| /* | 
 |  * User-space Probes (UProbes) for x86 | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
 |  * | 
 |  * Copyright (C) IBM Corporation, 2008-2011 | 
 |  * Authors: | 
 |  *	Srikar Dronamraju | 
 |  *	Jim Keniston | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/uprobes.h> | 
 | #include <linux/uaccess.h> | 
 |  | 
 | #include <linux/kdebug.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/insn.h> | 
 | #include <asm/mmu_context.h> | 
 |  | 
 | /* Post-execution fixups. */ | 
 |  | 
 | /* Adjust IP back to vicinity of actual insn */ | 
 | #define UPROBE_FIX_IP		0x01 | 
 |  | 
 | /* Adjust the return address of a call insn */ | 
 | #define UPROBE_FIX_CALL		0x02 | 
 |  | 
 | /* Instruction will modify TF, don't change it */ | 
 | #define UPROBE_FIX_SETF		0x04 | 
 |  | 
 | #define UPROBE_FIX_RIP_SI	0x08 | 
 | #define UPROBE_FIX_RIP_DI	0x10 | 
 | #define UPROBE_FIX_RIP_BX	0x20 | 
 | #define UPROBE_FIX_RIP_MASK	\ | 
 | 	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX) | 
 |  | 
 | #define	UPROBE_TRAP_NR		UINT_MAX | 
 |  | 
 | /* Adaptations for mhiramat x86 decoder v14. */ | 
 | #define OPCODE1(insn)		((insn)->opcode.bytes[0]) | 
 | #define OPCODE2(insn)		((insn)->opcode.bytes[1]) | 
 | #define OPCODE3(insn)		((insn)->opcode.bytes[2]) | 
 | #define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value) | 
 |  | 
 | #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ | 
 | 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \ | 
 | 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \ | 
 | 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \ | 
 | 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \ | 
 | 	 << (row % 32)) | 
 |  | 
 | /* | 
 |  * Good-instruction tables for 32-bit apps.  This is non-const and volatile | 
 |  * to keep gcc from statically optimizing it out, as variable_test_bit makes | 
 |  * some versions of gcc to think only *(unsigned long*) is used. | 
 |  * | 
 |  * Opcodes we'll probably never support: | 
 |  * 6c-6f - ins,outs. SEGVs if used in userspace | 
 |  * e4-e7 - in,out imm. SEGVs if used in userspace | 
 |  * ec-ef - in,out acc. SEGVs if used in userspace | 
 |  * cc - int3. SIGTRAP if used in userspace | 
 |  * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs | 
 |  *	(why we support bound (62) then? it's similar, and similarly unused...) | 
 |  * f1 - int1. SIGTRAP if used in userspace | 
 |  * f4 - hlt. SEGVs if used in userspace | 
 |  * fa - cli. SEGVs if used in userspace | 
 |  * fb - sti. SEGVs if used in userspace | 
 |  * | 
 |  * Opcodes which need some work to be supported: | 
 |  * 07,17,1f - pop es/ss/ds | 
 |  *	Normally not used in userspace, but would execute if used. | 
 |  *	Can cause GP or stack exception if tries to load wrong segment descriptor. | 
 |  *	We hesitate to run them under single step since kernel's handling | 
 |  *	of userspace single-stepping (TF flag) is fragile. | 
 |  *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e) | 
 |  *	on the same grounds that they are never used. | 
 |  * cd - int N. | 
 |  *	Used by userspace for "int 80" syscall entry. (Other "int N" | 
 |  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). | 
 |  *	Not supported since kernel's handling of userspace single-stepping | 
 |  *	(TF flag) is fragile. | 
 |  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad | 
 |  */ | 
 | #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) | 
 | static volatile u32 good_insns_32[256 / 32] = { | 
 | 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */ | 
 | 	/*      ----------------------------------------------         */ | 
 | 	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */ | 
 | 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ | 
 | 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ | 
 | 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ | 
 | 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ | 
 | 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ | 
 | 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ | 
 | 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ | 
 | 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ | 
 | 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ | 
 | 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ | 
 | 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ | 
 | 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ | 
 | 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ | 
 | 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ | 
 | 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */ | 
 | 	/*      ----------------------------------------------         */ | 
 | 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */ | 
 | }; | 
 | #else | 
 | #define good_insns_32	NULL | 
 | #endif | 
 |  | 
 | /* Good-instruction tables for 64-bit apps. | 
 |  * | 
 |  * Genuinely invalid opcodes: | 
 |  * 06,07 - formerly push/pop es | 
 |  * 0e - formerly push cs | 
 |  * 16,17 - formerly push/pop ss | 
 |  * 1e,1f - formerly push/pop ds | 
 |  * 27,2f,37,3f - formerly daa/das/aaa/aas | 
 |  * 60,61 - formerly pusha/popa | 
 |  * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported) | 
 |  * 82 - formerly redundant encoding of Group1 | 
 |  * 9a - formerly call seg:ofs | 
 |  * ce - formerly into | 
 |  * d4,d5 - formerly aam/aad | 
 |  * d6 - formerly undocumented salc | 
 |  * ea - formerly jmp seg:ofs | 
 |  * | 
 |  * Opcodes we'll probably never support: | 
 |  * 6c-6f - ins,outs. SEGVs if used in userspace | 
 |  * e4-e7 - in,out imm. SEGVs if used in userspace | 
 |  * ec-ef - in,out acc. SEGVs if used in userspace | 
 |  * cc - int3. SIGTRAP if used in userspace | 
 |  * f1 - int1. SIGTRAP if used in userspace | 
 |  * f4 - hlt. SEGVs if used in userspace | 
 |  * fa - cli. SEGVs if used in userspace | 
 |  * fb - sti. SEGVs if used in userspace | 
 |  * | 
 |  * Opcodes which need some work to be supported: | 
 |  * cd - int N. | 
 |  *	Used by userspace for "int 80" syscall entry. (Other "int N" | 
 |  *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). | 
 |  *	Not supported since kernel's handling of userspace single-stepping | 
 |  *	(TF flag) is fragile. | 
 |  * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad | 
 |  */ | 
 | #if defined(CONFIG_X86_64) | 
 | static volatile u32 good_insns_64[256 / 32] = { | 
 | 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */ | 
 | 	/*      ----------------------------------------------         */ | 
 | 	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */ | 
 | 	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ | 
 | 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */ | 
 | 	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */ | 
 | 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ | 
 | 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ | 
 | 	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ | 
 | 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ | 
 | 	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ | 
 | 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */ | 
 | 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ | 
 | 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ | 
 | 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ | 
 | 	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ | 
 | 	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */ | 
 | 	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */ | 
 | 	/*      ----------------------------------------------         */ | 
 | 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */ | 
 | }; | 
 | #else | 
 | #define good_insns_64	NULL | 
 | #endif | 
 |  | 
 | /* Using this for both 64-bit and 32-bit apps. | 
 |  * Opcodes we don't support: | 
 |  * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns | 
 |  * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group. | 
 |  *	Also encodes tons of other system insns if mod=11. | 
 |  *	Some are in fact non-system: xend, xtest, rdtscp, maybe more | 
 |  * 0f 05 - syscall | 
 |  * 0f 06 - clts (CPL0 insn) | 
 |  * 0f 07 - sysret | 
 |  * 0f 08 - invd (CPL0 insn) | 
 |  * 0f 09 - wbinvd (CPL0 insn) | 
 |  * 0f 0b - ud2 | 
 |  * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?) | 
 |  * 0f 34 - sysenter | 
 |  * 0f 35 - sysexit | 
 |  * 0f 37 - getsec | 
 |  * 0f 78 - vmread (Intel VMX. CPL0 insn) | 
 |  * 0f 79 - vmwrite (Intel VMX. CPL0 insn) | 
 |  *	Note: with prefixes, these two opcodes are | 
 |  *	extrq/insertq/AVX512 convert vector ops. | 
 |  * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt], | 
 |  *	{rd,wr}{fs,gs}base,{s,l,m}fence. | 
 |  *	Why? They are all user-executable. | 
 |  */ | 
 | static volatile u32 good_2byte_insns[256 / 32] = { | 
 | 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */ | 
 | 	/*      ----------------------------------------------         */ | 
 | 	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */ | 
 | 	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ | 
 | 	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ | 
 | 	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ | 
 | 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ | 
 | 	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ | 
 | 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ | 
 | 	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */ | 
 | 	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ | 
 | 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ | 
 | 	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ | 
 | 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ | 
 | 	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ | 
 | 	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ | 
 | 	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ | 
 | 	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */ | 
 | 	/*      ----------------------------------------------         */ | 
 | 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */ | 
 | }; | 
 | #undef W | 
 |  | 
 | /* | 
 |  * opcodes we may need to refine support for: | 
 |  * | 
 |  *  0f - 2-byte instructions: For many of these instructions, the validity | 
 |  *  depends on the prefix and/or the reg field.  On such instructions, we | 
 |  *  just consider the opcode combination valid if it corresponds to any | 
 |  *  valid instruction. | 
 |  * | 
 |  *  8f - Group 1 - only reg = 0 is OK | 
 |  *  c6-c7 - Group 11 - only reg = 0 is OK | 
 |  *  d9-df - fpu insns with some illegal encodings | 
 |  *  f2, f3 - repnz, repz prefixes.  These are also the first byte for | 
 |  *  certain floating-point instructions, such as addsd. | 
 |  * | 
 |  *  fe - Group 4 - only reg = 0 or 1 is OK | 
 |  *  ff - Group 5 - only reg = 0-6 is OK | 
 |  * | 
 |  * others -- Do we need to support these? | 
 |  * | 
 |  *  0f - (floating-point?) prefetch instructions | 
 |  *  07, 17, 1f - pop es, pop ss, pop ds | 
 |  *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- | 
 |  *	but 64 and 65 (fs: and gs:) seem to be used, so we support them | 
 |  *  67 - addr16 prefix | 
 |  *  ce - into | 
 |  *  f0 - lock prefix | 
 |  */ | 
 |  | 
 | /* | 
 |  * TODO: | 
 |  * - Where necessary, examine the modrm byte and allow only valid instructions | 
 |  * in the different Groups and fpu instructions. | 
 |  */ | 
 |  | 
 | static bool is_prefix_bad(struct insn *insn) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < insn->prefixes.nbytes; i++) { | 
 | 		switch (insn->prefixes.bytes[i]) { | 
 | 		case 0x26:	/* INAT_PFX_ES   */ | 
 | 		case 0x2E:	/* INAT_PFX_CS   */ | 
 | 		case 0x36:	/* INAT_PFX_DS   */ | 
 | 		case 0x3E:	/* INAT_PFX_SS   */ | 
 | 		case 0xF0:	/* INAT_PFX_LOCK */ | 
 | 			return true; | 
 | 		} | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64) | 
 | { | 
 | 	u32 volatile *good_insns; | 
 |  | 
 | 	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64); | 
 | 	/* has the side-effect of processing the entire instruction */ | 
 | 	insn_get_length(insn); | 
 | 	if (WARN_ON_ONCE(!insn_complete(insn))) | 
 | 		return -ENOEXEC; | 
 |  | 
 | 	if (is_prefix_bad(insn)) | 
 | 		return -ENOTSUPP; | 
 |  | 
 | 	if (x86_64) | 
 | 		good_insns = good_insns_64; | 
 | 	else | 
 | 		good_insns = good_insns_32; | 
 |  | 
 | 	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns)) | 
 | 		return 0; | 
 |  | 
 | 	if (insn->opcode.nbytes == 2) { | 
 | 		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return -ENOTSUPP; | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | /* | 
 |  * If arch_uprobe->insn doesn't use rip-relative addressing, return | 
 |  * immediately.  Otherwise, rewrite the instruction so that it accesses | 
 |  * its memory operand indirectly through a scratch register.  Set | 
 |  * defparam->fixups accordingly. (The contents of the scratch register | 
 |  * will be saved before we single-step the modified instruction, | 
 |  * and restored afterward). | 
 |  * | 
 |  * We do this because a rip-relative instruction can access only a | 
 |  * relatively small area (+/- 2 GB from the instruction), and the XOL | 
 |  * area typically lies beyond that area.  At least for instructions | 
 |  * that store to memory, we can't execute the original instruction | 
 |  * and "fix things up" later, because the misdirected store could be | 
 |  * disastrous. | 
 |  * | 
 |  * Some useful facts about rip-relative instructions: | 
 |  * | 
 |  *  - There's always a modrm byte with bit layout "00 reg 101". | 
 |  *  - There's never a SIB byte. | 
 |  *  - The displacement is always 4 bytes. | 
 |  *  - REX.B=1 bit in REX prefix, which normally extends r/m field, | 
 |  *    has no effect on rip-relative mode. It doesn't make modrm byte | 
 |  *    with r/m=101 refer to register 1101 = R13. | 
 |  */ | 
 | static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) | 
 | { | 
 | 	u8 *cursor; | 
 | 	u8 reg; | 
 | 	u8 reg2; | 
 |  | 
 | 	if (!insn_rip_relative(insn)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm. | 
 | 	 * Clear REX.b bit (extension of MODRM.rm field): | 
 | 	 * we want to encode low numbered reg, not r8+. | 
 | 	 */ | 
 | 	if (insn->rex_prefix.nbytes) { | 
 | 		cursor = auprobe->insn + insn_offset_rex_prefix(insn); | 
 | 		/* REX byte has 0100wrxb layout, clearing REX.b bit */ | 
 | 		*cursor &= 0xfe; | 
 | 	} | 
 | 	/* | 
 | 	 * Similar treatment for VEX3/EVEX prefix. | 
 | 	 * TODO: add XOP treatment when insn decoder supports them | 
 | 	 */ | 
 | 	if (insn->vex_prefix.nbytes >= 3) { | 
 | 		/* | 
 | 		 * vex2:     c5    rvvvvLpp   (has no b bit) | 
 | 		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp | 
 | 		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa | 
 | 		 * Setting VEX3.b (setting because it has inverted meaning). | 
 | 		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x | 
 | 		 * is the 4th bit of MODRM.rm, and needs the same treatment. | 
 | 		 * For VEX3-encoded insns, VEX3.x value has no effect in | 
 | 		 * non-SIB encoding, the change is superfluous but harmless. | 
 | 		 */ | 
 | 		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1; | 
 | 		*cursor |= 0x60; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Convert from rip-relative addressing to register-relative addressing | 
 | 	 * via a scratch register. | 
 | 	 * | 
 | 	 * This is tricky since there are insns with modrm byte | 
 | 	 * which also use registers not encoded in modrm byte: | 
 | 	 * [i]div/[i]mul: implicitly use dx:ax | 
 | 	 * shift ops: implicitly use cx | 
 | 	 * cmpxchg: implicitly uses ax | 
 | 	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx | 
 | 	 *   Encoding: 0f c7/1 modrm | 
 | 	 *   The code below thinks that reg=1 (cx), chooses si as scratch. | 
 | 	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m. | 
 | 	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded. | 
 | 	 *   Example where none of bx,cx,dx can be used as scratch reg: | 
 | 	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx | 
 | 	 * [v]pcmpistri: implicitly uses cx, xmm0 | 
 | 	 * [v]pcmpistrm: implicitly uses xmm0 | 
 | 	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0 | 
 | 	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0 | 
 | 	 *   Evil SSE4.2 string comparison ops from hell. | 
 | 	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination. | 
 | 	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm. | 
 | 	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi). | 
 | 	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111) | 
 | 	 *   and that it can have only register operands, not mem | 
 | 	 *   (its modrm byte must have mode=11). | 
 | 	 *   If these restrictions will ever be lifted, | 
 | 	 *   we'll need code to prevent selection of di as scratch reg! | 
 | 	 * | 
 | 	 * Summary: I don't know any insns with modrm byte which | 
 | 	 * use SI register implicitly. DI register is used only | 
 | 	 * by one insn (maskmovq) and BX register is used | 
 | 	 * only by one too (cmpxchg8b). | 
 | 	 * BP is stack-segment based (may be a problem?). | 
 | 	 * AX, DX, CX are off-limits (many implicit users). | 
 | 	 * SP is unusable (it's stack pointer - think about "pop mem"; | 
 | 	 * also, rsp+disp32 needs sib encoding -> insn length change). | 
 | 	 */ | 
 |  | 
 | 	reg = MODRM_REG(insn);	/* Fetch modrm.reg */ | 
 | 	reg2 = 0xff;		/* Fetch vex.vvvv */ | 
 | 	if (insn->vex_prefix.nbytes) | 
 | 		reg2 = insn->vex_prefix.bytes[2]; | 
 | 	/* | 
 | 	 * TODO: add XOP vvvv reading. | 
 | 	 * | 
 | 	 * vex.vvvv field is in bits 6-3, bits are inverted. | 
 | 	 * But in 32-bit mode, high-order bit may be ignored. | 
 | 	 * Therefore, let's consider only 3 low-order bits. | 
 | 	 */ | 
 | 	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7; | 
 | 	/* | 
 | 	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15. | 
 | 	 * | 
 | 	 * Choose scratch reg. Order is important: must not select bx | 
 | 	 * if we can use si (cmpxchg8b case!) | 
 | 	 */ | 
 | 	if (reg != 6 && reg2 != 6) { | 
 | 		reg2 = 6; | 
 | 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI; | 
 | 	} else if (reg != 7 && reg2 != 7) { | 
 | 		reg2 = 7; | 
 | 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI; | 
 | 		/* TODO (paranoia): force maskmovq to not use di */ | 
 | 	} else { | 
 | 		reg2 = 3; | 
 | 		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX; | 
 | 	} | 
 | 	/* | 
 | 	 * Point cursor at the modrm byte.  The next 4 bytes are the | 
 | 	 * displacement.  Beyond the displacement, for some instructions, | 
 | 	 * is the immediate operand. | 
 | 	 */ | 
 | 	cursor = auprobe->insn + insn_offset_modrm(insn); | 
 | 	/* | 
 | 	 * Change modrm from "00 reg 101" to "10 reg reg2". Example: | 
 | 	 * 89 05 disp32  mov %eax,disp32(%rip) becomes | 
 | 	 * 89 86 disp32  mov %eax,disp32(%rsi) | 
 | 	 */ | 
 | 	*cursor = 0x80 | (reg << 3) | reg2; | 
 | } | 
 |  | 
 | static inline unsigned long * | 
 | scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI) | 
 | 		return ®s->si; | 
 | 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI) | 
 | 		return ®s->di; | 
 | 	return ®s->bx; | 
 | } | 
 |  | 
 | /* | 
 |  * If we're emulating a rip-relative instruction, save the contents | 
 |  * of the scratch register and store the target address in that register. | 
 |  */ | 
 | static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { | 
 | 		struct uprobe_task *utask = current->utask; | 
 | 		unsigned long *sr = scratch_reg(auprobe, regs); | 
 |  | 
 | 		utask->autask.saved_scratch_register = *sr; | 
 | 		*sr = utask->vaddr + auprobe->defparam.ilen; | 
 | 	} | 
 | } | 
 |  | 
 | static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { | 
 | 		struct uprobe_task *utask = current->utask; | 
 | 		unsigned long *sr = scratch_reg(auprobe, regs); | 
 |  | 
 | 		*sr = utask->autask.saved_scratch_register; | 
 | 	} | 
 | } | 
 | #else /* 32-bit: */ | 
 | /* | 
 |  * No RIP-relative addressing on 32-bit | 
 |  */ | 
 | static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) | 
 | { | 
 | } | 
 | static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | } | 
 | static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | } | 
 | #endif /* CONFIG_X86_64 */ | 
 |  | 
 | struct uprobe_xol_ops { | 
 | 	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *); | 
 | 	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *); | 
 | 	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *); | 
 | 	void	(*abort)(struct arch_uprobe *, struct pt_regs *); | 
 | }; | 
 |  | 
 | static inline int sizeof_long(void) | 
 | { | 
 | 	return in_ia32_syscall() ? 4 : 8; | 
 | } | 
 |  | 
 | static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	riprel_pre_xol(auprobe, regs); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int push_ret_address(struct pt_regs *regs, unsigned long ip) | 
 | { | 
 | 	unsigned long new_sp = regs->sp - sizeof_long(); | 
 |  | 
 | 	if (copy_to_user((void __user *)new_sp, &ip, sizeof_long())) | 
 | 		return -EFAULT; | 
 |  | 
 | 	regs->sp = new_sp; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * We have to fix things up as follows: | 
 |  * | 
 |  * Typically, the new ip is relative to the copied instruction.  We need | 
 |  * to make it relative to the original instruction (FIX_IP).  Exceptions | 
 |  * are return instructions and absolute or indirect jump or call instructions. | 
 |  * | 
 |  * If the single-stepped instruction was a call, the return address that | 
 |  * is atop the stack is the address following the copied instruction.  We | 
 |  * need to make it the address following the original instruction (FIX_CALL). | 
 |  * | 
 |  * If the original instruction was a rip-relative instruction such as | 
 |  * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent | 
 |  * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)". | 
 |  * We need to restore the contents of the scratch register | 
 |  * (FIX_RIP_reg). | 
 |  */ | 
 | static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	struct uprobe_task *utask = current->utask; | 
 |  | 
 | 	riprel_post_xol(auprobe, regs); | 
 | 	if (auprobe->defparam.fixups & UPROBE_FIX_IP) { | 
 | 		long correction = utask->vaddr - utask->xol_vaddr; | 
 | 		regs->ip += correction; | 
 | 	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) { | 
 | 		regs->sp += sizeof_long(); /* Pop incorrect return address */ | 
 | 		if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen)) | 
 | 			return -ERESTART; | 
 | 	} | 
 | 	/* popf; tell the caller to not touch TF */ | 
 | 	if (auprobe->defparam.fixups & UPROBE_FIX_SETF) | 
 | 		utask->autask.saved_tf = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	riprel_post_xol(auprobe, regs); | 
 | } | 
 |  | 
 | static const struct uprobe_xol_ops default_xol_ops = { | 
 | 	.pre_xol  = default_pre_xol_op, | 
 | 	.post_xol = default_post_xol_op, | 
 | 	.abort	  = default_abort_op, | 
 | }; | 
 |  | 
 | static bool branch_is_call(struct arch_uprobe *auprobe) | 
 | { | 
 | 	return auprobe->branch.opc1 == 0xe8; | 
 | } | 
 |  | 
 | #define CASE_COND					\ | 
 | 	COND(70, 71, XF(OF))				\ | 
 | 	COND(72, 73, XF(CF))				\ | 
 | 	COND(74, 75, XF(ZF))				\ | 
 | 	COND(78, 79, XF(SF))				\ | 
 | 	COND(7a, 7b, XF(PF))				\ | 
 | 	COND(76, 77, XF(CF) || XF(ZF))			\ | 
 | 	COND(7c, 7d, XF(SF) != XF(OF))			\ | 
 | 	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF)) | 
 |  | 
 | #define COND(op_y, op_n, expr)				\ | 
 | 	case 0x ## op_y: DO((expr) != 0)		\ | 
 | 	case 0x ## op_n: DO((expr) == 0) | 
 |  | 
 | #define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf)) | 
 |  | 
 | static bool is_cond_jmp_opcode(u8 opcode) | 
 | { | 
 | 	switch (opcode) { | 
 | 	#define DO(expr)	\ | 
 | 		return true; | 
 | 	CASE_COND | 
 | 	#undef	DO | 
 |  | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	unsigned long flags = regs->flags; | 
 |  | 
 | 	switch (auprobe->branch.opc1) { | 
 | 	#define DO(expr)	\ | 
 | 		return expr; | 
 | 	CASE_COND | 
 | 	#undef	DO | 
 |  | 
 | 	default:	/* not a conditional jmp */ | 
 | 		return true; | 
 | 	} | 
 | } | 
 |  | 
 | #undef	XF | 
 | #undef	COND | 
 | #undef	CASE_COND | 
 |  | 
 | static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	unsigned long new_ip = regs->ip += auprobe->branch.ilen; | 
 | 	unsigned long offs = (long)auprobe->branch.offs; | 
 |  | 
 | 	if (branch_is_call(auprobe)) { | 
 | 		/* | 
 | 		 * If it fails we execute this (mangled, see the comment in | 
 | 		 * branch_clear_offset) insn out-of-line. In the likely case | 
 | 		 * this should trigger the trap, and the probed application | 
 | 		 * should die or restart the same insn after it handles the | 
 | 		 * signal, arch_uprobe_post_xol() won't be even called. | 
 | 		 * | 
 | 		 * But there is corner case, see the comment in ->post_xol(). | 
 | 		 */ | 
 | 		if (push_ret_address(regs, new_ip)) | 
 | 			return false; | 
 | 	} else if (!check_jmp_cond(auprobe, regs)) { | 
 | 		offs = 0; | 
 | 	} | 
 |  | 
 | 	regs->ip = new_ip + offs; | 
 | 	return true; | 
 | } | 
 |  | 
 | static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	BUG_ON(!branch_is_call(auprobe)); | 
 | 	/* | 
 | 	 * We can only get here if branch_emulate_op() failed to push the ret | 
 | 	 * address _and_ another thread expanded our stack before the (mangled) | 
 | 	 * "call" insn was executed out-of-line. Just restore ->sp and restart. | 
 | 	 * We could also restore ->ip and try to call branch_emulate_op() again. | 
 | 	 */ | 
 | 	regs->sp += sizeof_long(); | 
 | 	return -ERESTART; | 
 | } | 
 |  | 
 | static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn) | 
 | { | 
 | 	/* | 
 | 	 * Turn this insn into "call 1f; 1:", this is what we will execute | 
 | 	 * out-of-line if ->emulate() fails. We only need this to generate | 
 | 	 * a trap, so that the probed task receives the correct signal with | 
 | 	 * the properly filled siginfo. | 
 | 	 * | 
 | 	 * But see the comment in ->post_xol(), in the unlikely case it can | 
 | 	 * succeed. So we need to ensure that the new ->ip can not fall into | 
 | 	 * the non-canonical area and trigger #GP. | 
 | 	 * | 
 | 	 * We could turn it into (say) "pushf", but then we would need to | 
 | 	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte | 
 | 	 * of ->insn[] for set_orig_insn(). | 
 | 	 */ | 
 | 	memset(auprobe->insn + insn_offset_immediate(insn), | 
 | 		0, insn->immediate.nbytes); | 
 | } | 
 |  | 
 | static const struct uprobe_xol_ops branch_xol_ops = { | 
 | 	.emulate  = branch_emulate_op, | 
 | 	.post_xol = branch_post_xol_op, | 
 | }; | 
 |  | 
 | /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */ | 
 | static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) | 
 | { | 
 | 	u8 opc1 = OPCODE1(insn); | 
 | 	int i; | 
 |  | 
 | 	switch (opc1) { | 
 | 	case 0xeb:	/* jmp 8 */ | 
 | 	case 0xe9:	/* jmp 32 */ | 
 | 	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */ | 
 | 		break; | 
 |  | 
 | 	case 0xe8:	/* call relative */ | 
 | 		branch_clear_offset(auprobe, insn); | 
 | 		break; | 
 |  | 
 | 	case 0x0f: | 
 | 		if (insn->opcode.nbytes != 2) | 
 | 			return -ENOSYS; | 
 | 		/* | 
 | 		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches | 
 | 		 * OPCODE1() of the "short" jmp which checks the same condition. | 
 | 		 */ | 
 | 		opc1 = OPCODE2(insn) - 0x10; | 
 | 	default: | 
 | 		if (!is_cond_jmp_opcode(opc1)) | 
 | 			return -ENOSYS; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported. | 
 | 	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix. | 
 | 	 * No one uses these insns, reject any branch insns with such prefix. | 
 | 	 */ | 
 | 	for (i = 0; i < insn->prefixes.nbytes; i++) { | 
 | 		if (insn->prefixes.bytes[i] == 0x66) | 
 | 			return -ENOTSUPP; | 
 | 	} | 
 |  | 
 | 	auprobe->branch.opc1 = opc1; | 
 | 	auprobe->branch.ilen = insn->length; | 
 | 	auprobe->branch.offs = insn->immediate.value; | 
 |  | 
 | 	auprobe->ops = &branch_xol_ops; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. | 
 |  * @mm: the probed address space. | 
 |  * @arch_uprobe: the probepoint information. | 
 |  * @addr: virtual address at which to install the probepoint | 
 |  * Return 0 on success or a -ve number on error. | 
 |  */ | 
 | int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	struct insn insn; | 
 | 	u8 fix_ip_or_call = UPROBE_FIX_IP; | 
 | 	int ret; | 
 |  | 
 | 	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = branch_setup_xol_ops(auprobe, &insn); | 
 | 	if (ret != -ENOSYS) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Figure out which fixups default_post_xol_op() will need to perform, | 
 | 	 * and annotate defparam->fixups accordingly. | 
 | 	 */ | 
 | 	switch (OPCODE1(&insn)) { | 
 | 	case 0x9d:		/* popf */ | 
 | 		auprobe->defparam.fixups |= UPROBE_FIX_SETF; | 
 | 		break; | 
 | 	case 0xc3:		/* ret or lret -- ip is correct */ | 
 | 	case 0xcb: | 
 | 	case 0xc2: | 
 | 	case 0xca: | 
 | 	case 0xea:		/* jmp absolute -- ip is correct */ | 
 | 		fix_ip_or_call = 0; | 
 | 		break; | 
 | 	case 0x9a:		/* call absolute - Fix return addr, not ip */ | 
 | 		fix_ip_or_call = UPROBE_FIX_CALL; | 
 | 		break; | 
 | 	case 0xff: | 
 | 		switch (MODRM_REG(&insn)) { | 
 | 		case 2: case 3:			/* call or lcall, indirect */ | 
 | 			fix_ip_or_call = UPROBE_FIX_CALL; | 
 | 			break; | 
 | 		case 4: case 5:			/* jmp or ljmp, indirect */ | 
 | 			fix_ip_or_call = 0; | 
 | 			break; | 
 | 		} | 
 | 		/* fall through */ | 
 | 	default: | 
 | 		riprel_analyze(auprobe, &insn); | 
 | 	} | 
 |  | 
 | 	auprobe->defparam.ilen = insn.length; | 
 | 	auprobe->defparam.fixups |= fix_ip_or_call; | 
 |  | 
 | 	auprobe->ops = &default_xol_ops; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * arch_uprobe_pre_xol - prepare to execute out of line. | 
 |  * @auprobe: the probepoint information. | 
 |  * @regs: reflects the saved user state of current task. | 
 |  */ | 
 | int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	struct uprobe_task *utask = current->utask; | 
 |  | 
 | 	if (auprobe->ops->pre_xol) { | 
 | 		int err = auprobe->ops->pre_xol(auprobe, regs); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	regs->ip = utask->xol_vaddr; | 
 | 	utask->autask.saved_trap_nr = current->thread.trap_nr; | 
 | 	current->thread.trap_nr = UPROBE_TRAP_NR; | 
 |  | 
 | 	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF); | 
 | 	regs->flags |= X86_EFLAGS_TF; | 
 | 	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP)) | 
 | 		set_task_blockstep(current, false); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If xol insn itself traps and generates a signal(Say, | 
 |  * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped | 
 |  * instruction jumps back to its own address. It is assumed that anything | 
 |  * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. | 
 |  * | 
 |  * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, | 
 |  * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to | 
 |  * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). | 
 |  */ | 
 | bool arch_uprobe_xol_was_trapped(struct task_struct *t) | 
 | { | 
 | 	if (t->thread.trap_nr != UPROBE_TRAP_NR) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Called after single-stepping. To avoid the SMP problems that can | 
 |  * occur when we temporarily put back the original opcode to | 
 |  * single-step, we single-stepped a copy of the instruction. | 
 |  * | 
 |  * This function prepares to resume execution after the single-step. | 
 |  */ | 
 | int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	struct uprobe_task *utask = current->utask; | 
 | 	bool send_sigtrap = utask->autask.saved_tf; | 
 | 	int err = 0; | 
 |  | 
 | 	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR); | 
 | 	current->thread.trap_nr = utask->autask.saved_trap_nr; | 
 |  | 
 | 	if (auprobe->ops->post_xol) { | 
 | 		err = auprobe->ops->post_xol(auprobe, regs); | 
 | 		if (err) { | 
 | 			/* | 
 | 			 * Restore ->ip for restart or post mortem analysis. | 
 | 			 * ->post_xol() must not return -ERESTART unless this | 
 | 			 * is really possible. | 
 | 			 */ | 
 | 			regs->ip = utask->vaddr; | 
 | 			if (err == -ERESTART) | 
 | 				err = 0; | 
 | 			send_sigtrap = false; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP | 
 | 	 * so we can get an extra SIGTRAP if we do not clear TF. We need | 
 | 	 * to examine the opcode to make it right. | 
 | 	 */ | 
 | 	if (send_sigtrap) | 
 | 		send_sig(SIGTRAP, current, 0); | 
 |  | 
 | 	if (!utask->autask.saved_tf) | 
 | 		regs->flags &= ~X86_EFLAGS_TF; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* callback routine for handling exceptions. */ | 
 | int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data) | 
 | { | 
 | 	struct die_args *args = data; | 
 | 	struct pt_regs *regs = args->regs; | 
 | 	int ret = NOTIFY_DONE; | 
 |  | 
 | 	/* We are only interested in userspace traps */ | 
 | 	if (regs && !user_mode(regs)) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	switch (val) { | 
 | 	case DIE_INT3: | 
 | 		if (uprobe_pre_sstep_notifier(regs)) | 
 | 			ret = NOTIFY_STOP; | 
 |  | 
 | 		break; | 
 |  | 
 | 	case DIE_DEBUG: | 
 | 		if (uprobe_post_sstep_notifier(regs)) | 
 | 			ret = NOTIFY_STOP; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This function gets called when XOL instruction either gets trapped or | 
 |  * the thread has a fatal signal. Reset the instruction pointer to its | 
 |  * probed address for the potential restart or for post mortem analysis. | 
 |  */ | 
 | void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	struct uprobe_task *utask = current->utask; | 
 |  | 
 | 	if (auprobe->ops->abort) | 
 | 		auprobe->ops->abort(auprobe, regs); | 
 |  | 
 | 	current->thread.trap_nr = utask->autask.saved_trap_nr; | 
 | 	regs->ip = utask->vaddr; | 
 | 	/* clear TF if it was set by us in arch_uprobe_pre_xol() */ | 
 | 	if (!utask->autask.saved_tf) | 
 | 		regs->flags &= ~X86_EFLAGS_TF; | 
 | } | 
 |  | 
 | static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	if (auprobe->ops->emulate) | 
 | 		return auprobe->ops->emulate(auprobe, regs); | 
 | 	return false; | 
 | } | 
 |  | 
 | bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) | 
 | { | 
 | 	bool ret = __skip_sstep(auprobe, regs); | 
 | 	if (ret && (regs->flags & X86_EFLAGS_TF)) | 
 | 		send_sig(SIGTRAP, current, 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | unsigned long | 
 | arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs) | 
 | { | 
 | 	int rasize = sizeof_long(), nleft; | 
 | 	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */ | 
 |  | 
 | 	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize)) | 
 | 		return -1; | 
 |  | 
 | 	/* check whether address has been already hijacked */ | 
 | 	if (orig_ret_vaddr == trampoline_vaddr) | 
 | 		return orig_ret_vaddr; | 
 |  | 
 | 	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize); | 
 | 	if (likely(!nleft)) | 
 | 		return orig_ret_vaddr; | 
 |  | 
 | 	if (nleft != rasize) { | 
 | 		pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, " | 
 | 			"%%ip=%#lx\n", current->pid, regs->sp, regs->ip); | 
 |  | 
 | 		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current); | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, | 
 | 				struct pt_regs *regs) | 
 | { | 
 | 	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */ | 
 | 		return regs->sp < ret->stack; | 
 | 	else | 
 | 		return regs->sp <= ret->stack; | 
 | } |