| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Freescale GPMI NAND Flash Driver |
| * |
| * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. |
| * Copyright (C) 2008 Embedded Alley Solutions, Inc. |
| */ |
| #include <linux/delay.h> |
| #include <linux/clk.h> |
| #include <linux/slab.h> |
| |
| #include "gpmi-nand.h" |
| #include "gpmi-regs.h" |
| #include "bch-regs.h" |
| |
| /* Converts time to clock cycles */ |
| #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) |
| |
| #define MXS_SET_ADDR 0x4 |
| #define MXS_CLR_ADDR 0x8 |
| /* |
| * Clear the bit and poll it cleared. This is usually called with |
| * a reset address and mask being either SFTRST(bit 31) or CLKGATE |
| * (bit 30). |
| */ |
| static int clear_poll_bit(void __iomem *addr, u32 mask) |
| { |
| int timeout = 0x400; |
| |
| /* clear the bit */ |
| writel(mask, addr + MXS_CLR_ADDR); |
| |
| /* |
| * SFTRST needs 3 GPMI clocks to settle, the reference manual |
| * recommends to wait 1us. |
| */ |
| udelay(1); |
| |
| /* poll the bit becoming clear */ |
| while ((readl(addr) & mask) && --timeout) |
| /* nothing */; |
| |
| return !timeout; |
| } |
| |
| #define MODULE_CLKGATE (1 << 30) |
| #define MODULE_SFTRST (1 << 31) |
| /* |
| * The current mxs_reset_block() will do two things: |
| * [1] enable the module. |
| * [2] reset the module. |
| * |
| * In most of the cases, it's ok. |
| * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). |
| * If you try to soft reset the BCH block, it becomes unusable until |
| * the next hard reset. This case occurs in the NAND boot mode. When the board |
| * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. |
| * So If the driver tries to reset the BCH again, the BCH will not work anymore. |
| * You will see a DMA timeout in this case. The bug has been fixed |
| * in the following chips, such as MX28. |
| * |
| * To avoid this bug, just add a new parameter `just_enable` for |
| * the mxs_reset_block(), and rewrite it here. |
| */ |
| static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) |
| { |
| int ret; |
| int timeout = 0x400; |
| |
| /* clear and poll SFTRST */ |
| ret = clear_poll_bit(reset_addr, MODULE_SFTRST); |
| if (unlikely(ret)) |
| goto error; |
| |
| /* clear CLKGATE */ |
| writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); |
| |
| if (!just_enable) { |
| /* set SFTRST to reset the block */ |
| writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); |
| udelay(1); |
| |
| /* poll CLKGATE becoming set */ |
| while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) |
| /* nothing */; |
| if (unlikely(!timeout)) |
| goto error; |
| } |
| |
| /* clear and poll SFTRST */ |
| ret = clear_poll_bit(reset_addr, MODULE_SFTRST); |
| if (unlikely(ret)) |
| goto error; |
| |
| /* clear and poll CLKGATE */ |
| ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); |
| if (unlikely(ret)) |
| goto error; |
| |
| return 0; |
| |
| error: |
| pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); |
| return -ETIMEDOUT; |
| } |
| |
| static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) |
| { |
| struct clk *clk; |
| int ret; |
| int i; |
| |
| for (i = 0; i < GPMI_CLK_MAX; i++) { |
| clk = this->resources.clock[i]; |
| if (!clk) |
| break; |
| |
| if (v) { |
| ret = clk_prepare_enable(clk); |
| if (ret) |
| goto err_clk; |
| } else { |
| clk_disable_unprepare(clk); |
| } |
| } |
| return 0; |
| |
| err_clk: |
| for (; i > 0; i--) |
| clk_disable_unprepare(this->resources.clock[i - 1]); |
| return ret; |
| } |
| |
| int gpmi_enable_clk(struct gpmi_nand_data *this) |
| { |
| return __gpmi_enable_clk(this, true); |
| } |
| |
| int gpmi_disable_clk(struct gpmi_nand_data *this) |
| { |
| return __gpmi_enable_clk(this, false); |
| } |
| |
| int gpmi_init(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| int ret; |
| |
| ret = gpmi_enable_clk(this); |
| if (ret) |
| return ret; |
| ret = gpmi_reset_block(r->gpmi_regs, false); |
| if (ret) |
| goto err_out; |
| |
| /* |
| * Reset BCH here, too. We got failures otherwise :( |
| * See later BCH reset for explanation of MX23 handling |
| */ |
| ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); |
| if (ret) |
| goto err_out; |
| |
| /* Choose NAND mode. */ |
| writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); |
| |
| /* Set the IRQ polarity. */ |
| writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, |
| r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| |
| /* Disable Write-Protection. */ |
| writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| |
| /* Select BCH ECC. */ |
| writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| |
| /* |
| * Decouple the chip select from dma channel. We use dma0 for all |
| * the chips. |
| */ |
| writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| |
| gpmi_disable_clk(this); |
| return 0; |
| err_out: |
| gpmi_disable_clk(this); |
| return ret; |
| } |
| |
| /* This function is very useful. It is called only when the bug occur. */ |
| void gpmi_dump_info(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| struct bch_geometry *geo = &this->bch_geometry; |
| u32 reg; |
| int i; |
| |
| dev_err(this->dev, "Show GPMI registers :\n"); |
| for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { |
| reg = readl(r->gpmi_regs + i * 0x10); |
| dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); |
| } |
| |
| /* start to print out the BCH info */ |
| dev_err(this->dev, "Show BCH registers :\n"); |
| for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { |
| reg = readl(r->bch_regs + i * 0x10); |
| dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); |
| } |
| dev_err(this->dev, "BCH Geometry :\n" |
| "GF length : %u\n" |
| "ECC Strength : %u\n" |
| "Page Size in Bytes : %u\n" |
| "Metadata Size in Bytes : %u\n" |
| "ECC Chunk Size in Bytes: %u\n" |
| "ECC Chunk Count : %u\n" |
| "Payload Size in Bytes : %u\n" |
| "Auxiliary Size in Bytes: %u\n" |
| "Auxiliary Status Offset: %u\n" |
| "Block Mark Byte Offset : %u\n" |
| "Block Mark Bit Offset : %u\n", |
| geo->gf_len, |
| geo->ecc_strength, |
| geo->page_size, |
| geo->metadata_size, |
| geo->ecc_chunk_size, |
| geo->ecc_chunk_count, |
| geo->payload_size, |
| geo->auxiliary_size, |
| geo->auxiliary_status_offset, |
| geo->block_mark_byte_offset, |
| geo->block_mark_bit_offset); |
| } |
| |
| /* Configures the geometry for BCH. */ |
| int bch_set_geometry(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| struct bch_geometry *bch_geo = &this->bch_geometry; |
| unsigned int block_count; |
| unsigned int block_size; |
| unsigned int metadata_size; |
| unsigned int ecc_strength; |
| unsigned int page_size; |
| unsigned int gf_len; |
| int ret; |
| |
| ret = common_nfc_set_geometry(this); |
| if (ret) |
| return ret; |
| |
| block_count = bch_geo->ecc_chunk_count - 1; |
| block_size = bch_geo->ecc_chunk_size; |
| metadata_size = bch_geo->metadata_size; |
| ecc_strength = bch_geo->ecc_strength >> 1; |
| page_size = bch_geo->page_size; |
| gf_len = bch_geo->gf_len; |
| |
| ret = gpmi_enable_clk(this); |
| if (ret) |
| return ret; |
| |
| /* |
| * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this |
| * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. |
| * On the other hand, the MX28 needs the reset, because one case has been |
| * seen where the BCH produced ECC errors constantly after 10000 |
| * consecutive reboots. The latter case has not been seen on the MX23 |
| * yet, still we don't know if it could happen there as well. |
| */ |
| ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); |
| if (ret) |
| goto err_out; |
| |
| /* Configure layout 0. */ |
| writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) |
| | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) |
| | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
| | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
| | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this), |
| r->bch_regs + HW_BCH_FLASH0LAYOUT0); |
| |
| writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
| | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
| | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
| | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this), |
| r->bch_regs + HW_BCH_FLASH0LAYOUT1); |
| |
| /* Set *all* chip selects to use layout 0. */ |
| writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); |
| |
| /* Enable interrupts. */ |
| writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, |
| r->bch_regs + HW_BCH_CTRL_SET); |
| |
| gpmi_disable_clk(this); |
| return 0; |
| err_out: |
| gpmi_disable_clk(this); |
| return ret; |
| } |
| |
| /* |
| * <1> Firstly, we should know what's the GPMI-clock means. |
| * The GPMI-clock is the internal clock in the gpmi nand controller. |
| * If you set 100MHz to gpmi nand controller, the GPMI-clock's period |
| * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. |
| * |
| * <2> Secondly, we should know what's the frequency on the nand chip pins. |
| * The frequency on the nand chip pins is derived from the GPMI-clock. |
| * We can get it from the following equation: |
| * |
| * F = G / (DS + DH) |
| * |
| * F : the frequency on the nand chip pins. |
| * G : the GPMI clock, such as 100MHz. |
| * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP |
| * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD |
| * |
| * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, |
| * the nand EDO(extended Data Out) timing could be applied. |
| * The GPMI implements a feedback read strobe to sample the read data. |
| * The feedback read strobe can be delayed to support the nand EDO timing |
| * where the read strobe may deasserts before the read data is valid, and |
| * read data is valid for some time after read strobe. |
| * |
| * The following figure illustrates some aspects of a NAND Flash read: |
| * |
| * |<---tREA---->| |
| * | | |
| * | | | |
| * |<--tRP-->| | |
| * | | | |
| * __ ___|__________________________________ |
| * RDN \________/ | |
| * | |
| * /---------\ |
| * Read Data --------------< >--------- |
| * \---------/ |
| * | | |
| * |<-D->| |
| * FeedbackRDN ________ ____________ |
| * \___________/ |
| * |
| * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. |
| * |
| * |
| * <4> Now, we begin to describe how to compute the right RDN_DELAY. |
| * |
| * 4.1) From the aspect of the nand chip pins: |
| * Delay = (tREA + C - tRP) {1} |
| * |
| * tREA : the maximum read access time. |
| * C : a constant to adjust the delay. default is 4000ps. |
| * tRP : the read pulse width, which is exactly: |
| * tRP = (GPMI-clock-period) * DATA_SETUP |
| * |
| * 4.2) From the aspect of the GPMI nand controller: |
| * Delay = RDN_DELAY * 0.125 * RP {2} |
| * |
| * RP : the DLL reference period. |
| * if (GPMI-clock-period > DLL_THRETHOLD) |
| * RP = GPMI-clock-period / 2; |
| * else |
| * RP = GPMI-clock-period; |
| * |
| * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period |
| * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD |
| * is 16000ps, but in mx6q, we use 12000ps. |
| * |
| * 4.3) since {1} equals {2}, we get: |
| * |
| * (tREA + 4000 - tRP) * 8 |
| * RDN_DELAY = ----------------------- {3} |
| * RP |
| */ |
| static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, |
| const struct nand_sdr_timings *sdr) |
| { |
| struct gpmi_nfc_hardware_timing *hw = &this->hw; |
| unsigned int dll_threshold_ps = this->devdata->max_chain_delay; |
| unsigned int period_ps, reference_period_ps; |
| unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; |
| unsigned int tRP_ps; |
| bool use_half_period; |
| int sample_delay_ps, sample_delay_factor; |
| u16 busy_timeout_cycles; |
| u8 wrn_dly_sel; |
| |
| if (sdr->tRC_min >= 30000) { |
| /* ONFI non-EDO modes [0-3] */ |
| hw->clk_rate = 22000000; |
| wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; |
| } else if (sdr->tRC_min >= 25000) { |
| /* ONFI EDO mode 4 */ |
| hw->clk_rate = 80000000; |
| wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; |
| } else { |
| /* ONFI EDO mode 5 */ |
| hw->clk_rate = 100000000; |
| wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; |
| } |
| |
| /* SDR core timings are given in picoseconds */ |
| period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); |
| |
| addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); |
| data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); |
| data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); |
| busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); |
| |
| hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | |
| BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | |
| BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); |
| hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); |
| |
| /* |
| * Derive NFC ideal delay from {3}: |
| * |
| * (tREA + 4000 - tRP) * 8 |
| * RDN_DELAY = ----------------------- |
| * RP |
| */ |
| if (period_ps > dll_threshold_ps) { |
| use_half_period = true; |
| reference_period_ps = period_ps / 2; |
| } else { |
| use_half_period = false; |
| reference_period_ps = period_ps; |
| } |
| |
| tRP_ps = data_setup_cycles * period_ps; |
| sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; |
| if (sample_delay_ps > 0) |
| sample_delay_factor = sample_delay_ps / reference_period_ps; |
| else |
| sample_delay_factor = 0; |
| |
| hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); |
| if (sample_delay_factor) |
| hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | |
| BM_GPMI_CTRL1_DLL_ENABLE | |
| (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); |
| } |
| |
| void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) |
| { |
| struct gpmi_nfc_hardware_timing *hw = &this->hw; |
| struct resources *r = &this->resources; |
| void __iomem *gpmi_regs = r->gpmi_regs; |
| unsigned int dll_wait_time_us; |
| |
| clk_set_rate(r->clock[0], hw->clk_rate); |
| |
| writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); |
| writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); |
| |
| /* |
| * Clear several CTRL1 fields, DLL must be disabled when setting |
| * RDN_DELAY or HALF_PERIOD. |
| */ |
| writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); |
| writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); |
| |
| /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ |
| dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; |
| if (!dll_wait_time_us) |
| dll_wait_time_us = 1; |
| |
| /* Wait for the DLL to settle. */ |
| udelay(dll_wait_time_us); |
| } |
| |
| int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr, |
| const struct nand_data_interface *conf) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| const struct nand_sdr_timings *sdr; |
| |
| /* Retrieve required NAND timings */ |
| sdr = nand_get_sdr_timings(conf); |
| if (IS_ERR(sdr)) |
| return PTR_ERR(sdr); |
| |
| /* Only MX6 GPMI controller can reach EDO timings */ |
| if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this)) |
| return -ENOTSUPP; |
| |
| /* Stop here if this call was just a check */ |
| if (chipnr < 0) |
| return 0; |
| |
| /* Do the actual derivation of the controller timings */ |
| gpmi_nfc_compute_timings(this, sdr); |
| |
| this->hw.must_apply_timings = true; |
| |
| return 0; |
| } |
| |
| /* Clears a BCH interrupt. */ |
| void gpmi_clear_bch(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); |
| } |
| |
| /* Returns the Ready/Busy status of the given chip. */ |
| int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) |
| { |
| struct resources *r = &this->resources; |
| uint32_t mask = 0; |
| uint32_t reg = 0; |
| |
| if (GPMI_IS_MX23(this)) { |
| mask = MX23_BM_GPMI_DEBUG_READY0 << chip; |
| reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); |
| } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) { |
| /* |
| * In the imx6, all the ready/busy pins are bound |
| * together. So we only need to check chip 0. |
| */ |
| if (GPMI_IS_MX6(this)) |
| chip = 0; |
| |
| /* MX28 shares the same R/B register as MX6Q. */ |
| mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); |
| reg = readl(r->gpmi_regs + HW_GPMI_STAT); |
| } else |
| dev_err(this->dev, "unknown arch.\n"); |
| return reg & mask; |
| } |
| |
| int gpmi_send_command(struct gpmi_nand_data *this) |
| { |
| struct dma_chan *channel = get_dma_chan(this); |
| struct dma_async_tx_descriptor *desc; |
| struct scatterlist *sgl; |
| int chip = this->current_chip; |
| int ret; |
| u32 pio[3]; |
| |
| /* [1] send out the PIO words */ |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) |
| | BM_GPMI_CTRL0_ADDRESS_INCREMENT |
| | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); |
| pio[1] = pio[2] = 0; |
| desc = dmaengine_prep_slave_sg(channel, |
| (struct scatterlist *)pio, |
| ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ |
| sgl = &this->cmd_sgl; |
| |
| sg_init_one(sgl, this->cmd_buffer, this->command_length); |
| dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); |
| desc = dmaengine_prep_slave_sg(channel, |
| sgl, 1, DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [3] submit the DMA */ |
| ret = start_dma_without_bch_irq(this, desc); |
| |
| dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE); |
| |
| return ret; |
| } |
| |
| int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len) |
| { |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *channel = get_dma_chan(this); |
| int chip = this->current_chip; |
| int ret; |
| uint32_t command_mode; |
| uint32_t address; |
| u32 pio[2]; |
| |
| /* [1] PIO */ |
| command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; |
| address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(address) |
| | BF_GPMI_CTRL0_XFER_COUNT(len); |
| pio[1] = 0; |
| desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, |
| ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [2] send DMA request */ |
| prepare_data_dma(this, buf, len, DMA_TO_DEVICE); |
| desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, |
| 1, DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [3] submit the DMA */ |
| ret = start_dma_without_bch_irq(this, desc); |
| |
| dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); |
| |
| return ret; |
| } |
| |
| int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len) |
| { |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *channel = get_dma_chan(this); |
| int chip = this->current_chip; |
| int ret; |
| u32 pio[2]; |
| bool direct; |
| |
| /* [1] : send PIO */ |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) |
| | BF_GPMI_CTRL0_XFER_COUNT(len); |
| pio[1] = 0; |
| desc = dmaengine_prep_slave_sg(channel, |
| (struct scatterlist *)pio, |
| ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [2] : send DMA request */ |
| direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE); |
| desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, |
| 1, DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [3] : submit the DMA */ |
| |
| ret = start_dma_without_bch_irq(this, desc); |
| |
| dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); |
| if (!direct) |
| memcpy(buf, this->data_buffer_dma, len); |
| |
| return ret; |
| } |
| |
| int gpmi_send_page(struct gpmi_nand_data *this, |
| dma_addr_t payload, dma_addr_t auxiliary) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| uint32_t command_mode; |
| uint32_t address; |
| uint32_t ecc_command; |
| uint32_t buffer_mask; |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *channel = get_dma_chan(this); |
| int chip = this->current_chip; |
| u32 pio[6]; |
| |
| /* A DMA descriptor that does an ECC page read. */ |
| command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; |
| address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; |
| buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | |
| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; |
| |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(address) |
| | BF_GPMI_CTRL0_XFER_COUNT(0); |
| pio[1] = 0; |
| pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC |
| | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) |
| | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); |
| pio[3] = geo->page_size; |
| pio[4] = payload; |
| pio[5] = auxiliary; |
| |
| desc = dmaengine_prep_slave_sg(channel, |
| (struct scatterlist *)pio, |
| ARRAY_SIZE(pio), DMA_TRANS_NONE, |
| DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| return start_dma_with_bch_irq(this, desc); |
| } |
| |
| int gpmi_read_page(struct gpmi_nand_data *this, |
| dma_addr_t payload, dma_addr_t auxiliary) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| uint32_t command_mode; |
| uint32_t address; |
| uint32_t ecc_command; |
| uint32_t buffer_mask; |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *channel = get_dma_chan(this); |
| int chip = this->current_chip; |
| u32 pio[6]; |
| |
| /* [1] Wait for the chip to report ready. */ |
| command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; |
| address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(address) |
| | BF_GPMI_CTRL0_XFER_COUNT(0); |
| pio[1] = 0; |
| desc = dmaengine_prep_slave_sg(channel, |
| (struct scatterlist *)pio, 2, |
| DMA_TRANS_NONE, 0); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [2] Enable the BCH block and read. */ |
| command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; |
| address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; |
| buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
| | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; |
| |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(address) |
| | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); |
| |
| pio[1] = 0; |
| pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC |
| | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) |
| | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); |
| pio[3] = geo->page_size; |
| pio[4] = payload; |
| pio[5] = auxiliary; |
| desc = dmaengine_prep_slave_sg(channel, |
| (struct scatterlist *)pio, |
| ARRAY_SIZE(pio), DMA_TRANS_NONE, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [3] Disable the BCH block */ |
| command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; |
| address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(address) |
| | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); |
| pio[1] = 0; |
| pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */ |
| desc = dmaengine_prep_slave_sg(channel, |
| (struct scatterlist *)pio, 3, |
| DMA_TRANS_NONE, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [4] submit the DMA */ |
| return start_dma_with_bch_irq(this, desc); |
| } |
| |
| /** |
| * gpmi_copy_bits - copy bits from one memory region to another |
| * @dst: destination buffer |
| * @dst_bit_off: bit offset we're starting to write at |
| * @src: source buffer |
| * @src_bit_off: bit offset we're starting to read from |
| * @nbits: number of bits to copy |
| * |
| * This functions copies bits from one memory region to another, and is used by |
| * the GPMI driver to copy ECC sections which are not guaranteed to be byte |
| * aligned. |
| * |
| * src and dst should not overlap. |
| * |
| */ |
| void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, |
| const u8 *src, size_t src_bit_off, |
| size_t nbits) |
| { |
| size_t i; |
| size_t nbytes; |
| u32 src_buffer = 0; |
| size_t bits_in_src_buffer = 0; |
| |
| if (!nbits) |
| return; |
| |
| /* |
| * Move src and dst pointers to the closest byte pointer and store bit |
| * offsets within a byte. |
| */ |
| src += src_bit_off / 8; |
| src_bit_off %= 8; |
| |
| dst += dst_bit_off / 8; |
| dst_bit_off %= 8; |
| |
| /* |
| * Initialize the src_buffer value with bits available in the first |
| * byte of data so that we end up with a byte aligned src pointer. |
| */ |
| if (src_bit_off) { |
| src_buffer = src[0] >> src_bit_off; |
| if (nbits >= (8 - src_bit_off)) { |
| bits_in_src_buffer += 8 - src_bit_off; |
| } else { |
| src_buffer &= GENMASK(nbits - 1, 0); |
| bits_in_src_buffer += nbits; |
| } |
| nbits -= bits_in_src_buffer; |
| src++; |
| } |
| |
| /* Calculate the number of bytes that can be copied from src to dst. */ |
| nbytes = nbits / 8; |
| |
| /* Try to align dst to a byte boundary. */ |
| if (dst_bit_off) { |
| if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) { |
| src_buffer |= src[0] << bits_in_src_buffer; |
| bits_in_src_buffer += 8; |
| src++; |
| nbytes--; |
| } |
| |
| if (bits_in_src_buffer >= (8 - dst_bit_off)) { |
| dst[0] &= GENMASK(dst_bit_off - 1, 0); |
| dst[0] |= src_buffer << dst_bit_off; |
| src_buffer >>= (8 - dst_bit_off); |
| bits_in_src_buffer -= (8 - dst_bit_off); |
| dst_bit_off = 0; |
| dst++; |
| if (bits_in_src_buffer > 7) { |
| bits_in_src_buffer -= 8; |
| dst[0] = src_buffer; |
| dst++; |
| src_buffer >>= 8; |
| } |
| } |
| } |
| |
| if (!bits_in_src_buffer && !dst_bit_off) { |
| /* |
| * Both src and dst pointers are byte aligned, thus we can |
| * just use the optimized memcpy function. |
| */ |
| if (nbytes) |
| memcpy(dst, src, nbytes); |
| } else { |
| /* |
| * src buffer is not byte aligned, hence we have to copy each |
| * src byte to the src_buffer variable before extracting a byte |
| * to store in dst. |
| */ |
| for (i = 0; i < nbytes; i++) { |
| src_buffer |= src[i] << bits_in_src_buffer; |
| dst[i] = src_buffer; |
| src_buffer >>= 8; |
| } |
| } |
| /* Update dst and src pointers */ |
| dst += nbytes; |
| src += nbytes; |
| |
| /* |
| * nbits is the number of remaining bits. It should not exceed 8 as |
| * we've already copied as much bytes as possible. |
| */ |
| nbits %= 8; |
| |
| /* |
| * If there's no more bits to copy to the destination and src buffer |
| * was already byte aligned, then we're done. |
| */ |
| if (!nbits && !bits_in_src_buffer) |
| return; |
| |
| /* Copy the remaining bits to src_buffer */ |
| if (nbits) |
| src_buffer |= (*src & GENMASK(nbits - 1, 0)) << |
| bits_in_src_buffer; |
| bits_in_src_buffer += nbits; |
| |
| /* |
| * In case there were not enough bits to get a byte aligned dst buffer |
| * prepare the src_buffer variable to match the dst organization (shift |
| * src_buffer by dst_bit_off and retrieve the least significant bits |
| * from dst). |
| */ |
| if (dst_bit_off) |
| src_buffer = (src_buffer << dst_bit_off) | |
| (*dst & GENMASK(dst_bit_off - 1, 0)); |
| bits_in_src_buffer += dst_bit_off; |
| |
| /* |
| * Keep most significant bits from dst if we end up with an unaligned |
| * number of bits. |
| */ |
| nbytes = bits_in_src_buffer / 8; |
| if (bits_in_src_buffer % 8) { |
| src_buffer |= (dst[nbytes] & |
| GENMASK(7, bits_in_src_buffer % 8)) << |
| (nbytes * 8); |
| nbytes++; |
| } |
| |
| /* Copy the remaining bytes to dst */ |
| for (i = 0; i < nbytes; i++) { |
| dst[i] = src_buffer; |
| src_buffer >>= 8; |
| } |
| } |