|  | /* | 
|  | * Copyright (c) 2006 Oracle.  All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | * | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "rds.h" | 
|  | #include "iw.h" | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is stored as mr->r_trans_private. | 
|  | */ | 
|  | struct rds_iw_mr { | 
|  | struct rds_iw_device	*device; | 
|  | struct rds_iw_mr_pool	*pool; | 
|  | struct rdma_cm_id	*cm_id; | 
|  |  | 
|  | struct ib_mr	*mr; | 
|  | struct ib_fast_reg_page_list *page_list; | 
|  |  | 
|  | struct rds_iw_mapping	mapping; | 
|  | unsigned char		remap_count; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Our own little MR pool | 
|  | */ | 
|  | struct rds_iw_mr_pool { | 
|  | struct rds_iw_device	*device;		/* back ptr to the device that owns us */ | 
|  |  | 
|  | struct mutex		flush_lock;		/* serialize fmr invalidate */ | 
|  | struct work_struct	flush_worker;		/* flush worker */ | 
|  |  | 
|  | spinlock_t		list_lock;		/* protect variables below */ | 
|  | atomic_t		item_count;		/* total # of MRs */ | 
|  | atomic_t		dirty_count;		/* # dirty of MRs */ | 
|  | struct list_head	dirty_list;		/* dirty mappings */ | 
|  | struct list_head	clean_list;		/* unused & unamapped MRs */ | 
|  | atomic_t		free_pinned;		/* memory pinned by free MRs */ | 
|  | unsigned long		max_message_size;	/* in pages */ | 
|  | unsigned long		max_items; | 
|  | unsigned long		max_items_soft; | 
|  | unsigned long		max_free_pinned; | 
|  | int			max_pages; | 
|  | }; | 
|  |  | 
|  | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all); | 
|  | static void rds_iw_mr_pool_flush_worker(struct work_struct *work); | 
|  | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | 
|  | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, | 
|  | struct rds_iw_mr *ibmr, | 
|  | struct scatterlist *sg, unsigned int nents); | 
|  | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | 
|  | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, | 
|  | struct list_head *unmap_list, | 
|  | struct list_head *kill_list); | 
|  | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); | 
|  |  | 
|  | static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id) | 
|  | { | 
|  | struct rds_iw_device *iwdev; | 
|  | struct rds_iw_cm_id *i_cm_id; | 
|  |  | 
|  | *rds_iwdev = NULL; | 
|  | *cm_id = NULL; | 
|  |  | 
|  | list_for_each_entry(iwdev, &rds_iw_devices, list) { | 
|  | spin_lock_irq(&iwdev->spinlock); | 
|  | list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) { | 
|  | struct sockaddr_in *src_addr, *dst_addr; | 
|  |  | 
|  | src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr; | 
|  | dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr; | 
|  |  | 
|  | rdsdebug("local ipaddr = %x port %d, " | 
|  | "remote ipaddr = %x port %d" | 
|  | "..looking for %x port %d, " | 
|  | "remote ipaddr = %x port %d\n", | 
|  | src_addr->sin_addr.s_addr, | 
|  | src_addr->sin_port, | 
|  | dst_addr->sin_addr.s_addr, | 
|  | dst_addr->sin_port, | 
|  | rs->rs_bound_addr, | 
|  | rs->rs_bound_port, | 
|  | rs->rs_conn_addr, | 
|  | rs->rs_conn_port); | 
|  | #ifdef WORKING_TUPLE_DETECTION | 
|  | if (src_addr->sin_addr.s_addr == rs->rs_bound_addr && | 
|  | src_addr->sin_port == rs->rs_bound_port && | 
|  | dst_addr->sin_addr.s_addr == rs->rs_conn_addr && | 
|  | dst_addr->sin_port == rs->rs_conn_port) { | 
|  | #else | 
|  | /* FIXME - needs to compare the local and remote | 
|  | * ipaddr/port tuple, but the ipaddr is the only | 
|  | * available infomation in the rds_sock (as the rest are | 
|  | * zero'ed.  It doesn't appear to be properly populated | 
|  | * during connection setup... | 
|  | */ | 
|  | if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) { | 
|  | #endif | 
|  | spin_unlock_irq(&iwdev->spinlock); | 
|  | *rds_iwdev = iwdev; | 
|  | *cm_id = i_cm_id->cm_id; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&iwdev->spinlock); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | 
|  | { | 
|  | struct rds_iw_cm_id *i_cm_id; | 
|  |  | 
|  | i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL); | 
|  | if (!i_cm_id) | 
|  | return -ENOMEM; | 
|  |  | 
|  | i_cm_id->cm_id = cm_id; | 
|  |  | 
|  | spin_lock_irq(&rds_iwdev->spinlock); | 
|  | list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list); | 
|  | spin_unlock_irq(&rds_iwdev->spinlock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, | 
|  | struct rdma_cm_id *cm_id) | 
|  | { | 
|  | struct rds_iw_cm_id *i_cm_id; | 
|  |  | 
|  | spin_lock_irq(&rds_iwdev->spinlock); | 
|  | list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) { | 
|  | if (i_cm_id->cm_id == cm_id) { | 
|  | list_del(&i_cm_id->list); | 
|  | kfree(i_cm_id); | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&rds_iwdev->spinlock); | 
|  | } | 
|  |  | 
|  |  | 
|  | int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) | 
|  | { | 
|  | struct sockaddr_in *src_addr, *dst_addr; | 
|  | struct rds_iw_device *rds_iwdev_old; | 
|  | struct rds_sock rs; | 
|  | struct rdma_cm_id *pcm_id; | 
|  | int rc; | 
|  |  | 
|  | src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr; | 
|  | dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr; | 
|  |  | 
|  | rs.rs_bound_addr = src_addr->sin_addr.s_addr; | 
|  | rs.rs_bound_port = src_addr->sin_port; | 
|  | rs.rs_conn_addr = dst_addr->sin_addr.s_addr; | 
|  | rs.rs_conn_port = dst_addr->sin_port; | 
|  |  | 
|  | rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id); | 
|  | if (rc) | 
|  | rds_iw_remove_cm_id(rds_iwdev, cm_id); | 
|  |  | 
|  | return rds_iw_add_cm_id(rds_iwdev, cm_id); | 
|  | } | 
|  |  | 
|  | void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) | 
|  | { | 
|  | struct rds_iw_connection *ic = conn->c_transport_data; | 
|  |  | 
|  | /* conn was previously on the nodev_conns_list */ | 
|  | spin_lock_irq(&iw_nodev_conns_lock); | 
|  | BUG_ON(list_empty(&iw_nodev_conns)); | 
|  | BUG_ON(list_empty(&ic->iw_node)); | 
|  | list_del(&ic->iw_node); | 
|  |  | 
|  | spin_lock(&rds_iwdev->spinlock); | 
|  | list_add_tail(&ic->iw_node, &rds_iwdev->conn_list); | 
|  | spin_unlock(&rds_iwdev->spinlock); | 
|  | spin_unlock_irq(&iw_nodev_conns_lock); | 
|  |  | 
|  | ic->rds_iwdev = rds_iwdev; | 
|  | } | 
|  |  | 
|  | void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) | 
|  | { | 
|  | struct rds_iw_connection *ic = conn->c_transport_data; | 
|  |  | 
|  | /* place conn on nodev_conns_list */ | 
|  | spin_lock(&iw_nodev_conns_lock); | 
|  |  | 
|  | spin_lock_irq(&rds_iwdev->spinlock); | 
|  | BUG_ON(list_empty(&ic->iw_node)); | 
|  | list_del(&ic->iw_node); | 
|  | spin_unlock_irq(&rds_iwdev->spinlock); | 
|  |  | 
|  | list_add_tail(&ic->iw_node, &iw_nodev_conns); | 
|  |  | 
|  | spin_unlock(&iw_nodev_conns_lock); | 
|  |  | 
|  | rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id); | 
|  | ic->rds_iwdev = NULL; | 
|  | } | 
|  |  | 
|  | void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock) | 
|  | { | 
|  | struct rds_iw_connection *ic, *_ic; | 
|  | LIST_HEAD(tmp_list); | 
|  |  | 
|  | /* avoid calling conn_destroy with irqs off */ | 
|  | spin_lock_irq(list_lock); | 
|  | list_splice(list, &tmp_list); | 
|  | INIT_LIST_HEAD(list); | 
|  | spin_unlock_irq(list_lock); | 
|  |  | 
|  | list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) | 
|  | rds_conn_destroy(ic->conn); | 
|  | } | 
|  |  | 
|  | static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg, | 
|  | struct scatterlist *list, unsigned int sg_len) | 
|  | { | 
|  | sg->list = list; | 
|  | sg->len = sg_len; | 
|  | sg->dma_len = 0; | 
|  | sg->dma_npages = 0; | 
|  | sg->bytes = 0; | 
|  | } | 
|  |  | 
|  | static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev, | 
|  | struct rds_iw_scatterlist *sg) | 
|  | { | 
|  | struct ib_device *dev = rds_iwdev->dev; | 
|  | u64 *dma_pages = NULL; | 
|  | int i, j, ret; | 
|  |  | 
|  | WARN_ON(sg->dma_len); | 
|  |  | 
|  | sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL); | 
|  | if (unlikely(!sg->dma_len)) { | 
|  | printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n"); | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  |  | 
|  | sg->bytes = 0; | 
|  | sg->dma_npages = 0; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | for (i = 0; i < sg->dma_len; ++i) { | 
|  | unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); | 
|  | u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); | 
|  | u64 end_addr; | 
|  |  | 
|  | sg->bytes += dma_len; | 
|  |  | 
|  | end_addr = dma_addr + dma_len; | 
|  | if (dma_addr & PAGE_MASK) { | 
|  | if (i > 0) | 
|  | goto out_unmap; | 
|  | dma_addr &= ~PAGE_MASK; | 
|  | } | 
|  | if (end_addr & PAGE_MASK) { | 
|  | if (i < sg->dma_len - 1) | 
|  | goto out_unmap; | 
|  | end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK; | 
|  | } | 
|  |  | 
|  | sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* Now gather the dma addrs into one list */ | 
|  | if (sg->dma_npages > fastreg_message_size) | 
|  | goto out_unmap; | 
|  |  | 
|  | dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC); | 
|  | if (!dma_pages) { | 
|  | ret = -ENOMEM; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | for (i = j = 0; i < sg->dma_len; ++i) { | 
|  | unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); | 
|  | u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); | 
|  | u64 end_addr; | 
|  |  | 
|  | end_addr = dma_addr + dma_len; | 
|  | dma_addr &= ~PAGE_MASK; | 
|  | for (; dma_addr < end_addr; dma_addr += PAGE_SIZE) | 
|  | dma_pages[j++] = dma_addr; | 
|  | BUG_ON(j > sg->dma_npages); | 
|  | } | 
|  |  | 
|  | return dma_pages; | 
|  |  | 
|  | out_unmap: | 
|  | ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL); | 
|  | sg->dma_len = 0; | 
|  | kfree(dma_pages); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  |  | 
|  | struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev) | 
|  | { | 
|  | struct rds_iw_mr_pool *pool; | 
|  |  | 
|  | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | 
|  | if (!pool) { | 
|  | printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n"); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | pool->device = rds_iwdev; | 
|  | INIT_LIST_HEAD(&pool->dirty_list); | 
|  | INIT_LIST_HEAD(&pool->clean_list); | 
|  | mutex_init(&pool->flush_lock); | 
|  | spin_lock_init(&pool->list_lock); | 
|  | INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker); | 
|  |  | 
|  | pool->max_message_size = fastreg_message_size; | 
|  | pool->max_items = fastreg_pool_size; | 
|  | pool->max_free_pinned = pool->max_items * pool->max_message_size / 4; | 
|  | pool->max_pages = fastreg_message_size; | 
|  |  | 
|  | /* We never allow more than max_items MRs to be allocated. | 
|  | * When we exceed more than max_items_soft, we start freeing | 
|  | * items more aggressively. | 
|  | * Make sure that max_items > max_items_soft > max_items / 2 | 
|  | */ | 
|  | pool->max_items_soft = pool->max_items * 3 / 4; | 
|  |  | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo) | 
|  | { | 
|  | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | 
|  |  | 
|  | iinfo->rdma_mr_max = pool->max_items; | 
|  | iinfo->rdma_mr_size = pool->max_pages; | 
|  | } | 
|  |  | 
|  | void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool) | 
|  | { | 
|  | flush_workqueue(rds_wq); | 
|  | rds_iw_flush_mr_pool(pool, 1); | 
|  | BUG_ON(atomic_read(&pool->item_count)); | 
|  | BUG_ON(atomic_read(&pool->free_pinned)); | 
|  | kfree(pool); | 
|  | } | 
|  |  | 
|  | static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool) | 
|  | { | 
|  | struct rds_iw_mr *ibmr = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->list_lock, flags); | 
|  | if (!list_empty(&pool->clean_list)) { | 
|  | ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list); | 
|  | list_del_init(&ibmr->mapping.m_list); | 
|  | } | 
|  | spin_unlock_irqrestore(&pool->list_lock, flags); | 
|  |  | 
|  | return ibmr; | 
|  | } | 
|  |  | 
|  | static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev) | 
|  | { | 
|  | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | 
|  | struct rds_iw_mr *ibmr = NULL; | 
|  | int err = 0, iter = 0; | 
|  |  | 
|  | while (1) { | 
|  | ibmr = rds_iw_reuse_fmr(pool); | 
|  | if (ibmr) | 
|  | return ibmr; | 
|  |  | 
|  | /* No clean MRs - now we have the choice of either | 
|  | * allocating a fresh MR up to the limit imposed by the | 
|  | * driver, or flush any dirty unused MRs. | 
|  | * We try to avoid stalling in the send path if possible, | 
|  | * so we allocate as long as we're allowed to. | 
|  | * | 
|  | * We're fussy with enforcing the FMR limit, though. If the driver | 
|  | * tells us we can't use more than N fmrs, we shouldn't start | 
|  | * arguing with it */ | 
|  | if (atomic_inc_return(&pool->item_count) <= pool->max_items) | 
|  | break; | 
|  |  | 
|  | atomic_dec(&pool->item_count); | 
|  |  | 
|  | if (++iter > 2) { | 
|  | rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted); | 
|  | return ERR_PTR(-EAGAIN); | 
|  | } | 
|  |  | 
|  | /* We do have some empty MRs. Flush them out. */ | 
|  | rds_iw_stats_inc(s_iw_rdma_mr_pool_wait); | 
|  | rds_iw_flush_mr_pool(pool, 0); | 
|  | } | 
|  |  | 
|  | ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); | 
|  | if (!ibmr) { | 
|  | err = -ENOMEM; | 
|  | goto out_no_cigar; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&ibmr->mapping.m_lock); | 
|  | INIT_LIST_HEAD(&ibmr->mapping.m_list); | 
|  | ibmr->mapping.m_mr = ibmr; | 
|  |  | 
|  | err = rds_iw_init_fastreg(pool, ibmr); | 
|  | if (err) | 
|  | goto out_no_cigar; | 
|  |  | 
|  | rds_iw_stats_inc(s_iw_rdma_mr_alloc); | 
|  | return ibmr; | 
|  |  | 
|  | out_no_cigar: | 
|  | if (ibmr) { | 
|  | rds_iw_destroy_fastreg(pool, ibmr); | 
|  | kfree(ibmr); | 
|  | } | 
|  | atomic_dec(&pool->item_count); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | void rds_iw_sync_mr(void *trans_private, int direction) | 
|  | { | 
|  | struct rds_iw_mr *ibmr = trans_private; | 
|  | struct rds_iw_device *rds_iwdev = ibmr->device; | 
|  |  | 
|  | switch (direction) { | 
|  | case DMA_FROM_DEVICE: | 
|  | ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list, | 
|  | ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); | 
|  | break; | 
|  | case DMA_TO_DEVICE: | 
|  | ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list, | 
|  | ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all) | 
|  | { | 
|  | unsigned int item_count; | 
|  |  | 
|  | item_count = atomic_read(&pool->item_count); | 
|  | if (free_all) | 
|  | return item_count; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush our pool of MRs. | 
|  | * At a minimum, all currently unused MRs are unmapped. | 
|  | * If the number of MRs allocated exceeds the limit, we also try | 
|  | * to free as many MRs as needed to get back to this limit. | 
|  | */ | 
|  | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all) | 
|  | { | 
|  | struct rds_iw_mr *ibmr, *next; | 
|  | LIST_HEAD(unmap_list); | 
|  | LIST_HEAD(kill_list); | 
|  | unsigned long flags; | 
|  | unsigned int nfreed = 0, ncleaned = 0, free_goal; | 
|  | int ret = 0; | 
|  |  | 
|  | rds_iw_stats_inc(s_iw_rdma_mr_pool_flush); | 
|  |  | 
|  | mutex_lock(&pool->flush_lock); | 
|  |  | 
|  | spin_lock_irqsave(&pool->list_lock, flags); | 
|  | /* Get the list of all mappings to be destroyed */ | 
|  | list_splice_init(&pool->dirty_list, &unmap_list); | 
|  | if (free_all) | 
|  | list_splice_init(&pool->clean_list, &kill_list); | 
|  | spin_unlock_irqrestore(&pool->list_lock, flags); | 
|  |  | 
|  | free_goal = rds_iw_flush_goal(pool, free_all); | 
|  |  | 
|  | /* Batched invalidate of dirty MRs. | 
|  | * For FMR based MRs, the mappings on the unmap list are | 
|  | * actually members of an ibmr (ibmr->mapping). They either | 
|  | * migrate to the kill_list, or have been cleaned and should be | 
|  | * moved to the clean_list. | 
|  | * For fastregs, they will be dynamically allocated, and | 
|  | * will be destroyed by the unmap function. | 
|  | */ | 
|  | if (!list_empty(&unmap_list)) { | 
|  | ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list); | 
|  | /* If we've been asked to destroy all MRs, move those | 
|  | * that were simply cleaned to the kill list */ | 
|  | if (free_all) | 
|  | list_splice_init(&unmap_list, &kill_list); | 
|  | } | 
|  |  | 
|  | /* Destroy any MRs that are past their best before date */ | 
|  | list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) { | 
|  | rds_iw_stats_inc(s_iw_rdma_mr_free); | 
|  | list_del(&ibmr->mapping.m_list); | 
|  | rds_iw_destroy_fastreg(pool, ibmr); | 
|  | kfree(ibmr); | 
|  | nfreed++; | 
|  | } | 
|  |  | 
|  | /* Anything that remains are laundered ibmrs, which we can add | 
|  | * back to the clean list. */ | 
|  | if (!list_empty(&unmap_list)) { | 
|  | spin_lock_irqsave(&pool->list_lock, flags); | 
|  | list_splice(&unmap_list, &pool->clean_list); | 
|  | spin_unlock_irqrestore(&pool->list_lock, flags); | 
|  | } | 
|  |  | 
|  | atomic_sub(ncleaned, &pool->dirty_count); | 
|  | atomic_sub(nfreed, &pool->item_count); | 
|  |  | 
|  | mutex_unlock(&pool->flush_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void rds_iw_mr_pool_flush_worker(struct work_struct *work) | 
|  | { | 
|  | struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker); | 
|  |  | 
|  | rds_iw_flush_mr_pool(pool, 0); | 
|  | } | 
|  |  | 
|  | void rds_iw_free_mr(void *trans_private, int invalidate) | 
|  | { | 
|  | struct rds_iw_mr *ibmr = trans_private; | 
|  | struct rds_iw_mr_pool *pool = ibmr->device->mr_pool; | 
|  |  | 
|  | rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len); | 
|  | if (!pool) | 
|  | return; | 
|  |  | 
|  | /* Return it to the pool's free list */ | 
|  | rds_iw_free_fastreg(pool, ibmr); | 
|  |  | 
|  | /* If we've pinned too many pages, request a flush */ | 
|  | if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned || | 
|  | atomic_read(&pool->dirty_count) >= pool->max_items / 10) | 
|  | queue_work(rds_wq, &pool->flush_worker); | 
|  |  | 
|  | if (invalidate) { | 
|  | if (likely(!in_interrupt())) { | 
|  | rds_iw_flush_mr_pool(pool, 0); | 
|  | } else { | 
|  | /* We get here if the user created a MR marked | 
|  | * as use_once and invalidate at the same time. */ | 
|  | queue_work(rds_wq, &pool->flush_worker); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void rds_iw_flush_mrs(void) | 
|  | { | 
|  | struct rds_iw_device *rds_iwdev; | 
|  |  | 
|  | list_for_each_entry(rds_iwdev, &rds_iw_devices, list) { | 
|  | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; | 
|  |  | 
|  | if (pool) | 
|  | rds_iw_flush_mr_pool(pool, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents, | 
|  | struct rds_sock *rs, u32 *key_ret) | 
|  | { | 
|  | struct rds_iw_device *rds_iwdev; | 
|  | struct rds_iw_mr *ibmr = NULL; | 
|  | struct rdma_cm_id *cm_id; | 
|  | int ret; | 
|  |  | 
|  | ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id); | 
|  | if (ret || !cm_id) { | 
|  | ret = -ENODEV; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!rds_iwdev->mr_pool) { | 
|  | ret = -ENODEV; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ibmr = rds_iw_alloc_mr(rds_iwdev); | 
|  | if (IS_ERR(ibmr)) | 
|  | return ibmr; | 
|  |  | 
|  | ibmr->cm_id = cm_id; | 
|  | ibmr->device = rds_iwdev; | 
|  |  | 
|  | ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents); | 
|  | if (ret == 0) | 
|  | *key_ret = ibmr->mr->rkey; | 
|  | else | 
|  | printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret); | 
|  |  | 
|  | out: | 
|  | if (ret) { | 
|  | if (ibmr) | 
|  | rds_iw_free_mr(ibmr, 0); | 
|  | ibmr = ERR_PTR(ret); | 
|  | } | 
|  | return ibmr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * iWARP fastreg handling | 
|  | * | 
|  | * The life cycle of a fastreg registration is a bit different from | 
|  | * FMRs. | 
|  | * The idea behind fastreg is to have one MR, to which we bind different | 
|  | * mappings over time. To avoid stalling on the expensive map and invalidate | 
|  | * operations, these operations are pipelined on the same send queue on | 
|  | * which we want to send the message containing the r_key. | 
|  | * | 
|  | * This creates a bit of a problem for us, as we do not have the destination | 
|  | * IP in GET_MR, so the connection must be setup prior to the GET_MR call for | 
|  | * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit | 
|  | * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request | 
|  | * before queuing the SEND. When completions for these arrive, they are | 
|  | * dispatched to the MR has a bit set showing that RDMa can be performed. | 
|  | * | 
|  | * There is another interesting aspect that's related to invalidation. | 
|  | * The application can request that a mapping is invalidated in FREE_MR. | 
|  | * The expectation there is that this invalidation step includes ALL | 
|  | * PREVIOUSLY FREED MRs. | 
|  | */ | 
|  | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, | 
|  | struct rds_iw_mr *ibmr) | 
|  | { | 
|  | struct rds_iw_device *rds_iwdev = pool->device; | 
|  | struct ib_fast_reg_page_list *page_list = NULL; | 
|  | struct ib_mr *mr; | 
|  | int err; | 
|  |  | 
|  | mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size); | 
|  | if (IS_ERR(mr)) { | 
|  | err = PTR_ERR(mr); | 
|  |  | 
|  | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages | 
|  | * is not filled in. | 
|  | */ | 
|  | page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size); | 
|  | if (IS_ERR(page_list)) { | 
|  | err = PTR_ERR(page_list); | 
|  |  | 
|  | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err); | 
|  | ib_dereg_mr(mr); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | ibmr->page_list = page_list; | 
|  | ibmr->mr = mr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping) | 
|  | { | 
|  | struct rds_iw_mr *ibmr = mapping->m_mr; | 
|  | struct ib_send_wr f_wr, *failed_wr; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Perform a WR for the fast_reg_mr. Each individual page | 
|  | * in the sg list is added to the fast reg page list and placed | 
|  | * inside the fast_reg_mr WR.  The key used is a rolling 8bit | 
|  | * counter, which should guarantee uniqueness. | 
|  | */ | 
|  | ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++); | 
|  | mapping->m_rkey = ibmr->mr->rkey; | 
|  |  | 
|  | memset(&f_wr, 0, sizeof(f_wr)); | 
|  | f_wr.wr_id = RDS_IW_FAST_REG_WR_ID; | 
|  | f_wr.opcode = IB_WR_FAST_REG_MR; | 
|  | f_wr.wr.fast_reg.length = mapping->m_sg.bytes; | 
|  | f_wr.wr.fast_reg.rkey = mapping->m_rkey; | 
|  | f_wr.wr.fast_reg.page_list = ibmr->page_list; | 
|  | f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len; | 
|  | f_wr.wr.fast_reg.page_shift = PAGE_SHIFT; | 
|  | f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE | | 
|  | IB_ACCESS_REMOTE_READ | | 
|  | IB_ACCESS_REMOTE_WRITE; | 
|  | f_wr.wr.fast_reg.iova_start = 0; | 
|  | f_wr.send_flags = IB_SEND_SIGNALED; | 
|  |  | 
|  | failed_wr = &f_wr; | 
|  | ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr); | 
|  | BUG_ON(failed_wr != &f_wr); | 
|  | if (ret && printk_ratelimit()) | 
|  | printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", | 
|  | __func__, __LINE__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr) | 
|  | { | 
|  | struct ib_send_wr s_wr, *failed_wr; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!ibmr->cm_id->qp || !ibmr->mr) | 
|  | goto out; | 
|  |  | 
|  | memset(&s_wr, 0, sizeof(s_wr)); | 
|  | s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID; | 
|  | s_wr.opcode = IB_WR_LOCAL_INV; | 
|  | s_wr.ex.invalidate_rkey = ibmr->mr->rkey; | 
|  | s_wr.send_flags = IB_SEND_SIGNALED; | 
|  |  | 
|  | failed_wr = &s_wr; | 
|  | ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr); | 
|  | if (ret && printk_ratelimit()) { | 
|  | printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", | 
|  | __func__, __LINE__, ret); | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, | 
|  | struct rds_iw_mr *ibmr, | 
|  | struct scatterlist *sg, | 
|  | unsigned int sg_len) | 
|  | { | 
|  | struct rds_iw_device *rds_iwdev = pool->device; | 
|  | struct rds_iw_mapping *mapping = &ibmr->mapping; | 
|  | u64 *dma_pages; | 
|  | int i, ret = 0; | 
|  |  | 
|  | rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len); | 
|  |  | 
|  | dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg); | 
|  | if (IS_ERR(dma_pages)) { | 
|  | ret = PTR_ERR(dma_pages); | 
|  | dma_pages = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (mapping->m_sg.dma_len > pool->max_message_size) { | 
|  | ret = -EMSGSIZE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < mapping->m_sg.dma_npages; ++i) | 
|  | ibmr->page_list->page_list[i] = dma_pages[i]; | 
|  |  | 
|  | ret = rds_iw_rdma_build_fastreg(mapping); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | rds_iw_stats_inc(s_iw_rdma_mr_used); | 
|  |  | 
|  | out: | 
|  | kfree(dma_pages); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * "Free" a fastreg MR. | 
|  | */ | 
|  | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, | 
|  | struct rds_iw_mr *ibmr) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | if (!ibmr->mapping.m_sg.dma_len) | 
|  | return; | 
|  |  | 
|  | ret = rds_iw_rdma_fastreg_inv(ibmr); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | /* Try to post the LOCAL_INV WR to the queue. */ | 
|  | spin_lock_irqsave(&pool->list_lock, flags); | 
|  |  | 
|  | list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list); | 
|  | atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned); | 
|  | atomic_inc(&pool->dirty_count); | 
|  |  | 
|  | spin_unlock_irqrestore(&pool->list_lock, flags); | 
|  | } | 
|  |  | 
|  | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, | 
|  | struct list_head *unmap_list, | 
|  | struct list_head *kill_list) | 
|  | { | 
|  | struct rds_iw_mapping *mapping, *next; | 
|  | unsigned int ncleaned = 0; | 
|  | LIST_HEAD(laundered); | 
|  |  | 
|  | /* Batched invalidation of fastreg MRs. | 
|  | * Why do we do it this way, even though we could pipeline unmap | 
|  | * and remap? The reason is the application semantics - when the | 
|  | * application requests an invalidation of MRs, it expects all | 
|  | * previously released R_Keys to become invalid. | 
|  | * | 
|  | * If we implement MR reuse naively, we risk memory corruption | 
|  | * (this has actually been observed). So the default behavior | 
|  | * requires that a MR goes through an explicit unmap operation before | 
|  | * we can reuse it again. | 
|  | * | 
|  | * We could probably improve on this a little, by allowing immediate | 
|  | * reuse of a MR on the same socket (eg you could add small | 
|  | * cache of unused MRs to strct rds_socket - GET_MR could grab one | 
|  | * of these without requiring an explicit invalidate). | 
|  | */ | 
|  | while (!list_empty(unmap_list)) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&pool->list_lock, flags); | 
|  | list_for_each_entry_safe(mapping, next, unmap_list, m_list) { | 
|  | list_move(&mapping->m_list, &laundered); | 
|  | ncleaned++; | 
|  | } | 
|  | spin_unlock_irqrestore(&pool->list_lock, flags); | 
|  | } | 
|  |  | 
|  | /* Move all laundered mappings back to the unmap list. | 
|  | * We do not kill any WRs right now - it doesn't seem the | 
|  | * fastreg API has a max_remap limit. */ | 
|  | list_splice_init(&laundered, unmap_list); | 
|  |  | 
|  | return ncleaned; | 
|  | } | 
|  |  | 
|  | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, | 
|  | struct rds_iw_mr *ibmr) | 
|  | { | 
|  | if (ibmr->page_list) | 
|  | ib_free_fast_reg_page_list(ibmr->page_list); | 
|  | if (ibmr->mr) | 
|  | ib_dereg_mr(ibmr->mr); | 
|  | } |