| /* | 
 |  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org) | 
 |  *  Copyright 2007-2010 Freescale Semiconductor, Inc. | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or | 
 |  *  modify it under the terms of the GNU General Public License | 
 |  *  as published by the Free Software Foundation; either version | 
 |  *  2 of the License, or (at your option) any later version. | 
 |  * | 
 |  *  Modified by Cort Dougan (cort@cs.nmt.edu) | 
 |  *  and Paul Mackerras (paulus@samba.org) | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file handles the architecture-dependent parts of hardware exceptions | 
 |  */ | 
 |  | 
 | #include <linux/errno.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/debug.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/pkeys.h> | 
 | #include <linux/stddef.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/user.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/init.h> | 
 | #include <linux/extable.h> | 
 | #include <linux/module.h>	/* print_modules */ | 
 | #include <linux/prctl.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/backlight.h> | 
 | #include <linux/bug.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/context_tracking.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/console.h> | 
 | #include <linux/kmsg_dump.h> | 
 |  | 
 | #include <asm/emulated_ops.h> | 
 | #include <asm/pgtable.h> | 
 | #include <linux/uaccess.h> | 
 | #include <asm/debugfs.h> | 
 | #include <asm/io.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/rtas.h> | 
 | #include <asm/pmc.h> | 
 | #include <asm/reg.h> | 
 | #ifdef CONFIG_PMAC_BACKLIGHT | 
 | #include <asm/backlight.h> | 
 | #endif | 
 | #ifdef CONFIG_PPC64 | 
 | #include <asm/firmware.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/tm.h> | 
 | #endif | 
 | #include <asm/kexec.h> | 
 | #include <asm/ppc-opcode.h> | 
 | #include <asm/rio.h> | 
 | #include <asm/fadump.h> | 
 | #include <asm/switch_to.h> | 
 | #include <asm/tm.h> | 
 | #include <asm/debug.h> | 
 | #include <asm/asm-prototypes.h> | 
 | #include <asm/hmi.h> | 
 | #include <sysdev/fsl_pci.h> | 
 | #include <asm/kprobes.h> | 
 |  | 
 | #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE) | 
 | int (*__debugger)(struct pt_regs *regs) __read_mostly; | 
 | int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly; | 
 | int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly; | 
 | int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly; | 
 | int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly; | 
 | int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly; | 
 | int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly; | 
 |  | 
 | EXPORT_SYMBOL(__debugger); | 
 | EXPORT_SYMBOL(__debugger_ipi); | 
 | EXPORT_SYMBOL(__debugger_bpt); | 
 | EXPORT_SYMBOL(__debugger_sstep); | 
 | EXPORT_SYMBOL(__debugger_iabr_match); | 
 | EXPORT_SYMBOL(__debugger_break_match); | 
 | EXPORT_SYMBOL(__debugger_fault_handler); | 
 | #endif | 
 |  | 
 | /* Transactional Memory trap debug */ | 
 | #ifdef TM_DEBUG_SW | 
 | #define TM_DEBUG(x...) printk(KERN_INFO x) | 
 | #else | 
 | #define TM_DEBUG(x...) do { } while(0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Trap & Exception support | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_PMAC_BACKLIGHT | 
 | static void pmac_backlight_unblank(void) | 
 | { | 
 | 	mutex_lock(&pmac_backlight_mutex); | 
 | 	if (pmac_backlight) { | 
 | 		struct backlight_properties *props; | 
 |  | 
 | 		props = &pmac_backlight->props; | 
 | 		props->brightness = props->max_brightness; | 
 | 		props->power = FB_BLANK_UNBLANK; | 
 | 		backlight_update_status(pmac_backlight); | 
 | 	} | 
 | 	mutex_unlock(&pmac_backlight_mutex); | 
 | } | 
 | #else | 
 | static inline void pmac_backlight_unblank(void) { } | 
 | #endif | 
 |  | 
 | /* | 
 |  * If oops/die is expected to crash the machine, return true here. | 
 |  * | 
 |  * This should not be expected to be 100% accurate, there may be | 
 |  * notifiers registered or other unexpected conditions that may bring | 
 |  * down the kernel. Or if the current process in the kernel is holding | 
 |  * locks or has other critical state, the kernel may become effectively | 
 |  * unusable anyway. | 
 |  */ | 
 | bool die_will_crash(void) | 
 | { | 
 | 	if (should_fadump_crash()) | 
 | 		return true; | 
 | 	if (kexec_should_crash(current)) | 
 | 		return true; | 
 | 	if (in_interrupt() || panic_on_oops || | 
 | 			!current->pid || is_global_init(current)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; | 
 | static int die_owner = -1; | 
 | static unsigned int die_nest_count; | 
 | static int die_counter; | 
 |  | 
 | extern void panic_flush_kmsg_start(void) | 
 | { | 
 | 	/* | 
 | 	 * These are mostly taken from kernel/panic.c, but tries to do | 
 | 	 * relatively minimal work. Don't use delay functions (TB may | 
 | 	 * be broken), don't crash dump (need to set a firmware log), | 
 | 	 * don't run notifiers. We do want to get some information to | 
 | 	 * Linux console. | 
 | 	 */ | 
 | 	console_verbose(); | 
 | 	bust_spinlocks(1); | 
 | } | 
 |  | 
 | extern void panic_flush_kmsg_end(void) | 
 | { | 
 | 	printk_safe_flush_on_panic(); | 
 | 	kmsg_dump(KMSG_DUMP_PANIC); | 
 | 	bust_spinlocks(0); | 
 | 	debug_locks_off(); | 
 | 	console_flush_on_panic(); | 
 | } | 
 |  | 
 | static unsigned long oops_begin(struct pt_regs *regs) | 
 | { | 
 | 	int cpu; | 
 | 	unsigned long flags; | 
 |  | 
 | 	oops_enter(); | 
 |  | 
 | 	/* racy, but better than risking deadlock. */ | 
 | 	raw_local_irq_save(flags); | 
 | 	cpu = smp_processor_id(); | 
 | 	if (!arch_spin_trylock(&die_lock)) { | 
 | 		if (cpu == die_owner) | 
 | 			/* nested oops. should stop eventually */; | 
 | 		else | 
 | 			arch_spin_lock(&die_lock); | 
 | 	} | 
 | 	die_nest_count++; | 
 | 	die_owner = cpu; | 
 | 	console_verbose(); | 
 | 	bust_spinlocks(1); | 
 | 	if (machine_is(powermac)) | 
 | 		pmac_backlight_unblank(); | 
 | 	return flags; | 
 | } | 
 | NOKPROBE_SYMBOL(oops_begin); | 
 |  | 
 | static void oops_end(unsigned long flags, struct pt_regs *regs, | 
 | 			       int signr) | 
 | { | 
 | 	bust_spinlocks(0); | 
 | 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); | 
 | 	die_nest_count--; | 
 | 	oops_exit(); | 
 | 	printk("\n"); | 
 | 	if (!die_nest_count) { | 
 | 		/* Nest count reaches zero, release the lock. */ | 
 | 		die_owner = -1; | 
 | 		arch_spin_unlock(&die_lock); | 
 | 	} | 
 | 	raw_local_irq_restore(flags); | 
 |  | 
 | 	/* | 
 | 	 * system_reset_excption handles debugger, crash dump, panic, for 0x100 | 
 | 	 */ | 
 | 	if (TRAP(regs) == 0x100) | 
 | 		return; | 
 |  | 
 | 	crash_fadump(regs, "die oops"); | 
 |  | 
 | 	if (kexec_should_crash(current)) | 
 | 		crash_kexec(regs); | 
 |  | 
 | 	if (!signr) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * While our oops output is serialised by a spinlock, output | 
 | 	 * from panic() called below can race and corrupt it. If we | 
 | 	 * know we are going to panic, delay for 1 second so we have a | 
 | 	 * chance to get clean backtraces from all CPUs that are oopsing. | 
 | 	 */ | 
 | 	if (in_interrupt() || panic_on_oops || !current->pid || | 
 | 	    is_global_init(current)) { | 
 | 		mdelay(MSEC_PER_SEC); | 
 | 	} | 
 |  | 
 | 	if (in_interrupt()) | 
 | 		panic("Fatal exception in interrupt"); | 
 | 	if (panic_on_oops) | 
 | 		panic("Fatal exception"); | 
 | 	do_exit(signr); | 
 | } | 
 | NOKPROBE_SYMBOL(oops_end); | 
 |  | 
 | static int __die(const char *str, struct pt_regs *regs, long err) | 
 | { | 
 | 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN)) | 
 | 		printk("LE "); | 
 | 	else | 
 | 		printk("BE "); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_PREEMPT)) | 
 | 		pr_cont("PREEMPT "); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_SMP)) | 
 | 		pr_cont("SMP NR_CPUS=%d ", NR_CPUS); | 
 |  | 
 | 	if (debug_pagealloc_enabled()) | 
 | 		pr_cont("DEBUG_PAGEALLOC "); | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_NUMA)) | 
 | 		pr_cont("NUMA "); | 
 |  | 
 | 	pr_cont("%s\n", ppc_md.name ? ppc_md.name : ""); | 
 |  | 
 | 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP) | 
 | 		return 1; | 
 |  | 
 | 	print_modules(); | 
 | 	show_regs(regs); | 
 |  | 
 | 	return 0; | 
 | } | 
 | NOKPROBE_SYMBOL(__die); | 
 |  | 
 | void die(const char *str, struct pt_regs *regs, long err) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * system_reset_excption handles debugger, crash dump, panic, for 0x100 | 
 | 	 */ | 
 | 	if (TRAP(regs) != 0x100) { | 
 | 		if (debugger(regs)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	flags = oops_begin(regs); | 
 | 	if (__die(str, regs, err)) | 
 | 		err = 0; | 
 | 	oops_end(flags, regs, err); | 
 | } | 
 | NOKPROBE_SYMBOL(die); | 
 |  | 
 | void user_single_step_siginfo(struct task_struct *tsk, | 
 | 				struct pt_regs *regs, siginfo_t *info) | 
 | { | 
 | 	memset(info, 0, sizeof(*info)); | 
 | 	info->si_signo = SIGTRAP; | 
 | 	info->si_code = TRAP_TRACE; | 
 | 	info->si_addr = (void __user *)regs->nip; | 
 | } | 
 |  | 
 |  | 
 | void _exception_pkey(int signr, struct pt_regs *regs, int code, | 
 | 		unsigned long addr, int key) | 
 | { | 
 | 	siginfo_t info; | 
 | 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \ | 
 | 			"at %08lx nip %08lx lr %08lx code %x\n"; | 
 | 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \ | 
 | 			"at %016lx nip %016lx lr %016lx code %x\n"; | 
 |  | 
 | 	if (!user_mode(regs)) { | 
 | 		die("Exception in kernel mode", regs, signr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (show_unhandled_signals && unhandled_signal(current, signr)) { | 
 | 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32, | 
 | 				   current->comm, current->pid, signr, | 
 | 				   addr, regs->nip, regs->link, code); | 
 | 	} | 
 |  | 
 | 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs)) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	current->thread.trap_nr = code; | 
 |  | 
 | 	/* | 
 | 	 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need | 
 | 	 * to capture the content, if the task gets killed. | 
 | 	 */ | 
 | 	thread_pkey_regs_save(¤t->thread); | 
 |  | 
 | 	memset(&info, 0, sizeof(info)); | 
 | 	info.si_signo = signr; | 
 | 	info.si_code = code; | 
 | 	info.si_addr = (void __user *) addr; | 
 | 	info.si_pkey = key; | 
 |  | 
 | 	force_sig_info(signr, &info, current); | 
 | } | 
 |  | 
 | void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr) | 
 | { | 
 | 	_exception_pkey(signr, regs, code, addr, 0); | 
 | } | 
 |  | 
 | void system_reset_exception(struct pt_regs *regs) | 
 | { | 
 | 	/* | 
 | 	 * Avoid crashes in case of nested NMI exceptions. Recoverability | 
 | 	 * is determined by RI and in_nmi | 
 | 	 */ | 
 | 	bool nested = in_nmi(); | 
 | 	if (!nested) | 
 | 		nmi_enter(); | 
 |  | 
 | 	__this_cpu_inc(irq_stat.sreset_irqs); | 
 |  | 
 | 	/* See if any machine dependent calls */ | 
 | 	if (ppc_md.system_reset_exception) { | 
 | 		if (ppc_md.system_reset_exception(regs)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (debugger(regs)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * A system reset is a request to dump, so we always send | 
 | 	 * it through the crashdump code (if fadump or kdump are | 
 | 	 * registered). | 
 | 	 */ | 
 | 	crash_fadump(regs, "System Reset"); | 
 |  | 
 | 	crash_kexec(regs); | 
 |  | 
 | 	/* | 
 | 	 * We aren't the primary crash CPU. We need to send it | 
 | 	 * to a holding pattern to avoid it ending up in the panic | 
 | 	 * code. | 
 | 	 */ | 
 | 	crash_kexec_secondary(regs); | 
 |  | 
 | 	/* | 
 | 	 * No debugger or crash dump registered, print logs then | 
 | 	 * panic. | 
 | 	 */ | 
 | 	die("System Reset", regs, SIGABRT); | 
 |  | 
 | 	mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */ | 
 | 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); | 
 | 	nmi_panic(regs, "System Reset"); | 
 |  | 
 | out: | 
 | #ifdef CONFIG_PPC_BOOK3S_64 | 
 | 	BUG_ON(get_paca()->in_nmi == 0); | 
 | 	if (get_paca()->in_nmi > 1) | 
 | 		nmi_panic(regs, "Unrecoverable nested System Reset"); | 
 | #endif | 
 | 	/* Must die if the interrupt is not recoverable */ | 
 | 	if (!(regs->msr & MSR_RI)) | 
 | 		nmi_panic(regs, "Unrecoverable System Reset"); | 
 |  | 
 | 	if (!nested) | 
 | 		nmi_exit(); | 
 |  | 
 | 	/* What should we do here? We could issue a shutdown or hard reset. */ | 
 | } | 
 |  | 
 | /* | 
 |  * I/O accesses can cause machine checks on powermacs. | 
 |  * Check if the NIP corresponds to the address of a sync | 
 |  * instruction for which there is an entry in the exception | 
 |  * table. | 
 |  * Note that the 601 only takes a machine check on TEA | 
 |  * (transfer error ack) signal assertion, and does not | 
 |  * set any of the top 16 bits of SRR1. | 
 |  *  -- paulus. | 
 |  */ | 
 | static inline int check_io_access(struct pt_regs *regs) | 
 | { | 
 | #ifdef CONFIG_PPC32 | 
 | 	unsigned long msr = regs->msr; | 
 | 	const struct exception_table_entry *entry; | 
 | 	unsigned int *nip = (unsigned int *)regs->nip; | 
 |  | 
 | 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000))) | 
 | 	    && (entry = search_exception_tables(regs->nip)) != NULL) { | 
 | 		/* | 
 | 		 * Check that it's a sync instruction, or somewhere | 
 | 		 * in the twi; isync; nop sequence that inb/inw/inl uses. | 
 | 		 * As the address is in the exception table | 
 | 		 * we should be able to read the instr there. | 
 | 		 * For the debug message, we look at the preceding | 
 | 		 * load or store. | 
 | 		 */ | 
 | 		if (*nip == PPC_INST_NOP) | 
 | 			nip -= 2; | 
 | 		else if (*nip == PPC_INST_ISYNC) | 
 | 			--nip; | 
 | 		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) { | 
 | 			unsigned int rb; | 
 |  | 
 | 			--nip; | 
 | 			rb = (*nip >> 11) & 0x1f; | 
 | 			printk(KERN_DEBUG "%s bad port %lx at %p\n", | 
 | 			       (*nip & 0x100)? "OUT to": "IN from", | 
 | 			       regs->gpr[rb] - _IO_BASE, nip); | 
 | 			regs->msr |= MSR_RI; | 
 | 			regs->nip = extable_fixup(entry); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | #endif /* CONFIG_PPC32 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
 | /* On 4xx, the reason for the machine check or program exception | 
 |    is in the ESR. */ | 
 | #define get_reason(regs)	((regs)->dsisr) | 
 | #define REASON_FP		ESR_FP | 
 | #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO) | 
 | #define REASON_PRIVILEGED	ESR_PPR | 
 | #define REASON_TRAP		ESR_PTR | 
 |  | 
 | /* single-step stuff */ | 
 | #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC) | 
 | #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC) | 
 | #define clear_br_trace(regs)	do {} while(0) | 
 | #else | 
 | /* On non-4xx, the reason for the machine check or program | 
 |    exception is in the MSR. */ | 
 | #define get_reason(regs)	((regs)->msr) | 
 | #define REASON_TM		SRR1_PROGTM | 
 | #define REASON_FP		SRR1_PROGFPE | 
 | #define REASON_ILLEGAL		SRR1_PROGILL | 
 | #define REASON_PRIVILEGED	SRR1_PROGPRIV | 
 | #define REASON_TRAP		SRR1_PROGTRAP | 
 |  | 
 | #define single_stepping(regs)	((regs)->msr & MSR_SE) | 
 | #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE) | 
 | #define clear_br_trace(regs)	((regs)->msr &= ~MSR_BE) | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_E500) | 
 | int machine_check_e500mc(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long mcsr = mfspr(SPRN_MCSR); | 
 | 	unsigned long pvr = mfspr(SPRN_PVR); | 
 | 	unsigned long reason = mcsr; | 
 | 	int recoverable = 1; | 
 |  | 
 | 	if (reason & MCSR_LD) { | 
 | 		recoverable = fsl_rio_mcheck_exception(regs); | 
 | 		if (recoverable == 1) | 
 | 			goto silent_out; | 
 | 	} | 
 |  | 
 | 	printk("Machine check in kernel mode.\n"); | 
 | 	printk("Caused by (from MCSR=%lx): ", reason); | 
 |  | 
 | 	if (reason & MCSR_MCP) | 
 | 		printk("Machine Check Signal\n"); | 
 |  | 
 | 	if (reason & MCSR_ICPERR) { | 
 | 		printk("Instruction Cache Parity Error\n"); | 
 |  | 
 | 		/* | 
 | 		 * This is recoverable by invalidating the i-cache. | 
 | 		 */ | 
 | 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI); | 
 | 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI) | 
 | 			; | 
 |  | 
 | 		/* | 
 | 		 * This will generally be accompanied by an instruction | 
 | 		 * fetch error report -- only treat MCSR_IF as fatal | 
 | 		 * if it wasn't due to an L1 parity error. | 
 | 		 */ | 
 | 		reason &= ~MCSR_IF; | 
 | 	} | 
 |  | 
 | 	if (reason & MCSR_DCPERR_MC) { | 
 | 		printk("Data Cache Parity Error\n"); | 
 |  | 
 | 		/* | 
 | 		 * In write shadow mode we auto-recover from the error, but it | 
 | 		 * may still get logged and cause a machine check.  We should | 
 | 		 * only treat the non-write shadow case as non-recoverable. | 
 | 		 */ | 
 | 		/* On e6500 core, L1 DCWS (Data cache write shadow mode) bit | 
 | 		 * is not implemented but L1 data cache always runs in write | 
 | 		 * shadow mode. Hence on data cache parity errors HW will | 
 | 		 * automatically invalidate the L1 Data Cache. | 
 | 		 */ | 
 | 		if (PVR_VER(pvr) != PVR_VER_E6500) { | 
 | 			if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS)) | 
 | 				recoverable = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (reason & MCSR_L2MMU_MHIT) { | 
 | 		printk("Hit on multiple TLB entries\n"); | 
 | 		recoverable = 0; | 
 | 	} | 
 |  | 
 | 	if (reason & MCSR_NMI) | 
 | 		printk("Non-maskable interrupt\n"); | 
 |  | 
 | 	if (reason & MCSR_IF) { | 
 | 		printk("Instruction Fetch Error Report\n"); | 
 | 		recoverable = 0; | 
 | 	} | 
 |  | 
 | 	if (reason & MCSR_LD) { | 
 | 		printk("Load Error Report\n"); | 
 | 		recoverable = 0; | 
 | 	} | 
 |  | 
 | 	if (reason & MCSR_ST) { | 
 | 		printk("Store Error Report\n"); | 
 | 		recoverable = 0; | 
 | 	} | 
 |  | 
 | 	if (reason & MCSR_LDG) { | 
 | 		printk("Guarded Load Error Report\n"); | 
 | 		recoverable = 0; | 
 | 	} | 
 |  | 
 | 	if (reason & MCSR_TLBSYNC) | 
 | 		printk("Simultaneous tlbsync operations\n"); | 
 |  | 
 | 	if (reason & MCSR_BSL2_ERR) { | 
 | 		printk("Level 2 Cache Error\n"); | 
 | 		recoverable = 0; | 
 | 	} | 
 |  | 
 | 	if (reason & MCSR_MAV) { | 
 | 		u64 addr; | 
 |  | 
 | 		addr = mfspr(SPRN_MCAR); | 
 | 		addr |= (u64)mfspr(SPRN_MCARU) << 32; | 
 |  | 
 | 		printk("Machine Check %s Address: %#llx\n", | 
 | 		       reason & MCSR_MEA ? "Effective" : "Physical", addr); | 
 | 	} | 
 |  | 
 | silent_out: | 
 | 	mtspr(SPRN_MCSR, mcsr); | 
 | 	return mfspr(SPRN_MCSR) == 0 && recoverable; | 
 | } | 
 |  | 
 | int machine_check_e500(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long reason = mfspr(SPRN_MCSR); | 
 |  | 
 | 	if (reason & MCSR_BUS_RBERR) { | 
 | 		if (fsl_rio_mcheck_exception(regs)) | 
 | 			return 1; | 
 | 		if (fsl_pci_mcheck_exception(regs)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	printk("Machine check in kernel mode.\n"); | 
 | 	printk("Caused by (from MCSR=%lx): ", reason); | 
 |  | 
 | 	if (reason & MCSR_MCP) | 
 | 		printk("Machine Check Signal\n"); | 
 | 	if (reason & MCSR_ICPERR) | 
 | 		printk("Instruction Cache Parity Error\n"); | 
 | 	if (reason & MCSR_DCP_PERR) | 
 | 		printk("Data Cache Push Parity Error\n"); | 
 | 	if (reason & MCSR_DCPERR) | 
 | 		printk("Data Cache Parity Error\n"); | 
 | 	if (reason & MCSR_BUS_IAERR) | 
 | 		printk("Bus - Instruction Address Error\n"); | 
 | 	if (reason & MCSR_BUS_RAERR) | 
 | 		printk("Bus - Read Address Error\n"); | 
 | 	if (reason & MCSR_BUS_WAERR) | 
 | 		printk("Bus - Write Address Error\n"); | 
 | 	if (reason & MCSR_BUS_IBERR) | 
 | 		printk("Bus - Instruction Data Error\n"); | 
 | 	if (reason & MCSR_BUS_RBERR) | 
 | 		printk("Bus - Read Data Bus Error\n"); | 
 | 	if (reason & MCSR_BUS_WBERR) | 
 | 		printk("Bus - Write Data Bus Error\n"); | 
 | 	if (reason & MCSR_BUS_IPERR) | 
 | 		printk("Bus - Instruction Parity Error\n"); | 
 | 	if (reason & MCSR_BUS_RPERR) | 
 | 		printk("Bus - Read Parity Error\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int machine_check_generic(struct pt_regs *regs) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #elif defined(CONFIG_E200) | 
 | int machine_check_e200(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long reason = mfspr(SPRN_MCSR); | 
 |  | 
 | 	printk("Machine check in kernel mode.\n"); | 
 | 	printk("Caused by (from MCSR=%lx): ", reason); | 
 |  | 
 | 	if (reason & MCSR_MCP) | 
 | 		printk("Machine Check Signal\n"); | 
 | 	if (reason & MCSR_CP_PERR) | 
 | 		printk("Cache Push Parity Error\n"); | 
 | 	if (reason & MCSR_CPERR) | 
 | 		printk("Cache Parity Error\n"); | 
 | 	if (reason & MCSR_EXCP_ERR) | 
 | 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n"); | 
 | 	if (reason & MCSR_BUS_IRERR) | 
 | 		printk("Bus - Read Bus Error on instruction fetch\n"); | 
 | 	if (reason & MCSR_BUS_DRERR) | 
 | 		printk("Bus - Read Bus Error on data load\n"); | 
 | 	if (reason & MCSR_BUS_WRERR) | 
 | 		printk("Bus - Write Bus Error on buffered store or cache line push\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #elif defined(CONFIG_PPC32) | 
 | int machine_check_generic(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long reason = regs->msr; | 
 |  | 
 | 	printk("Machine check in kernel mode.\n"); | 
 | 	printk("Caused by (from SRR1=%lx): ", reason); | 
 | 	switch (reason & 0x601F0000) { | 
 | 	case 0x80000: | 
 | 		printk("Machine check signal\n"); | 
 | 		break; | 
 | 	case 0:		/* for 601 */ | 
 | 	case 0x40000: | 
 | 	case 0x140000:	/* 7450 MSS error and TEA */ | 
 | 		printk("Transfer error ack signal\n"); | 
 | 		break; | 
 | 	case 0x20000: | 
 | 		printk("Data parity error signal\n"); | 
 | 		break; | 
 | 	case 0x10000: | 
 | 		printk("Address parity error signal\n"); | 
 | 		break; | 
 | 	case 0x20000000: | 
 | 		printk("L1 Data Cache error\n"); | 
 | 		break; | 
 | 	case 0x40000000: | 
 | 		printk("L1 Instruction Cache error\n"); | 
 | 		break; | 
 | 	case 0x00100000: | 
 | 		printk("L2 data cache parity error\n"); | 
 | 		break; | 
 | 	default: | 
 | 		printk("Unknown values in msr\n"); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #endif /* everything else */ | 
 |  | 
 | void machine_check_exception(struct pt_regs *regs) | 
 | { | 
 | 	int recover = 0; | 
 | 	bool nested = in_nmi(); | 
 | 	if (!nested) | 
 | 		nmi_enter(); | 
 |  | 
 | 	/* 64s accounts the mce in machine_check_early when in HVMODE */ | 
 | 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE)) | 
 | 		__this_cpu_inc(irq_stat.mce_exceptions); | 
 |  | 
 | 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); | 
 |  | 
 | 	/* See if any machine dependent calls. In theory, we would want | 
 | 	 * to call the CPU first, and call the ppc_md. one if the CPU | 
 | 	 * one returns a positive number. However there is existing code | 
 | 	 * that assumes the board gets a first chance, so let's keep it | 
 | 	 * that way for now and fix things later. --BenH. | 
 | 	 */ | 
 | 	if (ppc_md.machine_check_exception) | 
 | 		recover = ppc_md.machine_check_exception(regs); | 
 | 	else if (cur_cpu_spec->machine_check) | 
 | 		recover = cur_cpu_spec->machine_check(regs); | 
 |  | 
 | 	if (recover > 0) | 
 | 		goto bail; | 
 |  | 
 | 	if (debugger_fault_handler(regs)) | 
 | 		goto bail; | 
 |  | 
 | 	if (check_io_access(regs)) | 
 | 		goto bail; | 
 |  | 
 | 	die("Machine check", regs, SIGBUS); | 
 |  | 
 | 	/* Must die if the interrupt is not recoverable */ | 
 | 	if (!(regs->msr & MSR_RI)) | 
 | 		nmi_panic(regs, "Unrecoverable Machine check"); | 
 |  | 
 | bail: | 
 | 	if (!nested) | 
 | 		nmi_exit(); | 
 | } | 
 |  | 
 | void SMIException(struct pt_regs *regs) | 
 | { | 
 | 	die("System Management Interrupt", regs, SIGABRT); | 
 | } | 
 |  | 
 | #ifdef CONFIG_VSX | 
 | static void p9_hmi_special_emu(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int ra, rb, t, i, sel, instr, rc; | 
 | 	const void __user *addr; | 
 | 	u8 vbuf[16], *vdst; | 
 | 	unsigned long ea, msr, msr_mask; | 
 | 	bool swap; | 
 |  | 
 | 	if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * lxvb16x	opcode: 0x7c0006d8 | 
 | 	 * lxvd2x	opcode: 0x7c000698 | 
 | 	 * lxvh8x	opcode: 0x7c000658 | 
 | 	 * lxvw4x	opcode: 0x7c000618 | 
 | 	 */ | 
 | 	if ((instr & 0xfc00073e) != 0x7c000618) { | 
 | 		pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx" | 
 | 			 " instr=%08x\n", | 
 | 			 smp_processor_id(), current->comm, current->pid, | 
 | 			 regs->nip, instr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Grab vector registers into the task struct */ | 
 | 	msr = regs->msr; /* Grab msr before we flush the bits */ | 
 | 	flush_vsx_to_thread(current); | 
 | 	enable_kernel_altivec(); | 
 |  | 
 | 	/* | 
 | 	 * Is userspace running with a different endian (this is rare but | 
 | 	 * not impossible) | 
 | 	 */ | 
 | 	swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE); | 
 |  | 
 | 	/* Decode the instruction */ | 
 | 	ra = (instr >> 16) & 0x1f; | 
 | 	rb = (instr >> 11) & 0x1f; | 
 | 	t = (instr >> 21) & 0x1f; | 
 | 	if (instr & 1) | 
 | 		vdst = (u8 *)¤t->thread.vr_state.vr[t]; | 
 | 	else | 
 | 		vdst = (u8 *)¤t->thread.fp_state.fpr[t][0]; | 
 |  | 
 | 	/* Grab the vector address */ | 
 | 	ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0); | 
 | 	if (is_32bit_task()) | 
 | 		ea &= 0xfffffffful; | 
 | 	addr = (__force const void __user *)ea; | 
 |  | 
 | 	/* Check it */ | 
 | 	if (!access_ok(VERIFY_READ, addr, 16)) { | 
 | 		pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx" | 
 | 			 " instr=%08x addr=%016lx\n", | 
 | 			 smp_processor_id(), current->comm, current->pid, | 
 | 			 regs->nip, instr, (unsigned long)addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Read the vector */ | 
 | 	rc = 0; | 
 | 	if ((unsigned long)addr & 0xfUL) | 
 | 		/* unaligned case */ | 
 | 		rc = __copy_from_user_inatomic(vbuf, addr, 16); | 
 | 	else | 
 | 		__get_user_atomic_128_aligned(vbuf, addr, rc); | 
 | 	if (rc) { | 
 | 		pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx" | 
 | 			 " instr=%08x addr=%016lx\n", | 
 | 			 smp_processor_id(), current->comm, current->pid, | 
 | 			 regs->nip, instr, (unsigned long)addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx" | 
 | 		 " instr=%08x addr=%016lx\n", | 
 | 		 smp_processor_id(), current->comm, current->pid, regs->nip, | 
 | 		 instr, (unsigned long) addr); | 
 |  | 
 | 	/* Grab instruction "selector" */ | 
 | 	sel = (instr >> 6) & 3; | 
 |  | 
 | 	/* | 
 | 	 * Check to make sure the facility is actually enabled. This | 
 | 	 * could happen if we get a false positive hit. | 
 | 	 * | 
 | 	 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2 | 
 | 	 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3 | 
 | 	 */ | 
 | 	msr_mask = MSR_VSX; | 
 | 	if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */ | 
 | 		msr_mask = MSR_VEC; | 
 | 	if (!(msr & msr_mask)) { | 
 | 		pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx" | 
 | 			 " instr=%08x msr:%016lx\n", | 
 | 			 smp_processor_id(), current->comm, current->pid, | 
 | 			 regs->nip, instr, msr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Do logging here before we modify sel based on endian */ | 
 | 	switch (sel) { | 
 | 	case 0:	/* lxvw4x */ | 
 | 		PPC_WARN_EMULATED(lxvw4x, regs); | 
 | 		break; | 
 | 	case 1: /* lxvh8x */ | 
 | 		PPC_WARN_EMULATED(lxvh8x, regs); | 
 | 		break; | 
 | 	case 2: /* lxvd2x */ | 
 | 		PPC_WARN_EMULATED(lxvd2x, regs); | 
 | 		break; | 
 | 	case 3: /* lxvb16x */ | 
 | 		PPC_WARN_EMULATED(lxvb16x, regs); | 
 | 		break; | 
 | 	} | 
 |  | 
 | #ifdef __LITTLE_ENDIAN__ | 
 | 	/* | 
 | 	 * An LE kernel stores the vector in the task struct as an LE | 
 | 	 * byte array (effectively swapping both the components and | 
 | 	 * the content of the components). Those instructions expect | 
 | 	 * the components to remain in ascending address order, so we | 
 | 	 * swap them back. | 
 | 	 * | 
 | 	 * If we are running a BE user space, the expectation is that | 
 | 	 * of a simple memcpy, so forcing the emulation to look like | 
 | 	 * a lxvb16x should do the trick. | 
 | 	 */ | 
 | 	if (swap) | 
 | 		sel = 3; | 
 |  | 
 | 	switch (sel) { | 
 | 	case 0:	/* lxvw4x */ | 
 | 		for (i = 0; i < 4; i++) | 
 | 			((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i]; | 
 | 		break; | 
 | 	case 1: /* lxvh8x */ | 
 | 		for (i = 0; i < 8; i++) | 
 | 			((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i]; | 
 | 		break; | 
 | 	case 2: /* lxvd2x */ | 
 | 		for (i = 0; i < 2; i++) | 
 | 			((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i]; | 
 | 		break; | 
 | 	case 3: /* lxvb16x */ | 
 | 		for (i = 0; i < 16; i++) | 
 | 			vdst[i] = vbuf[15-i]; | 
 | 		break; | 
 | 	} | 
 | #else /* __LITTLE_ENDIAN__ */ | 
 | 	/* On a big endian kernel, a BE userspace only needs a memcpy */ | 
 | 	if (!swap) | 
 | 		sel = 3; | 
 |  | 
 | 	/* Otherwise, we need to swap the content of the components */ | 
 | 	switch (sel) { | 
 | 	case 0:	/* lxvw4x */ | 
 | 		for (i = 0; i < 4; i++) | 
 | 			((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]); | 
 | 		break; | 
 | 	case 1: /* lxvh8x */ | 
 | 		for (i = 0; i < 8; i++) | 
 | 			((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]); | 
 | 		break; | 
 | 	case 2: /* lxvd2x */ | 
 | 		for (i = 0; i < 2; i++) | 
 | 			((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]); | 
 | 		break; | 
 | 	case 3: /* lxvb16x */ | 
 | 		memcpy(vdst, vbuf, 16); | 
 | 		break; | 
 | 	} | 
 | #endif /* !__LITTLE_ENDIAN__ */ | 
 |  | 
 | 	/* Go to next instruction */ | 
 | 	regs->nip += 4; | 
 | } | 
 | #endif /* CONFIG_VSX */ | 
 |  | 
 | void handle_hmi_exception(struct pt_regs *regs) | 
 | { | 
 | 	struct pt_regs *old_regs; | 
 |  | 
 | 	old_regs = set_irq_regs(regs); | 
 | 	irq_enter(); | 
 |  | 
 | #ifdef CONFIG_VSX | 
 | 	/* Real mode flagged P9 special emu is needed */ | 
 | 	if (local_paca->hmi_p9_special_emu) { | 
 | 		local_paca->hmi_p9_special_emu = 0; | 
 |  | 
 | 		/* | 
 | 		 * We don't want to take page faults while doing the | 
 | 		 * emulation, we just replay the instruction if necessary. | 
 | 		 */ | 
 | 		pagefault_disable(); | 
 | 		p9_hmi_special_emu(regs); | 
 | 		pagefault_enable(); | 
 | 	} | 
 | #endif /* CONFIG_VSX */ | 
 |  | 
 | 	if (ppc_md.handle_hmi_exception) | 
 | 		ppc_md.handle_hmi_exception(regs); | 
 |  | 
 | 	irq_exit(); | 
 | 	set_irq_regs(old_regs); | 
 | } | 
 |  | 
 | void unknown_exception(struct pt_regs *regs) | 
 | { | 
 | 	enum ctx_state prev_state = exception_enter(); | 
 |  | 
 | 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n", | 
 | 	       regs->nip, regs->msr, regs->trap); | 
 |  | 
 | 	_exception(SIGTRAP, regs, TRAP_FIXME, 0); | 
 |  | 
 | 	exception_exit(prev_state); | 
 | } | 
 |  | 
 | void instruction_breakpoint_exception(struct pt_regs *regs) | 
 | { | 
 | 	enum ctx_state prev_state = exception_enter(); | 
 |  | 
 | 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5, | 
 | 					5, SIGTRAP) == NOTIFY_STOP) | 
 | 		goto bail; | 
 | 	if (debugger_iabr_match(regs)) | 
 | 		goto bail; | 
 | 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); | 
 |  | 
 | bail: | 
 | 	exception_exit(prev_state); | 
 | } | 
 |  | 
 | void RunModeException(struct pt_regs *regs) | 
 | { | 
 | 	_exception(SIGTRAP, regs, TRAP_FIXME, 0); | 
 | } | 
 |  | 
 | void single_step_exception(struct pt_regs *regs) | 
 | { | 
 | 	enum ctx_state prev_state = exception_enter(); | 
 |  | 
 | 	clear_single_step(regs); | 
 | 	clear_br_trace(regs); | 
 |  | 
 | 	if (kprobe_post_handler(regs)) | 
 | 		return; | 
 |  | 
 | 	if (notify_die(DIE_SSTEP, "single_step", regs, 5, | 
 | 					5, SIGTRAP) == NOTIFY_STOP) | 
 | 		goto bail; | 
 | 	if (debugger_sstep(regs)) | 
 | 		goto bail; | 
 |  | 
 | 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); | 
 |  | 
 | bail: | 
 | 	exception_exit(prev_state); | 
 | } | 
 | NOKPROBE_SYMBOL(single_step_exception); | 
 |  | 
 | /* | 
 |  * After we have successfully emulated an instruction, we have to | 
 |  * check if the instruction was being single-stepped, and if so, | 
 |  * pretend we got a single-step exception.  This was pointed out | 
 |  * by Kumar Gala.  -- paulus | 
 |  */ | 
 | static void emulate_single_step(struct pt_regs *regs) | 
 | { | 
 | 	if (single_stepping(regs)) | 
 | 		single_step_exception(regs); | 
 | } | 
 |  | 
 | static inline int __parse_fpscr(unsigned long fpscr) | 
 | { | 
 | 	int ret = FPE_FIXME; | 
 |  | 
 | 	/* Invalid operation */ | 
 | 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX)) | 
 | 		ret = FPE_FLTINV; | 
 |  | 
 | 	/* Overflow */ | 
 | 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX)) | 
 | 		ret = FPE_FLTOVF; | 
 |  | 
 | 	/* Underflow */ | 
 | 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX)) | 
 | 		ret = FPE_FLTUND; | 
 |  | 
 | 	/* Divide by zero */ | 
 | 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX)) | 
 | 		ret = FPE_FLTDIV; | 
 |  | 
 | 	/* Inexact result */ | 
 | 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX)) | 
 | 		ret = FPE_FLTRES; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void parse_fpe(struct pt_regs *regs) | 
 | { | 
 | 	int code = 0; | 
 |  | 
 | 	flush_fp_to_thread(current); | 
 |  | 
 | 	code = __parse_fpscr(current->thread.fp_state.fpscr); | 
 |  | 
 | 	_exception(SIGFPE, regs, code, regs->nip); | 
 | } | 
 |  | 
 | /* | 
 |  * Illegal instruction emulation support.  Originally written to | 
 |  * provide the PVR to user applications using the mfspr rd, PVR. | 
 |  * Return non-zero if we can't emulate, or -EFAULT if the associated | 
 |  * memory access caused an access fault.  Return zero on success. | 
 |  * | 
 |  * There are a couple of ways to do this, either "decode" the instruction | 
 |  * or directly match lots of bits.  In this case, matching lots of | 
 |  * bits is faster and easier. | 
 |  * | 
 |  */ | 
 | static int emulate_string_inst(struct pt_regs *regs, u32 instword) | 
 | { | 
 | 	u8 rT = (instword >> 21) & 0x1f; | 
 | 	u8 rA = (instword >> 16) & 0x1f; | 
 | 	u8 NB_RB = (instword >> 11) & 0x1f; | 
 | 	u32 num_bytes; | 
 | 	unsigned long EA; | 
 | 	int pos = 0; | 
 |  | 
 | 	/* Early out if we are an invalid form of lswx */ | 
 | 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX) | 
 | 		if ((rT == rA) || (rT == NB_RB)) | 
 | 			return -EINVAL; | 
 |  | 
 | 	EA = (rA == 0) ? 0 : regs->gpr[rA]; | 
 |  | 
 | 	switch (instword & PPC_INST_STRING_MASK) { | 
 | 		case PPC_INST_LSWX: | 
 | 		case PPC_INST_STSWX: | 
 | 			EA += NB_RB; | 
 | 			num_bytes = regs->xer & 0x7f; | 
 | 			break; | 
 | 		case PPC_INST_LSWI: | 
 | 		case PPC_INST_STSWI: | 
 | 			num_bytes = (NB_RB == 0) ? 32 : NB_RB; | 
 | 			break; | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	while (num_bytes != 0) | 
 | 	{ | 
 | 		u8 val; | 
 | 		u32 shift = 8 * (3 - (pos & 0x3)); | 
 |  | 
 | 		/* if process is 32-bit, clear upper 32 bits of EA */ | 
 | 		if ((regs->msr & MSR_64BIT) == 0) | 
 | 			EA &= 0xFFFFFFFF; | 
 |  | 
 | 		switch ((instword & PPC_INST_STRING_MASK)) { | 
 | 			case PPC_INST_LSWX: | 
 | 			case PPC_INST_LSWI: | 
 | 				if (get_user(val, (u8 __user *)EA)) | 
 | 					return -EFAULT; | 
 | 				/* first time updating this reg, | 
 | 				 * zero it out */ | 
 | 				if (pos == 0) | 
 | 					regs->gpr[rT] = 0; | 
 | 				regs->gpr[rT] |= val << shift; | 
 | 				break; | 
 | 			case PPC_INST_STSWI: | 
 | 			case PPC_INST_STSWX: | 
 | 				val = regs->gpr[rT] >> shift; | 
 | 				if (put_user(val, (u8 __user *)EA)) | 
 | 					return -EFAULT; | 
 | 				break; | 
 | 		} | 
 | 		/* move EA to next address */ | 
 | 		EA += 1; | 
 | 		num_bytes--; | 
 |  | 
 | 		/* manage our position within the register */ | 
 | 		if (++pos == 4) { | 
 | 			pos = 0; | 
 | 			if (++rT == 32) | 
 | 				rT = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword) | 
 | { | 
 | 	u32 ra,rs; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	ra = (instword >> 16) & 0x1f; | 
 | 	rs = (instword >> 21) & 0x1f; | 
 |  | 
 | 	tmp = regs->gpr[rs]; | 
 | 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL); | 
 | 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL); | 
 | 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL; | 
 | 	regs->gpr[ra] = tmp; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int emulate_isel(struct pt_regs *regs, u32 instword) | 
 | { | 
 | 	u8 rT = (instword >> 21) & 0x1f; | 
 | 	u8 rA = (instword >> 16) & 0x1f; | 
 | 	u8 rB = (instword >> 11) & 0x1f; | 
 | 	u8 BC = (instword >> 6) & 0x1f; | 
 | 	u8 bit; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	tmp = (rA == 0) ? 0 : regs->gpr[rA]; | 
 | 	bit = (regs->ccr >> (31 - BC)) & 0x1; | 
 |  | 
 | 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB]; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
 | static inline bool tm_abort_check(struct pt_regs *regs, int cause) | 
 | { | 
 |         /* If we're emulating a load/store in an active transaction, we cannot | 
 |          * emulate it as the kernel operates in transaction suspended context. | 
 |          * We need to abort the transaction.  This creates a persistent TM | 
 |          * abort so tell the user what caused it with a new code. | 
 | 	 */ | 
 | 	if (MSR_TM_TRANSACTIONAL(regs->msr)) { | 
 | 		tm_enable(); | 
 | 		tm_abort(cause); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 | #else | 
 | static inline bool tm_abort_check(struct pt_regs *regs, int reason) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif | 
 |  | 
 | static int emulate_instruction(struct pt_regs *regs) | 
 | { | 
 | 	u32 instword; | 
 | 	u32 rd; | 
 |  | 
 | 	if (!user_mode(regs)) | 
 | 		return -EINVAL; | 
 | 	CHECK_FULL_REGS(regs); | 
 |  | 
 | 	if (get_user(instword, (u32 __user *)(regs->nip))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Emulate the mfspr rD, PVR. */ | 
 | 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) { | 
 | 		PPC_WARN_EMULATED(mfpvr, regs); | 
 | 		rd = (instword >> 21) & 0x1f; | 
 | 		regs->gpr[rd] = mfspr(SPRN_PVR); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Emulating the dcba insn is just a no-op.  */ | 
 | 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) { | 
 | 		PPC_WARN_EMULATED(dcba, regs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Emulate the mcrxr insn.  */ | 
 | 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) { | 
 | 		int shift = (instword >> 21) & 0x1c; | 
 | 		unsigned long msk = 0xf0000000UL >> shift; | 
 |  | 
 | 		PPC_WARN_EMULATED(mcrxr, regs); | 
 | 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk); | 
 | 		regs->xer &= ~0xf0000000UL; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Emulate load/store string insn. */ | 
 | 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) { | 
 | 		if (tm_abort_check(regs, | 
 | 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT)) | 
 | 			return -EINVAL; | 
 | 		PPC_WARN_EMULATED(string, regs); | 
 | 		return emulate_string_inst(regs, instword); | 
 | 	} | 
 |  | 
 | 	/* Emulate the popcntb (Population Count Bytes) instruction. */ | 
 | 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) { | 
 | 		PPC_WARN_EMULATED(popcntb, regs); | 
 | 		return emulate_popcntb_inst(regs, instword); | 
 | 	} | 
 |  | 
 | 	/* Emulate isel (Integer Select) instruction */ | 
 | 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) { | 
 | 		PPC_WARN_EMULATED(isel, regs); | 
 | 		return emulate_isel(regs, instword); | 
 | 	} | 
 |  | 
 | 	/* Emulate sync instruction variants */ | 
 | 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) { | 
 | 		PPC_WARN_EMULATED(sync, regs); | 
 | 		asm volatile("sync"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | 	/* Emulate the mfspr rD, DSCR. */ | 
 | 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) == | 
 | 		PPC_INST_MFSPR_DSCR_USER) || | 
 | 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) == | 
 | 		PPC_INST_MFSPR_DSCR)) && | 
 | 			cpu_has_feature(CPU_FTR_DSCR)) { | 
 | 		PPC_WARN_EMULATED(mfdscr, regs); | 
 | 		rd = (instword >> 21) & 0x1f; | 
 | 		regs->gpr[rd] = mfspr(SPRN_DSCR); | 
 | 		return 0; | 
 | 	} | 
 | 	/* Emulate the mtspr DSCR, rD. */ | 
 | 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) == | 
 | 		PPC_INST_MTSPR_DSCR_USER) || | 
 | 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) == | 
 | 		PPC_INST_MTSPR_DSCR)) && | 
 | 			cpu_has_feature(CPU_FTR_DSCR)) { | 
 | 		PPC_WARN_EMULATED(mtdscr, regs); | 
 | 		rd = (instword >> 21) & 0x1f; | 
 | 		current->thread.dscr = regs->gpr[rd]; | 
 | 		current->thread.dscr_inherit = 1; | 
 | 		mtspr(SPRN_DSCR, current->thread.dscr); | 
 | 		return 0; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | int is_valid_bugaddr(unsigned long addr) | 
 | { | 
 | 	return is_kernel_addr(addr); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MATH_EMULATION | 
 | static int emulate_math(struct pt_regs *regs) | 
 | { | 
 | 	int ret; | 
 | 	extern int do_mathemu(struct pt_regs *regs); | 
 |  | 
 | 	ret = do_mathemu(regs); | 
 | 	if (ret >= 0) | 
 | 		PPC_WARN_EMULATED(math, regs); | 
 |  | 
 | 	switch (ret) { | 
 | 	case 0: | 
 | 		emulate_single_step(regs); | 
 | 		return 0; | 
 | 	case 1: { | 
 | 			int code = 0; | 
 | 			code = __parse_fpscr(current->thread.fp_state.fpscr); | 
 | 			_exception(SIGFPE, regs, code, regs->nip); | 
 | 			return 0; | 
 | 		} | 
 | 	case -EFAULT: | 
 | 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 | #else | 
 | static inline int emulate_math(struct pt_regs *regs) { return -1; } | 
 | #endif | 
 |  | 
 | void program_check_exception(struct pt_regs *regs) | 
 | { | 
 | 	enum ctx_state prev_state = exception_enter(); | 
 | 	unsigned int reason = get_reason(regs); | 
 |  | 
 | 	/* We can now get here via a FP Unavailable exception if the core | 
 | 	 * has no FPU, in that case the reason flags will be 0 */ | 
 |  | 
 | 	if (reason & REASON_FP) { | 
 | 		/* IEEE FP exception */ | 
 | 		parse_fpe(regs); | 
 | 		goto bail; | 
 | 	} | 
 | 	if (reason & REASON_TRAP) { | 
 | 		unsigned long bugaddr; | 
 | 		/* Debugger is first in line to stop recursive faults in | 
 | 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */ | 
 | 		if (debugger_bpt(regs)) | 
 | 			goto bail; | 
 |  | 
 | 		if (kprobe_handler(regs)) | 
 | 			goto bail; | 
 |  | 
 | 		/* trap exception */ | 
 | 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP) | 
 | 				== NOTIFY_STOP) | 
 | 			goto bail; | 
 |  | 
 | 		bugaddr = regs->nip; | 
 | 		/* | 
 | 		 * Fixup bugaddr for BUG_ON() in real mode | 
 | 		 */ | 
 | 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR)) | 
 | 			bugaddr += PAGE_OFFSET; | 
 |  | 
 | 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */ | 
 | 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) { | 
 | 			regs->nip += 4; | 
 | 			goto bail; | 
 | 		} | 
 | 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip); | 
 | 		goto bail; | 
 | 	} | 
 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
 | 	if (reason & REASON_TM) { | 
 | 		/* This is a TM "Bad Thing Exception" program check. | 
 | 		 * This occurs when: | 
 | 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal | 
 | 		 *    transition in TM states. | 
 | 		 * -  A trechkpt is attempted when transactional. | 
 | 		 * -  A treclaim is attempted when non transactional. | 
 | 		 * -  A tend is illegally attempted. | 
 | 		 * -  writing a TM SPR when transactional. | 
 | 		 * | 
 | 		 * If usermode caused this, it's done something illegal and | 
 | 		 * gets a SIGILL slap on the wrist.  We call it an illegal | 
 | 		 * operand to distinguish from the instruction just being bad | 
 | 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an | 
 | 		 * illegal /placement/ of a valid instruction. | 
 | 		 */ | 
 | 		if (user_mode(regs)) { | 
 | 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip); | 
 | 			goto bail; | 
 | 		} else { | 
 | 			printk(KERN_EMERG "Unexpected TM Bad Thing exception " | 
 | 			       "at %lx (msr 0x%x)\n", regs->nip, reason); | 
 | 			die("Unrecoverable exception", regs, SIGABRT); | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * If we took the program check in the kernel skip down to sending a | 
 | 	 * SIGILL. The subsequent cases all relate to emulating instructions | 
 | 	 * which we should only do for userspace. We also do not want to enable | 
 | 	 * interrupts for kernel faults because that might lead to further | 
 | 	 * faults, and loose the context of the original exception. | 
 | 	 */ | 
 | 	if (!user_mode(regs)) | 
 | 		goto sigill; | 
 |  | 
 | 	/* We restore the interrupt state now */ | 
 | 	if (!arch_irq_disabled_regs(regs)) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	/* (reason & REASON_ILLEGAL) would be the obvious thing here, | 
 | 	 * but there seems to be a hardware bug on the 405GP (RevD) | 
 | 	 * that means ESR is sometimes set incorrectly - either to | 
 | 	 * ESR_DST (!?) or 0.  In the process of chasing this with the | 
 | 	 * hardware people - not sure if it can happen on any illegal | 
 | 	 * instruction or only on FP instructions, whether there is a | 
 | 	 * pattern to occurrences etc. -dgibson 31/Mar/2003 | 
 | 	 */ | 
 | 	if (!emulate_math(regs)) | 
 | 		goto bail; | 
 |  | 
 | 	/* Try to emulate it if we should. */ | 
 | 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) { | 
 | 		switch (emulate_instruction(regs)) { | 
 | 		case 0: | 
 | 			regs->nip += 4; | 
 | 			emulate_single_step(regs); | 
 | 			goto bail; | 
 | 		case -EFAULT: | 
 | 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip); | 
 | 			goto bail; | 
 | 		} | 
 | 	} | 
 |  | 
 | sigill: | 
 | 	if (reason & REASON_PRIVILEGED) | 
 | 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip); | 
 | 	else | 
 | 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
 |  | 
 | bail: | 
 | 	exception_exit(prev_state); | 
 | } | 
 | NOKPROBE_SYMBOL(program_check_exception); | 
 |  | 
 | /* | 
 |  * This occurs when running in hypervisor mode on POWER6 or later | 
 |  * and an illegal instruction is encountered. | 
 |  */ | 
 | void emulation_assist_interrupt(struct pt_regs *regs) | 
 | { | 
 | 	regs->msr |= REASON_ILLEGAL; | 
 | 	program_check_exception(regs); | 
 | } | 
 | NOKPROBE_SYMBOL(emulation_assist_interrupt); | 
 |  | 
 | void alignment_exception(struct pt_regs *regs) | 
 | { | 
 | 	enum ctx_state prev_state = exception_enter(); | 
 | 	int sig, code, fixed = 0; | 
 |  | 
 | 	/* We restore the interrupt state now */ | 
 | 	if (!arch_irq_disabled_regs(regs)) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT)) | 
 | 		goto bail; | 
 |  | 
 | 	/* we don't implement logging of alignment exceptions */ | 
 | 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS)) | 
 | 		fixed = fix_alignment(regs); | 
 |  | 
 | 	if (fixed == 1) { | 
 | 		regs->nip += 4;	/* skip over emulated instruction */ | 
 | 		emulate_single_step(regs); | 
 | 		goto bail; | 
 | 	} | 
 |  | 
 | 	/* Operand address was bad */ | 
 | 	if (fixed == -EFAULT) { | 
 | 		sig = SIGSEGV; | 
 | 		code = SEGV_ACCERR; | 
 | 	} else { | 
 | 		sig = SIGBUS; | 
 | 		code = BUS_ADRALN; | 
 | 	} | 
 | 	if (user_mode(regs)) | 
 | 		_exception(sig, regs, code, regs->dar); | 
 | 	else | 
 | 		bad_page_fault(regs, regs->dar, sig); | 
 |  | 
 | bail: | 
 | 	exception_exit(prev_state); | 
 | } | 
 |  | 
 | void StackOverflow(struct pt_regs *regs) | 
 | { | 
 | 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n", | 
 | 	       current, regs->gpr[1]); | 
 | 	debugger(regs); | 
 | 	show_regs(regs); | 
 | 	panic("kernel stack overflow"); | 
 | } | 
 |  | 
 | void nonrecoverable_exception(struct pt_regs *regs) | 
 | { | 
 | 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n", | 
 | 	       regs->nip, regs->msr); | 
 | 	debugger(regs); | 
 | 	die("nonrecoverable exception", regs, SIGKILL); | 
 | } | 
 |  | 
 | void kernel_fp_unavailable_exception(struct pt_regs *regs) | 
 | { | 
 | 	enum ctx_state prev_state = exception_enter(); | 
 |  | 
 | 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception " | 
 | 			  "%lx at %lx\n", regs->trap, regs->nip); | 
 | 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT); | 
 |  | 
 | 	exception_exit(prev_state); | 
 | } | 
 |  | 
 | void altivec_unavailable_exception(struct pt_regs *regs) | 
 | { | 
 | 	enum ctx_state prev_state = exception_enter(); | 
 |  | 
 | 	if (user_mode(regs)) { | 
 | 		/* A user program has executed an altivec instruction, | 
 | 		   but this kernel doesn't support altivec. */ | 
 | 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
 | 		goto bail; | 
 | 	} | 
 |  | 
 | 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception " | 
 | 			"%lx at %lx\n", regs->trap, regs->nip); | 
 | 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT); | 
 |  | 
 | bail: | 
 | 	exception_exit(prev_state); | 
 | } | 
 |  | 
 | void vsx_unavailable_exception(struct pt_regs *regs) | 
 | { | 
 | 	if (user_mode(regs)) { | 
 | 		/* A user program has executed an vsx instruction, | 
 | 		   but this kernel doesn't support vsx. */ | 
 | 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception " | 
 | 			"%lx at %lx\n", regs->trap, regs->nip); | 
 | 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | static void tm_unavailable(struct pt_regs *regs) | 
 | { | 
 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
 | 	if (user_mode(regs)) { | 
 | 		current->thread.load_tm++; | 
 | 		regs->msr |= MSR_TM; | 
 | 		tm_enable(); | 
 | 		tm_restore_sprs(¤t->thread); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	pr_emerg("Unrecoverable TM Unavailable Exception " | 
 | 			"%lx at %lx\n", regs->trap, regs->nip); | 
 | 	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT); | 
 | } | 
 |  | 
 | void facility_unavailable_exception(struct pt_regs *regs) | 
 | { | 
 | 	static char *facility_strings[] = { | 
 | 		[FSCR_FP_LG] = "FPU", | 
 | 		[FSCR_VECVSX_LG] = "VMX/VSX", | 
 | 		[FSCR_DSCR_LG] = "DSCR", | 
 | 		[FSCR_PM_LG] = "PMU SPRs", | 
 | 		[FSCR_BHRB_LG] = "BHRB", | 
 | 		[FSCR_TM_LG] = "TM", | 
 | 		[FSCR_EBB_LG] = "EBB", | 
 | 		[FSCR_TAR_LG] = "TAR", | 
 | 		[FSCR_MSGP_LG] = "MSGP", | 
 | 		[FSCR_SCV_LG] = "SCV", | 
 | 	}; | 
 | 	char *facility = "unknown"; | 
 | 	u64 value; | 
 | 	u32 instword, rd; | 
 | 	u8 status; | 
 | 	bool hv; | 
 |  | 
 | 	hv = (TRAP(regs) == 0xf80); | 
 | 	if (hv) | 
 | 		value = mfspr(SPRN_HFSCR); | 
 | 	else | 
 | 		value = mfspr(SPRN_FSCR); | 
 |  | 
 | 	status = value >> 56; | 
 | 	if ((hv || status >= 2) && | 
 | 	    (status < ARRAY_SIZE(facility_strings)) && | 
 | 	    facility_strings[status]) | 
 | 		facility = facility_strings[status]; | 
 |  | 
 | 	/* We should not have taken this interrupt in kernel */ | 
 | 	if (!user_mode(regs)) { | 
 | 		pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n", | 
 | 			 facility, status, regs->nip); | 
 | 		die("Unexpected facility unavailable exception", regs, SIGABRT); | 
 | 	} | 
 |  | 
 | 	/* We restore the interrupt state now */ | 
 | 	if (!arch_irq_disabled_regs(regs)) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	if (status == FSCR_DSCR_LG) { | 
 | 		/* | 
 | 		 * User is accessing the DSCR register using the problem | 
 | 		 * state only SPR number (0x03) either through a mfspr or | 
 | 		 * a mtspr instruction. If it is a write attempt through | 
 | 		 * a mtspr, then we set the inherit bit. This also allows | 
 | 		 * the user to write or read the register directly in the | 
 | 		 * future by setting via the FSCR DSCR bit. But in case it | 
 | 		 * is a read DSCR attempt through a mfspr instruction, we | 
 | 		 * just emulate the instruction instead. This code path will | 
 | 		 * always emulate all the mfspr instructions till the user | 
 | 		 * has attempted at least one mtspr instruction. This way it | 
 | 		 * preserves the same behaviour when the user is accessing | 
 | 		 * the DSCR through privilege level only SPR number (0x11) | 
 | 		 * which is emulated through illegal instruction exception. | 
 | 		 * We always leave HFSCR DSCR set. | 
 | 		 */ | 
 | 		if (get_user(instword, (u32 __user *)(regs->nip))) { | 
 | 			pr_err("Failed to fetch the user instruction\n"); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* Write into DSCR (mtspr 0x03, RS) */ | 
 | 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK) | 
 | 				== PPC_INST_MTSPR_DSCR_USER) { | 
 | 			rd = (instword >> 21) & 0x1f; | 
 | 			current->thread.dscr = regs->gpr[rd]; | 
 | 			current->thread.dscr_inherit = 1; | 
 | 			current->thread.fscr |= FSCR_DSCR; | 
 | 			mtspr(SPRN_FSCR, current->thread.fscr); | 
 | 		} | 
 |  | 
 | 		/* Read from DSCR (mfspr RT, 0x03) */ | 
 | 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK) | 
 | 				== PPC_INST_MFSPR_DSCR_USER) { | 
 | 			if (emulate_instruction(regs)) { | 
 | 				pr_err("DSCR based mfspr emulation failed\n"); | 
 | 				return; | 
 | 			} | 
 | 			regs->nip += 4; | 
 | 			emulate_single_step(regs); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (status == FSCR_TM_LG) { | 
 | 		/* | 
 | 		 * If we're here then the hardware is TM aware because it | 
 | 		 * generated an exception with FSRM_TM set. | 
 | 		 * | 
 | 		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware | 
 | 		 * told us not to do TM, or the kernel is not built with TM | 
 | 		 * support. | 
 | 		 * | 
 | 		 * If both of those things are true, then userspace can spam the | 
 | 		 * console by triggering the printk() below just by continually | 
 | 		 * doing tbegin (or any TM instruction). So in that case just | 
 | 		 * send the process a SIGILL immediately. | 
 | 		 */ | 
 | 		if (!cpu_has_feature(CPU_FTR_TM)) | 
 | 			goto out; | 
 |  | 
 | 		tm_unavailable(regs); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n", | 
 | 		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr); | 
 |  | 
 | out: | 
 | 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
 |  | 
 | void fp_unavailable_tm(struct pt_regs *regs) | 
 | { | 
 | 	/* Note:  This does not handle any kind of FP laziness. */ | 
 |  | 
 | 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n", | 
 | 		 regs->nip, regs->msr); | 
 |  | 
 |         /* We can only have got here if the task started using FP after | 
 |          * beginning the transaction.  So, the transactional regs are just a | 
 |          * copy of the checkpointed ones.  But, we still need to recheckpoint | 
 |          * as we're enabling FP for the process; it will return, abort the | 
 |          * transaction, and probably retry but now with FP enabled.  So the | 
 |          * checkpointed FP registers need to be loaded. | 
 | 	 */ | 
 | 	tm_reclaim_current(TM_CAUSE_FAC_UNAV); | 
 | 	/* Reclaim didn't save out any FPRs to transact_fprs. */ | 
 |  | 
 | 	/* Enable FP for the task: */ | 
 | 	current->thread.load_fp = 1; | 
 |  | 
 | 	/* This loads and recheckpoints the FP registers from | 
 | 	 * thread.fpr[].  They will remain in registers after the | 
 | 	 * checkpoint so we don't need to reload them after. | 
 | 	 * If VMX is in use, the VRs now hold checkpointed values, | 
 | 	 * so we don't want to load the VRs from the thread_struct. | 
 | 	 */ | 
 | 	tm_recheckpoint(¤t->thread); | 
 | } | 
 |  | 
 | void altivec_unavailable_tm(struct pt_regs *regs) | 
 | { | 
 | 	/* See the comments in fp_unavailable_tm().  This function operates | 
 | 	 * the same way. | 
 | 	 */ | 
 |  | 
 | 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx," | 
 | 		 "MSR=%lx\n", | 
 | 		 regs->nip, regs->msr); | 
 | 	tm_reclaim_current(TM_CAUSE_FAC_UNAV); | 
 | 	current->thread.load_vec = 1; | 
 | 	tm_recheckpoint(¤t->thread); | 
 | 	current->thread.used_vr = 1; | 
 | } | 
 |  | 
 | void vsx_unavailable_tm(struct pt_regs *regs) | 
 | { | 
 | 	/* See the comments in fp_unavailable_tm().  This works similarly, | 
 | 	 * though we're loading both FP and VEC registers in here. | 
 | 	 * | 
 | 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC | 
 | 	 * regs.  Either way, set MSR_VSX. | 
 | 	 */ | 
 |  | 
 | 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx," | 
 | 		 "MSR=%lx\n", | 
 | 		 regs->nip, regs->msr); | 
 |  | 
 | 	current->thread.used_vsr = 1; | 
 |  | 
 | 	/* This reclaims FP and/or VR regs if they're already enabled */ | 
 | 	tm_reclaim_current(TM_CAUSE_FAC_UNAV); | 
 |  | 
 | 	current->thread.load_vec = 1; | 
 | 	current->thread.load_fp = 1; | 
 |  | 
 | 	tm_recheckpoint(¤t->thread); | 
 | } | 
 | #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ | 
 |  | 
 | void performance_monitor_exception(struct pt_regs *regs) | 
 | { | 
 | 	__this_cpu_inc(irq_stat.pmu_irqs); | 
 |  | 
 | 	perf_irq(regs); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
 | static void handle_debug(struct pt_regs *regs, unsigned long debug_status) | 
 | { | 
 | 	int changed = 0; | 
 | 	/* | 
 | 	 * Determine the cause of the debug event, clear the | 
 | 	 * event flags and send a trap to the handler. Torez | 
 | 	 */ | 
 | 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) { | 
 | 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W); | 
 | #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE | 
 | 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE; | 
 | #endif | 
 | 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, | 
 | 			     5); | 
 | 		changed |= 0x01; | 
 | 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) { | 
 | 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W); | 
 | 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, | 
 | 			     6); | 
 | 		changed |= 0x01; | 
 | 	}  else if (debug_status & DBSR_IAC1) { | 
 | 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1; | 
 | 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE; | 
 | 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, | 
 | 			     1); | 
 | 		changed |= 0x01; | 
 | 	}  else if (debug_status & DBSR_IAC2) { | 
 | 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2; | 
 | 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, | 
 | 			     2); | 
 | 		changed |= 0x01; | 
 | 	}  else if (debug_status & DBSR_IAC3) { | 
 | 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3; | 
 | 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE; | 
 | 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, | 
 | 			     3); | 
 | 		changed |= 0x01; | 
 | 	}  else if (debug_status & DBSR_IAC4) { | 
 | 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4; | 
 | 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, | 
 | 			     4); | 
 | 		changed |= 0x01; | 
 | 	} | 
 | 	/* | 
 | 	 * At the point this routine was called, the MSR(DE) was turned off. | 
 | 	 * Check all other debug flags and see if that bit needs to be turned | 
 | 	 * back on or not. | 
 | 	 */ | 
 | 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, | 
 | 			       current->thread.debug.dbcr1)) | 
 | 		regs->msr |= MSR_DE; | 
 | 	else | 
 | 		/* Make sure the IDM flag is off */ | 
 | 		current->thread.debug.dbcr0 &= ~DBCR0_IDM; | 
 |  | 
 | 	if (changed & 0x01) | 
 | 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0); | 
 | } | 
 |  | 
 | void DebugException(struct pt_regs *regs, unsigned long debug_status) | 
 | { | 
 | 	current->thread.debug.dbsr = debug_status; | 
 |  | 
 | 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while | 
 | 	 * on server, it stops on the target of the branch. In order to simulate | 
 | 	 * the server behaviour, we thus restart right away with a single step | 
 | 	 * instead of stopping here when hitting a BT | 
 | 	 */ | 
 | 	if (debug_status & DBSR_BT) { | 
 | 		regs->msr &= ~MSR_DE; | 
 |  | 
 | 		/* Disable BT */ | 
 | 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT); | 
 | 		/* Clear the BT event */ | 
 | 		mtspr(SPRN_DBSR, DBSR_BT); | 
 |  | 
 | 		/* Do the single step trick only when coming from userspace */ | 
 | 		if (user_mode(regs)) { | 
 | 			current->thread.debug.dbcr0 &= ~DBCR0_BT; | 
 | 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC; | 
 | 			regs->msr |= MSR_DE; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (kprobe_post_handler(regs)) | 
 | 			return; | 
 |  | 
 | 		if (notify_die(DIE_SSTEP, "block_step", regs, 5, | 
 | 			       5, SIGTRAP) == NOTIFY_STOP) { | 
 | 			return; | 
 | 		} | 
 | 		if (debugger_sstep(regs)) | 
 | 			return; | 
 | 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */ | 
 | 		regs->msr &= ~MSR_DE; | 
 |  | 
 | 		/* Disable instruction completion */ | 
 | 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC); | 
 | 		/* Clear the instruction completion event */ | 
 | 		mtspr(SPRN_DBSR, DBSR_IC); | 
 |  | 
 | 		if (kprobe_post_handler(regs)) | 
 | 			return; | 
 |  | 
 | 		if (notify_die(DIE_SSTEP, "single_step", regs, 5, | 
 | 			       5, SIGTRAP) == NOTIFY_STOP) { | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (debugger_sstep(regs)) | 
 | 			return; | 
 |  | 
 | 		if (user_mode(regs)) { | 
 | 			current->thread.debug.dbcr0 &= ~DBCR0_IC; | 
 | 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0, | 
 | 					       current->thread.debug.dbcr1)) | 
 | 				regs->msr |= MSR_DE; | 
 | 			else | 
 | 				/* Make sure the IDM bit is off */ | 
 | 				current->thread.debug.dbcr0 &= ~DBCR0_IDM; | 
 | 		} | 
 |  | 
 | 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip); | 
 | 	} else | 
 | 		handle_debug(regs, debug_status); | 
 | } | 
 | NOKPROBE_SYMBOL(DebugException); | 
 | #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ | 
 |  | 
 | #if !defined(CONFIG_TAU_INT) | 
 | void TAUException(struct pt_regs *regs) | 
 | { | 
 | 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n", | 
 | 	       regs->nip, regs->msr, regs->trap, print_tainted()); | 
 | } | 
 | #endif /* CONFIG_INT_TAU */ | 
 |  | 
 | #ifdef CONFIG_ALTIVEC | 
 | void altivec_assist_exception(struct pt_regs *regs) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!user_mode(regs)) { | 
 | 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode" | 
 | 		       " at %lx\n", regs->nip); | 
 | 		die("Kernel VMX/Altivec assist exception", regs, SIGILL); | 
 | 	} | 
 |  | 
 | 	flush_altivec_to_thread(current); | 
 |  | 
 | 	PPC_WARN_EMULATED(altivec, regs); | 
 | 	err = emulate_altivec(regs); | 
 | 	if (err == 0) { | 
 | 		regs->nip += 4;		/* skip emulated instruction */ | 
 | 		emulate_single_step(regs); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (err == -EFAULT) { | 
 | 		/* got an error reading the instruction */ | 
 | 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); | 
 | 	} else { | 
 | 		/* didn't recognize the instruction */ | 
 | 		/* XXX quick hack for now: set the non-Java bit in the VSCR */ | 
 | 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction " | 
 | 				   "in %s at %lx\n", current->comm, regs->nip); | 
 | 		current->thread.vr_state.vscr.u[3] |= 0x10000; | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_ALTIVEC */ | 
 |  | 
 | #ifdef CONFIG_FSL_BOOKE | 
 | void CacheLockingException(struct pt_regs *regs, unsigned long address, | 
 | 			   unsigned long error_code) | 
 | { | 
 | 	/* We treat cache locking instructions from the user | 
 | 	 * as priv ops, in the future we could try to do | 
 | 	 * something smarter | 
 | 	 */ | 
 | 	if (error_code & (ESR_DLK|ESR_ILK)) | 
 | 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip); | 
 | 	return; | 
 | } | 
 | #endif /* CONFIG_FSL_BOOKE */ | 
 |  | 
 | #ifdef CONFIG_SPE | 
 | void SPEFloatingPointException(struct pt_regs *regs) | 
 | { | 
 | 	extern int do_spe_mathemu(struct pt_regs *regs); | 
 | 	unsigned long spefscr; | 
 | 	int fpexc_mode; | 
 | 	int code = FPE_FIXME; | 
 | 	int err; | 
 |  | 
 | 	flush_spe_to_thread(current); | 
 |  | 
 | 	spefscr = current->thread.spefscr; | 
 | 	fpexc_mode = current->thread.fpexc_mode; | 
 |  | 
 | 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) { | 
 | 		code = FPE_FLTOVF; | 
 | 	} | 
 | 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) { | 
 | 		code = FPE_FLTUND; | 
 | 	} | 
 | 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV)) | 
 | 		code = FPE_FLTDIV; | 
 | 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) { | 
 | 		code = FPE_FLTINV; | 
 | 	} | 
 | 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES)) | 
 | 		code = FPE_FLTRES; | 
 |  | 
 | 	err = do_spe_mathemu(regs); | 
 | 	if (err == 0) { | 
 | 		regs->nip += 4;		/* skip emulated instruction */ | 
 | 		emulate_single_step(regs); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (err == -EFAULT) { | 
 | 		/* got an error reading the instruction */ | 
 | 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); | 
 | 	} else if (err == -EINVAL) { | 
 | 		/* didn't recognize the instruction */ | 
 | 		printk(KERN_ERR "unrecognized spe instruction " | 
 | 		       "in %s at %lx\n", current->comm, regs->nip); | 
 | 	} else { | 
 | 		_exception(SIGFPE, regs, code, regs->nip); | 
 | 	} | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | void SPEFloatingPointRoundException(struct pt_regs *regs) | 
 | { | 
 | 	extern int speround_handler(struct pt_regs *regs); | 
 | 	int err; | 
 |  | 
 | 	preempt_disable(); | 
 | 	if (regs->msr & MSR_SPE) | 
 | 		giveup_spe(current); | 
 | 	preempt_enable(); | 
 |  | 
 | 	regs->nip -= 4; | 
 | 	err = speround_handler(regs); | 
 | 	if (err == 0) { | 
 | 		regs->nip += 4;		/* skip emulated instruction */ | 
 | 		emulate_single_step(regs); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (err == -EFAULT) { | 
 | 		/* got an error reading the instruction */ | 
 | 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip); | 
 | 	} else if (err == -EINVAL) { | 
 | 		/* didn't recognize the instruction */ | 
 | 		printk(KERN_ERR "unrecognized spe instruction " | 
 | 		       "in %s at %lx\n", current->comm, regs->nip); | 
 | 	} else { | 
 | 		_exception(SIGFPE, regs, FPE_FIXME, regs->nip); | 
 | 		return; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * We enter here if we get an unrecoverable exception, that is, one | 
 |  * that happened at a point where the RI (recoverable interrupt) bit | 
 |  * in the MSR is 0.  This indicates that SRR0/1 are live, and that | 
 |  * we therefore lost state by taking this exception. | 
 |  */ | 
 | void unrecoverable_exception(struct pt_regs *regs) | 
 | { | 
 | 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n", | 
 | 	       regs->trap, regs->nip); | 
 | 	die("Unrecoverable exception", regs, SIGABRT); | 
 | } | 
 | NOKPROBE_SYMBOL(unrecoverable_exception); | 
 |  | 
 | #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x) | 
 | /* | 
 |  * Default handler for a Watchdog exception, | 
 |  * spins until a reboot occurs | 
 |  */ | 
 | void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs) | 
 | { | 
 | 	/* Generic WatchdogHandler, implement your own */ | 
 | 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE)); | 
 | 	return; | 
 | } | 
 |  | 
 | void WatchdogException(struct pt_regs *regs) | 
 | { | 
 | 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n"); | 
 | 	WatchdogHandler(regs); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * We enter here if we discover during exception entry that we are | 
 |  * running in supervisor mode with a userspace value in the stack pointer. | 
 |  */ | 
 | void kernel_bad_stack(struct pt_regs *regs) | 
 | { | 
 | 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n", | 
 | 	       regs->gpr[1], regs->nip); | 
 | 	die("Bad kernel stack pointer", regs, SIGABRT); | 
 | } | 
 | NOKPROBE_SYMBOL(kernel_bad_stack); | 
 |  | 
 | void __init trap_init(void) | 
 | { | 
 | } | 
 |  | 
 |  | 
 | #ifdef CONFIG_PPC_EMULATED_STATS | 
 |  | 
 | #define WARN_EMULATED_SETUP(type)	.type = { .name = #type } | 
 |  | 
 | struct ppc_emulated ppc_emulated = { | 
 | #ifdef CONFIG_ALTIVEC | 
 | 	WARN_EMULATED_SETUP(altivec), | 
 | #endif | 
 | 	WARN_EMULATED_SETUP(dcba), | 
 | 	WARN_EMULATED_SETUP(dcbz), | 
 | 	WARN_EMULATED_SETUP(fp_pair), | 
 | 	WARN_EMULATED_SETUP(isel), | 
 | 	WARN_EMULATED_SETUP(mcrxr), | 
 | 	WARN_EMULATED_SETUP(mfpvr), | 
 | 	WARN_EMULATED_SETUP(multiple), | 
 | 	WARN_EMULATED_SETUP(popcntb), | 
 | 	WARN_EMULATED_SETUP(spe), | 
 | 	WARN_EMULATED_SETUP(string), | 
 | 	WARN_EMULATED_SETUP(sync), | 
 | 	WARN_EMULATED_SETUP(unaligned), | 
 | #ifdef CONFIG_MATH_EMULATION | 
 | 	WARN_EMULATED_SETUP(math), | 
 | #endif | 
 | #ifdef CONFIG_VSX | 
 | 	WARN_EMULATED_SETUP(vsx), | 
 | #endif | 
 | #ifdef CONFIG_PPC64 | 
 | 	WARN_EMULATED_SETUP(mfdscr), | 
 | 	WARN_EMULATED_SETUP(mtdscr), | 
 | 	WARN_EMULATED_SETUP(lq_stq), | 
 | 	WARN_EMULATED_SETUP(lxvw4x), | 
 | 	WARN_EMULATED_SETUP(lxvh8x), | 
 | 	WARN_EMULATED_SETUP(lxvd2x), | 
 | 	WARN_EMULATED_SETUP(lxvb16x), | 
 | #endif | 
 | }; | 
 |  | 
 | u32 ppc_warn_emulated; | 
 |  | 
 | void ppc_warn_emulated_print(const char *type) | 
 | { | 
 | 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm, | 
 | 			    type); | 
 | } | 
 |  | 
 | static int __init ppc_warn_emulated_init(void) | 
 | { | 
 | 	struct dentry *dir, *d; | 
 | 	unsigned int i; | 
 | 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated; | 
 |  | 
 | 	if (!powerpc_debugfs_root) | 
 | 		return -ENODEV; | 
 |  | 
 | 	dir = debugfs_create_dir("emulated_instructions", | 
 | 				 powerpc_debugfs_root); | 
 | 	if (!dir) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	d = debugfs_create_u32("do_warn", 0644, dir, | 
 | 			       &ppc_warn_emulated); | 
 | 	if (!d) | 
 | 		goto fail; | 
 |  | 
 | 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) { | 
 | 		d = debugfs_create_u32(entries[i].name, 0644, dir, | 
 | 				       (u32 *)&entries[i].val.counter); | 
 | 		if (!d) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	debugfs_remove_recursive(dir); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | device_initcall(ppc_warn_emulated_init); | 
 |  | 
 | #endif /* CONFIG_PPC_EMULATED_STATS */ |