_enabled_restore(save_ftrace_enabled); | 
 | } | 
 |  | 
 | void arch_crash_save_vmcoreinfo(void) | 
 | { | 
 | 	VMCOREINFO_NUMBER(phys_base); | 
 | 	VMCOREINFO_SYMBOL(init_top_pgt); | 
 | 	VMCOREINFO_NUMBER(pgtable_l5_enabled); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	VMCOREINFO_SYMBOL(node_data); | 
 | 	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); | 
 | #endif | 
 | 	vmcoreinfo_append_str("KERNELOFFSET=%lx\n", | 
 | 			      kaslr_offset()); | 
 | 	VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); | 
 | } | 
 |  | 
 | /* arch-dependent functionality related to kexec file-based syscall */ | 
 |  | 
 | #ifdef CONFIG_KEXEC_FILE | 
 | void *arch_kexec_kernel_image_load(struct kimage *image) | 
 | { | 
 | 	vfree(image->arch.elf_headers); | 
 | 	image->arch.elf_headers = NULL; | 
 |  | 
 | 	if (!image->fops || !image->fops->load) | 
 | 		return ERR_PTR(-ENOEXEC); | 
 |  | 
 | 	return image->fops->load(image, image->kernel_buf, | 
 | 				 image->kernel_buf_len, image->initrd_buf, | 
 | 				 image->initrd_buf_len, image->cmdline_buf, | 
 | 				 image->cmdline_buf_len); | 
 | } | 
 |  | 
 | /* | 
 |  * Apply purgatory relocations. | 
 |  * | 
 |  * @pi:		Purgatory to be relocated. | 
 |  * @section:	Section relocations applying to. | 
 |  * @relsec:	Section containing RELAs. | 
 |  * @symtabsec:	Corresponding symtab. | 
 |  * | 
 |  * TODO: Some of the code belongs to generic code. Move that in kexec.c. | 
 |  */ | 
 | int arch_kexec_apply_relocations_add(struct purgatory_info *pi, | 
 | 				     Elf_Shdr *section, const Elf_Shdr *relsec, | 
 | 				     const Elf_Shdr *symtabsec) | 
 | { | 
 | 	unsigned int i; | 
 | 	Elf64_Rela *rel; | 
 | 	Elf64_Sym *sym; | 
 | 	void *location; | 
 | 	unsigned long address, sec_base, value; | 
 | 	const char *strtab, *name, *shstrtab; | 
 | 	const Elf_Shdr *sechdrs; | 
 |  | 
 | 	/* String & section header string table */ | 
 | 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; | 
 | 	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; | 
 | 	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; | 
 |  | 
 | 	rel = (void *)pi->ehdr + relsec->sh_offset; | 
 |  | 
 | 	pr_debug("Applying relocate section %s to %u\n", | 
 | 		 shstrtab + relsec->sh_name, relsec->sh_info); | 
 |  | 
 | 	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { | 
 |  | 
 | 		/* | 
 | 		 * rel[i].r_offset contains byte offset from beginning | 
 | 		 * of section to the storage unit affected. | 
 | 		 * | 
 | 		 * This is location to update. This is temporary buffer | 
 | 		 * where section is currently loaded. This will finally be | 
 | 		 * loaded to a different address later, pointed to by | 
 | 		 * ->sh_addr. kexec takes care of moving it | 
 | 		 *  (kexec_load_segment()). | 
 | 		 */ | 
 | 		location = pi->purgatory_buf; | 
 | 		location += section->sh_offset; | 
 | 		location += rel[i].r_offset; | 
 |  | 
 | 		/* Final address of the location */ | 
 | 		address = section->sh_addr + rel[i].r_offset; | 
 |  | 
 | 		/* | 
 | 		 * rel[i].r_info contains information about symbol table index | 
 | 		 * w.r.t which relocation must be made and type of relocation | 
 | 		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get | 
 | 		 * these respectively. | 
 | 		 */ | 
 | 		sym = (void *)pi->ehdr + symtabsec->sh_offset; | 
 | 		sym += ELF64_R_SYM(rel[i].r_info); | 
 |  | 
 | 		if (sym->st_name) | 
 | 			name = strtab + sym->st_name; | 
 | 		else | 
 | 			name = shstrtab + sechdrs[sym->st_shndx].sh_name; | 
 |  | 
 | 		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", | 
 | 			 name, sym->st_info, sym->st_shndx, sym->st_value, | 
 | 			 sym->st_size); | 
 |  | 
 | 		if (sym->st_shndx == SHN_UNDEF) { | 
 | 			pr_err("Undefined symbol: %s\n", name); | 
 | 			return -ENOEXEC; | 
 | 		} | 
 |  | 
 | 		if (sym->st_shndx == SHN_COMMON) { | 
 | 			pr_err("symbol '%s' in common section\n", name); | 
 | 			return -ENOEXEC; | 
 | 		} | 
 |  | 
 | 		if (sym->st_shndx == SHN_ABS) | 
 | 			sec_base = 0; | 
 | 		else if (sym->st_shndx >= pi->ehdr->e_shnum) { | 
 | 			pr_err("Invalid section %d for symbol %s\n", | 
 | 			       sym->st_shndx, name); | 
 | 			return -ENOEXEC; | 
 | 		} else | 
 | 			sec_base = pi->sechdrs[sym->st_shndx].sh_addr; | 
 |  | 
 | 		value = sym->st_value; | 
 | 		value += sec_base; | 
 | 		value += rel[i].r_addend; | 
 |  | 
 | 		switch (ELF64_R_TYPE(rel[i].r_info)) { | 
 | 		case R_X86_64_NONE: | 
 | 			break; | 
 | 		case R_X86_64_64: | 
 | 			*(u64 *)location = value; | 
 | 			break; | 
 | 		case R_X86_64_32: | 
 | 			*(u32 *)location = value; | 
 | 			if (value != *(u32 *)location) | 
 | 				goto overflow; | 
 | 			break; | 
 | 		case R_X86_64_32S: | 
 | 			*(s32 *)location = value; | 
 | 			if ((s64)value != *(s32 *)location) | 
 | 				goto overflow; | 
 | 			break; | 
 | 		case R_X86_64_PC32: | 
 | 		case R_X86_64_PLT32: | 
 | 			value -= (u64)address; | 
 | 			*(u32 *)location = value; | 
 | 			break; | 
 | 		default: | 
 | 			pr_err("Unknown rela relocation: %llu\n", | 
 | 			       ELF64_R_TYPE(rel[i].r_info)); | 
 | 			return -ENOEXEC; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | overflow: | 
 | 	pr_err("Overflow in relocation type %d value 0x%lx\n", | 
 | 	       (int)ELF64_R_TYPE(rel[i].r_info), value); | 
 | 	return -ENOEXEC; | 
 | } | 
 | #endif /* CONFIG_KEXEC_FILE */ | 
 |  | 
 | static int | 
 | kexec_mark_range(unsigned long start, unsigned long end, bool protect) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned int nr_pages; | 
 |  | 
 | 	/* | 
 | 	 * For physical range: [start, end]. We must skip the unassigned | 
 | 	 * crashk resource with zero-valued "end" member. | 
 | 	 */ | 
 | 	if (!end || start > end) | 
 | 		return 0; | 
 |  | 
 | 	page = pfn_to_page(start >> PAGE_SHIFT); | 
 | 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; | 
 | 	if (protect) | 
 | 		return set_pages_ro(page, nr_pages); | 
 | 	else | 
 | 		return set_pages_rw(page, nr_pages); | 
 | } | 
 |  | 
 | static void kexec_mark_crashkres(bool protect) | 
 | { | 
 | 	unsigned long control; | 
 |  | 
 | 	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); | 
 |  | 
 | 	/* Don't touch the control code page used in crash_kexec().*/ | 
 | 	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); | 
 | 	/* Control code page is located in the 2nd page. */ | 
 | 	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); | 
 | 	control += KEXEC_CONTROL_PAGE_SIZE; | 
 | 	kexec_mark_range(control, crashk_res.end, protect); | 
 | } | 
 |  | 
 | void arch_kexec_protect_crashkres(void) | 
 | { | 
 | 	kexec_mark_crashkres(true); | 
 | } | 
 |  | 
 | void arch_kexec_unprotect_crashkres(void) | 
 | { | 
 | 	kexec_mark_crashkres(false); | 
 | } | 
 |  | 
 | int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) | 
 | { | 
 | 	/* | 
 | 	 * If SME is active we need to be sure that kexec pages are | 
 | 	 * not encrypted because when we boot to the new kernel the | 
 | 	 * pages won't be accessed encrypted (initially). | 
 | 	 */ | 
 | 	return set_memory_decrypted((unsigned long)vaddr, pages); | 
 | } | 
 |  | 
 | void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) | 
 | { | 
 | 	/* | 
 | 	 * If SME is active we need to reset the pages back to being | 
 | 	 * an encrypted mapping before freeing them. | 
 | 	 */ | 
 | 	set_memory_encrypted((unsigned long)vaddr, pages); | 
 | } |