| /* | 
 |  * Copyright IBM Corporation 2001, 2005, 2006 | 
 |  * Copyright Dave Engebretsen & Todd Inglett 2001 | 
 |  * Copyright Linas Vepstas 2005, 2006 | 
 |  * Copyright 2001-2012 IBM Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA | 
 |  * | 
 |  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com> | 
 |  */ | 
 |  | 
 | #include <linux/delay.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/init.h> | 
 | #include <linux/list.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/iommu.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/export.h> | 
 | #include <linux/of.h> | 
 |  | 
 | #include <linux/atomic.h> | 
 | #include <asm/debugfs.h> | 
 | #include <asm/eeh.h> | 
 | #include <asm/eeh_event.h> | 
 | #include <asm/io.h> | 
 | #include <asm/iommu.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/ppc-pci.h> | 
 | #include <asm/rtas.h> | 
 | #include <asm/pte-walk.h> | 
 |  | 
 |  | 
 | /** Overview: | 
 |  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for | 
 |  *  dealing with PCI bus errors that can't be dealt with within the | 
 |  *  usual PCI framework, except by check-stopping the CPU.  Systems | 
 |  *  that are designed for high-availability/reliability cannot afford | 
 |  *  to crash due to a "mere" PCI error, thus the need for EEH. | 
 |  *  An EEH-capable bridge operates by converting a detected error | 
 |  *  into a "slot freeze", taking the PCI adapter off-line, making | 
 |  *  the slot behave, from the OS'es point of view, as if the slot | 
 |  *  were "empty": all reads return 0xff's and all writes are silently | 
 |  *  ignored.  EEH slot isolation events can be triggered by parity | 
 |  *  errors on the address or data busses (e.g. during posted writes), | 
 |  *  which in turn might be caused by low voltage on the bus, dust, | 
 |  *  vibration, humidity, radioactivity or plain-old failed hardware. | 
 |  * | 
 |  *  Note, however, that one of the leading causes of EEH slot | 
 |  *  freeze events are buggy device drivers, buggy device microcode, | 
 |  *  or buggy device hardware.  This is because any attempt by the | 
 |  *  device to bus-master data to a memory address that is not | 
 |  *  assigned to the device will trigger a slot freeze.   (The idea | 
 |  *  is to prevent devices-gone-wild from corrupting system memory). | 
 |  *  Buggy hardware/drivers will have a miserable time co-existing | 
 |  *  with EEH. | 
 |  * | 
 |  *  Ideally, a PCI device driver, when suspecting that an isolation | 
 |  *  event has occurred (e.g. by reading 0xff's), will then ask EEH | 
 |  *  whether this is the case, and then take appropriate steps to | 
 |  *  reset the PCI slot, the PCI device, and then resume operations. | 
 |  *  However, until that day,  the checking is done here, with the | 
 |  *  eeh_check_failure() routine embedded in the MMIO macros.  If | 
 |  *  the slot is found to be isolated, an "EEH Event" is synthesized | 
 |  *  and sent out for processing. | 
 |  */ | 
 |  | 
 | /* If a device driver keeps reading an MMIO register in an interrupt | 
 |  * handler after a slot isolation event, it might be broken. | 
 |  * This sets the threshold for how many read attempts we allow | 
 |  * before printing an error message. | 
 |  */ | 
 | #define EEH_MAX_FAILS	2100000 | 
 |  | 
 | /* Time to wait for a PCI slot to report status, in milliseconds */ | 
 | #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000) | 
 |  | 
 | /* | 
 |  * EEH probe mode support, which is part of the flags, | 
 |  * is to support multiple platforms for EEH. Some platforms | 
 |  * like pSeries do PCI emunation based on device tree. | 
 |  * However, other platforms like powernv probe PCI devices | 
 |  * from hardware. The flag is used to distinguish that. | 
 |  * In addition, struct eeh_ops::probe would be invoked for | 
 |  * particular OF node or PCI device so that the corresponding | 
 |  * PE would be created there. | 
 |  */ | 
 | int eeh_subsystem_flags; | 
 | EXPORT_SYMBOL(eeh_subsystem_flags); | 
 |  | 
 | /* | 
 |  * EEH allowed maximal frozen times. If one particular PE's | 
 |  * frozen count in last hour exceeds this limit, the PE will | 
 |  * be forced to be offline permanently. | 
 |  */ | 
 | int eeh_max_freezes = 5; | 
 |  | 
 | /* Platform dependent EEH operations */ | 
 | struct eeh_ops *eeh_ops = NULL; | 
 |  | 
 | /* Lock to avoid races due to multiple reports of an error */ | 
 | DEFINE_RAW_SPINLOCK(confirm_error_lock); | 
 | EXPORT_SYMBOL_GPL(confirm_error_lock); | 
 |  | 
 | /* Lock to protect passed flags */ | 
 | static DEFINE_MUTEX(eeh_dev_mutex); | 
 |  | 
 | /* Buffer for reporting pci register dumps. Its here in BSS, and | 
 |  * not dynamically alloced, so that it ends up in RMO where RTAS | 
 |  * can access it. | 
 |  */ | 
 | #define EEH_PCI_REGS_LOG_LEN 8192 | 
 | static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN]; | 
 |  | 
 | /* | 
 |  * The struct is used to maintain the EEH global statistic | 
 |  * information. Besides, the EEH global statistics will be | 
 |  * exported to user space through procfs | 
 |  */ | 
 | struct eeh_stats { | 
 | 	u64 no_device;		/* PCI device not found		*/ | 
 | 	u64 no_dn;		/* OF node not found		*/ | 
 | 	u64 no_cfg_addr;	/* Config address not found	*/ | 
 | 	u64 ignored_check;	/* EEH check skipped		*/ | 
 | 	u64 total_mmio_ffs;	/* Total EEH checks		*/ | 
 | 	u64 false_positives;	/* Unnecessary EEH checks	*/ | 
 | 	u64 slot_resets;	/* PE reset			*/ | 
 | }; | 
 |  | 
 | static struct eeh_stats eeh_stats; | 
 |  | 
 | static int __init eeh_setup(char *str) | 
 | { | 
 | 	if (!strcmp(str, "off")) | 
 | 		eeh_add_flag(EEH_FORCE_DISABLED); | 
 | 	else if (!strcmp(str, "early_log")) | 
 | 		eeh_add_flag(EEH_EARLY_DUMP_LOG); | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("eeh=", eeh_setup); | 
 |  | 
 | /* | 
 |  * This routine captures assorted PCI configuration space data | 
 |  * for the indicated PCI device, and puts them into a buffer | 
 |  * for RTAS error logging. | 
 |  */ | 
 | static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len) | 
 | { | 
 | 	struct pci_dn *pdn = eeh_dev_to_pdn(edev); | 
 | 	u32 cfg; | 
 | 	int cap, i; | 
 | 	int n = 0, l = 0; | 
 | 	char buffer[128]; | 
 |  | 
 | 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n", | 
 | 		       pdn->phb->global_number, pdn->busno, | 
 | 		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); | 
 | 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n", | 
 | 		pdn->phb->global_number, pdn->busno, | 
 | 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); | 
 |  | 
 | 	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg); | 
 | 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg); | 
 | 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg); | 
 |  | 
 | 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg); | 
 | 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg); | 
 | 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg); | 
 |  | 
 | 	/* Gather bridge-specific registers */ | 
 | 	if (edev->mode & EEH_DEV_BRIDGE) { | 
 | 		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg); | 
 | 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg); | 
 | 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg); | 
 |  | 
 | 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg); | 
 | 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg); | 
 | 		pr_warn("EEH: Bridge control: %04x\n", cfg); | 
 | 	} | 
 |  | 
 | 	/* Dump out the PCI-X command and status regs */ | 
 | 	cap = edev->pcix_cap; | 
 | 	if (cap) { | 
 | 		eeh_ops->read_config(pdn, cap, 4, &cfg); | 
 | 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg); | 
 | 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg); | 
 |  | 
 | 		eeh_ops->read_config(pdn, cap+4, 4, &cfg); | 
 | 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg); | 
 | 		pr_warn("EEH: PCI-X status: %08x\n", cfg); | 
 | 	} | 
 |  | 
 | 	/* If PCI-E capable, dump PCI-E cap 10 */ | 
 | 	cap = edev->pcie_cap; | 
 | 	if (cap) { | 
 | 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n"); | 
 | 		pr_warn("EEH: PCI-E capabilities and status follow:\n"); | 
 |  | 
 | 		for (i=0; i<=8; i++) { | 
 | 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg); | 
 | 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); | 
 |  | 
 | 			if ((i % 4) == 0) { | 
 | 				if (i != 0) | 
 | 					pr_warn("%s\n", buffer); | 
 |  | 
 | 				l = scnprintf(buffer, sizeof(buffer), | 
 | 					      "EEH: PCI-E %02x: %08x ", | 
 | 					      4*i, cfg); | 
 | 			} else { | 
 | 				l += scnprintf(buffer+l, sizeof(buffer)-l, | 
 | 					       "%08x ", cfg); | 
 | 			} | 
 |  | 
 | 		} | 
 |  | 
 | 		pr_warn("%s\n", buffer); | 
 | 	} | 
 |  | 
 | 	/* If AER capable, dump it */ | 
 | 	cap = edev->aer_cap; | 
 | 	if (cap) { | 
 | 		n += scnprintf(buf+n, len-n, "pci-e AER:\n"); | 
 | 		pr_warn("EEH: PCI-E AER capability register set follows:\n"); | 
 |  | 
 | 		for (i=0; i<=13; i++) { | 
 | 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg); | 
 | 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); | 
 |  | 
 | 			if ((i % 4) == 0) { | 
 | 				if (i != 0) | 
 | 					pr_warn("%s\n", buffer); | 
 |  | 
 | 				l = scnprintf(buffer, sizeof(buffer), | 
 | 					      "EEH: PCI-E AER %02x: %08x ", | 
 | 					      4*i, cfg); | 
 | 			} else { | 
 | 				l += scnprintf(buffer+l, sizeof(buffer)-l, | 
 | 					       "%08x ", cfg); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		pr_warn("%s\n", buffer); | 
 | 	} | 
 |  | 
 | 	return n; | 
 | } | 
 |  | 
 | static void *eeh_dump_pe_log(void *data, void *flag) | 
 | { | 
 | 	struct eeh_pe *pe = data; | 
 | 	struct eeh_dev *edev, *tmp; | 
 | 	size_t *plen = flag; | 
 |  | 
 | 	eeh_pe_for_each_dev(pe, edev, tmp) | 
 | 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen, | 
 | 					  EEH_PCI_REGS_LOG_LEN - *plen); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_slot_error_detail - Generate combined log including driver log and error log | 
 |  * @pe: EEH PE | 
 |  * @severity: temporary or permanent error log | 
 |  * | 
 |  * This routine should be called to generate the combined log, which | 
 |  * is comprised of driver log and error log. The driver log is figured | 
 |  * out from the config space of the corresponding PCI device, while | 
 |  * the error log is fetched through platform dependent function call. | 
 |  */ | 
 | void eeh_slot_error_detail(struct eeh_pe *pe, int severity) | 
 | { | 
 | 	size_t loglen = 0; | 
 |  | 
 | 	/* | 
 | 	 * When the PHB is fenced or dead, it's pointless to collect | 
 | 	 * the data from PCI config space because it should return | 
 | 	 * 0xFF's. For ER, we still retrieve the data from the PCI | 
 | 	 * config space. | 
 | 	 * | 
 | 	 * For pHyp, we have to enable IO for log retrieval. Otherwise, | 
 | 	 * 0xFF's is always returned from PCI config space. | 
 | 	 * | 
 | 	 * When the @severity is EEH_LOG_PERM, the PE is going to be | 
 | 	 * removed. Prior to that, the drivers for devices included in | 
 | 	 * the PE will be closed. The drivers rely on working IO path | 
 | 	 * to bring the devices to quiet state. Otherwise, PCI traffic | 
 | 	 * from those devices after they are removed is like to cause | 
 | 	 * another unexpected EEH error. | 
 | 	 */ | 
 | 	if (!(pe->type & EEH_PE_PHB)) { | 
 | 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) || | 
 | 		    severity == EEH_LOG_PERM) | 
 | 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); | 
 |  | 
 | 		/* | 
 | 		 * The config space of some PCI devices can't be accessed | 
 | 		 * when their PEs are in frozen state. Otherwise, fenced | 
 | 		 * PHB might be seen. Those PEs are identified with flag | 
 | 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED | 
 | 		 * is set automatically when the PE is put to EEH_PE_ISOLATED. | 
 | 		 * | 
 | 		 * Restoring BARs possibly triggers PCI config access in | 
 | 		 * (OPAL) firmware and then causes fenced PHB. If the | 
 | 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's | 
 | 		 * pointless to restore BARs and dump config space. | 
 | 		 */ | 
 | 		eeh_ops->configure_bridge(pe); | 
 | 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) { | 
 | 			eeh_pe_restore_bars(pe); | 
 |  | 
 | 			pci_regs_buf[0] = 0; | 
 | 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen); | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_token_to_phys - Convert EEH address token to phys address | 
 |  * @token: I/O token, should be address in the form 0xA.... | 
 |  * | 
 |  * This routine should be called to convert virtual I/O address | 
 |  * to physical one. | 
 |  */ | 
 | static inline unsigned long eeh_token_to_phys(unsigned long token) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	unsigned long pa; | 
 | 	int hugepage_shift; | 
 |  | 
 | 	/* | 
 | 	 * We won't find hugepages here(this is iomem). Hence we are not | 
 | 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit | 
 | 	 * page table free, because of init_mm. | 
 | 	 */ | 
 | 	ptep = find_init_mm_pte(token, &hugepage_shift); | 
 | 	if (!ptep) | 
 | 		return token; | 
 | 	WARN_ON(hugepage_shift); | 
 | 	pa = pte_pfn(*ptep) << PAGE_SHIFT; | 
 |  | 
 | 	return pa | (token & (PAGE_SIZE-1)); | 
 | } | 
 |  | 
 | /* | 
 |  * On PowerNV platform, we might already have fenced PHB there. | 
 |  * For that case, it's meaningless to recover frozen PE. Intead, | 
 |  * We have to handle fenced PHB firstly. | 
 |  */ | 
 | static int eeh_phb_check_failure(struct eeh_pe *pe) | 
 | { | 
 | 	struct eeh_pe *phb_pe; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV)) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* Find the PHB PE */ | 
 | 	phb_pe = eeh_phb_pe_get(pe->phb); | 
 | 	if (!phb_pe) { | 
 | 		pr_warn("%s Can't find PE for PHB#%x\n", | 
 | 			__func__, pe->phb->global_number); | 
 | 		return -EEXIST; | 
 | 	} | 
 |  | 
 | 	/* If the PHB has been in problematic state */ | 
 | 	eeh_serialize_lock(&flags); | 
 | 	if (phb_pe->state & EEH_PE_ISOLATED) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Check PHB state */ | 
 | 	ret = eeh_ops->get_state(phb_pe, NULL); | 
 | 	if ((ret < 0) || | 
 | 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Isolate the PHB and send event */ | 
 | 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED); | 
 | 	eeh_serialize_unlock(flags); | 
 |  | 
 | 	pr_err("EEH: PHB#%x failure detected, location: %s\n", | 
 | 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe)); | 
 | 	dump_stack(); | 
 | 	eeh_send_failure_event(phb_pe); | 
 |  | 
 | 	return 1; | 
 | out: | 
 | 	eeh_serialize_unlock(flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze | 
 |  * @edev: eeh device | 
 |  * | 
 |  * Check for an EEH failure for the given device node.  Call this | 
 |  * routine if the result of a read was all 0xff's and you want to | 
 |  * find out if this is due to an EEH slot freeze.  This routine | 
 |  * will query firmware for the EEH status. | 
 |  * | 
 |  * Returns 0 if there has not been an EEH error; otherwise returns | 
 |  * a non-zero value and queues up a slot isolation event notification. | 
 |  * | 
 |  * It is safe to call this routine in an interrupt context. | 
 |  */ | 
 | int eeh_dev_check_failure(struct eeh_dev *edev) | 
 | { | 
 | 	int ret; | 
 | 	unsigned long flags; | 
 | 	struct device_node *dn; | 
 | 	struct pci_dev *dev; | 
 | 	struct eeh_pe *pe, *parent_pe, *phb_pe; | 
 | 	int rc = 0; | 
 | 	const char *location = NULL; | 
 |  | 
 | 	eeh_stats.total_mmio_ffs++; | 
 |  | 
 | 	if (!eeh_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	if (!edev) { | 
 | 		eeh_stats.no_dn++; | 
 | 		return 0; | 
 | 	} | 
 | 	dev = eeh_dev_to_pci_dev(edev); | 
 | 	pe = eeh_dev_to_pe(edev); | 
 |  | 
 | 	/* Access to IO BARs might get this far and still not want checking. */ | 
 | 	if (!pe) { | 
 | 		eeh_stats.ignored_check++; | 
 | 		pr_debug("EEH: Ignored check for %s\n", | 
 | 			eeh_pci_name(dev)); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!pe->addr && !pe->config_addr) { | 
 | 		eeh_stats.no_cfg_addr++; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * On PowerNV platform, we might already have fenced PHB | 
 | 	 * there and we need take care of that firstly. | 
 | 	 */ | 
 | 	ret = eeh_phb_check_failure(pe); | 
 | 	if (ret > 0) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * If the PE isn't owned by us, we shouldn't check the | 
 | 	 * state. Instead, let the owner handle it if the PE has | 
 | 	 * been frozen. | 
 | 	 */ | 
 | 	if (eeh_pe_passed(pe)) | 
 | 		return 0; | 
 |  | 
 | 	/* If we already have a pending isolation event for this | 
 | 	 * slot, we know it's bad already, we don't need to check. | 
 | 	 * Do this checking under a lock; as multiple PCI devices | 
 | 	 * in one slot might report errors simultaneously, and we | 
 | 	 * only want one error recovery routine running. | 
 | 	 */ | 
 | 	eeh_serialize_lock(&flags); | 
 | 	rc = 1; | 
 | 	if (pe->state & EEH_PE_ISOLATED) { | 
 | 		pe->check_count++; | 
 | 		if (pe->check_count % EEH_MAX_FAILS == 0) { | 
 | 			dn = pci_device_to_OF_node(dev); | 
 | 			if (dn) | 
 | 				location = of_get_property(dn, "ibm,loc-code", | 
 | 						NULL); | 
 | 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at " | 
 | 				"location=%s driver=%s pci addr=%s\n", | 
 | 				pe->check_count, | 
 | 				location ? location : "unknown", | 
 | 				eeh_driver_name(dev), eeh_pci_name(dev)); | 
 | 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n", | 
 | 				eeh_driver_name(dev)); | 
 | 			dump_stack(); | 
 | 		} | 
 | 		goto dn_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now test for an EEH failure.  This is VERY expensive. | 
 | 	 * Note that the eeh_config_addr may be a parent device | 
 | 	 * in the case of a device behind a bridge, or it may be | 
 | 	 * function zero of a multi-function device. | 
 | 	 * In any case they must share a common PHB. | 
 | 	 */ | 
 | 	ret = eeh_ops->get_state(pe, NULL); | 
 |  | 
 | 	/* Note that config-io to empty slots may fail; | 
 | 	 * they are empty when they don't have children. | 
 | 	 * We will punt with the following conditions: Failure to get | 
 | 	 * PE's state, EEH not support and Permanently unavailable | 
 | 	 * state, PE is in good state. | 
 | 	 */ | 
 | 	if ((ret < 0) || | 
 | 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) { | 
 | 		eeh_stats.false_positives++; | 
 | 		pe->false_positives++; | 
 | 		rc = 0; | 
 | 		goto dn_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It should be corner case that the parent PE has been | 
 | 	 * put into frozen state as well. We should take care | 
 | 	 * that at first. | 
 | 	 */ | 
 | 	parent_pe = pe->parent; | 
 | 	while (parent_pe) { | 
 | 		/* Hit the ceiling ? */ | 
 | 		if (parent_pe->type & EEH_PE_PHB) | 
 | 			break; | 
 |  | 
 | 		/* Frozen parent PE ? */ | 
 | 		ret = eeh_ops->get_state(parent_pe, NULL); | 
 | 		if (ret > 0 && !eeh_state_active(ret)) | 
 | 			pe = parent_pe; | 
 |  | 
 | 		/* Next parent level */ | 
 | 		parent_pe = parent_pe->parent; | 
 | 	} | 
 |  | 
 | 	eeh_stats.slot_resets++; | 
 |  | 
 | 	/* Avoid repeated reports of this failure, including problems | 
 | 	 * with other functions on this device, and functions under | 
 | 	 * bridges. | 
 | 	 */ | 
 | 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED); | 
 | 	eeh_serialize_unlock(flags); | 
 |  | 
 | 	/* Most EEH events are due to device driver bugs.  Having | 
 | 	 * a stack trace will help the device-driver authors figure | 
 | 	 * out what happened.  So print that out. | 
 | 	 */ | 
 | 	phb_pe = eeh_phb_pe_get(pe->phb); | 
 | 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n", | 
 | 	       pe->phb->global_number, pe->addr); | 
 | 	pr_err("EEH: PE location: %s, PHB location: %s\n", | 
 | 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe)); | 
 | 	dump_stack(); | 
 |  | 
 | 	eeh_send_failure_event(pe); | 
 |  | 
 | 	return 1; | 
 |  | 
 | dn_unlock: | 
 | 	eeh_serialize_unlock(flags); | 
 | 	return rc; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(eeh_dev_check_failure); | 
 |  | 
 | /** | 
 |  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze | 
 |  * @token: I/O address | 
 |  * | 
 |  * Check for an EEH failure at the given I/O address. Call this | 
 |  * routine if the result of a read was all 0xff's and you want to | 
 |  * find out if this is due to an EEH slot freeze event. This routine | 
 |  * will query firmware for the EEH status. | 
 |  * | 
 |  * Note this routine is safe to call in an interrupt context. | 
 |  */ | 
 | int eeh_check_failure(const volatile void __iomem *token) | 
 | { | 
 | 	unsigned long addr; | 
 | 	struct eeh_dev *edev; | 
 |  | 
 | 	/* Finding the phys addr + pci device; this is pretty quick. */ | 
 | 	addr = eeh_token_to_phys((unsigned long __force) token); | 
 | 	edev = eeh_addr_cache_get_dev(addr); | 
 | 	if (!edev) { | 
 | 		eeh_stats.no_device++; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return eeh_dev_check_failure(edev); | 
 | } | 
 | EXPORT_SYMBOL(eeh_check_failure); | 
 |  | 
 |  | 
 | /** | 
 |  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot | 
 |  * @pe: EEH PE | 
 |  * | 
 |  * This routine should be called to reenable frozen MMIO or DMA | 
 |  * so that it would work correctly again. It's useful while doing | 
 |  * recovery or log collection on the indicated device. | 
 |  */ | 
 | int eeh_pci_enable(struct eeh_pe *pe, int function) | 
 | { | 
 | 	int active_flag, rc; | 
 |  | 
 | 	/* | 
 | 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE. | 
 | 	 * Also, it's pointless to enable them on unfrozen PE. So | 
 | 	 * we have to check before enabling IO or DMA. | 
 | 	 */ | 
 | 	switch (function) { | 
 | 	case EEH_OPT_THAW_MMIO: | 
 | 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED; | 
 | 		break; | 
 | 	case EEH_OPT_THAW_DMA: | 
 | 		active_flag = EEH_STATE_DMA_ACTIVE; | 
 | 		break; | 
 | 	case EEH_OPT_DISABLE: | 
 | 	case EEH_OPT_ENABLE: | 
 | 	case EEH_OPT_FREEZE_PE: | 
 | 		active_flag = 0; | 
 | 		break; | 
 | 	default: | 
 | 		pr_warn("%s: Invalid function %d\n", | 
 | 			__func__, function); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if IO or DMA has been enabled before | 
 | 	 * enabling them. | 
 | 	 */ | 
 | 	if (active_flag) { | 
 | 		rc = eeh_ops->get_state(pe, NULL); | 
 | 		if (rc < 0) | 
 | 			return rc; | 
 |  | 
 | 		/* Needn't enable it at all */ | 
 | 		if (rc == EEH_STATE_NOT_SUPPORT) | 
 | 			return 0; | 
 |  | 
 | 		/* It's already enabled */ | 
 | 		if (rc & active_flag) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* Issue the request */ | 
 | 	rc = eeh_ops->set_option(pe, function); | 
 | 	if (rc) | 
 | 		pr_warn("%s: Unexpected state change %d on " | 
 | 			"PHB#%x-PE#%x, err=%d\n", | 
 | 			__func__, function, pe->phb->global_number, | 
 | 			pe->addr, rc); | 
 |  | 
 | 	/* Check if the request is finished successfully */ | 
 | 	if (active_flag) { | 
 | 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); | 
 | 		if (rc < 0) | 
 | 			return rc; | 
 |  | 
 | 		if (rc & active_flag) | 
 | 			return 0; | 
 |  | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void *eeh_disable_and_save_dev_state(void *data, void *userdata) | 
 | { | 
 | 	struct eeh_dev *edev = data; | 
 | 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev); | 
 | 	struct pci_dev *dev = userdata; | 
 |  | 
 | 	/* | 
 | 	 * The caller should have disabled and saved the | 
 | 	 * state for the specified device | 
 | 	 */ | 
 | 	if (!pdev || pdev == dev) | 
 | 		return NULL; | 
 |  | 
 | 	/* Ensure we have D0 power state */ | 
 | 	pci_set_power_state(pdev, PCI_D0); | 
 |  | 
 | 	/* Save device state */ | 
 | 	pci_save_state(pdev); | 
 |  | 
 | 	/* | 
 | 	 * Disable device to avoid any DMA traffic and | 
 | 	 * interrupt from the device | 
 | 	 */ | 
 | 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void *eeh_restore_dev_state(void *data, void *userdata) | 
 | { | 
 | 	struct eeh_dev *edev = data; | 
 | 	struct pci_dn *pdn = eeh_dev_to_pdn(edev); | 
 | 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev); | 
 | 	struct pci_dev *dev = userdata; | 
 |  | 
 | 	if (!pdev) | 
 | 		return NULL; | 
 |  | 
 | 	/* Apply customization from firmware */ | 
 | 	if (pdn && eeh_ops->restore_config) | 
 | 		eeh_ops->restore_config(pdn); | 
 |  | 
 | 	/* The caller should restore state for the specified device */ | 
 | 	if (pdev != dev) | 
 | 		pci_restore_state(pdev); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | int eeh_restore_vf_config(struct pci_dn *pdn) | 
 | { | 
 | 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
 | 	u32 devctl, cmd, cap2, aer_capctl; | 
 | 	int old_mps; | 
 |  | 
 | 	if (edev->pcie_cap) { | 
 | 		/* Restore MPS */ | 
 | 		old_mps = (ffs(pdn->mps) - 8) << 5; | 
 | 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				     2, &devctl); | 
 | 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD; | 
 | 		devctl |= old_mps; | 
 | 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				      2, devctl); | 
 |  | 
 | 		/* Disable Completion Timeout if possible */ | 
 | 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2, | 
 | 				     4, &cap2); | 
 | 		if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) { | 
 | 			eeh_ops->read_config(pdn, | 
 | 					     edev->pcie_cap + PCI_EXP_DEVCTL2, | 
 | 					     4, &cap2); | 
 | 			cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS; | 
 | 			eeh_ops->write_config(pdn, | 
 | 					      edev->pcie_cap + PCI_EXP_DEVCTL2, | 
 | 					      4, cap2); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Enable SERR and parity checking */ | 
 | 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd); | 
 | 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); | 
 | 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd); | 
 |  | 
 | 	/* Enable report various errors */ | 
 | 	if (edev->pcie_cap) { | 
 | 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				     2, &devctl); | 
 | 		devctl &= ~PCI_EXP_DEVCTL_CERE; | 
 | 		devctl |= (PCI_EXP_DEVCTL_NFERE | | 
 | 			   PCI_EXP_DEVCTL_FERE | | 
 | 			   PCI_EXP_DEVCTL_URRE); | 
 | 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, | 
 | 				      2, devctl); | 
 | 	} | 
 |  | 
 | 	/* Enable ECRC generation and check */ | 
 | 	if (edev->pcie_cap && edev->aer_cap) { | 
 | 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP, | 
 | 				     4, &aer_capctl); | 
 | 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE); | 
 | 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP, | 
 | 				      4, aer_capctl); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * pcibios_set_pcie_reset_state - Set PCI-E reset state | 
 |  * @dev: pci device struct | 
 |  * @state: reset state to enter | 
 |  * | 
 |  * Return value: | 
 |  * 	0 if success | 
 |  */ | 
 | int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) | 
 | { | 
 | 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev); | 
 | 	struct eeh_pe *pe = eeh_dev_to_pe(edev); | 
 |  | 
 | 	if (!pe) { | 
 | 		pr_err("%s: No PE found on PCI device %s\n", | 
 | 			__func__, pci_name(dev)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	switch (state) { | 
 | 	case pcie_deassert_reset: | 
 | 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE); | 
 | 		eeh_unfreeze_pe(pe, false); | 
 | 		if (!(pe->type & EEH_PE_VF)) | 
 | 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED); | 
 | 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev); | 
 | 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED); | 
 | 		break; | 
 | 	case pcie_hot_reset: | 
 | 		eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED); | 
 | 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); | 
 | 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev); | 
 | 		if (!(pe->type & EEH_PE_VF)) | 
 | 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); | 
 | 		eeh_ops->reset(pe, EEH_RESET_HOT); | 
 | 		break; | 
 | 	case pcie_warm_reset: | 
 | 		eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED); | 
 | 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); | 
 | 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev); | 
 | 		if (!(pe->type & EEH_PE_VF)) | 
 | 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); | 
 | 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL); | 
 | 		break; | 
 | 	default: | 
 | 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED); | 
 | 		return -EINVAL; | 
 | 	}; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_set_pe_freset - Check the required reset for the indicated device | 
 |  * @data: EEH device | 
 |  * @flag: return value | 
 |  * | 
 |  * Each device might have its preferred reset type: fundamental or | 
 |  * hot reset. The routine is used to collected the information for | 
 |  * the indicated device and its children so that the bunch of the | 
 |  * devices could be reset properly. | 
 |  */ | 
 | static void *eeh_set_dev_freset(void *data, void *flag) | 
 | { | 
 | 	struct pci_dev *dev; | 
 | 	unsigned int *freset = (unsigned int *)flag; | 
 | 	struct eeh_dev *edev = (struct eeh_dev *)data; | 
 |  | 
 | 	dev = eeh_dev_to_pci_dev(edev); | 
 | 	if (dev) | 
 | 		*freset |= dev->needs_freset; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_pe_reset_full - Complete a full reset process on the indicated PE | 
 |  * @pe: EEH PE | 
 |  * | 
 |  * This function executes a full reset procedure on a PE, including setting | 
 |  * the appropriate flags, performing a fundamental or hot reset, and then | 
 |  * deactivating the reset status.  It is designed to be used within the EEH | 
 |  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and | 
 |  * only performs a single operation at a time. | 
 |  * | 
 |  * This function will attempt to reset a PE three times before failing. | 
 |  */ | 
 | int eeh_pe_reset_full(struct eeh_pe *pe) | 
 | { | 
 | 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED); | 
 | 	int type = EEH_RESET_HOT; | 
 | 	unsigned int freset = 0; | 
 | 	int i, state, ret; | 
 |  | 
 | 	/* | 
 | 	 * Determine the type of reset to perform - hot or fundamental. | 
 | 	 * Hot reset is the default operation, unless any device under the | 
 | 	 * PE requires a fundamental reset. | 
 | 	 */ | 
 | 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset); | 
 |  | 
 | 	if (freset) | 
 | 		type = EEH_RESET_FUNDAMENTAL; | 
 |  | 
 | 	/* Mark the PE as in reset state and block config space accesses */ | 
 | 	eeh_pe_state_mark(pe, reset_state); | 
 |  | 
 | 	/* Make three attempts at resetting the bus */ | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		ret = eeh_pe_reset(pe, type); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		/* Wait until the PE is in a functioning state */ | 
 | 		state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); | 
 | 		if (eeh_state_active(state)) | 
 | 			break; | 
 |  | 
 | 		if (state < 0) { | 
 | 			pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x", | 
 | 				__func__, pe->phb->global_number, pe->addr); | 
 | 			ret = -ENOTRECOVERABLE; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Set error in case this is our last attempt */ | 
 | 		ret = -EIO; | 
 | 		pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n", | 
 | 			__func__, state, pe->phb->global_number, pe->addr, (i + 1)); | 
 | 	} | 
 |  | 
 | 	eeh_pe_state_clear(pe, reset_state); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_save_bars - Save device bars | 
 |  * @edev: PCI device associated EEH device | 
 |  * | 
 |  * Save the values of the device bars. Unlike the restore | 
 |  * routine, this routine is *not* recursive. This is because | 
 |  * PCI devices are added individually; but, for the restore, | 
 |  * an entire slot is reset at a time. | 
 |  */ | 
 | void eeh_save_bars(struct eeh_dev *edev) | 
 | { | 
 | 	struct pci_dn *pdn; | 
 | 	int i; | 
 |  | 
 | 	pdn = eeh_dev_to_pdn(edev); | 
 | 	if (!pdn) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < 16; i++) | 
 | 		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]); | 
 |  | 
 | 	/* | 
 | 	 * For PCI bridges including root port, we need enable bus | 
 | 	 * master explicitly. Otherwise, it can't fetch IODA table | 
 | 	 * entries correctly. So we cache the bit in advance so that | 
 | 	 * we can restore it after reset, either PHB range or PE range. | 
 | 	 */ | 
 | 	if (edev->mode & EEH_DEV_BRIDGE) | 
 | 		edev->config_space[1] |= PCI_COMMAND_MASTER; | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_ops_register - Register platform dependent EEH operations | 
 |  * @ops: platform dependent EEH operations | 
 |  * | 
 |  * Register the platform dependent EEH operation callback | 
 |  * functions. The platform should call this function before | 
 |  * any other EEH operations. | 
 |  */ | 
 | int __init eeh_ops_register(struct eeh_ops *ops) | 
 | { | 
 | 	if (!ops->name) { | 
 | 		pr_warn("%s: Invalid EEH ops name for %p\n", | 
 | 			__func__, ops); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (eeh_ops && eeh_ops != ops) { | 
 | 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n", | 
 | 			__func__, eeh_ops->name, ops->name); | 
 | 		return -EEXIST; | 
 | 	} | 
 |  | 
 | 	eeh_ops = ops; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_ops_unregister - Unreigster platform dependent EEH operations | 
 |  * @name: name of EEH platform operations | 
 |  * | 
 |  * Unregister the platform dependent EEH operation callback | 
 |  * functions. | 
 |  */ | 
 | int __exit eeh_ops_unregister(const char *name) | 
 | { | 
 | 	if (!name || !strlen(name)) { | 
 | 		pr_warn("%s: Invalid EEH ops name\n", | 
 | 			__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (eeh_ops && !strcmp(eeh_ops->name, name)) { | 
 | 		eeh_ops = NULL; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -EEXIST; | 
 | } | 
 |  | 
 | static int eeh_reboot_notifier(struct notifier_block *nb, | 
 | 			       unsigned long action, void *unused) | 
 | { | 
 | 	eeh_clear_flag(EEH_ENABLED); | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static struct notifier_block eeh_reboot_nb = { | 
 | 	.notifier_call = eeh_reboot_notifier, | 
 | }; | 
 |  | 
 | void eeh_probe_devices(void) | 
 | { | 
 | 	struct pci_controller *hose, *tmp; | 
 | 	struct pci_dn *pdn; | 
 |  | 
 | 	/* Enable EEH for all adapters */ | 
 | 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) { | 
 | 		pdn = hose->pci_data; | 
 | 		traverse_pci_dn(pdn, eeh_ops->probe, NULL); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_init - EEH initialization | 
 |  * | 
 |  * Initialize EEH by trying to enable it for all of the adapters in the system. | 
 |  * As a side effect we can determine here if eeh is supported at all. | 
 |  * Note that we leave EEH on so failed config cycles won't cause a machine | 
 |  * check.  If a user turns off EEH for a particular adapter they are really | 
 |  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't | 
 |  * grant access to a slot if EEH isn't enabled, and so we always enable | 
 |  * EEH for all slots/all devices. | 
 |  * | 
 |  * The eeh-force-off option disables EEH checking globally, for all slots. | 
 |  * Even if force-off is set, the EEH hardware is still enabled, so that | 
 |  * newer systems can boot. | 
 |  */ | 
 | static int eeh_init(void) | 
 | { | 
 | 	struct pci_controller *hose, *tmp; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Register reboot notifier */ | 
 | 	ret = register_reboot_notifier(&eeh_reboot_nb); | 
 | 	if (ret) { | 
 | 		pr_warn("%s: Failed to register notifier (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* call platform initialization function */ | 
 | 	if (!eeh_ops) { | 
 | 		pr_warn("%s: Platform EEH operation not found\n", | 
 | 			__func__); | 
 | 		return -EEXIST; | 
 | 	} else if ((ret = eeh_ops->init())) | 
 | 		return ret; | 
 |  | 
 | 	/* Initialize PHB PEs */ | 
 | 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) | 
 | 		eeh_dev_phb_init_dynamic(hose); | 
 |  | 
 | 	/* Initialize EEH event */ | 
 | 	ret = eeh_event_init(); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	eeh_probe_devices(); | 
 |  | 
 | 	if (eeh_enabled()) | 
 | 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n"); | 
 | 	else | 
 | 		pr_info("EEH: No capable adapters found\n"); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | core_initcall_sync(eeh_init); | 
 |  | 
 | /** | 
 |  * eeh_add_device_early - Enable EEH for the indicated device node | 
 |  * @pdn: PCI device node for which to set up EEH | 
 |  * | 
 |  * This routine must be used to perform EEH initialization for PCI | 
 |  * devices that were added after system boot (e.g. hotplug, dlpar). | 
 |  * This routine must be called before any i/o is performed to the | 
 |  * adapter (inluding any config-space i/o). | 
 |  * Whether this actually enables EEH or not for this device depends | 
 |  * on the CEC architecture, type of the device, on earlier boot | 
 |  * command-line arguments & etc. | 
 |  */ | 
 | void eeh_add_device_early(struct pci_dn *pdn) | 
 | { | 
 | 	struct pci_controller *phb = pdn ? pdn->phb : NULL; | 
 | 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
 |  | 
 | 	if (!edev) | 
 | 		return; | 
 |  | 
 | 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE)) | 
 | 		return; | 
 |  | 
 | 	/* USB Bus children of PCI devices will not have BUID's */ | 
 | 	if (NULL == phb || | 
 | 	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid)) | 
 | 		return; | 
 |  | 
 | 	eeh_ops->probe(pdn, NULL); | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_add_device_tree_early - Enable EEH for the indicated device | 
 |  * @pdn: PCI device node | 
 |  * | 
 |  * This routine must be used to perform EEH initialization for the | 
 |  * indicated PCI device that was added after system boot (e.g. | 
 |  * hotplug, dlpar). | 
 |  */ | 
 | void eeh_add_device_tree_early(struct pci_dn *pdn) | 
 | { | 
 | 	struct pci_dn *n; | 
 |  | 
 | 	if (!pdn) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry(n, &pdn->child_list, list) | 
 | 		eeh_add_device_tree_early(n); | 
 | 	eeh_add_device_early(pdn); | 
 | } | 
 | EXPORT_SYMBOL_GPL(eeh_add_device_tree_early); | 
 |  | 
 | /** | 
 |  * eeh_add_device_late - Perform EEH initialization for the indicated pci device | 
 |  * @dev: pci device for which to set up EEH | 
 |  * | 
 |  * This routine must be used to complete EEH initialization for PCI | 
 |  * devices that were added after system boot (e.g. hotplug, dlpar). | 
 |  */ | 
 | void eeh_add_device_late(struct pci_dev *dev) | 
 | { | 
 | 	struct pci_dn *pdn; | 
 | 	struct eeh_dev *edev; | 
 |  | 
 | 	if (!dev || !eeh_enabled()) | 
 | 		return; | 
 |  | 
 | 	pr_debug("EEH: Adding device %s\n", pci_name(dev)); | 
 |  | 
 | 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); | 
 | 	edev = pdn_to_eeh_dev(pdn); | 
 | 	if (edev->pdev == dev) { | 
 | 		pr_debug("EEH: Already referenced !\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The EEH cache might not be removed correctly because of | 
 | 	 * unbalanced kref to the device during unplug time, which | 
 | 	 * relies on pcibios_release_device(). So we have to remove | 
 | 	 * that here explicitly. | 
 | 	 */ | 
 | 	if (edev->pdev) { | 
 | 		eeh_rmv_from_parent_pe(edev); | 
 | 		eeh_addr_cache_rmv_dev(edev->pdev); | 
 | 		eeh_sysfs_remove_device(edev->pdev); | 
 | 		edev->mode &= ~EEH_DEV_SYSFS; | 
 |  | 
 | 		/* | 
 | 		 * We definitely should have the PCI device removed | 
 | 		 * though it wasn't correctly. So we needn't call | 
 | 		 * into error handler afterwards. | 
 | 		 */ | 
 | 		edev->mode |= EEH_DEV_NO_HANDLER; | 
 |  | 
 | 		edev->pdev = NULL; | 
 | 		dev->dev.archdata.edev = NULL; | 
 | 	} | 
 |  | 
 | 	if (eeh_has_flag(EEH_PROBE_MODE_DEV)) | 
 | 		eeh_ops->probe(pdn, NULL); | 
 |  | 
 | 	edev->pdev = dev; | 
 | 	dev->dev.archdata.edev = edev; | 
 |  | 
 | 	eeh_addr_cache_insert_dev(dev); | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus | 
 |  * @bus: PCI bus | 
 |  * | 
 |  * This routine must be used to perform EEH initialization for PCI | 
 |  * devices which are attached to the indicated PCI bus. The PCI bus | 
 |  * is added after system boot through hotplug or dlpar. | 
 |  */ | 
 | void eeh_add_device_tree_late(struct pci_bus *bus) | 
 | { | 
 | 	struct pci_dev *dev; | 
 |  | 
 | 	list_for_each_entry(dev, &bus->devices, bus_list) { | 
 | 		eeh_add_device_late(dev); | 
 | 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { | 
 | 			struct pci_bus *subbus = dev->subordinate; | 
 | 			if (subbus) | 
 | 				eeh_add_device_tree_late(subbus); | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(eeh_add_device_tree_late); | 
 |  | 
 | /** | 
 |  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus | 
 |  * @bus: PCI bus | 
 |  * | 
 |  * This routine must be used to add EEH sysfs files for PCI | 
 |  * devices which are attached to the indicated PCI bus. The PCI bus | 
 |  * is added after system boot through hotplug or dlpar. | 
 |  */ | 
 | void eeh_add_sysfs_files(struct pci_bus *bus) | 
 | { | 
 | 	struct pci_dev *dev; | 
 |  | 
 | 	list_for_each_entry(dev, &bus->devices, bus_list) { | 
 | 		eeh_sysfs_add_device(dev); | 
 | 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { | 
 | 			struct pci_bus *subbus = dev->subordinate; | 
 | 			if (subbus) | 
 | 				eeh_add_sysfs_files(subbus); | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(eeh_add_sysfs_files); | 
 |  | 
 | /** | 
 |  * eeh_remove_device - Undo EEH setup for the indicated pci device | 
 |  * @dev: pci device to be removed | 
 |  * | 
 |  * This routine should be called when a device is removed from | 
 |  * a running system (e.g. by hotplug or dlpar).  It unregisters | 
 |  * the PCI device from the EEH subsystem.  I/O errors affecting | 
 |  * this device will no longer be detected after this call; thus, | 
 |  * i/o errors affecting this slot may leave this device unusable. | 
 |  */ | 
 | void eeh_remove_device(struct pci_dev *dev) | 
 | { | 
 | 	struct eeh_dev *edev; | 
 |  | 
 | 	if (!dev || !eeh_enabled()) | 
 | 		return; | 
 | 	edev = pci_dev_to_eeh_dev(dev); | 
 |  | 
 | 	/* Unregister the device with the EEH/PCI address search system */ | 
 | 	pr_debug("EEH: Removing device %s\n", pci_name(dev)); | 
 |  | 
 | 	if (!edev || !edev->pdev || !edev->pe) { | 
 | 		pr_debug("EEH: Not referenced !\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * During the hotplug for EEH error recovery, we need the EEH | 
 | 	 * device attached to the parent PE in order for BAR restore | 
 | 	 * a bit later. So we keep it for BAR restore and remove it | 
 | 	 * from the parent PE during the BAR resotre. | 
 | 	 */ | 
 | 	edev->pdev = NULL; | 
 |  | 
 | 	/* | 
 | 	 * The flag "in_error" is used to trace EEH devices for VFs | 
 | 	 * in error state or not. It's set in eeh_report_error(). If | 
 | 	 * it's not set, eeh_report_{reset,resume}() won't be called | 
 | 	 * for the VF EEH device. | 
 | 	 */ | 
 | 	edev->in_error = false; | 
 | 	dev->dev.archdata.edev = NULL; | 
 | 	if (!(edev->pe->state & EEH_PE_KEEP)) | 
 | 		eeh_rmv_from_parent_pe(edev); | 
 | 	else | 
 | 		edev->mode |= EEH_DEV_DISCONNECTED; | 
 |  | 
 | 	/* | 
 | 	 * We're removing from the PCI subsystem, that means | 
 | 	 * the PCI device driver can't support EEH or not | 
 | 	 * well. So we rely on hotplug completely to do recovery | 
 | 	 * for the specific PCI device. | 
 | 	 */ | 
 | 	edev->mode |= EEH_DEV_NO_HANDLER; | 
 |  | 
 | 	eeh_addr_cache_rmv_dev(dev); | 
 | 	eeh_sysfs_remove_device(dev); | 
 | 	edev->mode &= ~EEH_DEV_SYSFS; | 
 | } | 
 |  | 
 | int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); | 
 | 	if (ret) { | 
 | 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n", | 
 | 			__func__, ret, pe->phb->global_number, pe->addr); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA); | 
 | 	if (ret) { | 
 | 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n", | 
 | 			__func__, ret, pe->phb->global_number, pe->addr); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* Clear software isolated state */ | 
 | 	if (sw_state && (pe->state & EEH_PE_ISOLATED)) | 
 | 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | static struct pci_device_id eeh_reset_ids[] = { | 
 | 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */ | 
 | 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */ | 
 | 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */ | 
 | 	{ 0 } | 
 | }; | 
 |  | 
 | static int eeh_pe_change_owner(struct eeh_pe *pe) | 
 | { | 
 | 	struct eeh_dev *edev, *tmp; | 
 | 	struct pci_dev *pdev; | 
 | 	struct pci_device_id *id; | 
 | 	int ret; | 
 |  | 
 | 	/* Check PE state */ | 
 | 	ret = eeh_ops->get_state(pe, NULL); | 
 | 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT) | 
 | 		return 0; | 
 |  | 
 | 	/* Unfrozen PE, nothing to do */ | 
 | 	if (eeh_state_active(ret)) | 
 | 		return 0; | 
 |  | 
 | 	/* Frozen PE, check if it needs PE level reset */ | 
 | 	eeh_pe_for_each_dev(pe, edev, tmp) { | 
 | 		pdev = eeh_dev_to_pci_dev(edev); | 
 | 		if (!pdev) | 
 | 			continue; | 
 |  | 
 | 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) { | 
 | 			if (id->vendor != PCI_ANY_ID && | 
 | 			    id->vendor != pdev->vendor) | 
 | 				continue; | 
 | 			if (id->device != PCI_ANY_ID && | 
 | 			    id->device != pdev->device) | 
 | 				continue; | 
 | 			if (id->subvendor != PCI_ANY_ID && | 
 | 			    id->subvendor != pdev->subsystem_vendor) | 
 | 				continue; | 
 | 			if (id->subdevice != PCI_ANY_ID && | 
 | 			    id->subdevice != pdev->subsystem_device) | 
 | 				continue; | 
 |  | 
 | 			return eeh_pe_reset_and_recover(pe); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return eeh_unfreeze_pe(pe, true); | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_dev_open - Increase count of pass through devices for PE | 
 |  * @pdev: PCI device | 
 |  * | 
 |  * Increase count of passed through devices for the indicated | 
 |  * PE. In the result, the EEH errors detected on the PE won't be | 
 |  * reported. The PE owner will be responsible for detection | 
 |  * and recovery. | 
 |  */ | 
 | int eeh_dev_open(struct pci_dev *pdev) | 
 | { | 
 | 	struct eeh_dev *edev; | 
 | 	int ret = -ENODEV; | 
 |  | 
 | 	mutex_lock(&eeh_dev_mutex); | 
 |  | 
 | 	/* No PCI device ? */ | 
 | 	if (!pdev) | 
 | 		goto out; | 
 |  | 
 | 	/* No EEH device or PE ? */ | 
 | 	edev = pci_dev_to_eeh_dev(pdev); | 
 | 	if (!edev || !edev->pe) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * The PE might have been put into frozen state, but we | 
 | 	 * didn't detect that yet. The passed through PCI devices | 
 | 	 * in frozen PE won't work properly. Clear the frozen state | 
 | 	 * in advance. | 
 | 	 */ | 
 | 	ret = eeh_pe_change_owner(edev->pe); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	/* Increase PE's pass through count */ | 
 | 	atomic_inc(&edev->pe->pass_dev_cnt); | 
 | 	mutex_unlock(&eeh_dev_mutex); | 
 |  | 
 | 	return 0; | 
 | out: | 
 | 	mutex_unlock(&eeh_dev_mutex); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(eeh_dev_open); | 
 |  | 
 | /** | 
 |  * eeh_dev_release - Decrease count of pass through devices for PE | 
 |  * @pdev: PCI device | 
 |  * | 
 |  * Decrease count of pass through devices for the indicated PE. If | 
 |  * there is no passed through device in PE, the EEH errors detected | 
 |  * on the PE will be reported and handled as usual. | 
 |  */ | 
 | void eeh_dev_release(struct pci_dev *pdev) | 
 | { | 
 | 	struct eeh_dev *edev; | 
 |  | 
 | 	mutex_lock(&eeh_dev_mutex); | 
 |  | 
 | 	/* No PCI device ? */ | 
 | 	if (!pdev) | 
 | 		goto out; | 
 |  | 
 | 	/* No EEH device ? */ | 
 | 	edev = pci_dev_to_eeh_dev(pdev); | 
 | 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe)) | 
 | 		goto out; | 
 |  | 
 | 	/* Decrease PE's pass through count */ | 
 | 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0); | 
 | 	eeh_pe_change_owner(edev->pe); | 
 | out: | 
 | 	mutex_unlock(&eeh_dev_mutex); | 
 | } | 
 | EXPORT_SYMBOL(eeh_dev_release); | 
 |  | 
 | #ifdef CONFIG_IOMMU_API | 
 |  | 
 | static int dev_has_iommu_table(struct device *dev, void *data) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev); | 
 | 	struct pci_dev **ppdev = data; | 
 |  | 
 | 	if (!dev) | 
 | 		return 0; | 
 |  | 
 | 	if (dev->iommu_group) { | 
 | 		*ppdev = pdev; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE | 
 |  * @group: IOMMU group | 
 |  * | 
 |  * The routine is called to convert IOMMU group to EEH PE. | 
 |  */ | 
 | struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group) | 
 | { | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	struct eeh_dev *edev; | 
 | 	int ret; | 
 |  | 
 | 	/* No IOMMU group ? */ | 
 | 	if (!group) | 
 | 		return NULL; | 
 |  | 
 | 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table); | 
 | 	if (!ret || !pdev) | 
 | 		return NULL; | 
 |  | 
 | 	/* No EEH device or PE ? */ | 
 | 	edev = pci_dev_to_eeh_dev(pdev); | 
 | 	if (!edev || !edev->pe) | 
 | 		return NULL; | 
 |  | 
 | 	return edev->pe; | 
 | } | 
 | EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe); | 
 |  | 
 | #endif /* CONFIG_IOMMU_API */ | 
 |  | 
 | /** | 
 |  * eeh_pe_set_option - Set options for the indicated PE | 
 |  * @pe: EEH PE | 
 |  * @option: requested option | 
 |  * | 
 |  * The routine is called to enable or disable EEH functionality | 
 |  * on the indicated PE, to enable IO or DMA for the frozen PE. | 
 |  */ | 
 | int eeh_pe_set_option(struct eeh_pe *pe, int option) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Invalid PE ? */ | 
 | 	if (!pe) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* | 
 | 	 * EEH functionality could possibly be disabled, just | 
 | 	 * return error for the case. And the EEH functinality | 
 | 	 * isn't expected to be disabled on one specific PE. | 
 | 	 */ | 
 | 	switch (option) { | 
 | 	case EEH_OPT_ENABLE: | 
 | 		if (eeh_enabled()) { | 
 | 			ret = eeh_pe_change_owner(pe); | 
 | 			break; | 
 | 		} | 
 | 		ret = -EIO; | 
 | 		break; | 
 | 	case EEH_OPT_DISABLE: | 
 | 		break; | 
 | 	case EEH_OPT_THAW_MMIO: | 
 | 	case EEH_OPT_THAW_DMA: | 
 | 	case EEH_OPT_FREEZE_PE: | 
 | 		if (!eeh_ops || !eeh_ops->set_option) { | 
 | 			ret = -ENOENT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ret = eeh_pci_enable(pe, option); | 
 | 		break; | 
 | 	default: | 
 | 		pr_debug("%s: Option %d out of range (%d, %d)\n", | 
 | 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(eeh_pe_set_option); | 
 |  | 
 | /** | 
 |  * eeh_pe_get_state - Retrieve PE's state | 
 |  * @pe: EEH PE | 
 |  * | 
 |  * Retrieve the PE's state, which includes 3 aspects: enabled | 
 |  * DMA, enabled IO and asserted reset. | 
 |  */ | 
 | int eeh_pe_get_state(struct eeh_pe *pe) | 
 | { | 
 | 	int result, ret = 0; | 
 | 	bool rst_active, dma_en, mmio_en; | 
 |  | 
 | 	/* Existing PE ? */ | 
 | 	if (!pe) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (!eeh_ops || !eeh_ops->get_state) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * If the parent PE is owned by the host kernel and is undergoing | 
 | 	 * error recovery, we should return the PE state as temporarily | 
 | 	 * unavailable so that the error recovery on the guest is suspended | 
 | 	 * until the recovery completes on the host. | 
 | 	 */ | 
 | 	if (pe->parent && | 
 | 	    !(pe->state & EEH_PE_REMOVED) && | 
 | 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING))) | 
 | 		return EEH_PE_STATE_UNAVAIL; | 
 |  | 
 | 	result = eeh_ops->get_state(pe, NULL); | 
 | 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE); | 
 | 	dma_en = !!(result & EEH_STATE_DMA_ENABLED); | 
 | 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED); | 
 |  | 
 | 	if (rst_active) | 
 | 		ret = EEH_PE_STATE_RESET; | 
 | 	else if (dma_en && mmio_en) | 
 | 		ret = EEH_PE_STATE_NORMAL; | 
 | 	else if (!dma_en && !mmio_en) | 
 | 		ret = EEH_PE_STATE_STOPPED_IO_DMA; | 
 | 	else if (!dma_en && mmio_en) | 
 | 		ret = EEH_PE_STATE_STOPPED_DMA; | 
 | 	else | 
 | 		ret = EEH_PE_STATE_UNAVAIL; | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(eeh_pe_get_state); | 
 |  | 
 | static int eeh_pe_reenable_devices(struct eeh_pe *pe) | 
 | { | 
 | 	struct eeh_dev *edev, *tmp; | 
 | 	struct pci_dev *pdev; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Restore config space */ | 
 | 	eeh_pe_restore_bars(pe); | 
 |  | 
 | 	/* | 
 | 	 * Reenable PCI devices as the devices passed | 
 | 	 * through are always enabled before the reset. | 
 | 	 */ | 
 | 	eeh_pe_for_each_dev(pe, edev, tmp) { | 
 | 		pdev = eeh_dev_to_pci_dev(edev); | 
 | 		if (!pdev) | 
 | 			continue; | 
 |  | 
 | 		ret = pci_reenable_device(pdev); | 
 | 		if (ret) { | 
 | 			pr_warn("%s: Failure %d reenabling %s\n", | 
 | 				__func__, ret, pci_name(pdev)); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* The PE is still in frozen state */ | 
 | 	return eeh_unfreeze_pe(pe, true); | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * eeh_pe_reset - Issue PE reset according to specified type | 
 |  * @pe: EEH PE | 
 |  * @option: reset type | 
 |  * | 
 |  * The routine is called to reset the specified PE with the | 
 |  * indicated type, either fundamental reset or hot reset. | 
 |  * PE reset is the most important part for error recovery. | 
 |  */ | 
 | int eeh_pe_reset(struct eeh_pe *pe, int option) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Invalid PE ? */ | 
 | 	if (!pe) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset) | 
 | 		return -ENOENT; | 
 |  | 
 | 	switch (option) { | 
 | 	case EEH_RESET_DEACTIVATE: | 
 | 		ret = eeh_ops->reset(pe, option); | 
 | 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		ret = eeh_pe_reenable_devices(pe); | 
 | 		break; | 
 | 	case EEH_RESET_HOT: | 
 | 	case EEH_RESET_FUNDAMENTAL: | 
 | 		/* | 
 | 		 * Proactively freeze the PE to drop all MMIO access | 
 | 		 * during reset, which should be banned as it's always | 
 | 		 * cause recursive EEH error. | 
 | 		 */ | 
 | 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE); | 
 |  | 
 | 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED); | 
 | 		ret = eeh_ops->reset(pe, option); | 
 | 		break; | 
 | 	default: | 
 | 		pr_debug("%s: Unsupported option %d\n", | 
 | 			__func__, option); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(eeh_pe_reset); | 
 |  | 
 | /** | 
 |  * eeh_pe_configure - Configure PCI bridges after PE reset | 
 |  * @pe: EEH PE | 
 |  * | 
 |  * The routine is called to restore the PCI config space for | 
 |  * those PCI devices, especially PCI bridges affected by PE | 
 |  * reset issued previously. | 
 |  */ | 
 | int eeh_pe_configure(struct eeh_pe *pe) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Invalid PE ? */ | 
 | 	if (!pe) | 
 | 		return -ENODEV; | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(eeh_pe_configure); | 
 |  | 
 | /** | 
 |  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE | 
 |  * @pe: the indicated PE | 
 |  * @type: error type | 
 |  * @function: error function | 
 |  * @addr: address | 
 |  * @mask: address mask | 
 |  * | 
 |  * The routine is called to inject the specified PCI error, which | 
 |  * is determined by @type and @function, to the indicated PE for | 
 |  * testing purpose. | 
 |  */ | 
 | int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func, | 
 | 		      unsigned long addr, unsigned long mask) | 
 | { | 
 | 	/* Invalid PE ? */ | 
 | 	if (!pe) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* Unsupported operation ? */ | 
 | 	if (!eeh_ops || !eeh_ops->err_inject) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* Check on PCI error type */ | 
 | 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Check on PCI error function */ | 
 | 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return eeh_ops->err_inject(pe, type, func, addr, mask); | 
 | } | 
 | EXPORT_SYMBOL_GPL(eeh_pe_inject_err); | 
 |  | 
 | static int proc_eeh_show(struct seq_file *m, void *v) | 
 | { | 
 | 	if (!eeh_enabled()) { | 
 | 		seq_printf(m, "EEH Subsystem is globally disabled\n"); | 
 | 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs); | 
 | 	} else { | 
 | 		seq_printf(m, "EEH Subsystem is enabled\n"); | 
 | 		seq_printf(m, | 
 | 				"no device=%llu\n" | 
 | 				"no device node=%llu\n" | 
 | 				"no config address=%llu\n" | 
 | 				"check not wanted=%llu\n" | 
 | 				"eeh_total_mmio_ffs=%llu\n" | 
 | 				"eeh_false_positives=%llu\n" | 
 | 				"eeh_slot_resets=%llu\n", | 
 | 				eeh_stats.no_device, | 
 | 				eeh_stats.no_dn, | 
 | 				eeh_stats.no_cfg_addr, | 
 | 				eeh_stats.ignored_check, | 
 | 				eeh_stats.total_mmio_ffs, | 
 | 				eeh_stats.false_positives, | 
 | 				eeh_stats.slot_resets); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int proc_eeh_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return single_open(file, proc_eeh_show, NULL); | 
 | } | 
 |  | 
 | static const struct file_operations proc_eeh_operations = { | 
 | 	.open      = proc_eeh_open, | 
 | 	.read      = seq_read, | 
 | 	.llseek    = seq_lseek, | 
 | 	.release   = single_release, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_DEBUG_FS | 
 | static int eeh_enable_dbgfs_set(void *data, u64 val) | 
 | { | 
 | 	if (val) | 
 | 		eeh_clear_flag(EEH_FORCE_DISABLED); | 
 | 	else | 
 | 		eeh_add_flag(EEH_FORCE_DISABLED); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int eeh_enable_dbgfs_get(void *data, u64 *val) | 
 | { | 
 | 	if (eeh_enabled()) | 
 | 		*val = 0x1ul; | 
 | 	else | 
 | 		*val = 0x0ul; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int eeh_freeze_dbgfs_set(void *data, u64 val) | 
 | { | 
 | 	eeh_max_freezes = val; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int eeh_freeze_dbgfs_get(void *data, u64 *val) | 
 | { | 
 | 	*val = eeh_max_freezes; | 
 | 	return 0; | 
 | } | 
 |  | 
 | DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get, | 
 | 			eeh_enable_dbgfs_set, "0x%llx\n"); | 
 | DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get, | 
 | 			eeh_freeze_dbgfs_set, "0x%llx\n"); | 
 | #endif | 
 |  | 
 | static int __init eeh_init_proc(void) | 
 | { | 
 | 	if (machine_is(pseries) || machine_is(powernv)) { | 
 | 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations); | 
 | #ifdef CONFIG_DEBUG_FS | 
 | 		debugfs_create_file("eeh_enable", 0600, | 
 |                                     powerpc_debugfs_root, NULL, | 
 |                                     &eeh_enable_dbgfs_ops); | 
 | 		debugfs_create_file("eeh_max_freezes", 0600, | 
 | 				    powerpc_debugfs_root, NULL, | 
 | 				    &eeh_freeze_dbgfs_ops); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | __initcall(eeh_init_proc); |