| /* | 
 |  *  kernel/cpuset.c | 
 |  * | 
 |  *  Processor and Memory placement constraints for sets of tasks. | 
 |  * | 
 |  *  Copyright (C) 2003 BULL SA. | 
 |  *  Copyright (C) 2004-2007 Silicon Graphics, Inc. | 
 |  *  Copyright (C) 2006 Google, Inc | 
 |  * | 
 |  *  Portions derived from Patrick Mochel's sysfs code. | 
 |  *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
 |  * | 
 |  *  2003-10-10 Written by Simon Derr. | 
 |  *  2003-10-22 Updates by Stephen Hemminger. | 
 |  *  2004 May-July Rework by Paul Jackson. | 
 |  *  2006 Rework by Paul Menage to use generic cgroups | 
 |  *  2008 Rework of the scheduler domains and CPU hotplug handling | 
 |  *       by Max Krasnyansky | 
 |  * | 
 |  *  This file is subject to the terms and conditions of the GNU General Public | 
 |  *  License.  See the file COPYING in the main directory of the Linux | 
 |  *  distribution for more details. | 
 |  */ | 
 |  | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/err.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/security.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/stat.h> | 
 | #include <linux/string.h> | 
 | #include <linux/time.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/sort.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/atomic.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/cgroup.h> | 
 |  | 
 | /* | 
 |  * Tracks how many cpusets are currently defined in system. | 
 |  * When there is only one cpuset (the root cpuset) we can | 
 |  * short circuit some hooks. | 
 |  */ | 
 | int number_of_cpusets __read_mostly; | 
 |  | 
 | /* Forward declare cgroup structures */ | 
 | struct cgroup_subsys cpuset_subsys; | 
 | struct cpuset; | 
 |  | 
 | /* See "Frequency meter" comments, below. */ | 
 |  | 
 | struct fmeter { | 
 | 	int cnt;		/* unprocessed events count */ | 
 | 	int val;		/* most recent output value */ | 
 | 	time_t time;		/* clock (secs) when val computed */ | 
 | 	spinlock_t lock;	/* guards read or write of above */ | 
 | }; | 
 |  | 
 | struct cpuset { | 
 | 	struct cgroup_subsys_state css; | 
 |  | 
 | 	unsigned long flags;		/* "unsigned long" so bitops work */ | 
 | 	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */ | 
 | 	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */ | 
 |  | 
 | 	struct cpuset *parent;		/* my parent */ | 
 |  | 
 | 	/* | 
 | 	 * Copy of global cpuset_mems_generation as of the most | 
 | 	 * recent time this cpuset changed its mems_allowed. | 
 | 	 */ | 
 | 	int mems_generation; | 
 |  | 
 | 	struct fmeter fmeter;		/* memory_pressure filter */ | 
 |  | 
 | 	/* partition number for rebuild_sched_domains() */ | 
 | 	int pn; | 
 |  | 
 | 	/* for custom sched domain */ | 
 | 	int relax_domain_level; | 
 |  | 
 | 	/* used for walking a cpuset heirarchy */ | 
 | 	struct list_head stack_list; | 
 | }; | 
 |  | 
 | /* Retrieve the cpuset for a cgroup */ | 
 | static inline struct cpuset *cgroup_cs(struct cgroup *cont) | 
 | { | 
 | 	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), | 
 | 			    struct cpuset, css); | 
 | } | 
 |  | 
 | /* Retrieve the cpuset for a task */ | 
 | static inline struct cpuset *task_cs(struct task_struct *task) | 
 | { | 
 | 	return container_of(task_subsys_state(task, cpuset_subsys_id), | 
 | 			    struct cpuset, css); | 
 | } | 
 | struct cpuset_hotplug_scanner { | 
 | 	struct cgroup_scanner scan; | 
 | 	struct cgroup *to; | 
 | }; | 
 |  | 
 | /* bits in struct cpuset flags field */ | 
 | typedef enum { | 
 | 	CS_CPU_EXCLUSIVE, | 
 | 	CS_MEM_EXCLUSIVE, | 
 | 	CS_MEM_HARDWALL, | 
 | 	CS_MEMORY_MIGRATE, | 
 | 	CS_SCHED_LOAD_BALANCE, | 
 | 	CS_SPREAD_PAGE, | 
 | 	CS_SPREAD_SLAB, | 
 | } cpuset_flagbits_t; | 
 |  | 
 | /* convenient tests for these bits */ | 
 | static inline int is_cpu_exclusive(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_mem_exclusive(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_mem_hardwall(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_MEM_HARDWALL, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_sched_load_balance(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_memory_migrate(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_spread_page(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_SPREAD_PAGE, &cs->flags); | 
 | } | 
 |  | 
 | static inline int is_spread_slab(const struct cpuset *cs) | 
 | { | 
 | 	return test_bit(CS_SPREAD_SLAB, &cs->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Increment this integer everytime any cpuset changes its | 
 |  * mems_allowed value.  Users of cpusets can track this generation | 
 |  * number, and avoid having to lock and reload mems_allowed unless | 
 |  * the cpuset they're using changes generation. | 
 |  * | 
 |  * A single, global generation is needed because cpuset_attach_task() could | 
 |  * reattach a task to a different cpuset, which must not have its | 
 |  * generation numbers aliased with those of that tasks previous cpuset. | 
 |  * | 
 |  * Generations are needed for mems_allowed because one task cannot | 
 |  * modify another's memory placement.  So we must enable every task, | 
 |  * on every visit to __alloc_pages(), to efficiently check whether | 
 |  * its current->cpuset->mems_allowed has changed, requiring an update | 
 |  * of its current->mems_allowed. | 
 |  * | 
 |  * Since writes to cpuset_mems_generation are guarded by the cgroup lock | 
 |  * there is no need to mark it atomic. | 
 |  */ | 
 | static int cpuset_mems_generation; | 
 |  | 
 | static struct cpuset top_cpuset = { | 
 | 	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | 
 | }; | 
 |  | 
 | /* | 
 |  * There are two global mutexes guarding cpuset structures.  The first | 
 |  * is the main control groups cgroup_mutex, accessed via | 
 |  * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific | 
 |  * callback_mutex, below. They can nest.  It is ok to first take | 
 |  * cgroup_mutex, then nest callback_mutex.  We also require taking | 
 |  * task_lock() when dereferencing a task's cpuset pointer.  See "The | 
 |  * task_lock() exception", at the end of this comment. | 
 |  * | 
 |  * A task must hold both mutexes to modify cpusets.  If a task | 
 |  * holds cgroup_mutex, then it blocks others wanting that mutex, | 
 |  * ensuring that it is the only task able to also acquire callback_mutex | 
 |  * and be able to modify cpusets.  It can perform various checks on | 
 |  * the cpuset structure first, knowing nothing will change.  It can | 
 |  * also allocate memory while just holding cgroup_mutex.  While it is | 
 |  * performing these checks, various callback routines can briefly | 
 |  * acquire callback_mutex to query cpusets.  Once it is ready to make | 
 |  * the changes, it takes callback_mutex, blocking everyone else. | 
 |  * | 
 |  * Calls to the kernel memory allocator can not be made while holding | 
 |  * callback_mutex, as that would risk double tripping on callback_mutex | 
 |  * from one of the callbacks into the cpuset code from within | 
 |  * __alloc_pages(). | 
 |  * | 
 |  * If a task is only holding callback_mutex, then it has read-only | 
 |  * access to cpusets. | 
 |  * | 
 |  * The task_struct fields mems_allowed and mems_generation may only | 
 |  * be accessed in the context of that task, so require no locks. | 
 |  * | 
 |  * The cpuset_common_file_read() handlers only hold callback_mutex across | 
 |  * small pieces of code, such as when reading out possibly multi-word | 
 |  * cpumasks and nodemasks. | 
 |  * | 
 |  * Accessing a task's cpuset should be done in accordance with the | 
 |  * guidelines for accessing subsystem state in kernel/cgroup.c | 
 |  */ | 
 |  | 
 | static DEFINE_MUTEX(callback_mutex); | 
 |  | 
 | /* | 
 |  * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist | 
 |  * buffers.  They are statically allocated to prevent using excess stack | 
 |  * when calling cpuset_print_task_mems_allowed(). | 
 |  */ | 
 | #define CPUSET_NAME_LEN		(128) | 
 | #define	CPUSET_NODELIST_LEN	(256) | 
 | static char cpuset_name[CPUSET_NAME_LEN]; | 
 | static char cpuset_nodelist[CPUSET_NODELIST_LEN]; | 
 | static DEFINE_SPINLOCK(cpuset_buffer_lock); | 
 |  | 
 | /* | 
 |  * This is ugly, but preserves the userspace API for existing cpuset | 
 |  * users. If someone tries to mount the "cpuset" filesystem, we | 
 |  * silently switch it to mount "cgroup" instead | 
 |  */ | 
 | static int cpuset_get_sb(struct file_system_type *fs_type, | 
 | 			 int flags, const char *unused_dev_name, | 
 | 			 void *data, struct vfsmount *mnt) | 
 | { | 
 | 	struct file_system_type *cgroup_fs = get_fs_type("cgroup"); | 
 | 	int ret = -ENODEV; | 
 | 	if (cgroup_fs) { | 
 | 		char mountopts[] = | 
 | 			"cpuset,noprefix," | 
 | 			"release_agent=/sbin/cpuset_release_agent"; | 
 | 		ret = cgroup_fs->get_sb(cgroup_fs, flags, | 
 | 					   unused_dev_name, mountopts, mnt); | 
 | 		put_filesystem(cgroup_fs); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct file_system_type cpuset_fs_type = { | 
 | 	.name = "cpuset", | 
 | 	.get_sb = cpuset_get_sb, | 
 | }; | 
 |  | 
 | /* | 
 |  * Return in pmask the portion of a cpusets's cpus_allowed that | 
 |  * are online.  If none are online, walk up the cpuset hierarchy | 
 |  * until we find one that does have some online cpus.  If we get | 
 |  * all the way to the top and still haven't found any online cpus, | 
 |  * return cpu_online_map.  Or if passed a NULL cs from an exit'ing | 
 |  * task, return cpu_online_map. | 
 |  * | 
 |  * One way or another, we guarantee to return some non-empty subset | 
 |  * of cpu_online_map. | 
 |  * | 
 |  * Call with callback_mutex held. | 
 |  */ | 
 |  | 
 | static void guarantee_online_cpus(const struct cpuset *cs, | 
 | 				  struct cpumask *pmask) | 
 | { | 
 | 	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) | 
 | 		cs = cs->parent; | 
 | 	if (cs) | 
 | 		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); | 
 | 	else | 
 | 		cpumask_copy(pmask, cpu_online_mask); | 
 | 	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask)); | 
 | } | 
 |  | 
 | /* | 
 |  * Return in *pmask the portion of a cpusets's mems_allowed that | 
 |  * are online, with memory.  If none are online with memory, walk | 
 |  * up the cpuset hierarchy until we find one that does have some | 
 |  * online mems.  If we get all the way to the top and still haven't | 
 |  * found any online mems, return node_states[N_HIGH_MEMORY]. | 
 |  * | 
 |  * One way or another, we guarantee to return some non-empty subset | 
 |  * of node_states[N_HIGH_MEMORY]. | 
 |  * | 
 |  * Call with callback_mutex held. | 
 |  */ | 
 |  | 
 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | 
 | { | 
 | 	while (cs && !nodes_intersects(cs->mems_allowed, | 
 | 					node_states[N_HIGH_MEMORY])) | 
 | 		cs = cs->parent; | 
 | 	if (cs) | 
 | 		nodes_and(*pmask, cs->mems_allowed, | 
 | 					node_states[N_HIGH_MEMORY]); | 
 | 	else | 
 | 		*pmask = node_states[N_HIGH_MEMORY]; | 
 | 	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_update_task_memory_state - update task memory placement | 
 |  * | 
 |  * If the current tasks cpusets mems_allowed changed behind our | 
 |  * backs, update current->mems_allowed, mems_generation and task NUMA | 
 |  * mempolicy to the new value. | 
 |  * | 
 |  * Task mempolicy is updated by rebinding it relative to the | 
 |  * current->cpuset if a task has its memory placement changed. | 
 |  * Do not call this routine if in_interrupt(). | 
 |  * | 
 |  * Call without callback_mutex or task_lock() held.  May be | 
 |  * called with or without cgroup_mutex held.  Thanks in part to | 
 |  * 'the_top_cpuset_hack', the task's cpuset pointer will never | 
 |  * be NULL.  This routine also might acquire callback_mutex during | 
 |  * call. | 
 |  * | 
 |  * Reading current->cpuset->mems_generation doesn't need task_lock | 
 |  * to guard the current->cpuset derefence, because it is guarded | 
 |  * from concurrent freeing of current->cpuset using RCU. | 
 |  * | 
 |  * The rcu_dereference() is technically probably not needed, | 
 |  * as I don't actually mind if I see a new cpuset pointer but | 
 |  * an old value of mems_generation.  However this really only | 
 |  * matters on alpha systems using cpusets heavily.  If I dropped | 
 |  * that rcu_dereference(), it would save them a memory barrier. | 
 |  * For all other arch's, rcu_dereference is a no-op anyway, and for | 
 |  * alpha systems not using cpusets, another planned optimization, | 
 |  * avoiding the rcu critical section for tasks in the root cpuset | 
 |  * which is statically allocated, so can't vanish, will make this | 
 |  * irrelevant.  Better to use RCU as intended, than to engage in | 
 |  * some cute trick to save a memory barrier that is impossible to | 
 |  * test, for alpha systems using cpusets heavily, which might not | 
 |  * even exist. | 
 |  * | 
 |  * This routine is needed to update the per-task mems_allowed data, | 
 |  * within the tasks context, when it is trying to allocate memory | 
 |  * (in various mm/mempolicy.c routines) and notices that some other | 
 |  * task has been modifying its cpuset. | 
 |  */ | 
 |  | 
 | void cpuset_update_task_memory_state(void) | 
 | { | 
 | 	int my_cpusets_mem_gen; | 
 | 	struct task_struct *tsk = current; | 
 | 	struct cpuset *cs; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	my_cpusets_mem_gen = task_cs(tsk)->mems_generation; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { | 
 | 		mutex_lock(&callback_mutex); | 
 | 		task_lock(tsk); | 
 | 		cs = task_cs(tsk); /* Maybe changed when task not locked */ | 
 | 		guarantee_online_mems(cs, &tsk->mems_allowed); | 
 | 		tsk->cpuset_mems_generation = cs->mems_generation; | 
 | 		if (is_spread_page(cs)) | 
 | 			tsk->flags |= PF_SPREAD_PAGE; | 
 | 		else | 
 | 			tsk->flags &= ~PF_SPREAD_PAGE; | 
 | 		if (is_spread_slab(cs)) | 
 | 			tsk->flags |= PF_SPREAD_SLAB; | 
 | 		else | 
 | 			tsk->flags &= ~PF_SPREAD_SLAB; | 
 | 		task_unlock(tsk); | 
 | 		mutex_unlock(&callback_mutex); | 
 | 		mpol_rebind_task(tsk, &tsk->mems_allowed); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | 
 |  * | 
 |  * One cpuset is a subset of another if all its allowed CPUs and | 
 |  * Memory Nodes are a subset of the other, and its exclusive flags | 
 |  * are only set if the other's are set.  Call holding cgroup_mutex. | 
 |  */ | 
 |  | 
 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | 
 | { | 
 | 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) && | 
 | 		nodes_subset(p->mems_allowed, q->mems_allowed) && | 
 | 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | 
 | 		is_mem_exclusive(p) <= is_mem_exclusive(q); | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_trial_cpuset - allocate a trial cpuset | 
 |  * @cs: the cpuset that the trial cpuset duplicates | 
 |  */ | 
 | static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs) | 
 | { | 
 | 	struct cpuset *trial; | 
 |  | 
 | 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | 
 | 	if (!trial) | 
 | 		return NULL; | 
 |  | 
 | 	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { | 
 | 		kfree(trial); | 
 | 		return NULL; | 
 | 	} | 
 | 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | 
 |  | 
 | 	return trial; | 
 | } | 
 |  | 
 | /** | 
 |  * free_trial_cpuset - free the trial cpuset | 
 |  * @trial: the trial cpuset to be freed | 
 |  */ | 
 | static void free_trial_cpuset(struct cpuset *trial) | 
 | { | 
 | 	free_cpumask_var(trial->cpus_allowed); | 
 | 	kfree(trial); | 
 | } | 
 |  | 
 | /* | 
 |  * validate_change() - Used to validate that any proposed cpuset change | 
 |  *		       follows the structural rules for cpusets. | 
 |  * | 
 |  * If we replaced the flag and mask values of the current cpuset | 
 |  * (cur) with those values in the trial cpuset (trial), would | 
 |  * our various subset and exclusive rules still be valid?  Presumes | 
 |  * cgroup_mutex held. | 
 |  * | 
 |  * 'cur' is the address of an actual, in-use cpuset.  Operations | 
 |  * such as list traversal that depend on the actual address of the | 
 |  * cpuset in the list must use cur below, not trial. | 
 |  * | 
 |  * 'trial' is the address of bulk structure copy of cur, with | 
 |  * perhaps one or more of the fields cpus_allowed, mems_allowed, | 
 |  * or flags changed to new, trial values. | 
 |  * | 
 |  * Return 0 if valid, -errno if not. | 
 |  */ | 
 |  | 
 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | 
 | { | 
 | 	struct cgroup *cont; | 
 | 	struct cpuset *c, *par; | 
 |  | 
 | 	/* Each of our child cpusets must be a subset of us */ | 
 | 	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { | 
 | 		if (!is_cpuset_subset(cgroup_cs(cont), trial)) | 
 | 			return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* Remaining checks don't apply to root cpuset */ | 
 | 	if (cur == &top_cpuset) | 
 | 		return 0; | 
 |  | 
 | 	par = cur->parent; | 
 |  | 
 | 	/* We must be a subset of our parent cpuset */ | 
 | 	if (!is_cpuset_subset(trial, par)) | 
 | 		return -EACCES; | 
 |  | 
 | 	/* | 
 | 	 * If either I or some sibling (!= me) is exclusive, we can't | 
 | 	 * overlap | 
 | 	 */ | 
 | 	list_for_each_entry(cont, &par->css.cgroup->children, sibling) { | 
 | 		c = cgroup_cs(cont); | 
 | 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && | 
 | 		    c != cur && | 
 | 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) | 
 | 			return -EINVAL; | 
 | 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | 
 | 		    c != cur && | 
 | 		    nodes_intersects(trial->mems_allowed, c->mems_allowed)) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ | 
 | 	if (cgroup_task_count(cur->css.cgroup)) { | 
 | 		if (cpumask_empty(trial->cpus_allowed) || | 
 | 		    nodes_empty(trial->mems_allowed)) { | 
 | 			return -ENOSPC; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper routine for generate_sched_domains(). | 
 |  * Do cpusets a, b have overlapping cpus_allowed masks? | 
 |  */ | 
 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) | 
 | { | 
 | 	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); | 
 | } | 
 |  | 
 | static void | 
 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | 
 | { | 
 | 	if (dattr->relax_domain_level < c->relax_domain_level) | 
 | 		dattr->relax_domain_level = c->relax_domain_level; | 
 | 	return; | 
 | } | 
 |  | 
 | static void | 
 | update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) | 
 | { | 
 | 	LIST_HEAD(q); | 
 |  | 
 | 	list_add(&c->stack_list, &q); | 
 | 	while (!list_empty(&q)) { | 
 | 		struct cpuset *cp; | 
 | 		struct cgroup *cont; | 
 | 		struct cpuset *child; | 
 |  | 
 | 		cp = list_first_entry(&q, struct cpuset, stack_list); | 
 | 		list_del(q.next); | 
 |  | 
 | 		if (cpumask_empty(cp->cpus_allowed)) | 
 | 			continue; | 
 |  | 
 | 		if (is_sched_load_balance(cp)) | 
 | 			update_domain_attr(dattr, cp); | 
 |  | 
 | 		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 
 | 			child = cgroup_cs(cont); | 
 | 			list_add_tail(&child->stack_list, &q); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * generate_sched_domains() | 
 |  * | 
 |  * This function builds a partial partition of the systems CPUs | 
 |  * A 'partial partition' is a set of non-overlapping subsets whose | 
 |  * union is a subset of that set. | 
 |  * The output of this function needs to be passed to kernel/sched.c | 
 |  * partition_sched_domains() routine, which will rebuild the scheduler's | 
 |  * load balancing domains (sched domains) as specified by that partial | 
 |  * partition. | 
 |  * | 
 |  * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt | 
 |  * for a background explanation of this. | 
 |  * | 
 |  * Does not return errors, on the theory that the callers of this | 
 |  * routine would rather not worry about failures to rebuild sched | 
 |  * domains when operating in the severe memory shortage situations | 
 |  * that could cause allocation failures below. | 
 |  * | 
 |  * Must be called with cgroup_lock held. | 
 |  * | 
 |  * The three key local variables below are: | 
 |  *    q  - a linked-list queue of cpuset pointers, used to implement a | 
 |  *	   top-down scan of all cpusets.  This scan loads a pointer | 
 |  *	   to each cpuset marked is_sched_load_balance into the | 
 |  *	   array 'csa'.  For our purposes, rebuilding the schedulers | 
 |  *	   sched domains, we can ignore !is_sched_load_balance cpusets. | 
 |  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets | 
 |  *	   that need to be load balanced, for convenient iterative | 
 |  *	   access by the subsequent code that finds the best partition, | 
 |  *	   i.e the set of domains (subsets) of CPUs such that the | 
 |  *	   cpus_allowed of every cpuset marked is_sched_load_balance | 
 |  *	   is a subset of one of these domains, while there are as | 
 |  *	   many such domains as possible, each as small as possible. | 
 |  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to | 
 |  *	   the kernel/sched.c routine partition_sched_domains() in a | 
 |  *	   convenient format, that can be easily compared to the prior | 
 |  *	   value to determine what partition elements (sched domains) | 
 |  *	   were changed (added or removed.) | 
 |  * | 
 |  * Finding the best partition (set of domains): | 
 |  *	The triple nested loops below over i, j, k scan over the | 
 |  *	load balanced cpusets (using the array of cpuset pointers in | 
 |  *	csa[]) looking for pairs of cpusets that have overlapping | 
 |  *	cpus_allowed, but which don't have the same 'pn' partition | 
 |  *	number and gives them in the same partition number.  It keeps | 
 |  *	looping on the 'restart' label until it can no longer find | 
 |  *	any such pairs. | 
 |  * | 
 |  *	The union of the cpus_allowed masks from the set of | 
 |  *	all cpusets having the same 'pn' value then form the one | 
 |  *	element of the partition (one sched domain) to be passed to | 
 |  *	partition_sched_domains(). | 
 |  */ | 
 | /* FIXME: see the FIXME in partition_sched_domains() */ | 
 | static int generate_sched_domains(struct cpumask **domains, | 
 | 			struct sched_domain_attr **attributes) | 
 | { | 
 | 	LIST_HEAD(q);		/* queue of cpusets to be scanned */ | 
 | 	struct cpuset *cp;	/* scans q */ | 
 | 	struct cpuset **csa;	/* array of all cpuset ptrs */ | 
 | 	int csn;		/* how many cpuset ptrs in csa so far */ | 
 | 	int i, j, k;		/* indices for partition finding loops */ | 
 | 	struct cpumask *doms;	/* resulting partition; i.e. sched domains */ | 
 | 	struct sched_domain_attr *dattr;  /* attributes for custom domains */ | 
 | 	int ndoms = 0;		/* number of sched domains in result */ | 
 | 	int nslot;		/* next empty doms[] struct cpumask slot */ | 
 |  | 
 | 	doms = NULL; | 
 | 	dattr = NULL; | 
 | 	csa = NULL; | 
 |  | 
 | 	/* Special case for the 99% of systems with one, full, sched domain */ | 
 | 	if (is_sched_load_balance(&top_cpuset)) { | 
 | 		doms = kmalloc(cpumask_size(), GFP_KERNEL); | 
 | 		if (!doms) | 
 | 			goto done; | 
 |  | 
 | 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); | 
 | 		if (dattr) { | 
 | 			*dattr = SD_ATTR_INIT; | 
 | 			update_domain_attr_tree(dattr, &top_cpuset); | 
 | 		} | 
 | 		cpumask_copy(doms, top_cpuset.cpus_allowed); | 
 |  | 
 | 		ndoms = 1; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); | 
 | 	if (!csa) | 
 | 		goto done; | 
 | 	csn = 0; | 
 |  | 
 | 	list_add(&top_cpuset.stack_list, &q); | 
 | 	while (!list_empty(&q)) { | 
 | 		struct cgroup *cont; | 
 | 		struct cpuset *child;   /* scans child cpusets of cp */ | 
 |  | 
 | 		cp = list_first_entry(&q, struct cpuset, stack_list); | 
 | 		list_del(q.next); | 
 |  | 
 | 		if (cpumask_empty(cp->cpus_allowed)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * All child cpusets contain a subset of the parent's cpus, so | 
 | 		 * just skip them, and then we call update_domain_attr_tree() | 
 | 		 * to calc relax_domain_level of the corresponding sched | 
 | 		 * domain. | 
 | 		 */ | 
 | 		if (is_sched_load_balance(cp)) { | 
 | 			csa[csn++] = cp; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 
 | 			child = cgroup_cs(cont); | 
 | 			list_add_tail(&child->stack_list, &q); | 
 | 		} | 
 |   	} | 
 |  | 
 | 	for (i = 0; i < csn; i++) | 
 | 		csa[i]->pn = i; | 
 | 	ndoms = csn; | 
 |  | 
 | restart: | 
 | 	/* Find the best partition (set of sched domains) */ | 
 | 	for (i = 0; i < csn; i++) { | 
 | 		struct cpuset *a = csa[i]; | 
 | 		int apn = a->pn; | 
 |  | 
 | 		for (j = 0; j < csn; j++) { | 
 | 			struct cpuset *b = csa[j]; | 
 | 			int bpn = b->pn; | 
 |  | 
 | 			if (apn != bpn && cpusets_overlap(a, b)) { | 
 | 				for (k = 0; k < csn; k++) { | 
 | 					struct cpuset *c = csa[k]; | 
 |  | 
 | 					if (c->pn == bpn) | 
 | 						c->pn = apn; | 
 | 				} | 
 | 				ndoms--;	/* one less element */ | 
 | 				goto restart; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now we know how many domains to create. | 
 | 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | 
 | 	 */ | 
 | 	doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL); | 
 | 	if (!doms) | 
 | 		goto done; | 
 |  | 
 | 	/* | 
 | 	 * The rest of the code, including the scheduler, can deal with | 
 | 	 * dattr==NULL case. No need to abort if alloc fails. | 
 | 	 */ | 
 | 	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); | 
 |  | 
 | 	for (nslot = 0, i = 0; i < csn; i++) { | 
 | 		struct cpuset *a = csa[i]; | 
 | 		struct cpumask *dp; | 
 | 		int apn = a->pn; | 
 |  | 
 | 		if (apn < 0) { | 
 | 			/* Skip completed partitions */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		dp = doms + nslot; | 
 |  | 
 | 		if (nslot == ndoms) { | 
 | 			static int warnings = 10; | 
 | 			if (warnings) { | 
 | 				printk(KERN_WARNING | 
 | 				 "rebuild_sched_domains confused:" | 
 | 				  " nslot %d, ndoms %d, csn %d, i %d," | 
 | 				  " apn %d\n", | 
 | 				  nslot, ndoms, csn, i, apn); | 
 | 				warnings--; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		cpumask_clear(dp); | 
 | 		if (dattr) | 
 | 			*(dattr + nslot) = SD_ATTR_INIT; | 
 | 		for (j = i; j < csn; j++) { | 
 | 			struct cpuset *b = csa[j]; | 
 |  | 
 | 			if (apn == b->pn) { | 
 | 				cpumask_or(dp, dp, b->cpus_allowed); | 
 | 				if (dattr) | 
 | 					update_domain_attr_tree(dattr + nslot, b); | 
 |  | 
 | 				/* Done with this partition */ | 
 | 				b->pn = -1; | 
 | 			} | 
 | 		} | 
 | 		nslot++; | 
 | 	} | 
 | 	BUG_ON(nslot != ndoms); | 
 |  | 
 | done: | 
 | 	kfree(csa); | 
 |  | 
 | 	/* | 
 | 	 * Fallback to the default domain if kmalloc() failed. | 
 | 	 * See comments in partition_sched_domains(). | 
 | 	 */ | 
 | 	if (doms == NULL) | 
 | 		ndoms = 1; | 
 |  | 
 | 	*domains    = doms; | 
 | 	*attributes = dattr; | 
 | 	return ndoms; | 
 | } | 
 |  | 
 | /* | 
 |  * Rebuild scheduler domains. | 
 |  * | 
 |  * Call with neither cgroup_mutex held nor within get_online_cpus(). | 
 |  * Takes both cgroup_mutex and get_online_cpus(). | 
 |  * | 
 |  * Cannot be directly called from cpuset code handling changes | 
 |  * to the cpuset pseudo-filesystem, because it cannot be called | 
 |  * from code that already holds cgroup_mutex. | 
 |  */ | 
 | static void do_rebuild_sched_domains(struct work_struct *unused) | 
 | { | 
 | 	struct sched_domain_attr *attr; | 
 | 	struct cpumask *doms; | 
 | 	int ndoms; | 
 |  | 
 | 	get_online_cpus(); | 
 |  | 
 | 	/* Generate domain masks and attrs */ | 
 | 	cgroup_lock(); | 
 | 	ndoms = generate_sched_domains(&doms, &attr); | 
 | 	cgroup_unlock(); | 
 |  | 
 | 	/* Have scheduler rebuild the domains */ | 
 | 	partition_sched_domains(ndoms, doms, attr); | 
 |  | 
 | 	put_online_cpus(); | 
 | } | 
 |  | 
 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); | 
 |  | 
 | /* | 
 |  * Rebuild scheduler domains, asynchronously via workqueue. | 
 |  * | 
 |  * If the flag 'sched_load_balance' of any cpuset with non-empty | 
 |  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | 
 |  * which has that flag enabled, or if any cpuset with a non-empty | 
 |  * 'cpus' is removed, then call this routine to rebuild the | 
 |  * scheduler's dynamic sched domains. | 
 |  * | 
 |  * The rebuild_sched_domains() and partition_sched_domains() | 
 |  * routines must nest cgroup_lock() inside get_online_cpus(), | 
 |  * but such cpuset changes as these must nest that locking the | 
 |  * other way, holding cgroup_lock() for much of the code. | 
 |  * | 
 |  * So in order to avoid an ABBA deadlock, the cpuset code handling | 
 |  * these user changes delegates the actual sched domain rebuilding | 
 |  * to a separate workqueue thread, which ends up processing the | 
 |  * above do_rebuild_sched_domains() function. | 
 |  */ | 
 | static void async_rebuild_sched_domains(void) | 
 | { | 
 | 	schedule_work(&rebuild_sched_domains_work); | 
 | } | 
 |  | 
 | /* | 
 |  * Accomplishes the same scheduler domain rebuild as the above | 
 |  * async_rebuild_sched_domains(), however it directly calls the | 
 |  * rebuild routine synchronously rather than calling it via an | 
 |  * asynchronous work thread. | 
 |  * | 
 |  * This can only be called from code that is not holding | 
 |  * cgroup_mutex (not nested in a cgroup_lock() call.) | 
 |  */ | 
 | void rebuild_sched_domains(void) | 
 | { | 
 | 	do_rebuild_sched_domains(NULL); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's | 
 |  * @tsk: task to test | 
 |  * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | 
 |  * | 
 |  * Call with cgroup_mutex held.  May take callback_mutex during call. | 
 |  * Called for each task in a cgroup by cgroup_scan_tasks(). | 
 |  * Return nonzero if this tasks's cpus_allowed mask should be changed (in other | 
 |  * words, if its mask is not equal to its cpuset's mask). | 
 |  */ | 
 | static int cpuset_test_cpumask(struct task_struct *tsk, | 
 | 			       struct cgroup_scanner *scan) | 
 | { | 
 | 	return !cpumask_equal(&tsk->cpus_allowed, | 
 | 			(cgroup_cs(scan->cg))->cpus_allowed); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's | 
 |  * @tsk: task to test | 
 |  * @scan: struct cgroup_scanner containing the cgroup of the task | 
 |  * | 
 |  * Called by cgroup_scan_tasks() for each task in a cgroup whose | 
 |  * cpus_allowed mask needs to be changed. | 
 |  * | 
 |  * We don't need to re-check for the cgroup/cpuset membership, since we're | 
 |  * holding cgroup_lock() at this point. | 
 |  */ | 
 | static void cpuset_change_cpumask(struct task_struct *tsk, | 
 | 				  struct cgroup_scanner *scan) | 
 | { | 
 | 	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed)); | 
 | } | 
 |  | 
 | /** | 
 |  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | 
 |  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | 
 |  * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | 
 |  * | 
 |  * Called with cgroup_mutex held | 
 |  * | 
 |  * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | 
 |  * calling callback functions for each. | 
 |  * | 
 |  * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | 
 |  * if @heap != NULL. | 
 |  */ | 
 | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) | 
 | { | 
 | 	struct cgroup_scanner scan; | 
 |  | 
 | 	scan.cg = cs->css.cgroup; | 
 | 	scan.test_task = cpuset_test_cpumask; | 
 | 	scan.process_task = cpuset_change_cpumask; | 
 | 	scan.heap = heap; | 
 | 	cgroup_scan_tasks(&scan); | 
 | } | 
 |  | 
 | /** | 
 |  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | 
 |  * @cs: the cpuset to consider | 
 |  * @buf: buffer of cpu numbers written to this cpuset | 
 |  */ | 
 | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, | 
 | 			  const char *buf) | 
 | { | 
 | 	struct ptr_heap heap; | 
 | 	int retval; | 
 | 	int is_load_balanced; | 
 |  | 
 | 	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */ | 
 | 	if (cs == &top_cpuset) | 
 | 		return -EACCES; | 
 |  | 
 | 	/* | 
 | 	 * An empty cpus_allowed is ok only if the cpuset has no tasks. | 
 | 	 * Since cpulist_parse() fails on an empty mask, we special case | 
 | 	 * that parsing.  The validate_change() call ensures that cpusets | 
 | 	 * with tasks have cpus. | 
 | 	 */ | 
 | 	if (!*buf) { | 
 | 		cpumask_clear(trialcs->cpus_allowed); | 
 | 	} else { | 
 | 		retval = cpulist_parse(buf, trialcs->cpus_allowed); | 
 | 		if (retval < 0) | 
 | 			return retval; | 
 |  | 
 | 		if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask)) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	retval = validate_change(cs, trialcs); | 
 | 	if (retval < 0) | 
 | 		return retval; | 
 |  | 
 | 	/* Nothing to do if the cpus didn't change */ | 
 | 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) | 
 | 		return 0; | 
 |  | 
 | 	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	is_load_balanced = is_sched_load_balance(trialcs); | 
 |  | 
 | 	mutex_lock(&callback_mutex); | 
 | 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); | 
 | 	mutex_unlock(&callback_mutex); | 
 |  | 
 | 	/* | 
 | 	 * Scan tasks in the cpuset, and update the cpumasks of any | 
 | 	 * that need an update. | 
 | 	 */ | 
 | 	update_tasks_cpumask(cs, &heap); | 
 |  | 
 | 	heap_free(&heap); | 
 |  | 
 | 	if (is_load_balanced) | 
 | 		async_rebuild_sched_domains(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * cpuset_migrate_mm | 
 |  * | 
 |  *    Migrate memory region from one set of nodes to another. | 
 |  * | 
 |  *    Temporarilly set tasks mems_allowed to target nodes of migration, | 
 |  *    so that the migration code can allocate pages on these nodes. | 
 |  * | 
 |  *    Call holding cgroup_mutex, so current's cpuset won't change | 
 |  *    during this call, as manage_mutex holds off any cpuset_attach() | 
 |  *    calls.  Therefore we don't need to take task_lock around the | 
 |  *    call to guarantee_online_mems(), as we know no one is changing | 
 |  *    our task's cpuset. | 
 |  * | 
 |  *    Hold callback_mutex around the two modifications of our tasks | 
 |  *    mems_allowed to synchronize with cpuset_mems_allowed(). | 
 |  * | 
 |  *    While the mm_struct we are migrating is typically from some | 
 |  *    other task, the task_struct mems_allowed that we are hacking | 
 |  *    is for our current task, which must allocate new pages for that | 
 |  *    migrating memory region. | 
 |  * | 
 |  *    We call cpuset_update_task_memory_state() before hacking | 
 |  *    our tasks mems_allowed, so that we are assured of being in | 
 |  *    sync with our tasks cpuset, and in particular, callbacks to | 
 |  *    cpuset_update_task_memory_state() from nested page allocations | 
 |  *    won't see any mismatch of our cpuset and task mems_generation | 
 |  *    values, so won't overwrite our hacked tasks mems_allowed | 
 |  *    nodemask. | 
 |  */ | 
 |  | 
 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | 
 | 							const nodemask_t *to) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	cpuset_update_task_memory_state(); | 
 |  | 
 | 	mutex_lock(&callback_mutex); | 
 | 	tsk->mems_allowed = *to; | 
 | 	mutex_unlock(&callback_mutex); | 
 |  | 
 | 	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); | 
 |  | 
 | 	mutex_lock(&callback_mutex); | 
 | 	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); | 
 | 	mutex_unlock(&callback_mutex); | 
 | } | 
 |  | 
 | static void *cpuset_being_rebound; | 
 |  | 
 | /** | 
 |  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | 
 |  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | 
 |  * @oldmem: old mems_allowed of cpuset cs | 
 |  * | 
 |  * Called with cgroup_mutex held | 
 |  * Return 0 if successful, -errno if not. | 
 |  */ | 
 | static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	struct mm_struct **mmarray; | 
 | 	int i, n, ntasks; | 
 | 	int migrate; | 
 | 	int fudge; | 
 | 	struct cgroup_iter it; | 
 | 	int retval; | 
 |  | 
 | 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */ | 
 |  | 
 | 	fudge = 10;				/* spare mmarray[] slots */ | 
 | 	fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */ | 
 | 	retval = -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Allocate mmarray[] to hold mm reference for each task | 
 | 	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding | 
 | 	 * tasklist_lock.  We could use GFP_ATOMIC, but with a | 
 | 	 * few more lines of code, we can retry until we get a big | 
 | 	 * enough mmarray[] w/o using GFP_ATOMIC. | 
 | 	 */ | 
 | 	while (1) { | 
 | 		ntasks = cgroup_task_count(cs->css.cgroup);  /* guess */ | 
 | 		ntasks += fudge; | 
 | 		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL); | 
 | 		if (!mmarray) | 
 | 			goto done; | 
 | 		read_lock(&tasklist_lock);		/* block fork */ | 
 | 		if (cgroup_task_count(cs->css.cgroup) <= ntasks) | 
 | 			break;				/* got enough */ | 
 | 		read_unlock(&tasklist_lock);		/* try again */ | 
 | 		kfree(mmarray); | 
 | 	} | 
 |  | 
 | 	n = 0; | 
 |  | 
 | 	/* Load up mmarray[] with mm reference for each task in cpuset. */ | 
 | 	cgroup_iter_start(cs->css.cgroup, &it); | 
 | 	while ((p = cgroup_iter_next(cs->css.cgroup, &it))) { | 
 | 		struct mm_struct *mm; | 
 |  | 
 | 		if (n >= ntasks) { | 
 | 			printk(KERN_WARNING | 
 | 				"Cpuset mempolicy rebind incomplete.\n"); | 
 | 			break; | 
 | 		} | 
 | 		mm = get_task_mm(p); | 
 | 		if (!mm) | 
 | 			continue; | 
 | 		mmarray[n++] = mm; | 
 | 	} | 
 | 	cgroup_iter_end(cs->css.cgroup, &it); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	/* | 
 | 	 * Now that we've dropped the tasklist spinlock, we can | 
 | 	 * rebind the vma mempolicies of each mm in mmarray[] to their | 
 | 	 * new cpuset, and release that mm.  The mpol_rebind_mm() | 
 | 	 * call takes mmap_sem, which we couldn't take while holding | 
 | 	 * tasklist_lock.  Forks can happen again now - the mpol_dup() | 
 | 	 * cpuset_being_rebound check will catch such forks, and rebind | 
 | 	 * their vma mempolicies too.  Because we still hold the global | 
 | 	 * cgroup_mutex, we know that no other rebind effort will | 
 | 	 * be contending for the global variable cpuset_being_rebound. | 
 | 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm() | 
 | 	 * is idempotent.  Also migrate pages in each mm to new nodes. | 
 | 	 */ | 
 | 	migrate = is_memory_migrate(cs); | 
 | 	for (i = 0; i < n; i++) { | 
 | 		struct mm_struct *mm = mmarray[i]; | 
 |  | 
 | 		mpol_rebind_mm(mm, &cs->mems_allowed); | 
 | 		if (migrate) | 
 | 			cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); | 
 | 		mmput(mm); | 
 | 	} | 
 |  | 
 | 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */ | 
 | 	kfree(mmarray); | 
 | 	cpuset_being_rebound = NULL; | 
 | 	retval = 0; | 
 | done: | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Handle user request to change the 'mems' memory placement | 
 |  * of a cpuset.  Needs to validate the request, update the | 
 |  * cpusets mems_allowed and mems_generation, and for each | 
 |  * task in the cpuset, rebind any vma mempolicies and if | 
 |  * the cpuset is marked 'memory_migrate', migrate the tasks | 
 |  * pages to the new memory. | 
 |  * | 
 |  * Call with cgroup_mutex held.  May take callback_mutex during call. | 
 |  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | 
 |  * lock each such tasks mm->mmap_sem, scan its vma's and rebind | 
 |  * their mempolicies to the cpusets new mems_allowed. | 
 |  */ | 
 | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, | 
 | 			   const char *buf) | 
 | { | 
 | 	nodemask_t oldmem; | 
 | 	int retval; | 
 |  | 
 | 	/* | 
 | 	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; | 
 | 	 * it's read-only | 
 | 	 */ | 
 | 	if (cs == &top_cpuset) | 
 | 		return -EACCES; | 
 |  | 
 | 	/* | 
 | 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset. | 
 | 	 * Since nodelist_parse() fails on an empty mask, we special case | 
 | 	 * that parsing.  The validate_change() call ensures that cpusets | 
 | 	 * with tasks have memory. | 
 | 	 */ | 
 | 	if (!*buf) { | 
 | 		nodes_clear(trialcs->mems_allowed); | 
 | 	} else { | 
 | 		retval = nodelist_parse(buf, trialcs->mems_allowed); | 
 | 		if (retval < 0) | 
 | 			goto done; | 
 |  | 
 | 		if (!nodes_subset(trialcs->mems_allowed, | 
 | 				node_states[N_HIGH_MEMORY])) | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	oldmem = cs->mems_allowed; | 
 | 	if (nodes_equal(oldmem, trialcs->mems_allowed)) { | 
 | 		retval = 0;		/* Too easy - nothing to do */ | 
 | 		goto done; | 
 | 	} | 
 | 	retval = validate_change(cs, trialcs); | 
 | 	if (retval < 0) | 
 | 		goto done; | 
 |  | 
 | 	mutex_lock(&callback_mutex); | 
 | 	cs->mems_allowed = trialcs->mems_allowed; | 
 | 	cs->mems_generation = cpuset_mems_generation++; | 
 | 	mutex_unlock(&callback_mutex); | 
 |  | 
 | 	retval = update_tasks_nodemask(cs, &oldmem); | 
 | done: | 
 | 	return retval; | 
 | } | 
 |  | 
 | int current_cpuset_is_being_rebound(void) | 
 | { | 
 | 	return task_cs(current) == cpuset_being_rebound; | 
 | } | 
 |  | 
 | static int update_relax_domain_level(struct cpuset *cs, s64 val) | 
 | { | 
 | 	if (val < -1 || val >= SD_LV_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (val != cs->relax_domain_level) { | 
 | 		cs->relax_domain_level = val; | 
 | 		if (!cpumask_empty(cs->cpus_allowed) && | 
 | 		    is_sched_load_balance(cs)) | 
 | 			async_rebuild_sched_domains(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * update_flag - read a 0 or a 1 in a file and update associated flag | 
 |  * bit:		the bit to update (see cpuset_flagbits_t) | 
 |  * cs:		the cpuset to update | 
 |  * turning_on: 	whether the flag is being set or cleared | 
 |  * | 
 |  * Call with cgroup_mutex held. | 
 |  */ | 
 |  | 
 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, | 
 | 		       int turning_on) | 
 | { | 
 | 	struct cpuset *trialcs; | 
 | 	int err; | 
 | 	int balance_flag_changed; | 
 |  | 
 | 	trialcs = alloc_trial_cpuset(cs); | 
 | 	if (!trialcs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (turning_on) | 
 | 		set_bit(bit, &trialcs->flags); | 
 | 	else | 
 | 		clear_bit(bit, &trialcs->flags); | 
 |  | 
 | 	err = validate_change(cs, trialcs); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 |  | 
 | 	balance_flag_changed = (is_sched_load_balance(cs) != | 
 | 				is_sched_load_balance(trialcs)); | 
 |  | 
 | 	mutex_lock(&callback_mutex); | 
 | 	cs->flags = trialcs->flags; | 
 | 	mutex_unlock(&callback_mutex); | 
 |  | 
 | 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) | 
 | 		async_rebuild_sched_domains(); | 
 |  | 
 | out: | 
 | 	free_trial_cpuset(trialcs); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Frequency meter - How fast is some event occurring? | 
 |  * | 
 |  * These routines manage a digitally filtered, constant time based, | 
 |  * event frequency meter.  There are four routines: | 
 |  *   fmeter_init() - initialize a frequency meter. | 
 |  *   fmeter_markevent() - called each time the event happens. | 
 |  *   fmeter_getrate() - returns the recent rate of such events. | 
 |  *   fmeter_update() - internal routine used to update fmeter. | 
 |  * | 
 |  * A common data structure is passed to each of these routines, | 
 |  * which is used to keep track of the state required to manage the | 
 |  * frequency meter and its digital filter. | 
 |  * | 
 |  * The filter works on the number of events marked per unit time. | 
 |  * The filter is single-pole low-pass recursive (IIR).  The time unit | 
 |  * is 1 second.  Arithmetic is done using 32-bit integers scaled to | 
 |  * simulate 3 decimal digits of precision (multiplied by 1000). | 
 |  * | 
 |  * With an FM_COEF of 933, and a time base of 1 second, the filter | 
 |  * has a half-life of 10 seconds, meaning that if the events quit | 
 |  * happening, then the rate returned from the fmeter_getrate() | 
 |  * will be cut in half each 10 seconds, until it converges to zero. | 
 |  * | 
 |  * It is not worth doing a real infinitely recursive filter.  If more | 
 |  * than FM_MAXTICKS ticks have elapsed since the last filter event, | 
 |  * just compute FM_MAXTICKS ticks worth, by which point the level | 
 |  * will be stable. | 
 |  * | 
 |  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | 
 |  * arithmetic overflow in the fmeter_update() routine. | 
 |  * | 
 |  * Given the simple 32 bit integer arithmetic used, this meter works | 
 |  * best for reporting rates between one per millisecond (msec) and | 
 |  * one per 32 (approx) seconds.  At constant rates faster than one | 
 |  * per msec it maxes out at values just under 1,000,000.  At constant | 
 |  * rates between one per msec, and one per second it will stabilize | 
 |  * to a value N*1000, where N is the rate of events per second. | 
 |  * At constant rates between one per second and one per 32 seconds, | 
 |  * it will be choppy, moving up on the seconds that have an event, | 
 |  * and then decaying until the next event.  At rates slower than | 
 |  * about one in 32 seconds, it decays all the way back to zero between | 
 |  * each event. | 
 |  */ | 
 |  | 
 | #define FM_COEF 933		/* coefficient for half-life of 10 secs */ | 
 | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ | 
 | #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */ | 
 | #define FM_SCALE 1000		/* faux fixed point scale */ | 
 |  | 
 | /* Initialize a frequency meter */ | 
 | static void fmeter_init(struct fmeter *fmp) | 
 | { | 
 | 	fmp->cnt = 0; | 
 | 	fmp->val = 0; | 
 | 	fmp->time = 0; | 
 | 	spin_lock_init(&fmp->lock); | 
 | } | 
 |  | 
 | /* Internal meter update - process cnt events and update value */ | 
 | static void fmeter_update(struct fmeter *fmp) | 
 | { | 
 | 	time_t now = get_seconds(); | 
 | 	time_t ticks = now - fmp->time; | 
 |  | 
 | 	if (ticks == 0) | 
 | 		return; | 
 |  | 
 | 	ticks = min(FM_MAXTICKS, ticks); | 
 | 	while (ticks-- > 0) | 
 | 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | 
 | 	fmp->time = now; | 
 |  | 
 | 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | 
 | 	fmp->cnt = 0; | 
 | } | 
 |  | 
 | /* Process any previous ticks, then bump cnt by one (times scale). */ | 
 | static void fmeter_markevent(struct fmeter *fmp) | 
 | { | 
 | 	spin_lock(&fmp->lock); | 
 | 	fmeter_update(fmp); | 
 | 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | 
 | 	spin_unlock(&fmp->lock); | 
 | } | 
 |  | 
 | /* Process any previous ticks, then return current value. */ | 
 | static int fmeter_getrate(struct fmeter *fmp) | 
 | { | 
 | 	int val; | 
 |  | 
 | 	spin_lock(&fmp->lock); | 
 | 	fmeter_update(fmp); | 
 | 	val = fmp->val; | 
 | 	spin_unlock(&fmp->lock); | 
 | 	return val; | 
 | } | 
 |  | 
 | /* Protected by cgroup_lock */ | 
 | static cpumask_var_t cpus_attach; | 
 |  | 
 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ | 
 | static int cpuset_can_attach(struct cgroup_subsys *ss, | 
 | 			     struct cgroup *cont, struct task_struct *tsk) | 
 | { | 
 | 	struct cpuset *cs = cgroup_cs(cont); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	if (tsk->flags & PF_THREAD_BOUND) { | 
 | 		mutex_lock(&callback_mutex); | 
 | 		if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed)) | 
 | 			ret = -EINVAL; | 
 | 		mutex_unlock(&callback_mutex); | 
 | 	} | 
 |  | 
 | 	return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL); | 
 | } | 
 |  | 
 | static void cpuset_attach(struct cgroup_subsys *ss, | 
 | 			  struct cgroup *cont, struct cgroup *oldcont, | 
 | 			  struct task_struct *tsk) | 
 | { | 
 | 	nodemask_t from, to; | 
 | 	struct mm_struct *mm; | 
 | 	struct cpuset *cs = cgroup_cs(cont); | 
 | 	struct cpuset *oldcs = cgroup_cs(oldcont); | 
 | 	int err; | 
 |  | 
 | 	if (cs == &top_cpuset) { | 
 | 		cpumask_copy(cpus_attach, cpu_possible_mask); | 
 | 	} else { | 
 | 		mutex_lock(&callback_mutex); | 
 | 		guarantee_online_cpus(cs, cpus_attach); | 
 | 		mutex_unlock(&callback_mutex); | 
 | 	} | 
 | 	err = set_cpus_allowed_ptr(tsk, cpus_attach); | 
 | 	if (err) | 
 | 		return; | 
 |  | 
 | 	from = oldcs->mems_allowed; | 
 | 	to = cs->mems_allowed; | 
 | 	mm = get_task_mm(tsk); | 
 | 	if (mm) { | 
 | 		mpol_rebind_mm(mm, &to); | 
 | 		if (is_memory_migrate(cs)) | 
 | 			cpuset_migrate_mm(mm, &from, &to); | 
 | 		mmput(mm); | 
 | 	} | 
 | } | 
 |  | 
 | /* The various types of files and directories in a cpuset file system */ | 
 |  | 
 | typedef enum { | 
 | 	FILE_MEMORY_MIGRATE, | 
 | 	FILE_CPULIST, | 
 | 	FILE_MEMLIST, | 
 | 	FILE_CPU_EXCLUSIVE, | 
 | 	FILE_MEM_EXCLUSIVE, | 
 | 	FILE_MEM_HARDWALL, | 
 | 	FILE_SCHED_LOAD_BALANCE, | 
 | 	FILE_SCHED_RELAX_DOMAIN_LEVEL, | 
 | 	FILE_MEMORY_PRESSURE_ENABLED, | 
 | 	FILE_MEMORY_PRESSURE, | 
 | 	FILE_SPREAD_PAGE, | 
 | 	FILE_SPREAD_SLAB, | 
 | } cpuset_filetype_t; | 
 |  | 
 | static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) | 
 | { | 
 | 	int retval = 0; | 
 | 	struct cpuset *cs = cgroup_cs(cgrp); | 
 | 	cpuset_filetype_t type = cft->private; | 
 |  | 
 | 	if (!cgroup_lock_live_group(cgrp)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	switch (type) { | 
 | 	case FILE_CPU_EXCLUSIVE: | 
 | 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); | 
 | 		break; | 
 | 	case FILE_MEM_EXCLUSIVE: | 
 | 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); | 
 | 		break; | 
 | 	case FILE_MEM_HARDWALL: | 
 | 		retval = update_flag(CS_MEM_HARDWALL, cs, val); | 
 | 		break; | 
 | 	case FILE_SCHED_LOAD_BALANCE: | 
 | 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); | 
 | 		break; | 
 | 	case FILE_MEMORY_MIGRATE: | 
 | 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val); | 
 | 		break; | 
 | 	case FILE_MEMORY_PRESSURE_ENABLED: | 
 | 		cpuset_memory_pressure_enabled = !!val; | 
 | 		break; | 
 | 	case FILE_MEMORY_PRESSURE: | 
 | 		retval = -EACCES; | 
 | 		break; | 
 | 	case FILE_SPREAD_PAGE: | 
 | 		retval = update_flag(CS_SPREAD_PAGE, cs, val); | 
 | 		cs->mems_generation = cpuset_mems_generation++; | 
 | 		break; | 
 | 	case FILE_SPREAD_SLAB: | 
 | 		retval = update_flag(CS_SPREAD_SLAB, cs, val); | 
 | 		cs->mems_generation = cpuset_mems_generation++; | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	cgroup_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) | 
 | { | 
 | 	int retval = 0; | 
 | 	struct cpuset *cs = cgroup_cs(cgrp); | 
 | 	cpuset_filetype_t type = cft->private; | 
 |  | 
 | 	if (!cgroup_lock_live_group(cgrp)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	switch (type) { | 
 | 	case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 
 | 		retval = update_relax_domain_level(cs, val); | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	cgroup_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Common handling for a write to a "cpus" or "mems" file. | 
 |  */ | 
 | static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, | 
 | 				const char *buf) | 
 | { | 
 | 	int retval = 0; | 
 | 	struct cpuset *cs = cgroup_cs(cgrp); | 
 | 	struct cpuset *trialcs; | 
 |  | 
 | 	if (!cgroup_lock_live_group(cgrp)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	trialcs = alloc_trial_cpuset(cs); | 
 | 	if (!trialcs) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	switch (cft->private) { | 
 | 	case FILE_CPULIST: | 
 | 		retval = update_cpumask(cs, trialcs, buf); | 
 | 		break; | 
 | 	case FILE_MEMLIST: | 
 | 		retval = update_nodemask(cs, trialcs, buf); | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	free_trial_cpuset(trialcs); | 
 | 	cgroup_unlock(); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * These ascii lists should be read in a single call, by using a user | 
 |  * buffer large enough to hold the entire map.  If read in smaller | 
 |  * chunks, there is no guarantee of atomicity.  Since the display format | 
 |  * used, list of ranges of sequential numbers, is variable length, | 
 |  * and since these maps can change value dynamically, one could read | 
 |  * gibberish by doing partial reads while a list was changing. | 
 |  * A single large read to a buffer that crosses a page boundary is | 
 |  * ok, because the result being copied to user land is not recomputed | 
 |  * across a page fault. | 
 |  */ | 
 |  | 
 | static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&callback_mutex); | 
 | 	ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed); | 
 | 	mutex_unlock(&callback_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) | 
 | { | 
 | 	nodemask_t mask; | 
 |  | 
 | 	mutex_lock(&callback_mutex); | 
 | 	mask = cs->mems_allowed; | 
 | 	mutex_unlock(&callback_mutex); | 
 |  | 
 | 	return nodelist_scnprintf(page, PAGE_SIZE, mask); | 
 | } | 
 |  | 
 | static ssize_t cpuset_common_file_read(struct cgroup *cont, | 
 | 				       struct cftype *cft, | 
 | 				       struct file *file, | 
 | 				       char __user *buf, | 
 | 				       size_t nbytes, loff_t *ppos) | 
 | { | 
 | 	struct cpuset *cs = cgroup_cs(cont); | 
 | 	cpuset_filetype_t type = cft->private; | 
 | 	char *page; | 
 | 	ssize_t retval = 0; | 
 | 	char *s; | 
 |  | 
 | 	if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	s = page; | 
 |  | 
 | 	switch (type) { | 
 | 	case FILE_CPULIST: | 
 | 		s += cpuset_sprintf_cpulist(s, cs); | 
 | 		break; | 
 | 	case FILE_MEMLIST: | 
 | 		s += cpuset_sprintf_memlist(s, cs); | 
 | 		break; | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	*s++ = '\n'; | 
 |  | 
 | 	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); | 
 | out: | 
 | 	free_page((unsigned long)page); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) | 
 | { | 
 | 	struct cpuset *cs = cgroup_cs(cont); | 
 | 	cpuset_filetype_t type = cft->private; | 
 | 	switch (type) { | 
 | 	case FILE_CPU_EXCLUSIVE: | 
 | 		return is_cpu_exclusive(cs); | 
 | 	case FILE_MEM_EXCLUSIVE: | 
 | 		return is_mem_exclusive(cs); | 
 | 	case FILE_MEM_HARDWALL: | 
 | 		return is_mem_hardwall(cs); | 
 | 	case FILE_SCHED_LOAD_BALANCE: | 
 | 		return is_sched_load_balance(cs); | 
 | 	case FILE_MEMORY_MIGRATE: | 
 | 		return is_memory_migrate(cs); | 
 | 	case FILE_MEMORY_PRESSURE_ENABLED: | 
 | 		return cpuset_memory_pressure_enabled; | 
 | 	case FILE_MEMORY_PRESSURE: | 
 | 		return fmeter_getrate(&cs->fmeter); | 
 | 	case FILE_SPREAD_PAGE: | 
 | 		return is_spread_page(cs); | 
 | 	case FILE_SPREAD_SLAB: | 
 | 		return is_spread_slab(cs); | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* Unreachable but makes gcc happy */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) | 
 | { | 
 | 	struct cpuset *cs = cgroup_cs(cont); | 
 | 	cpuset_filetype_t type = cft->private; | 
 | 	switch (type) { | 
 | 	case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 
 | 		return cs->relax_domain_level; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* Unrechable but makes gcc happy */ | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * for the common functions, 'private' gives the type of file | 
 |  */ | 
 |  | 
 | static struct cftype files[] = { | 
 | 	{ | 
 | 		.name = "cpus", | 
 | 		.read = cpuset_common_file_read, | 
 | 		.write_string = cpuset_write_resmask, | 
 | 		.max_write_len = (100U + 6 * NR_CPUS), | 
 | 		.private = FILE_CPULIST, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "mems", | 
 | 		.read = cpuset_common_file_read, | 
 | 		.write_string = cpuset_write_resmask, | 
 | 		.max_write_len = (100U + 6 * MAX_NUMNODES), | 
 | 		.private = FILE_MEMLIST, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "cpu_exclusive", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_CPU_EXCLUSIVE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "mem_exclusive", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_MEM_EXCLUSIVE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "mem_hardwall", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_MEM_HARDWALL, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "sched_load_balance", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_SCHED_LOAD_BALANCE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "sched_relax_domain_level", | 
 | 		.read_s64 = cpuset_read_s64, | 
 | 		.write_s64 = cpuset_write_s64, | 
 | 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "memory_migrate", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_MEMORY_MIGRATE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "memory_pressure", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_MEMORY_PRESSURE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "memory_spread_page", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_SPREAD_PAGE, | 
 | 	}, | 
 |  | 
 | 	{ | 
 | 		.name = "memory_spread_slab", | 
 | 		.read_u64 = cpuset_read_u64, | 
 | 		.write_u64 = cpuset_write_u64, | 
 | 		.private = FILE_SPREAD_SLAB, | 
 | 	}, | 
 | }; | 
 |  | 
 | static struct cftype cft_memory_pressure_enabled = { | 
 | 	.name = "memory_pressure_enabled", | 
 | 	.read_u64 = cpuset_read_u64, | 
 | 	.write_u64 = cpuset_write_u64, | 
 | 	.private = FILE_MEMORY_PRESSURE_ENABLED, | 
 | }; | 
 |  | 
 | static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); | 
 | 	if (err) | 
 | 		return err; | 
 | 	/* memory_pressure_enabled is in root cpuset only */ | 
 | 	if (!cont->parent) | 
 | 		err = cgroup_add_file(cont, ss, | 
 | 				      &cft_memory_pressure_enabled); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * post_clone() is called at the end of cgroup_clone(). | 
 |  * 'cgroup' was just created automatically as a result of | 
 |  * a cgroup_clone(), and the current task is about to | 
 |  * be moved into 'cgroup'. | 
 |  * | 
 |  * Currently we refuse to set up the cgroup - thereby | 
 |  * refusing the task to be entered, and as a result refusing | 
 |  * the sys_unshare() or clone() which initiated it - if any | 
 |  * sibling cpusets have exclusive cpus or mem. | 
 |  * | 
 |  * If this becomes a problem for some users who wish to | 
 |  * allow that scenario, then cpuset_post_clone() could be | 
 |  * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | 
 |  * (and likewise for mems) to the new cgroup. Called with cgroup_mutex | 
 |  * held. | 
 |  */ | 
 | static void cpuset_post_clone(struct cgroup_subsys *ss, | 
 | 			      struct cgroup *cgroup) | 
 | { | 
 | 	struct cgroup *parent, *child; | 
 | 	struct cpuset *cs, *parent_cs; | 
 |  | 
 | 	parent = cgroup->parent; | 
 | 	list_for_each_entry(child, &parent->children, sibling) { | 
 | 		cs = cgroup_cs(child); | 
 | 		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) | 
 | 			return; | 
 | 	} | 
 | 	cs = cgroup_cs(cgroup); | 
 | 	parent_cs = cgroup_cs(parent); | 
 |  | 
 | 	cs->mems_allowed = parent_cs->mems_allowed; | 
 | 	cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed); | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  *	cpuset_create - create a cpuset | 
 |  *	ss:	cpuset cgroup subsystem | 
 |  *	cont:	control group that the new cpuset will be part of | 
 |  */ | 
 |  | 
 | static struct cgroup_subsys_state *cpuset_create( | 
 | 	struct cgroup_subsys *ss, | 
 | 	struct cgroup *cont) | 
 | { | 
 | 	struct cpuset *cs; | 
 | 	struct cpuset *parent; | 
 |  | 
 | 	if (!cont->parent) { | 
 | 		/* This is early initialization for the top cgroup */ | 
 | 		top_cpuset.mems_generation = cpuset_mems_generation++; | 
 | 		return &top_cpuset.css; | 
 | 	} | 
 | 	parent = cgroup_cs(cont->parent); | 
 | 	cs = kmalloc(sizeof(*cs), GFP_KERNEL); | 
 | 	if (!cs) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { | 
 | 		kfree(cs); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	cpuset_update_task_memory_state(); | 
 | 	cs->flags = 0; | 
 | 	if (is_spread_page(parent)) | 
 | 		set_bit(CS_SPREAD_PAGE, &cs->flags); | 
 | 	if (is_spread_slab(parent)) | 
 | 		set_bit(CS_SPREAD_SLAB, &cs->flags); | 
 | 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 
 | 	cpumask_clear(cs->cpus_allowed); | 
 | 	nodes_clear(cs->mems_allowed); | 
 | 	cs->mems_generation = cpuset_mems_generation++; | 
 | 	fmeter_init(&cs->fmeter); | 
 | 	cs->relax_domain_level = -1; | 
 |  | 
 | 	cs->parent = parent; | 
 | 	number_of_cpusets++; | 
 | 	return &cs->css ; | 
 | } | 
 |  | 
 | /* | 
 |  * If the cpuset being removed has its flag 'sched_load_balance' | 
 |  * enabled, then simulate turning sched_load_balance off, which | 
 |  * will call async_rebuild_sched_domains(). | 
 |  */ | 
 |  | 
 | static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | 
 | { | 
 | 	struct cpuset *cs = cgroup_cs(cont); | 
 |  | 
 | 	cpuset_update_task_memory_state(); | 
 |  | 
 | 	if (is_sched_load_balance(cs)) | 
 | 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); | 
 |  | 
 | 	number_of_cpusets--; | 
 | 	free_cpumask_var(cs->cpus_allowed); | 
 | 	kfree(cs); | 
 | } | 
 |  | 
 | struct cgroup_subsys cpuset_subsys = { | 
 | 	.name = "cpuset", | 
 | 	.create = cpuset_create, | 
 | 	.destroy = cpuset_destroy, | 
 | 	.can_attach = cpuset_can_attach, | 
 | 	.attach = cpuset_attach, | 
 | 	.populate = cpuset_populate, | 
 | 	.post_clone = cpuset_post_clone, | 
 | 	.subsys_id = cpuset_subsys_id, | 
 | 	.early_init = 1, | 
 | }; | 
 |  | 
 | /* | 
 |  * cpuset_init_early - just enough so that the calls to | 
 |  * cpuset_update_task_memory_state() in early init code | 
 |  * are harmless. | 
 |  */ | 
 |  | 
 | int __init cpuset_init_early(void) | 
 | { | 
 | 	alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed); | 
 |  | 
 | 	top_cpuset.mems_generation = cpuset_mems_generation++; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * cpuset_init - initialize cpusets at system boot | 
 |  * | 
 |  * Description: Initialize top_cpuset and the cpuset internal file system, | 
 |  **/ | 
 |  | 
 | int __init cpuset_init(void) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	cpumask_setall(top_cpuset.cpus_allowed); | 
 | 	nodes_setall(top_cpuset.mems_allowed); | 
 |  | 
 | 	fmeter_init(&top_cpuset.fmeter); | 
 | 	top_cpuset.mems_generation = cpuset_mems_generation++; | 
 | 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); | 
 | 	top_cpuset.relax_domain_level = -1; | 
 |  | 
 | 	err = register_filesystem(&cpuset_fs_type); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) | 
 | 		BUG(); | 
 |  | 
 | 	number_of_cpusets = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_do_move_task - move a given task to another cpuset | 
 |  * @tsk: pointer to task_struct the task to move | 
 |  * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | 
 |  * | 
 |  * Called by cgroup_scan_tasks() for each task in a cgroup. | 
 |  * Return nonzero to stop the walk through the tasks. | 
 |  */ | 
 | static void cpuset_do_move_task(struct task_struct *tsk, | 
 | 				struct cgroup_scanner *scan) | 
 | { | 
 | 	struct cpuset_hotplug_scanner *chsp; | 
 |  | 
 | 	chsp = container_of(scan, struct cpuset_hotplug_scanner, scan); | 
 | 	cgroup_attach_task(chsp->to, tsk); | 
 | } | 
 |  | 
 | /** | 
 |  * move_member_tasks_to_cpuset - move tasks from one cpuset to another | 
 |  * @from: cpuset in which the tasks currently reside | 
 |  * @to: cpuset to which the tasks will be moved | 
 |  * | 
 |  * Called with cgroup_mutex held | 
 |  * callback_mutex must not be held, as cpuset_attach() will take it. | 
 |  * | 
 |  * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | 
 |  * calling callback functions for each. | 
 |  */ | 
 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) | 
 | { | 
 | 	struct cpuset_hotplug_scanner scan; | 
 |  | 
 | 	scan.scan.cg = from->css.cgroup; | 
 | 	scan.scan.test_task = NULL; /* select all tasks in cgroup */ | 
 | 	scan.scan.process_task = cpuset_do_move_task; | 
 | 	scan.scan.heap = NULL; | 
 | 	scan.to = to->css.cgroup; | 
 |  | 
 | 	if (cgroup_scan_tasks(&scan.scan)) | 
 | 		printk(KERN_ERR "move_member_tasks_to_cpuset: " | 
 | 				"cgroup_scan_tasks failed\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * If CPU and/or memory hotplug handlers, below, unplug any CPUs | 
 |  * or memory nodes, we need to walk over the cpuset hierarchy, | 
 |  * removing that CPU or node from all cpusets.  If this removes the | 
 |  * last CPU or node from a cpuset, then move the tasks in the empty | 
 |  * cpuset to its next-highest non-empty parent. | 
 |  * | 
 |  * Called with cgroup_mutex held | 
 |  * callback_mutex must not be held, as cpuset_attach() will take it. | 
 |  */ | 
 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) | 
 | { | 
 | 	struct cpuset *parent; | 
 |  | 
 | 	/* | 
 | 	 * The cgroup's css_sets list is in use if there are tasks | 
 | 	 * in the cpuset; the list is empty if there are none; | 
 | 	 * the cs->css.refcnt seems always 0. | 
 | 	 */ | 
 | 	if (list_empty(&cs->css.cgroup->css_sets)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Find its next-highest non-empty parent, (top cpuset | 
 | 	 * has online cpus, so can't be empty). | 
 | 	 */ | 
 | 	parent = cs->parent; | 
 | 	while (cpumask_empty(parent->cpus_allowed) || | 
 | 			nodes_empty(parent->mems_allowed)) | 
 | 		parent = parent->parent; | 
 |  | 
 | 	move_member_tasks_to_cpuset(cs, parent); | 
 | } | 
 |  | 
 | /* | 
 |  * Walk the specified cpuset subtree and look for empty cpusets. | 
 |  * The tasks of such cpuset must be moved to a parent cpuset. | 
 |  * | 
 |  * Called with cgroup_mutex held.  We take callback_mutex to modify | 
 |  * cpus_allowed and mems_allowed. | 
 |  * | 
 |  * This walk processes the tree from top to bottom, completing one layer | 
 |  * before dropping down to the next.  It always processes a node before | 
 |  * any of its children. | 
 |  * | 
 |  * For now, since we lack memory hot unplug, we'll never see a cpuset | 
 |  * that has tasks along with an empty 'mems'.  But if we did see such | 
 |  * a cpuset, we'd handle it just like we do if its 'cpus' was empty. | 
 |  */ | 
 | static void scan_for_empty_cpusets(struct cpuset *root) | 
 | { | 
 | 	LIST_HEAD(queue); | 
 | 	struct cpuset *cp;	/* scans cpusets being updated */ | 
 | 	struct cpuset *child;	/* scans child cpusets of cp */ | 
 | 	struct cgroup *cont; | 
 | 	nodemask_t oldmems; | 
 |  | 
 | 	list_add_tail((struct list_head *)&root->stack_list, &queue); | 
 |  | 
 | 	while (!list_empty(&queue)) { | 
 | 		cp = list_first_entry(&queue, struct cpuset, stack_list); | 
 | 		list_del(queue.next); | 
 | 		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 
 | 			child = cgroup_cs(cont); | 
 | 			list_add_tail(&child->stack_list, &queue); | 
 | 		} | 
 |  | 
 | 		/* Continue past cpusets with all cpus, mems online */ | 
 | 		if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) && | 
 | 		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) | 
 | 			continue; | 
 |  | 
 | 		oldmems = cp->mems_allowed; | 
 |  | 
 | 		/* Remove offline cpus and mems from this cpuset. */ | 
 | 		mutex_lock(&callback_mutex); | 
 | 		cpumask_and(cp->cpus_allowed, cp->cpus_allowed, | 
 | 			    cpu_online_mask); | 
 | 		nodes_and(cp->mems_allowed, cp->mems_allowed, | 
 | 						node_states[N_HIGH_MEMORY]); | 
 | 		mutex_unlock(&callback_mutex); | 
 |  | 
 | 		/* Move tasks from the empty cpuset to a parent */ | 
 | 		if (cpumask_empty(cp->cpus_allowed) || | 
 | 		     nodes_empty(cp->mems_allowed)) | 
 | 			remove_tasks_in_empty_cpuset(cp); | 
 | 		else { | 
 | 			update_tasks_cpumask(cp, NULL); | 
 | 			update_tasks_nodemask(cp, &oldmems); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The top_cpuset tracks what CPUs and Memory Nodes are online, | 
 |  * period.  This is necessary in order to make cpusets transparent | 
 |  * (of no affect) on systems that are actively using CPU hotplug | 
 |  * but making no active use of cpusets. | 
 |  * | 
 |  * This routine ensures that top_cpuset.cpus_allowed tracks | 
 |  * cpu_online_map on each CPU hotplug (cpuhp) event. | 
 |  * | 
 |  * Called within get_online_cpus().  Needs to call cgroup_lock() | 
 |  * before calling generate_sched_domains(). | 
 |  */ | 
 | static int cpuset_track_online_cpus(struct notifier_block *unused_nb, | 
 | 				unsigned long phase, void *unused_cpu) | 
 | { | 
 | 	struct sched_domain_attr *attr; | 
 | 	struct cpumask *doms; | 
 | 	int ndoms; | 
 |  | 
 | 	switch (phase) { | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_ONLINE_FROZEN: | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 |  | 
 | 	cgroup_lock(); | 
 | 	cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask); | 
 | 	scan_for_empty_cpusets(&top_cpuset); | 
 | 	ndoms = generate_sched_domains(&doms, &attr); | 
 | 	cgroup_unlock(); | 
 |  | 
 | 	/* Have scheduler rebuild the domains */ | 
 | 	partition_sched_domains(ndoms, doms, attr); | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | /* | 
 |  * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. | 
 |  * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. | 
 |  * See also the previous routine cpuset_track_online_cpus(). | 
 |  */ | 
 | static int cpuset_track_online_nodes(struct notifier_block *self, | 
 | 				unsigned long action, void *arg) | 
 | { | 
 | 	cgroup_lock(); | 
 | 	switch (action) { | 
 | 	case MEM_ONLINE: | 
 | 		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 
 | 		break; | 
 | 	case MEM_OFFLINE: | 
 | 		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 
 | 		scan_for_empty_cpusets(&top_cpuset); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	cgroup_unlock(); | 
 | 	return NOTIFY_OK; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * cpuset_init_smp - initialize cpus_allowed | 
 |  * | 
 |  * Description: Finish top cpuset after cpu, node maps are initialized | 
 |  **/ | 
 |  | 
 | void __init cpuset_init_smp(void) | 
 | { | 
 | 	cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask); | 
 | 	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 
 |  | 
 | 	hotcpu_notifier(cpuset_track_online_cpus, 0); | 
 | 	hotplug_memory_notifier(cpuset_track_online_nodes, 10); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. | 
 |  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | 
 |  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. | 
 |  * | 
 |  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset | 
 |  * attached to the specified @tsk.  Guaranteed to return some non-empty | 
 |  * subset of cpu_online_map, even if this means going outside the | 
 |  * tasks cpuset. | 
 |  **/ | 
 |  | 
 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) | 
 | { | 
 | 	mutex_lock(&callback_mutex); | 
 | 	cpuset_cpus_allowed_locked(tsk, pmask); | 
 | 	mutex_unlock(&callback_mutex); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset. | 
 |  * Must be called with callback_mutex held. | 
 |  **/ | 
 | void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) | 
 | { | 
 | 	task_lock(tsk); | 
 | 	guarantee_online_cpus(task_cs(tsk), pmask); | 
 | 	task_unlock(tsk); | 
 | } | 
 |  | 
 | void cpuset_init_current_mems_allowed(void) | 
 | { | 
 | 	nodes_setall(current->mems_allowed); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | 
 |  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | 
 |  * | 
 |  * Description: Returns the nodemask_t mems_allowed of the cpuset | 
 |  * attached to the specified @tsk.  Guaranteed to return some non-empty | 
 |  * subset of node_states[N_HIGH_MEMORY], even if this means going outside the | 
 |  * tasks cpuset. | 
 |  **/ | 
 |  | 
 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | 
 | { | 
 | 	nodemask_t mask; | 
 |  | 
 | 	mutex_lock(&callback_mutex); | 
 | 	task_lock(tsk); | 
 | 	guarantee_online_mems(task_cs(tsk), &mask); | 
 | 	task_unlock(tsk); | 
 | 	mutex_unlock(&callback_mutex); | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed | 
 |  * @nodemask: the nodemask to be checked | 
 |  * | 
 |  * Are any of the nodes in the nodemask allowed in current->mems_allowed? | 
 |  */ | 
 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) | 
 | { | 
 | 	return nodes_intersects(*nodemask, current->mems_allowed); | 
 | } | 
 |  | 
 | /* | 
 |  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or | 
 |  * mem_hardwall ancestor to the specified cpuset.  Call holding | 
 |  * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall | 
 |  * (an unusual configuration), then returns the root cpuset. | 
 |  */ | 
 | static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) | 
 | { | 
 | 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) | 
 | 		cs = cs->parent; | 
 | 	return cs; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node? | 
 |  * @z: is this zone on an allowed node? | 
 |  * @gfp_mask: memory allocation flags | 
 |  * | 
 |  * If we're in interrupt, yes, we can always allocate.  If | 
 |  * __GFP_THISNODE is set, yes, we can always allocate.  If zone | 
 |  * z's node is in our tasks mems_allowed, yes.  If it's not a | 
 |  * __GFP_HARDWALL request and this zone's nodes is in the nearest | 
 |  * hardwalled cpuset ancestor to this tasks cpuset, yes. | 
 |  * If the task has been OOM killed and has access to memory reserves | 
 |  * as specified by the TIF_MEMDIE flag, yes. | 
 |  * Otherwise, no. | 
 |  * | 
 |  * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall() | 
 |  * reduces to cpuset_zone_allowed_hardwall().  Otherwise, | 
 |  * cpuset_zone_allowed_softwall() might sleep, and might allow a zone | 
 |  * from an enclosing cpuset. | 
 |  * | 
 |  * cpuset_zone_allowed_hardwall() only handles the simpler case of | 
 |  * hardwall cpusets, and never sleeps. | 
 |  * | 
 |  * The __GFP_THISNODE placement logic is really handled elsewhere, | 
 |  * by forcibly using a zonelist starting at a specified node, and by | 
 |  * (in get_page_from_freelist()) refusing to consider the zones for | 
 |  * any node on the zonelist except the first.  By the time any such | 
 |  * calls get to this routine, we should just shut up and say 'yes'. | 
 |  * | 
 |  * GFP_USER allocations are marked with the __GFP_HARDWALL bit, | 
 |  * and do not allow allocations outside the current tasks cpuset | 
 |  * unless the task has been OOM killed as is marked TIF_MEMDIE. | 
 |  * GFP_KERNEL allocations are not so marked, so can escape to the | 
 |  * nearest enclosing hardwalled ancestor cpuset. | 
 |  * | 
 |  * Scanning up parent cpusets requires callback_mutex.  The | 
 |  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | 
 |  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | 
 |  * current tasks mems_allowed came up empty on the first pass over | 
 |  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the | 
 |  * cpuset are short of memory, might require taking the callback_mutex | 
 |  * mutex. | 
 |  * | 
 |  * The first call here from mm/page_alloc:get_page_from_freelist() | 
 |  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, | 
 |  * so no allocation on a node outside the cpuset is allowed (unless | 
 |  * in interrupt, of course). | 
 |  * | 
 |  * The second pass through get_page_from_freelist() doesn't even call | 
 |  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages() | 
 |  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | 
 |  * in alloc_flags.  That logic and the checks below have the combined | 
 |  * affect that: | 
 |  *	in_interrupt - any node ok (current task context irrelevant) | 
 |  *	GFP_ATOMIC   - any node ok | 
 |  *	TIF_MEMDIE   - any node ok | 
 |  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok | 
 |  *	GFP_USER     - only nodes in current tasks mems allowed ok. | 
 |  * | 
 |  * Rule: | 
 |  *    Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you | 
 |  *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables | 
 |  *    the code that might scan up ancestor cpusets and sleep. | 
 |  */ | 
 |  | 
 | int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) | 
 | { | 
 | 	int node;			/* node that zone z is on */ | 
 | 	const struct cpuset *cs;	/* current cpuset ancestors */ | 
 | 	int allowed;			/* is allocation in zone z allowed? */ | 
 |  | 
 | 	if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | 
 | 		return 1; | 
 | 	node = zone_to_nid(z); | 
 | 	might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); | 
 | 	if (node_isset(node, current->mems_allowed)) | 
 | 		return 1; | 
 | 	/* | 
 | 	 * Allow tasks that have access to memory reserves because they have | 
 | 	 * been OOM killed to get memory anywhere. | 
 | 	 */ | 
 | 	if (unlikely(test_thread_flag(TIF_MEMDIE))) | 
 | 		return 1; | 
 | 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */ | 
 | 		return 0; | 
 |  | 
 | 	if (current->flags & PF_EXITING) /* Let dying task have memory */ | 
 | 		return 1; | 
 |  | 
 | 	/* Not hardwall and node outside mems_allowed: scan up cpusets */ | 
 | 	mutex_lock(&callback_mutex); | 
 |  | 
 | 	task_lock(current); | 
 | 	cs = nearest_hardwall_ancestor(task_cs(current)); | 
 | 	task_unlock(current); | 
 |  | 
 | 	allowed = node_isset(node, cs->mems_allowed); | 
 | 	mutex_unlock(&callback_mutex); | 
 | 	return allowed; | 
 | } | 
 |  | 
 | /* | 
 |  * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node? | 
 |  * @z: is this zone on an allowed node? | 
 |  * @gfp_mask: memory allocation flags | 
 |  * | 
 |  * If we're in interrupt, yes, we can always allocate. | 
 |  * If __GFP_THISNODE is set, yes, we can always allocate.  If zone | 
 |  * z's node is in our tasks mems_allowed, yes.   If the task has been | 
 |  * OOM killed and has access to memory reserves as specified by the | 
 |  * TIF_MEMDIE flag, yes.  Otherwise, no. | 
 |  * | 
 |  * The __GFP_THISNODE placement logic is really handled elsewhere, | 
 |  * by forcibly using a zonelist starting at a specified node, and by | 
 |  * (in get_page_from_freelist()) refusing to consider the zones for | 
 |  * any node on the zonelist except the first.  By the time any such | 
 |  * calls get to this routine, we should just shut up and say 'yes'. | 
 |  * | 
 |  * Unlike the cpuset_zone_allowed_softwall() variant, above, | 
 |  * this variant requires that the zone be in the current tasks | 
 |  * mems_allowed or that we're in interrupt.  It does not scan up the | 
 |  * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | 
 |  * It never sleeps. | 
 |  */ | 
 |  | 
 | int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) | 
 | { | 
 | 	int node;			/* node that zone z is on */ | 
 |  | 
 | 	if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | 
 | 		return 1; | 
 | 	node = zone_to_nid(z); | 
 | 	if (node_isset(node, current->mems_allowed)) | 
 | 		return 1; | 
 | 	/* | 
 | 	 * Allow tasks that have access to memory reserves because they have | 
 | 	 * been OOM killed to get memory anywhere. | 
 | 	 */ | 
 | 	if (unlikely(test_thread_flag(TIF_MEMDIE))) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_lock - lock out any changes to cpuset structures | 
 |  * | 
 |  * The out of memory (oom) code needs to mutex_lock cpusets | 
 |  * from being changed while it scans the tasklist looking for a | 
 |  * task in an overlapping cpuset.  Expose callback_mutex via this | 
 |  * cpuset_lock() routine, so the oom code can lock it, before | 
 |  * locking the task list.  The tasklist_lock is a spinlock, so | 
 |  * must be taken inside callback_mutex. | 
 |  */ | 
 |  | 
 | void cpuset_lock(void) | 
 | { | 
 | 	mutex_lock(&callback_mutex); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_unlock - release lock on cpuset changes | 
 |  * | 
 |  * Undo the lock taken in a previous cpuset_lock() call. | 
 |  */ | 
 |  | 
 | void cpuset_unlock(void) | 
 | { | 
 | 	mutex_unlock(&callback_mutex); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_mem_spread_node() - On which node to begin search for a page | 
 |  * | 
 |  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | 
 |  * tasks in a cpuset with is_spread_page or is_spread_slab set), | 
 |  * and if the memory allocation used cpuset_mem_spread_node() | 
 |  * to determine on which node to start looking, as it will for | 
 |  * certain page cache or slab cache pages such as used for file | 
 |  * system buffers and inode caches, then instead of starting on the | 
 |  * local node to look for a free page, rather spread the starting | 
 |  * node around the tasks mems_allowed nodes. | 
 |  * | 
 |  * We don't have to worry about the returned node being offline | 
 |  * because "it can't happen", and even if it did, it would be ok. | 
 |  * | 
 |  * The routines calling guarantee_online_mems() are careful to | 
 |  * only set nodes in task->mems_allowed that are online.  So it | 
 |  * should not be possible for the following code to return an | 
 |  * offline node.  But if it did, that would be ok, as this routine | 
 |  * is not returning the node where the allocation must be, only | 
 |  * the node where the search should start.  The zonelist passed to | 
 |  * __alloc_pages() will include all nodes.  If the slab allocator | 
 |  * is passed an offline node, it will fall back to the local node. | 
 |  * See kmem_cache_alloc_node(). | 
 |  */ | 
 |  | 
 | int cpuset_mem_spread_node(void) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed); | 
 | 	if (node == MAX_NUMNODES) | 
 | 		node = first_node(current->mems_allowed); | 
 | 	current->cpuset_mem_spread_rotor = node; | 
 | 	return node; | 
 | } | 
 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); | 
 |  | 
 | /** | 
 |  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? | 
 |  * @tsk1: pointer to task_struct of some task. | 
 |  * @tsk2: pointer to task_struct of some other task. | 
 |  * | 
 |  * Description: Return true if @tsk1's mems_allowed intersects the | 
 |  * mems_allowed of @tsk2.  Used by the OOM killer to determine if | 
 |  * one of the task's memory usage might impact the memory available | 
 |  * to the other. | 
 |  **/ | 
 |  | 
 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, | 
 | 				   const struct task_struct *tsk2) | 
 | { | 
 | 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); | 
 | } | 
 |  | 
 | /** | 
 |  * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed | 
 |  * @task: pointer to task_struct of some task. | 
 |  * | 
 |  * Description: Prints @task's name, cpuset name, and cached copy of its | 
 |  * mems_allowed to the kernel log.  Must hold task_lock(task) to allow | 
 |  * dereferencing task_cs(task). | 
 |  */ | 
 | void cpuset_print_task_mems_allowed(struct task_struct *tsk) | 
 | { | 
 | 	struct dentry *dentry; | 
 |  | 
 | 	dentry = task_cs(tsk)->css.cgroup->dentry; | 
 | 	spin_lock(&cpuset_buffer_lock); | 
 | 	snprintf(cpuset_name, CPUSET_NAME_LEN, | 
 | 		 dentry ? (const char *)dentry->d_name.name : "/"); | 
 | 	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, | 
 | 			   tsk->mems_allowed); | 
 | 	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", | 
 | 	       tsk->comm, cpuset_name, cpuset_nodelist); | 
 | 	spin_unlock(&cpuset_buffer_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Collection of memory_pressure is suppressed unless | 
 |  * this flag is enabled by writing "1" to the special | 
 |  * cpuset file 'memory_pressure_enabled' in the root cpuset. | 
 |  */ | 
 |  | 
 | int cpuset_memory_pressure_enabled __read_mostly; | 
 |  | 
 | /** | 
 |  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | 
 |  * | 
 |  * Keep a running average of the rate of synchronous (direct) | 
 |  * page reclaim efforts initiated by tasks in each cpuset. | 
 |  * | 
 |  * This represents the rate at which some task in the cpuset | 
 |  * ran low on memory on all nodes it was allowed to use, and | 
 |  * had to enter the kernels page reclaim code in an effort to | 
 |  * create more free memory by tossing clean pages or swapping | 
 |  * or writing dirty pages. | 
 |  * | 
 |  * Display to user space in the per-cpuset read-only file | 
 |  * "memory_pressure".  Value displayed is an integer | 
 |  * representing the recent rate of entry into the synchronous | 
 |  * (direct) page reclaim by any task attached to the cpuset. | 
 |  **/ | 
 |  | 
 | void __cpuset_memory_pressure_bump(void) | 
 | { | 
 | 	task_lock(current); | 
 | 	fmeter_markevent(&task_cs(current)->fmeter); | 
 | 	task_unlock(current); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_PID_CPUSET | 
 | /* | 
 |  * proc_cpuset_show() | 
 |  *  - Print tasks cpuset path into seq_file. | 
 |  *  - Used for /proc/<pid>/cpuset. | 
 |  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it | 
 |  *    doesn't really matter if tsk->cpuset changes after we read it, | 
 |  *    and we take cgroup_mutex, keeping cpuset_attach() from changing it | 
 |  *    anyway. | 
 |  */ | 
 | static int proc_cpuset_show(struct seq_file *m, void *unused_v) | 
 | { | 
 | 	struct pid *pid; | 
 | 	struct task_struct *tsk; | 
 | 	char *buf; | 
 | 	struct cgroup_subsys_state *css; | 
 | 	int retval; | 
 |  | 
 | 	retval = -ENOMEM; | 
 | 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		goto out; | 
 |  | 
 | 	retval = -ESRCH; | 
 | 	pid = m->private; | 
 | 	tsk = get_pid_task(pid, PIDTYPE_PID); | 
 | 	if (!tsk) | 
 | 		goto out_free; | 
 |  | 
 | 	retval = -EINVAL; | 
 | 	cgroup_lock(); | 
 | 	css = task_subsys_state(tsk, cpuset_subsys_id); | 
 | 	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); | 
 | 	if (retval < 0) | 
 | 		goto out_unlock; | 
 | 	seq_puts(m, buf); | 
 | 	seq_putc(m, '\n'); | 
 | out_unlock: | 
 | 	cgroup_unlock(); | 
 | 	put_task_struct(tsk); | 
 | out_free: | 
 | 	kfree(buf); | 
 | out: | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int cpuset_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct pid *pid = PROC_I(inode)->pid; | 
 | 	return single_open(file, proc_cpuset_show, pid); | 
 | } | 
 |  | 
 | const struct file_operations proc_cpuset_operations = { | 
 | 	.open		= cpuset_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= single_release, | 
 | }; | 
 | #endif /* CONFIG_PROC_PID_CPUSET */ | 
 |  | 
 | /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ | 
 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) | 
 | { | 
 | 	seq_printf(m, "Cpus_allowed:\t"); | 
 | 	seq_cpumask(m, &task->cpus_allowed); | 
 | 	seq_printf(m, "\n"); | 
 | 	seq_printf(m, "Cpus_allowed_list:\t"); | 
 | 	seq_cpumask_list(m, &task->cpus_allowed); | 
 | 	seq_printf(m, "\n"); | 
 | 	seq_printf(m, "Mems_allowed:\t"); | 
 | 	seq_nodemask(m, &task->mems_allowed); | 
 | 	seq_printf(m, "\n"); | 
 | 	seq_printf(m, "Mems_allowed_list:\t"); | 
 | 	seq_nodemask_list(m, &task->mems_allowed); | 
 | 	seq_printf(m, "\n"); | 
 | } |