|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | *  linux/arch/parisc/kernel/time.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1995  Linus Torvalds | 
|  | *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King | 
|  | *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) | 
|  | * | 
|  | * 1994-07-02  Alan Modra | 
|  | *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime | 
|  | * 1998-12-20  Updated NTP code according to technical memorandum Jan '96 | 
|  | *             "A Kernel Model for Precision Timekeeping" by Dave Mills | 
|  | */ | 
|  | #include <linux/errno.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/rtc.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/sched_clock.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/param.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/ftrace.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/param.h> | 
|  | #include <asm/pdc.h> | 
|  | #include <asm/led.h> | 
|  |  | 
|  | #include <linux/timex.h> | 
|  |  | 
|  | static unsigned long clocktick __read_mostly;	/* timer cycles per tick */ | 
|  |  | 
|  | /* | 
|  | * We keep time on PA-RISC Linux by using the Interval Timer which is | 
|  | * a pair of registers; one is read-only and one is write-only; both | 
|  | * accessed through CR16.  The read-only register is 32 or 64 bits wide, | 
|  | * and increments by 1 every CPU clock tick.  The architecture only | 
|  | * guarantees us a rate between 0.5 and 2, but all implementations use a | 
|  | * rate of 1.  The write-only register is 32-bits wide.  When the lowest | 
|  | * 32 bits of the read-only register compare equal to the write-only | 
|  | * register, it raises a maskable external interrupt.  Each processor has | 
|  | * an Interval Timer of its own and they are not synchronised. | 
|  | * | 
|  | * We want to generate an interrupt every 1/HZ seconds.  So we program | 
|  | * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data | 
|  | * is programmed with the intended time of the next tick.  We can be | 
|  | * held off for an arbitrarily long period of time by interrupts being | 
|  | * disabled, so we may miss one or more ticks. | 
|  | */ | 
|  | irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | unsigned long now; | 
|  | unsigned long next_tick; | 
|  | unsigned long ticks_elapsed = 0; | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu); | 
|  |  | 
|  | /* gcc can optimize for "read-only" case with a local clocktick */ | 
|  | unsigned long cpt = clocktick; | 
|  |  | 
|  | profile_tick(CPU_PROFILING); | 
|  |  | 
|  | /* Initialize next_tick to the old expected tick time. */ | 
|  | next_tick = cpuinfo->it_value; | 
|  |  | 
|  | /* Calculate how many ticks have elapsed. */ | 
|  | do { | 
|  | ++ticks_elapsed; | 
|  | next_tick += cpt; | 
|  | now = mfctl(16); | 
|  | } while (next_tick - now > cpt); | 
|  |  | 
|  | /* Store (in CR16 cycles) up to when we are accounting right now. */ | 
|  | cpuinfo->it_value = next_tick; | 
|  |  | 
|  | /* Go do system house keeping. */ | 
|  | if (cpu == 0) | 
|  | xtime_update(ticks_elapsed); | 
|  |  | 
|  | update_process_times(user_mode(get_irq_regs())); | 
|  |  | 
|  | /* Skip clockticks on purpose if we know we would miss those. | 
|  | * The new CR16 must be "later" than current CR16 otherwise | 
|  | * itimer would not fire until CR16 wrapped - e.g 4 seconds | 
|  | * later on a 1Ghz processor. We'll account for the missed | 
|  | * ticks on the next timer interrupt. | 
|  | * We want IT to fire modulo clocktick even if we miss/skip some. | 
|  | * But those interrupts don't in fact get delivered that regularly. | 
|  | * | 
|  | * "next_tick - now" will always give the difference regardless | 
|  | * if one or the other wrapped. If "now" is "bigger" we'll end up | 
|  | * with a very large unsigned number. | 
|  | */ | 
|  | while (next_tick - mfctl(16) > cpt) | 
|  | next_tick += cpt; | 
|  |  | 
|  | /* Program the IT when to deliver the next interrupt. | 
|  | * Only bottom 32-bits of next_tick are writable in CR16! | 
|  | * Timer interrupt will be delivered at least a few hundred cycles | 
|  | * after the IT fires, so if we are too close (<= 500 cycles) to the | 
|  | * next cycle, simply skip it. | 
|  | */ | 
|  | if (next_tick - mfctl(16) <= 500) | 
|  | next_tick += cpt; | 
|  | mtctl(next_tick, 16); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned long profile_pc(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long pc = instruction_pointer(regs); | 
|  |  | 
|  | if (regs->gr[0] & PSW_N) | 
|  | pc -= 4; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (in_lock_functions(pc)) | 
|  | pc = regs->gr[2]; | 
|  | #endif | 
|  |  | 
|  | return pc; | 
|  | } | 
|  | EXPORT_SYMBOL(profile_pc); | 
|  |  | 
|  |  | 
|  | /* clock source code */ | 
|  |  | 
|  | static u64 notrace read_cr16(struct clocksource *cs) | 
|  | { | 
|  | return get_cycles(); | 
|  | } | 
|  |  | 
|  | static struct clocksource clocksource_cr16 = { | 
|  | .name			= "cr16", | 
|  | .rating			= 300, | 
|  | .read			= read_cr16, | 
|  | .mask			= CLOCKSOURCE_MASK(BITS_PER_LONG), | 
|  | .flags			= CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | }; | 
|  |  | 
|  | void __init start_cpu_itimer(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | unsigned long next_tick = mfctl(16) + clocktick; | 
|  |  | 
|  | mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */ | 
|  |  | 
|  | per_cpu(cpu_data, cpu).it_value = next_tick; | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) | 
|  | static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) | 
|  | { | 
|  | struct pdc_tod tod_data; | 
|  |  | 
|  | memset(tm, 0, sizeof(*tm)); | 
|  | if (pdc_tod_read(&tod_data) < 0) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* we treat tod_sec as unsigned, so this can work until year 2106 */ | 
|  | rtc_time64_to_tm(tod_data.tod_sec, tm); | 
|  | return rtc_valid_tm(tm); | 
|  | } | 
|  |  | 
|  | static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) | 
|  | { | 
|  | time64_t secs = rtc_tm_to_time64(tm); | 
|  |  | 
|  | if (pdc_tod_set(secs, 0) < 0) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct rtc_class_ops rtc_generic_ops = { | 
|  | .read_time = rtc_generic_get_time, | 
|  | .set_time = rtc_generic_set_time, | 
|  | }; | 
|  |  | 
|  | static int __init rtc_init(void) | 
|  | { | 
|  | struct platform_device *pdev; | 
|  |  | 
|  | pdev = platform_device_register_data(NULL, "rtc-generic", -1, | 
|  | &rtc_generic_ops, | 
|  | sizeof(rtc_generic_ops)); | 
|  |  | 
|  | return PTR_ERR_OR_ZERO(pdev); | 
|  | } | 
|  | device_initcall(rtc_init); | 
|  | #endif | 
|  |  | 
|  | void read_persistent_clock(struct timespec *ts) | 
|  | { | 
|  | static struct pdc_tod tod_data; | 
|  | if (pdc_tod_read(&tod_data) == 0) { | 
|  | ts->tv_sec = tod_data.tod_sec; | 
|  | ts->tv_nsec = tod_data.tod_usec * 1000; | 
|  | } else { | 
|  | printk(KERN_ERR "Error reading tod clock\n"); | 
|  | ts->tv_sec = 0; | 
|  | ts->tv_nsec = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static u64 notrace read_cr16_sched_clock(void) | 
|  | { | 
|  | return get_cycles(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * timer interrupt and sched_clock() initialization | 
|  | */ | 
|  |  | 
|  | void __init time_init(void) | 
|  | { | 
|  | unsigned long cr16_hz; | 
|  |  | 
|  | clocktick = (100 * PAGE0->mem_10msec) / HZ; | 
|  | start_cpu_itimer();	/* get CPU 0 started */ | 
|  |  | 
|  | cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */ | 
|  |  | 
|  | /* register as sched_clock source */ | 
|  | sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz); | 
|  | } | 
|  |  | 
|  | static int __init init_cr16_clocksource(void) | 
|  | { | 
|  | /* | 
|  | * The cr16 interval timers are not syncronized across CPUs on | 
|  | * different sockets, so mark them unstable and lower rating on | 
|  | * multi-socket SMP systems. | 
|  | */ | 
|  | if (num_online_cpus() > 1) { | 
|  | int cpu; | 
|  | unsigned long cpu0_loc; | 
|  | cpu0_loc = per_cpu(cpu_data, 0).cpu_loc; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | if (cpu == 0) | 
|  | continue; | 
|  | if ((cpu0_loc != 0) && | 
|  | (cpu0_loc == per_cpu(cpu_data, cpu).cpu_loc)) | 
|  | continue; | 
|  |  | 
|  | clocksource_cr16.name = "cr16_unstable"; | 
|  | clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE; | 
|  | clocksource_cr16.rating = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* XXX: We may want to mark sched_clock stable here if cr16 clocks are | 
|  | *	in sync: | 
|  | *	(clocksource_cr16.flags == CLOCK_SOURCE_IS_CONTINUOUS) */ | 
|  |  | 
|  | /* register at clocksource framework */ | 
|  | clocksource_register_hz(&clocksource_cr16, | 
|  | 100 * PAGE0->mem_10msec); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | device_initcall(init_cr16_clocksource); |