|  | /* | 
|  | * Copyright © 2006-2007 Intel Corporation | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a | 
|  | * copy of this software and associated documentation files (the "Software"), | 
|  | * to deal in the Software without restriction, including without limitation | 
|  | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | * and/or sell copies of the Software, and to permit persons to whom the | 
|  | * Software is furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice (including the next | 
|  | * paragraph) shall be included in all copies or substantial portions of the | 
|  | * Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
|  | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | 
|  | * DEALINGS IN THE SOFTWARE. | 
|  | * | 
|  | * Authors: | 
|  | *	Eric Anholt <eric@anholt.net> | 
|  | */ | 
|  |  | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/input.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vgaarb.h> | 
|  | #include <drm/drm_edid.h> | 
|  | #include <drm/drmP.h> | 
|  | #include "intel_drv.h" | 
|  | #include <drm/i915_drm.h> | 
|  | #include "i915_drv.h" | 
|  | #include "i915_trace.h" | 
|  | #include <drm/drm_dp_helper.h> | 
|  | #include <drm/drm_crtc_helper.h> | 
|  | #include <linux/dma_remapping.h> | 
|  |  | 
|  | bool intel_pipe_has_type(struct drm_crtc *crtc, int type); | 
|  | static void intel_increase_pllclock(struct drm_crtc *crtc); | 
|  | static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on); | 
|  |  | 
|  | typedef struct { | 
|  | /* given values */ | 
|  | int n; | 
|  | int m1, m2; | 
|  | int p1, p2; | 
|  | /* derived values */ | 
|  | int	dot; | 
|  | int	vco; | 
|  | int	m; | 
|  | int	p; | 
|  | } intel_clock_t; | 
|  |  | 
|  | typedef struct { | 
|  | int	min, max; | 
|  | } intel_range_t; | 
|  |  | 
|  | typedef struct { | 
|  | int	dot_limit; | 
|  | int	p2_slow, p2_fast; | 
|  | } intel_p2_t; | 
|  |  | 
|  | #define INTEL_P2_NUM		      2 | 
|  | typedef struct intel_limit intel_limit_t; | 
|  | struct intel_limit { | 
|  | intel_range_t   dot, vco, n, m, m1, m2, p, p1; | 
|  | intel_p2_t	    p2; | 
|  | bool (* find_pll)(const intel_limit_t *, struct drm_crtc *, | 
|  | int, int, intel_clock_t *, intel_clock_t *); | 
|  | }; | 
|  |  | 
|  | /* FDI */ | 
|  | #define IRONLAKE_FDI_FREQ		2700000 /* in kHz for mode->clock */ | 
|  |  | 
|  | int | 
|  | intel_pch_rawclk(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | WARN_ON(!HAS_PCH_SPLIT(dev)); | 
|  |  | 
|  | return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock); | 
|  | static bool | 
|  | intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock); | 
|  |  | 
|  | static bool | 
|  | intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock); | 
|  | static bool | 
|  | intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock); | 
|  |  | 
|  | static bool | 
|  | intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock); | 
|  |  | 
|  | static inline u32 /* units of 100MHz */ | 
|  | intel_fdi_link_freq(struct drm_device *dev) | 
|  | { | 
|  | if (IS_GEN5(dev)) { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2; | 
|  | } else | 
|  | return 27; | 
|  | } | 
|  |  | 
|  | static const intel_limit_t intel_limits_i8xx_dvo = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 930000, .max = 1400000 }, | 
|  | .n = { .min = 3, .max = 16 }, | 
|  | .m = { .min = 96, .max = 140 }, | 
|  | .m1 = { .min = 18, .max = 26 }, | 
|  | .m2 = { .min = 6, .max = 16 }, | 
|  | .p = { .min = 4, .max = 128 }, | 
|  | .p1 = { .min = 2, .max = 33 }, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 4, .p2_fast = 2 }, | 
|  | .find_pll = intel_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_i8xx_lvds = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 930000, .max = 1400000 }, | 
|  | .n = { .min = 3, .max = 16 }, | 
|  | .m = { .min = 96, .max = 140 }, | 
|  | .m1 = { .min = 18, .max = 26 }, | 
|  | .m2 = { .min = 6, .max = 16 }, | 
|  | .p = { .min = 4, .max = 128 }, | 
|  | .p1 = { .min = 1, .max = 6 }, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 14, .p2_fast = 7 }, | 
|  | .find_pll = intel_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_i9xx_sdvo = { | 
|  | .dot = { .min = 20000, .max = 400000 }, | 
|  | .vco = { .min = 1400000, .max = 2800000 }, | 
|  | .n = { .min = 1, .max = 6 }, | 
|  | .m = { .min = 70, .max = 120 }, | 
|  | .m1 = { .min = 8, .max = 18 }, | 
|  | .m2 = { .min = 3, .max = 7 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 200000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | .find_pll = intel_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_i9xx_lvds = { | 
|  | .dot = { .min = 20000, .max = 400000 }, | 
|  | .vco = { .min = 1400000, .max = 2800000 }, | 
|  | .n = { .min = 1, .max = 6 }, | 
|  | .m = { .min = 70, .max = 120 }, | 
|  | .m1 = { .min = 8, .max = 18 }, | 
|  | .m2 = { .min = 3, .max = 7 }, | 
|  | .p = { .min = 7, .max = 98 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 112000, | 
|  | .p2_slow = 14, .p2_fast = 7 }, | 
|  | .find_pll = intel_find_best_PLL, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static const intel_limit_t intel_limits_g4x_sdvo = { | 
|  | .dot = { .min = 25000, .max = 270000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000}, | 
|  | .n = { .min = 1, .max = 4 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 17, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 10, .max = 30 }, | 
|  | .p1 = { .min = 1, .max = 3}, | 
|  | .p2 = { .dot_limit = 270000, | 
|  | .p2_slow = 10, | 
|  | .p2_fast = 10 | 
|  | }, | 
|  | .find_pll = intel_g4x_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_g4x_hdmi = { | 
|  | .dot = { .min = 22000, .max = 400000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000}, | 
|  | .n = { .min = 1, .max = 4 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 16, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8}, | 
|  | .p2 = { .dot_limit = 165000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | .find_pll = intel_g4x_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_g4x_single_channel_lvds = { | 
|  | .dot = { .min = 20000, .max = 115000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 17, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 28, .max = 112 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 0, | 
|  | .p2_slow = 14, .p2_fast = 14 | 
|  | }, | 
|  | .find_pll = intel_g4x_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { | 
|  | .dot = { .min = 80000, .max = 224000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 104, .max = 138 }, | 
|  | .m1 = { .min = 17, .max = 23 }, | 
|  | .m2 = { .min = 5, .max = 11 }, | 
|  | .p = { .min = 14, .max = 42 }, | 
|  | .p1 = { .min = 2, .max = 6 }, | 
|  | .p2 = { .dot_limit = 0, | 
|  | .p2_slow = 7, .p2_fast = 7 | 
|  | }, | 
|  | .find_pll = intel_g4x_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_g4x_display_port = { | 
|  | .dot = { .min = 161670, .max = 227000 }, | 
|  | .vco = { .min = 1750000, .max = 3500000}, | 
|  | .n = { .min = 1, .max = 2 }, | 
|  | .m = { .min = 97, .max = 108 }, | 
|  | .m1 = { .min = 0x10, .max = 0x12 }, | 
|  | .m2 = { .min = 0x05, .max = 0x06 }, | 
|  | .p = { .min = 10, .max = 20 }, | 
|  | .p1 = { .min = 1, .max = 2}, | 
|  | .p2 = { .dot_limit = 0, | 
|  | .p2_slow = 10, .p2_fast = 10 }, | 
|  | .find_pll = intel_find_pll_g4x_dp, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_pineview_sdvo = { | 
|  | .dot = { .min = 20000, .max = 400000}, | 
|  | .vco = { .min = 1700000, .max = 3500000 }, | 
|  | /* Pineview's Ncounter is a ring counter */ | 
|  | .n = { .min = 3, .max = 6 }, | 
|  | .m = { .min = 2, .max = 256 }, | 
|  | /* Pineview only has one combined m divider, which we treat as m2. */ | 
|  | .m1 = { .min = 0, .max = 0 }, | 
|  | .m2 = { .min = 0, .max = 254 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 200000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | .find_pll = intel_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_pineview_lvds = { | 
|  | .dot = { .min = 20000, .max = 400000 }, | 
|  | .vco = { .min = 1700000, .max = 3500000 }, | 
|  | .n = { .min = 3, .max = 6 }, | 
|  | .m = { .min = 2, .max = 256 }, | 
|  | .m1 = { .min = 0, .max = 0 }, | 
|  | .m2 = { .min = 0, .max = 254 }, | 
|  | .p = { .min = 7, .max = 112 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 112000, | 
|  | .p2_slow = 14, .p2_fast = 14 }, | 
|  | .find_pll = intel_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | /* Ironlake / Sandybridge | 
|  | * | 
|  | * We calculate clock using (register_value + 2) for N/M1/M2, so here | 
|  | * the range value for them is (actual_value - 2). | 
|  | */ | 
|  | static const intel_limit_t intel_limits_ironlake_dac = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 5 }, | 
|  | .m = { .min = 79, .max = 127 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 5, .max = 80 }, | 
|  | .p1 = { .min = 1, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 10, .p2_fast = 5 }, | 
|  | .find_pll = intel_g4x_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_ironlake_single_lvds = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 79, .max = 118 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 28, .max = 112 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 14, .p2_fast = 14 }, | 
|  | .find_pll = intel_g4x_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_ironlake_dual_lvds = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 79, .max = 127 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 14, .max = 56 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 7, .p2_fast = 7 }, | 
|  | .find_pll = intel_g4x_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | /* LVDS 100mhz refclk limits. */ | 
|  | static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 2 }, | 
|  | .m = { .min = 79, .max = 126 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 28, .max = 112 }, | 
|  | .p1 = { .min = 2, .max = 8 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 14, .p2_fast = 14 }, | 
|  | .find_pll = intel_g4x_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000 }, | 
|  | .n = { .min = 1, .max = 3 }, | 
|  | .m = { .min = 79, .max = 126 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 14, .max = 42 }, | 
|  | .p1 = { .min = 2, .max = 6 }, | 
|  | .p2 = { .dot_limit = 225000, | 
|  | .p2_slow = 7, .p2_fast = 7 }, | 
|  | .find_pll = intel_g4x_find_best_PLL, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_ironlake_display_port = { | 
|  | .dot = { .min = 25000, .max = 350000 }, | 
|  | .vco = { .min = 1760000, .max = 3510000}, | 
|  | .n = { .min = 1, .max = 2 }, | 
|  | .m = { .min = 81, .max = 90 }, | 
|  | .m1 = { .min = 12, .max = 22 }, | 
|  | .m2 = { .min = 5, .max = 9 }, | 
|  | .p = { .min = 10, .max = 20 }, | 
|  | .p1 = { .min = 1, .max = 2}, | 
|  | .p2 = { .dot_limit = 0, | 
|  | .p2_slow = 10, .p2_fast = 10 }, | 
|  | .find_pll = intel_find_pll_ironlake_dp, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_vlv_dac = { | 
|  | .dot = { .min = 25000, .max = 270000 }, | 
|  | .vco = { .min = 4000000, .max = 6000000 }, | 
|  | .n = { .min = 1, .max = 7 }, | 
|  | .m = { .min = 22, .max = 450 }, /* guess */ | 
|  | .m1 = { .min = 2, .max = 3 }, | 
|  | .m2 = { .min = 11, .max = 156 }, | 
|  | .p = { .min = 10, .max = 30 }, | 
|  | .p1 = { .min = 2, .max = 3 }, | 
|  | .p2 = { .dot_limit = 270000, | 
|  | .p2_slow = 2, .p2_fast = 20 }, | 
|  | .find_pll = intel_vlv_find_best_pll, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_vlv_hdmi = { | 
|  | .dot = { .min = 20000, .max = 165000 }, | 
|  | .vco = { .min = 4000000, .max = 5994000}, | 
|  | .n = { .min = 1, .max = 7 }, | 
|  | .m = { .min = 60, .max = 300 }, /* guess */ | 
|  | .m1 = { .min = 2, .max = 3 }, | 
|  | .m2 = { .min = 11, .max = 156 }, | 
|  | .p = { .min = 10, .max = 30 }, | 
|  | .p1 = { .min = 2, .max = 3 }, | 
|  | .p2 = { .dot_limit = 270000, | 
|  | .p2_slow = 2, .p2_fast = 20 }, | 
|  | .find_pll = intel_vlv_find_best_pll, | 
|  | }; | 
|  |  | 
|  | static const intel_limit_t intel_limits_vlv_dp = { | 
|  | .dot = { .min = 25000, .max = 270000 }, | 
|  | .vco = { .min = 4000000, .max = 6000000 }, | 
|  | .n = { .min = 1, .max = 7 }, | 
|  | .m = { .min = 22, .max = 450 }, | 
|  | .m1 = { .min = 2, .max = 3 }, | 
|  | .m2 = { .min = 11, .max = 156 }, | 
|  | .p = { .min = 10, .max = 30 }, | 
|  | .p1 = { .min = 2, .max = 3 }, | 
|  | .p2 = { .dot_limit = 270000, | 
|  | .p2_slow = 2, .p2_fast = 20 }, | 
|  | .find_pll = intel_vlv_find_best_pll, | 
|  | }; | 
|  |  | 
|  | u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg) | 
|  | { | 
|  | WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock)); | 
|  |  | 
|  | if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) { | 
|  | DRM_ERROR("DPIO idle wait timed out\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | I915_WRITE(DPIO_REG, reg); | 
|  | I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID | | 
|  | DPIO_BYTE); | 
|  | if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) { | 
|  | DRM_ERROR("DPIO read wait timed out\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return I915_READ(DPIO_DATA); | 
|  | } | 
|  |  | 
|  | static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, | 
|  | u32 val) | 
|  | { | 
|  | WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock)); | 
|  |  | 
|  | if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) { | 
|  | DRM_ERROR("DPIO idle wait timed out\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | I915_WRITE(DPIO_DATA, val); | 
|  | I915_WRITE(DPIO_REG, reg); | 
|  | I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID | | 
|  | DPIO_BYTE); | 
|  | if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) | 
|  | DRM_ERROR("DPIO write wait timed out\n"); | 
|  | } | 
|  |  | 
|  | static void vlv_init_dpio(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | /* Reset the DPIO config */ | 
|  | I915_WRITE(DPIO_CTL, 0); | 
|  | POSTING_READ(DPIO_CTL); | 
|  | I915_WRITE(DPIO_CTL, 1); | 
|  | POSTING_READ(DPIO_CTL); | 
|  | } | 
|  |  | 
|  | static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc, | 
|  | int refclk) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | const intel_limit_t *limit; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_is_dual_link_lvds(dev)) { | 
|  | /* LVDS dual channel */ | 
|  | if (refclk == 100000) | 
|  | limit = &intel_limits_ironlake_dual_lvds_100m; | 
|  | else | 
|  | limit = &intel_limits_ironlake_dual_lvds; | 
|  | } else { | 
|  | if (refclk == 100000) | 
|  | limit = &intel_limits_ironlake_single_lvds_100m; | 
|  | else | 
|  | limit = &intel_limits_ironlake_single_lvds; | 
|  | } | 
|  | } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) | 
|  | limit = &intel_limits_ironlake_display_port; | 
|  | else | 
|  | limit = &intel_limits_ironlake_dac; | 
|  |  | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | const intel_limit_t *limit; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_is_dual_link_lvds(dev)) | 
|  | /* LVDS with dual channel */ | 
|  | limit = &intel_limits_g4x_dual_channel_lvds; | 
|  | else | 
|  | /* LVDS with dual channel */ | 
|  | limit = &intel_limits_g4x_single_channel_lvds; | 
|  | } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) || | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { | 
|  | limit = &intel_limits_g4x_hdmi; | 
|  | } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) { | 
|  | limit = &intel_limits_g4x_sdvo; | 
|  | } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { | 
|  | limit = &intel_limits_g4x_display_port; | 
|  | } else /* The option is for other outputs */ | 
|  | limit = &intel_limits_i9xx_sdvo; | 
|  |  | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | const intel_limit_t *limit; | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) | 
|  | limit = intel_ironlake_limit(crtc, refclk); | 
|  | else if (IS_G4X(dev)) { | 
|  | limit = intel_g4x_limit(crtc); | 
|  | } else if (IS_PINEVIEW(dev)) { | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) | 
|  | limit = &intel_limits_pineview_lvds; | 
|  | else | 
|  | limit = &intel_limits_pineview_sdvo; | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) | 
|  | limit = &intel_limits_vlv_dac; | 
|  | else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) | 
|  | limit = &intel_limits_vlv_hdmi; | 
|  | else | 
|  | limit = &intel_limits_vlv_dp; | 
|  | } else if (!IS_GEN2(dev)) { | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) | 
|  | limit = &intel_limits_i9xx_lvds; | 
|  | else | 
|  | limit = &intel_limits_i9xx_sdvo; | 
|  | } else { | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) | 
|  | limit = &intel_limits_i8xx_lvds; | 
|  | else | 
|  | limit = &intel_limits_i8xx_dvo; | 
|  | } | 
|  | return limit; | 
|  | } | 
|  |  | 
|  | /* m1 is reserved as 0 in Pineview, n is a ring counter */ | 
|  | static void pineview_clock(int refclk, intel_clock_t *clock) | 
|  | { | 
|  | clock->m = clock->m2 + 2; | 
|  | clock->p = clock->p1 * clock->p2; | 
|  | clock->vco = refclk * clock->m / clock->n; | 
|  | clock->dot = clock->vco / clock->p; | 
|  | } | 
|  |  | 
|  | static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock) | 
|  | { | 
|  | if (IS_PINEVIEW(dev)) { | 
|  | pineview_clock(refclk, clock); | 
|  | return; | 
|  | } | 
|  | clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2); | 
|  | clock->p = clock->p1 * clock->p2; | 
|  | clock->vco = refclk * clock->m / (clock->n + 2); | 
|  | clock->dot = clock->vco / clock->p; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns whether any output on the specified pipe is of the specified type | 
|  | */ | 
|  | bool intel_pipe_has_type(struct drm_crtc *crtc, int type) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_encoder *encoder; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->type == type) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0) | 
|  | /** | 
|  | * Returns whether the given set of divisors are valid for a given refclk with | 
|  | * the given connectors. | 
|  | */ | 
|  |  | 
|  | static bool intel_PLL_is_valid(struct drm_device *dev, | 
|  | const intel_limit_t *limit, | 
|  | const intel_clock_t *clock) | 
|  | { | 
|  | if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1) | 
|  | INTELPllInvalid("p1 out of range\n"); | 
|  | if (clock->p   < limit->p.min   || limit->p.max   < clock->p) | 
|  | INTELPllInvalid("p out of range\n"); | 
|  | if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2) | 
|  | INTELPllInvalid("m2 out of range\n"); | 
|  | if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1) | 
|  | INTELPllInvalid("m1 out of range\n"); | 
|  | if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev)) | 
|  | INTELPllInvalid("m1 <= m2\n"); | 
|  | if (clock->m   < limit->m.min   || limit->m.max   < clock->m) | 
|  | INTELPllInvalid("m out of range\n"); | 
|  | if (clock->n   < limit->n.min   || limit->n.max   < clock->n) | 
|  | INTELPllInvalid("n out of range\n"); | 
|  | if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) | 
|  | INTELPllInvalid("vco out of range\n"); | 
|  | /* XXX: We may need to be checking "Dot clock" depending on the multiplier, | 
|  | * connector, etc., rather than just a single range. | 
|  | */ | 
|  | if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) | 
|  | INTELPllInvalid("dot out of range\n"); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock) | 
|  |  | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | intel_clock_t clock; | 
|  | int err = target; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | /* | 
|  | * For LVDS just rely on its current settings for dual-channel. | 
|  | * We haven't figured out how to reliably set up different | 
|  | * single/dual channel state, if we even can. | 
|  | */ | 
|  | if (intel_is_dual_link_lvds(dev)) | 
|  | clock.p2 = limit->p2.p2_fast; | 
|  | else | 
|  | clock.p2 = limit->p2.p2_slow; | 
|  | } else { | 
|  | if (target < limit->p2.dot_limit) | 
|  | clock.p2 = limit->p2.p2_slow; | 
|  | else | 
|  | clock.p2 = limit->p2.p2_fast; | 
|  | } | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  |  | 
|  | for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; | 
|  | clock.m1++) { | 
|  | for (clock.m2 = limit->m2.min; | 
|  | clock.m2 <= limit->m2.max; clock.m2++) { | 
|  | /* m1 is always 0 in Pineview */ | 
|  | if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev)) | 
|  | break; | 
|  | for (clock.n = limit->n.min; | 
|  | clock.n <= limit->n.max; clock.n++) { | 
|  | for (clock.p1 = limit->p1.min; | 
|  | clock.p1 <= limit->p1.max; clock.p1++) { | 
|  | int this_err; | 
|  |  | 
|  | intel_clock(dev, refclk, &clock); | 
|  | if (!intel_PLL_is_valid(dev, limit, | 
|  | &clock)) | 
|  | continue; | 
|  | if (match_clock && | 
|  | clock.p != match_clock->p) | 
|  | continue; | 
|  |  | 
|  | this_err = abs(clock.dot - target); | 
|  | if (this_err < err) { | 
|  | *best_clock = clock; | 
|  | err = this_err; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return (err != target); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | intel_clock_t clock; | 
|  | int max_n; | 
|  | bool found; | 
|  | /* approximately equals target * 0.00585 */ | 
|  | int err_most = (target >> 8) + (target >> 9); | 
|  | found = false; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | int lvds_reg; | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) | 
|  | lvds_reg = PCH_LVDS; | 
|  | else | 
|  | lvds_reg = LVDS; | 
|  | if (intel_is_dual_link_lvds(dev)) | 
|  | clock.p2 = limit->p2.p2_fast; | 
|  | else | 
|  | clock.p2 = limit->p2.p2_slow; | 
|  | } else { | 
|  | if (target < limit->p2.dot_limit) | 
|  | clock.p2 = limit->p2.p2_slow; | 
|  | else | 
|  | clock.p2 = limit->p2.p2_fast; | 
|  | } | 
|  |  | 
|  | memset(best_clock, 0, sizeof(*best_clock)); | 
|  | max_n = limit->n.max; | 
|  | /* based on hardware requirement, prefer smaller n to precision */ | 
|  | for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { | 
|  | /* based on hardware requirement, prefere larger m1,m2 */ | 
|  | for (clock.m1 = limit->m1.max; | 
|  | clock.m1 >= limit->m1.min; clock.m1--) { | 
|  | for (clock.m2 = limit->m2.max; | 
|  | clock.m2 >= limit->m2.min; clock.m2--) { | 
|  | for (clock.p1 = limit->p1.max; | 
|  | clock.p1 >= limit->p1.min; clock.p1--) { | 
|  | int this_err; | 
|  |  | 
|  | intel_clock(dev, refclk, &clock); | 
|  | if (!intel_PLL_is_valid(dev, limit, | 
|  | &clock)) | 
|  | continue; | 
|  | if (match_clock && | 
|  | clock.p != match_clock->p) | 
|  | continue; | 
|  |  | 
|  | this_err = abs(clock.dot - target); | 
|  | if (this_err < err_most) { | 
|  | *best_clock = clock; | 
|  | err_most = this_err; | 
|  | max_n = clock.n; | 
|  | found = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | intel_clock_t clock; | 
|  |  | 
|  | if (target < 200000) { | 
|  | clock.n = 1; | 
|  | clock.p1 = 2; | 
|  | clock.p2 = 10; | 
|  | clock.m1 = 12; | 
|  | clock.m2 = 9; | 
|  | } else { | 
|  | clock.n = 2; | 
|  | clock.p1 = 1; | 
|  | clock.p2 = 10; | 
|  | clock.m1 = 14; | 
|  | clock.m2 = 8; | 
|  | } | 
|  | intel_clock(dev, refclk, &clock); | 
|  | memcpy(best_clock, &clock, sizeof(intel_clock_t)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* DisplayPort has only two frequencies, 162MHz and 270MHz */ | 
|  | static bool | 
|  | intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock) | 
|  | { | 
|  | intel_clock_t clock; | 
|  | if (target < 200000) { | 
|  | clock.p1 = 2; | 
|  | clock.p2 = 10; | 
|  | clock.n = 2; | 
|  | clock.m1 = 23; | 
|  | clock.m2 = 8; | 
|  | } else { | 
|  | clock.p1 = 1; | 
|  | clock.p2 = 10; | 
|  | clock.n = 1; | 
|  | clock.m1 = 14; | 
|  | clock.m2 = 2; | 
|  | } | 
|  | clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2); | 
|  | clock.p = (clock.p1 * clock.p2); | 
|  | clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p; | 
|  | clock.vco = 0; | 
|  | memcpy(best_clock, &clock, sizeof(intel_clock_t)); | 
|  | return true; | 
|  | } | 
|  | static bool | 
|  | intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc, | 
|  | int target, int refclk, intel_clock_t *match_clock, | 
|  | intel_clock_t *best_clock) | 
|  | { | 
|  | u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2; | 
|  | u32 m, n, fastclk; | 
|  | u32 updrate, minupdate, fracbits, p; | 
|  | unsigned long bestppm, ppm, absppm; | 
|  | int dotclk, flag; | 
|  |  | 
|  | flag = 0; | 
|  | dotclk = target * 1000; | 
|  | bestppm = 1000000; | 
|  | ppm = absppm = 0; | 
|  | fastclk = dotclk / (2*100); | 
|  | updrate = 0; | 
|  | minupdate = 19200; | 
|  | fracbits = 1; | 
|  | n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0; | 
|  | bestm1 = bestm2 = bestp1 = bestp2 = 0; | 
|  |  | 
|  | /* based on hardware requirement, prefer smaller n to precision */ | 
|  | for (n = limit->n.min; n <= ((refclk) / minupdate); n++) { | 
|  | updrate = refclk / n; | 
|  | for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) { | 
|  | for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) { | 
|  | if (p2 > 10) | 
|  | p2 = p2 - 1; | 
|  | p = p1 * p2; | 
|  | /* based on hardware requirement, prefer bigger m1,m2 values */ | 
|  | for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) { | 
|  | m2 = (((2*(fastclk * p * n / m1 )) + | 
|  | refclk) / (2*refclk)); | 
|  | m = m1 * m2; | 
|  | vco = updrate * m; | 
|  | if (vco >= limit->vco.min && vco < limit->vco.max) { | 
|  | ppm = 1000000 * ((vco / p) - fastclk) / fastclk; | 
|  | absppm = (ppm > 0) ? ppm : (-ppm); | 
|  | if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) { | 
|  | bestppm = 0; | 
|  | flag = 1; | 
|  | } | 
|  | if (absppm < bestppm - 10) { | 
|  | bestppm = absppm; | 
|  | flag = 1; | 
|  | } | 
|  | if (flag) { | 
|  | bestn = n; | 
|  | bestm1 = m1; | 
|  | bestm2 = m2; | 
|  | bestp1 = p1; | 
|  | bestp2 = p2; | 
|  | flag = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | best_clock->n = bestn; | 
|  | best_clock->m1 = bestm1; | 
|  | best_clock->m2 = bestm2; | 
|  | best_clock->p1 = bestp1; | 
|  | best_clock->p2 = bestp2; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | return intel_crtc->cpu_transcoder; | 
|  | } | 
|  |  | 
|  | static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 frame, frame_reg = PIPEFRAME(pipe); | 
|  |  | 
|  | frame = I915_READ(frame_reg); | 
|  |  | 
|  | if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50)) | 
|  | DRM_DEBUG_KMS("vblank wait timed out\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_wait_for_vblank - wait for vblank on a given pipe | 
|  | * @dev: drm device | 
|  | * @pipe: pipe to wait for | 
|  | * | 
|  | * Wait for vblank to occur on a given pipe.  Needed for various bits of | 
|  | * mode setting code. | 
|  | */ | 
|  | void intel_wait_for_vblank(struct drm_device *dev, int pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipestat_reg = PIPESTAT(pipe); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 5) { | 
|  | ironlake_wait_for_vblank(dev, pipe); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Clear existing vblank status. Note this will clear any other | 
|  | * sticky status fields as well. | 
|  | * | 
|  | * This races with i915_driver_irq_handler() with the result | 
|  | * that either function could miss a vblank event.  Here it is not | 
|  | * fatal, as we will either wait upon the next vblank interrupt or | 
|  | * timeout.  Generally speaking intel_wait_for_vblank() is only | 
|  | * called during modeset at which time the GPU should be idle and | 
|  | * should *not* be performing page flips and thus not waiting on | 
|  | * vblanks... | 
|  | * Currently, the result of us stealing a vblank from the irq | 
|  | * handler is that a single frame will be skipped during swapbuffers. | 
|  | */ | 
|  | I915_WRITE(pipestat_reg, | 
|  | I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS); | 
|  |  | 
|  | /* Wait for vblank interrupt bit to set */ | 
|  | if (wait_for(I915_READ(pipestat_reg) & | 
|  | PIPE_VBLANK_INTERRUPT_STATUS, | 
|  | 50)) | 
|  | DRM_DEBUG_KMS("vblank wait timed out\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * intel_wait_for_pipe_off - wait for pipe to turn off | 
|  | * @dev: drm device | 
|  | * @pipe: pipe to wait for | 
|  | * | 
|  | * After disabling a pipe, we can't wait for vblank in the usual way, | 
|  | * spinning on the vblank interrupt status bit, since we won't actually | 
|  | * see an interrupt when the pipe is disabled. | 
|  | * | 
|  | * On Gen4 and above: | 
|  | *   wait for the pipe register state bit to turn off | 
|  | * | 
|  | * Otherwise: | 
|  | *   wait for the display line value to settle (it usually | 
|  | *   ends up stopping at the start of the next frame). | 
|  | * | 
|  | */ | 
|  | void intel_wait_for_pipe_off(struct drm_device *dev, int pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, | 
|  | pipe); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | int reg = PIPECONF(cpu_transcoder); | 
|  |  | 
|  | /* Wait for the Pipe State to go off */ | 
|  | if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, | 
|  | 100)) | 
|  | WARN(1, "pipe_off wait timed out\n"); | 
|  | } else { | 
|  | u32 last_line, line_mask; | 
|  | int reg = PIPEDSL(pipe); | 
|  | unsigned long timeout = jiffies + msecs_to_jiffies(100); | 
|  |  | 
|  | if (IS_GEN2(dev)) | 
|  | line_mask = DSL_LINEMASK_GEN2; | 
|  | else | 
|  | line_mask = DSL_LINEMASK_GEN3; | 
|  |  | 
|  | /* Wait for the display line to settle */ | 
|  | do { | 
|  | last_line = I915_READ(reg) & line_mask; | 
|  | mdelay(5); | 
|  | } while (((I915_READ(reg) & line_mask) != last_line) && | 
|  | time_after(timeout, jiffies)); | 
|  | if (time_after(jiffies, timeout)) | 
|  | WARN(1, "pipe_off wait timed out\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ibx_digital_port_connected - is the specified port connected? | 
|  | * @dev_priv: i915 private structure | 
|  | * @port: the port to test | 
|  | * | 
|  | * Returns true if @port is connected, false otherwise. | 
|  | */ | 
|  | bool ibx_digital_port_connected(struct drm_i915_private *dev_priv, | 
|  | struct intel_digital_port *port) | 
|  | { | 
|  | u32 bit; | 
|  |  | 
|  | if (HAS_PCH_IBX(dev_priv->dev)) { | 
|  | switch(port->port) { | 
|  | case PORT_B: | 
|  | bit = SDE_PORTB_HOTPLUG; | 
|  | break; | 
|  | case PORT_C: | 
|  | bit = SDE_PORTC_HOTPLUG; | 
|  | break; | 
|  | case PORT_D: | 
|  | bit = SDE_PORTD_HOTPLUG; | 
|  | break; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | switch(port->port) { | 
|  | case PORT_B: | 
|  | bit = SDE_PORTB_HOTPLUG_CPT; | 
|  | break; | 
|  | case PORT_C: | 
|  | bit = SDE_PORTC_HOTPLUG_CPT; | 
|  | break; | 
|  | case PORT_D: | 
|  | bit = SDE_PORTD_HOTPLUG_CPT; | 
|  | break; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return I915_READ(SDEISR) & bit; | 
|  | } | 
|  |  | 
|  | static const char *state_string(bool enabled) | 
|  | { | 
|  | return enabled ? "on" : "off"; | 
|  | } | 
|  |  | 
|  | /* Only for pre-ILK configs */ | 
|  | static void assert_pll(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  |  | 
|  | reg = DPLL(pipe); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & DPLL_VCO_ENABLE); | 
|  | WARN(cur_state != state, | 
|  | "PLL state assertion failure (expected %s, current %s)\n", | 
|  | state_string(state), state_string(cur_state)); | 
|  | } | 
|  | #define assert_pll_enabled(d, p) assert_pll(d, p, true) | 
|  | #define assert_pll_disabled(d, p) assert_pll(d, p, false) | 
|  |  | 
|  | /* For ILK+ */ | 
|  | static void assert_pch_pll(struct drm_i915_private *dev_priv, | 
|  | struct intel_pch_pll *pll, | 
|  | struct intel_crtc *crtc, | 
|  | bool state) | 
|  | { | 
|  | u32 val; | 
|  | bool cur_state; | 
|  |  | 
|  | if (HAS_PCH_LPT(dev_priv->dev)) { | 
|  | DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (WARN (!pll, | 
|  | "asserting PCH PLL %s with no PLL\n", state_string(state))) | 
|  | return; | 
|  |  | 
|  | val = I915_READ(pll->pll_reg); | 
|  | cur_state = !!(val & DPLL_VCO_ENABLE); | 
|  | WARN(cur_state != state, | 
|  | "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n", | 
|  | pll->pll_reg, state_string(state), state_string(cur_state), val); | 
|  |  | 
|  | /* Make sure the selected PLL is correctly attached to the transcoder */ | 
|  | if (crtc && HAS_PCH_CPT(dev_priv->dev)) { | 
|  | u32 pch_dpll; | 
|  |  | 
|  | pch_dpll = I915_READ(PCH_DPLL_SEL); | 
|  | cur_state = pll->pll_reg == _PCH_DPLL_B; | 
|  | if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state, | 
|  | "PLL[%d] not attached to this transcoder %d: %08x\n", | 
|  | cur_state, crtc->pipe, pch_dpll)) { | 
|  | cur_state = !!(val >> (4*crtc->pipe + 3)); | 
|  | WARN(cur_state != state, | 
|  | "PLL[%d] not %s on this transcoder %d: %08x\n", | 
|  | pll->pll_reg == _PCH_DPLL_B, | 
|  | state_string(state), | 
|  | crtc->pipe, | 
|  | val); | 
|  | } | 
|  | } | 
|  | } | 
|  | #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true) | 
|  | #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false) | 
|  |  | 
|  | static void assert_fdi_tx(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  | enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, | 
|  | pipe); | 
|  |  | 
|  | if (HAS_DDI(dev_priv->dev)) { | 
|  | /* DDI does not have a specific FDI_TX register */ | 
|  | reg = TRANS_DDI_FUNC_CTL(cpu_transcoder); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); | 
|  | } else { | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & FDI_TX_ENABLE); | 
|  | } | 
|  | WARN(cur_state != state, | 
|  | "FDI TX state assertion failure (expected %s, current %s)\n", | 
|  | state_string(state), state_string(cur_state)); | 
|  | } | 
|  | #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) | 
|  | #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) | 
|  |  | 
|  | static void assert_fdi_rx(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & FDI_RX_ENABLE); | 
|  | WARN(cur_state != state, | 
|  | "FDI RX state assertion failure (expected %s, current %s)\n", | 
|  | state_string(state), state_string(cur_state)); | 
|  | } | 
|  | #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) | 
|  | #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) | 
|  |  | 
|  | static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | /* ILK FDI PLL is always enabled */ | 
|  | if (dev_priv->info->gen == 5) | 
|  | return; | 
|  |  | 
|  | /* On Haswell, DDI ports are responsible for the FDI PLL setup */ | 
|  | if (HAS_DDI(dev_priv->dev)) | 
|  | return; | 
|  |  | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | val = I915_READ(reg); | 
|  | WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); | 
|  | } | 
|  |  | 
|  | static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | val = I915_READ(reg); | 
|  | WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n"); | 
|  | } | 
|  |  | 
|  | static void assert_panel_unlocked(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | int pp_reg, lvds_reg; | 
|  | u32 val; | 
|  | enum pipe panel_pipe = PIPE_A; | 
|  | bool locked = true; | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev_priv->dev)) { | 
|  | pp_reg = PCH_PP_CONTROL; | 
|  | lvds_reg = PCH_LVDS; | 
|  | } else { | 
|  | pp_reg = PP_CONTROL; | 
|  | lvds_reg = LVDS; | 
|  | } | 
|  |  | 
|  | val = I915_READ(pp_reg); | 
|  | if (!(val & PANEL_POWER_ON) || | 
|  | ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS)) | 
|  | locked = false; | 
|  |  | 
|  | if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT) | 
|  | panel_pipe = PIPE_B; | 
|  |  | 
|  | WARN(panel_pipe == pipe && locked, | 
|  | "panel assertion failure, pipe %c regs locked\n", | 
|  | pipe_name(pipe)); | 
|  | } | 
|  |  | 
|  | void assert_pipe(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  | enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, | 
|  | pipe); | 
|  |  | 
|  | /* if we need the pipe A quirk it must be always on */ | 
|  | if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) | 
|  | state = true; | 
|  |  | 
|  | if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP && | 
|  | !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) { | 
|  | cur_state = false; | 
|  | } else { | 
|  | reg = PIPECONF(cpu_transcoder); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & PIPECONF_ENABLE); | 
|  | } | 
|  |  | 
|  | WARN(cur_state != state, | 
|  | "pipe %c assertion failure (expected %s, current %s)\n", | 
|  | pipe_name(pipe), state_string(state), state_string(cur_state)); | 
|  | } | 
|  |  | 
|  | static void assert_plane(struct drm_i915_private *dev_priv, | 
|  | enum plane plane, bool state) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool cur_state; | 
|  |  | 
|  | reg = DSPCNTR(plane); | 
|  | val = I915_READ(reg); | 
|  | cur_state = !!(val & DISPLAY_PLANE_ENABLE); | 
|  | WARN(cur_state != state, | 
|  | "plane %c assertion failure (expected %s, current %s)\n", | 
|  | plane_name(plane), state_string(state), state_string(cur_state)); | 
|  | } | 
|  |  | 
|  | #define assert_plane_enabled(d, p) assert_plane(d, p, true) | 
|  | #define assert_plane_disabled(d, p) assert_plane(d, p, false) | 
|  |  | 
|  | static void assert_planes_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | int reg, i; | 
|  | u32 val; | 
|  | int cur_pipe; | 
|  |  | 
|  | /* Planes are fixed to pipes on ILK+ */ | 
|  | if (HAS_PCH_SPLIT(dev_priv->dev)) { | 
|  | reg = DSPCNTR(pipe); | 
|  | val = I915_READ(reg); | 
|  | WARN((val & DISPLAY_PLANE_ENABLE), | 
|  | "plane %c assertion failure, should be disabled but not\n", | 
|  | plane_name(pipe)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Need to check both planes against the pipe */ | 
|  | for (i = 0; i < 2; i++) { | 
|  | reg = DSPCNTR(i); | 
|  | val = I915_READ(reg); | 
|  | cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> | 
|  | DISPPLANE_SEL_PIPE_SHIFT; | 
|  | WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe, | 
|  | "plane %c assertion failure, should be off on pipe %c but is still active\n", | 
|  | plane_name(i), pipe_name(pipe)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | u32 val; | 
|  | bool enabled; | 
|  |  | 
|  | if (HAS_PCH_LPT(dev_priv->dev)) { | 
|  | DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | val = I915_READ(PCH_DREF_CONTROL); | 
|  | enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | | 
|  | DREF_SUPERSPREAD_SOURCE_MASK)); | 
|  | WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n"); | 
|  | } | 
|  |  | 
|  | static void assert_transcoder_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  | bool enabled; | 
|  |  | 
|  | reg = TRANSCONF(pipe); | 
|  | val = I915_READ(reg); | 
|  | enabled = !!(val & TRANS_ENABLE); | 
|  | WARN(enabled, | 
|  | "transcoder assertion failed, should be off on pipe %c but is still active\n", | 
|  | pipe_name(pipe)); | 
|  | } | 
|  |  | 
|  | static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, u32 port_sel, u32 val) | 
|  | { | 
|  | if ((val & DP_PORT_EN) == 0) | 
|  | return false; | 
|  |  | 
|  | if (HAS_PCH_CPT(dev_priv->dev)) { | 
|  | u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe); | 
|  | u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg); | 
|  | if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel) | 
|  | return false; | 
|  | } else { | 
|  | if ((val & DP_PIPE_MASK) != (pipe << 30)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, u32 val) | 
|  | { | 
|  | if ((val & PORT_ENABLE) == 0) | 
|  | return false; | 
|  |  | 
|  | if (HAS_PCH_CPT(dev_priv->dev)) { | 
|  | if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) | 
|  | return false; | 
|  | } else { | 
|  | if ((val & TRANSCODER_MASK) != TRANSCODER(pipe)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, u32 val) | 
|  | { | 
|  | if ((val & LVDS_PORT_EN) == 0) | 
|  | return false; | 
|  |  | 
|  | if (HAS_PCH_CPT(dev_priv->dev)) { | 
|  | if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) | 
|  | return false; | 
|  | } else { | 
|  | if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, u32 val) | 
|  | { | 
|  | if ((val & ADPA_DAC_ENABLE) == 0) | 
|  | return false; | 
|  | if (HAS_PCH_CPT(dev_priv->dev)) { | 
|  | if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) | 
|  | return false; | 
|  | } else { | 
|  | if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, int reg, u32 port_sel) | 
|  | { | 
|  | u32 val = I915_READ(reg); | 
|  | WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val), | 
|  | "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", | 
|  | reg, pipe_name(pipe)); | 
|  |  | 
|  | WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0 | 
|  | && (val & DP_PIPEB_SELECT), | 
|  | "IBX PCH dp port still using transcoder B\n"); | 
|  | } | 
|  |  | 
|  | static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe, int reg) | 
|  | { | 
|  | u32 val = I915_READ(reg); | 
|  | WARN(hdmi_pipe_enabled(dev_priv, pipe, val), | 
|  | "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n", | 
|  | reg, pipe_name(pipe)); | 
|  |  | 
|  | WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0 | 
|  | && (val & SDVO_PIPE_B_SELECT), | 
|  | "IBX PCH hdmi port still using transcoder B\n"); | 
|  | } | 
|  |  | 
|  | static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); | 
|  | assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); | 
|  | assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); | 
|  |  | 
|  | reg = PCH_ADPA; | 
|  | val = I915_READ(reg); | 
|  | WARN(adpa_pipe_enabled(dev_priv, pipe, val), | 
|  | "PCH VGA enabled on transcoder %c, should be disabled\n", | 
|  | pipe_name(pipe)); | 
|  |  | 
|  | reg = PCH_LVDS; | 
|  | val = I915_READ(reg); | 
|  | WARN(lvds_pipe_enabled(dev_priv, pipe, val), | 
|  | "PCH LVDS enabled on transcoder %c, should be disabled\n", | 
|  | pipe_name(pipe)); | 
|  |  | 
|  | assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB); | 
|  | assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC); | 
|  | assert_pch_hdmi_disabled(dev_priv, pipe, HDMID); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_enable_pll - enable a PLL | 
|  | * @dev_priv: i915 private structure | 
|  | * @pipe: pipe PLL to enable | 
|  | * | 
|  | * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to | 
|  | * make sure the PLL reg is writable first though, since the panel write | 
|  | * protect mechanism may be enabled. | 
|  | * | 
|  | * Note!  This is for pre-ILK only. | 
|  | * | 
|  | * Unfortunately needed by dvo_ns2501 since the dvo depends on it running. | 
|  | */ | 
|  | static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | /* No really, not for ILK+ */ | 
|  | BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5); | 
|  |  | 
|  | /* PLL is protected by panel, make sure we can write it */ | 
|  | if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev)) | 
|  | assert_panel_unlocked(dev_priv, pipe); | 
|  |  | 
|  | reg = DPLL(pipe); | 
|  | val = I915_READ(reg); | 
|  | val |= DPLL_VCO_ENABLE; | 
|  |  | 
|  | /* We do this three times for luck */ | 
|  | I915_WRITE(reg, val); | 
|  | POSTING_READ(reg); | 
|  | udelay(150); /* wait for warmup */ | 
|  | I915_WRITE(reg, val); | 
|  | POSTING_READ(reg); | 
|  | udelay(150); /* wait for warmup */ | 
|  | I915_WRITE(reg, val); | 
|  | POSTING_READ(reg); | 
|  | udelay(150); /* wait for warmup */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_disable_pll - disable a PLL | 
|  | * @dev_priv: i915 private structure | 
|  | * @pipe: pipe PLL to disable | 
|  | * | 
|  | * Disable the PLL for @pipe, making sure the pipe is off first. | 
|  | * | 
|  | * Note!  This is for pre-ILK only. | 
|  | */ | 
|  | static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | /* Don't disable pipe A or pipe A PLLs if needed */ | 
|  | if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) | 
|  | return; | 
|  |  | 
|  | /* Make sure the pipe isn't still relying on us */ | 
|  | assert_pipe_disabled(dev_priv, pipe); | 
|  |  | 
|  | reg = DPLL(pipe); | 
|  | val = I915_READ(reg); | 
|  | val &= ~DPLL_VCO_ENABLE; | 
|  | I915_WRITE(reg, val); | 
|  | POSTING_READ(reg); | 
|  | } | 
|  |  | 
|  | /* SBI access */ | 
|  | static void | 
|  | intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, | 
|  | enum intel_sbi_destination destination) | 
|  | { | 
|  | u32 tmp; | 
|  |  | 
|  | WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock)); | 
|  |  | 
|  | if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, | 
|  | 100)) { | 
|  | DRM_ERROR("timeout waiting for SBI to become ready\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | I915_WRITE(SBI_ADDR, (reg << 16)); | 
|  | I915_WRITE(SBI_DATA, value); | 
|  |  | 
|  | if (destination == SBI_ICLK) | 
|  | tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR; | 
|  | else | 
|  | tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR; | 
|  | I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp); | 
|  |  | 
|  | if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0, | 
|  | 100)) { | 
|  | DRM_ERROR("timeout waiting for SBI to complete write transaction\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 | 
|  | intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, | 
|  | enum intel_sbi_destination destination) | 
|  | { | 
|  | u32 value = 0; | 
|  | WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock)); | 
|  |  | 
|  | if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, | 
|  | 100)) { | 
|  | DRM_ERROR("timeout waiting for SBI to become ready\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | I915_WRITE(SBI_ADDR, (reg << 16)); | 
|  |  | 
|  | if (destination == SBI_ICLK) | 
|  | value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD; | 
|  | else | 
|  | value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD; | 
|  | I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY); | 
|  |  | 
|  | if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0, | 
|  | 100)) { | 
|  | DRM_ERROR("timeout waiting for SBI to complete read transaction\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return I915_READ(SBI_DATA); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ironlake_enable_pch_pll - enable PCH PLL | 
|  | * @dev_priv: i915 private structure | 
|  | * @pipe: pipe PLL to enable | 
|  | * | 
|  | * The PCH PLL needs to be enabled before the PCH transcoder, since it | 
|  | * drives the transcoder clock. | 
|  | */ | 
|  | static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; | 
|  | struct intel_pch_pll *pll; | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | /* PCH PLLs only available on ILK, SNB and IVB */ | 
|  | BUG_ON(dev_priv->info->gen < 5); | 
|  | pll = intel_crtc->pch_pll; | 
|  | if (pll == NULL) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON(pll->refcount == 0)) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n", | 
|  | pll->pll_reg, pll->active, pll->on, | 
|  | intel_crtc->base.base.id); | 
|  |  | 
|  | /* PCH refclock must be enabled first */ | 
|  | assert_pch_refclk_enabled(dev_priv); | 
|  |  | 
|  | if (pll->active++ && pll->on) { | 
|  | assert_pch_pll_enabled(dev_priv, pll, NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg); | 
|  |  | 
|  | reg = pll->pll_reg; | 
|  | val = I915_READ(reg); | 
|  | val |= DPLL_VCO_ENABLE; | 
|  | I915_WRITE(reg, val); | 
|  | POSTING_READ(reg); | 
|  | udelay(200); | 
|  |  | 
|  | pll->on = true; | 
|  | } | 
|  |  | 
|  | static void intel_disable_pch_pll(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; | 
|  | struct intel_pch_pll *pll = intel_crtc->pch_pll; | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | /* PCH only available on ILK+ */ | 
|  | BUG_ON(dev_priv->info->gen < 5); | 
|  | if (pll == NULL) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON(pll->refcount == 0)) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n", | 
|  | pll->pll_reg, pll->active, pll->on, | 
|  | intel_crtc->base.base.id); | 
|  |  | 
|  | if (WARN_ON(pll->active == 0)) { | 
|  | assert_pch_pll_disabled(dev_priv, pll, NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (--pll->active) { | 
|  | assert_pch_pll_enabled(dev_priv, pll, NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg); | 
|  |  | 
|  | /* Make sure transcoder isn't still depending on us */ | 
|  | assert_transcoder_disabled(dev_priv, intel_crtc->pipe); | 
|  |  | 
|  | reg = pll->pll_reg; | 
|  | val = I915_READ(reg); | 
|  | val &= ~DPLL_VCO_ENABLE; | 
|  | I915_WRITE(reg, val); | 
|  | POSTING_READ(reg); | 
|  | udelay(200); | 
|  |  | 
|  | pll->on = false; | 
|  | } | 
|  |  | 
|  | static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; | 
|  | uint32_t reg, val, pipeconf_val; | 
|  |  | 
|  | /* PCH only available on ILK+ */ | 
|  | BUG_ON(dev_priv->info->gen < 5); | 
|  |  | 
|  | /* Make sure PCH DPLL is enabled */ | 
|  | assert_pch_pll_enabled(dev_priv, | 
|  | to_intel_crtc(crtc)->pch_pll, | 
|  | to_intel_crtc(crtc)); | 
|  |  | 
|  | /* FDI must be feeding us bits for PCH ports */ | 
|  | assert_fdi_tx_enabled(dev_priv, pipe); | 
|  | assert_fdi_rx_enabled(dev_priv, pipe); | 
|  |  | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | /* Workaround: Set the timing override bit before enabling the | 
|  | * pch transcoder. */ | 
|  | reg = TRANS_CHICKEN2(pipe); | 
|  | val = I915_READ(reg); | 
|  | val |= TRANS_CHICKEN2_TIMING_OVERRIDE; | 
|  | I915_WRITE(reg, val); | 
|  | } | 
|  |  | 
|  | reg = TRANSCONF(pipe); | 
|  | val = I915_READ(reg); | 
|  | pipeconf_val = I915_READ(PIPECONF(pipe)); | 
|  |  | 
|  | if (HAS_PCH_IBX(dev_priv->dev)) { | 
|  | /* | 
|  | * make the BPC in transcoder be consistent with | 
|  | * that in pipeconf reg. | 
|  | */ | 
|  | val &= ~PIPECONF_BPC_MASK; | 
|  | val |= pipeconf_val & PIPECONF_BPC_MASK; | 
|  | } | 
|  |  | 
|  | val &= ~TRANS_INTERLACE_MASK; | 
|  | if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) | 
|  | if (HAS_PCH_IBX(dev_priv->dev) && | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) | 
|  | val |= TRANS_LEGACY_INTERLACED_ILK; | 
|  | else | 
|  | val |= TRANS_INTERLACED; | 
|  | else | 
|  | val |= TRANS_PROGRESSIVE; | 
|  |  | 
|  | I915_WRITE(reg, val | TRANS_ENABLE); | 
|  | if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100)) | 
|  | DRM_ERROR("failed to enable transcoder %d\n", pipe); | 
|  | } | 
|  |  | 
|  | static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, | 
|  | enum transcoder cpu_transcoder) | 
|  | { | 
|  | u32 val, pipeconf_val; | 
|  |  | 
|  | /* PCH only available on ILK+ */ | 
|  | BUG_ON(dev_priv->info->gen < 5); | 
|  |  | 
|  | /* FDI must be feeding us bits for PCH ports */ | 
|  | assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); | 
|  | assert_fdi_rx_enabled(dev_priv, TRANSCODER_A); | 
|  |  | 
|  | /* Workaround: set timing override bit. */ | 
|  | val = I915_READ(_TRANSA_CHICKEN2); | 
|  | val |= TRANS_CHICKEN2_TIMING_OVERRIDE; | 
|  | I915_WRITE(_TRANSA_CHICKEN2, val); | 
|  |  | 
|  | val = TRANS_ENABLE; | 
|  | pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); | 
|  |  | 
|  | if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == | 
|  | PIPECONF_INTERLACED_ILK) | 
|  | val |= TRANS_INTERLACED; | 
|  | else | 
|  | val |= TRANS_PROGRESSIVE; | 
|  |  | 
|  | I915_WRITE(TRANSCONF(TRANSCODER_A), val); | 
|  | if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100)) | 
|  | DRM_ERROR("Failed to enable PCH transcoder\n"); | 
|  | } | 
|  |  | 
|  | static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | uint32_t reg, val; | 
|  |  | 
|  | /* FDI relies on the transcoder */ | 
|  | assert_fdi_tx_disabled(dev_priv, pipe); | 
|  | assert_fdi_rx_disabled(dev_priv, pipe); | 
|  |  | 
|  | /* Ports must be off as well */ | 
|  | assert_pch_ports_disabled(dev_priv, pipe); | 
|  |  | 
|  | reg = TRANSCONF(pipe); | 
|  | val = I915_READ(reg); | 
|  | val &= ~TRANS_ENABLE; | 
|  | I915_WRITE(reg, val); | 
|  | /* wait for PCH transcoder off, transcoder state */ | 
|  | if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50)) | 
|  | DRM_ERROR("failed to disable transcoder %d\n", pipe); | 
|  |  | 
|  | if (!HAS_PCH_IBX(dev)) { | 
|  | /* Workaround: Clear the timing override chicken bit again. */ | 
|  | reg = TRANS_CHICKEN2(pipe); | 
|  | val = I915_READ(reg); | 
|  | val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; | 
|  | I915_WRITE(reg, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | val = I915_READ(_TRANSACONF); | 
|  | val &= ~TRANS_ENABLE; | 
|  | I915_WRITE(_TRANSACONF, val); | 
|  | /* wait for PCH transcoder off, transcoder state */ | 
|  | if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50)) | 
|  | DRM_ERROR("Failed to disable PCH transcoder\n"); | 
|  |  | 
|  | /* Workaround: clear timing override bit. */ | 
|  | val = I915_READ(_TRANSA_CHICKEN2); | 
|  | val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; | 
|  | I915_WRITE(_TRANSA_CHICKEN2, val); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_enable_pipe - enable a pipe, asserting requirements | 
|  | * @dev_priv: i915 private structure | 
|  | * @pipe: pipe to enable | 
|  | * @pch_port: on ILK+, is this pipe driving a PCH port or not | 
|  | * | 
|  | * Enable @pipe, making sure that various hardware specific requirements | 
|  | * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc. | 
|  | * | 
|  | * @pipe should be %PIPE_A or %PIPE_B. | 
|  | * | 
|  | * Will wait until the pipe is actually running (i.e. first vblank) before | 
|  | * returning. | 
|  | */ | 
|  | static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, | 
|  | bool pch_port) | 
|  | { | 
|  | enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, | 
|  | pipe); | 
|  | enum pipe pch_transcoder; | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | if (HAS_PCH_LPT(dev_priv->dev)) | 
|  | pch_transcoder = TRANSCODER_A; | 
|  | else | 
|  | pch_transcoder = pipe; | 
|  |  | 
|  | /* | 
|  | * A pipe without a PLL won't actually be able to drive bits from | 
|  | * a plane.  On ILK+ the pipe PLLs are integrated, so we don't | 
|  | * need the check. | 
|  | */ | 
|  | if (!HAS_PCH_SPLIT(dev_priv->dev)) | 
|  | assert_pll_enabled(dev_priv, pipe); | 
|  | else { | 
|  | if (pch_port) { | 
|  | /* if driving the PCH, we need FDI enabled */ | 
|  | assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder); | 
|  | assert_fdi_tx_pll_enabled(dev_priv, | 
|  | (enum pipe) cpu_transcoder); | 
|  | } | 
|  | /* FIXME: assert CPU port conditions for SNB+ */ | 
|  | } | 
|  |  | 
|  | reg = PIPECONF(cpu_transcoder); | 
|  | val = I915_READ(reg); | 
|  | if (val & PIPECONF_ENABLE) | 
|  | return; | 
|  |  | 
|  | I915_WRITE(reg, val | PIPECONF_ENABLE); | 
|  | intel_wait_for_vblank(dev_priv->dev, pipe); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_disable_pipe - disable a pipe, asserting requirements | 
|  | * @dev_priv: i915 private structure | 
|  | * @pipe: pipe to disable | 
|  | * | 
|  | * Disable @pipe, making sure that various hardware specific requirements | 
|  | * are met, if applicable, e.g. plane disabled, panel fitter off, etc. | 
|  | * | 
|  | * @pipe should be %PIPE_A or %PIPE_B. | 
|  | * | 
|  | * Will wait until the pipe has shut down before returning. | 
|  | */ | 
|  | static void intel_disable_pipe(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, | 
|  | pipe); | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | /* | 
|  | * Make sure planes won't keep trying to pump pixels to us, | 
|  | * or we might hang the display. | 
|  | */ | 
|  | assert_planes_disabled(dev_priv, pipe); | 
|  |  | 
|  | /* Don't disable pipe A or pipe A PLLs if needed */ | 
|  | if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) | 
|  | return; | 
|  |  | 
|  | reg = PIPECONF(cpu_transcoder); | 
|  | val = I915_READ(reg); | 
|  | if ((val & PIPECONF_ENABLE) == 0) | 
|  | return; | 
|  |  | 
|  | I915_WRITE(reg, val & ~PIPECONF_ENABLE); | 
|  | intel_wait_for_pipe_off(dev_priv->dev, pipe); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Plane regs are double buffered, going from enabled->disabled needs a | 
|  | * trigger in order to latch.  The display address reg provides this. | 
|  | */ | 
|  | void intel_flush_display_plane(struct drm_i915_private *dev_priv, | 
|  | enum plane plane) | 
|  | { | 
|  | if (dev_priv->info->gen >= 4) | 
|  | I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane))); | 
|  | else | 
|  | I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane))); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_enable_plane - enable a display plane on a given pipe | 
|  | * @dev_priv: i915 private structure | 
|  | * @plane: plane to enable | 
|  | * @pipe: pipe being fed | 
|  | * | 
|  | * Enable @plane on @pipe, making sure that @pipe is running first. | 
|  | */ | 
|  | static void intel_enable_plane(struct drm_i915_private *dev_priv, | 
|  | enum plane plane, enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | /* If the pipe isn't enabled, we can't pump pixels and may hang */ | 
|  | assert_pipe_enabled(dev_priv, pipe); | 
|  |  | 
|  | reg = DSPCNTR(plane); | 
|  | val = I915_READ(reg); | 
|  | if (val & DISPLAY_PLANE_ENABLE) | 
|  | return; | 
|  |  | 
|  | I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE); | 
|  | intel_flush_display_plane(dev_priv, plane); | 
|  | intel_wait_for_vblank(dev_priv->dev, pipe); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_disable_plane - disable a display plane | 
|  | * @dev_priv: i915 private structure | 
|  | * @plane: plane to disable | 
|  | * @pipe: pipe consuming the data | 
|  | * | 
|  | * Disable @plane; should be an independent operation. | 
|  | */ | 
|  | static void intel_disable_plane(struct drm_i915_private *dev_priv, | 
|  | enum plane plane, enum pipe pipe) | 
|  | { | 
|  | int reg; | 
|  | u32 val; | 
|  |  | 
|  | reg = DSPCNTR(plane); | 
|  | val = I915_READ(reg); | 
|  | if ((val & DISPLAY_PLANE_ENABLE) == 0) | 
|  | return; | 
|  |  | 
|  | I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE); | 
|  | intel_flush_display_plane(dev_priv, plane); | 
|  | intel_wait_for_vblank(dev_priv->dev, pipe); | 
|  | } | 
|  |  | 
|  | int | 
|  | intel_pin_and_fence_fb_obj(struct drm_device *dev, | 
|  | struct drm_i915_gem_object *obj, | 
|  | struct intel_ring_buffer *pipelined) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 alignment; | 
|  | int ret; | 
|  |  | 
|  | switch (obj->tiling_mode) { | 
|  | case I915_TILING_NONE: | 
|  | if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) | 
|  | alignment = 128 * 1024; | 
|  | else if (INTEL_INFO(dev)->gen >= 4) | 
|  | alignment = 4 * 1024; | 
|  | else | 
|  | alignment = 64 * 1024; | 
|  | break; | 
|  | case I915_TILING_X: | 
|  | /* pin() will align the object as required by fence */ | 
|  | alignment = 0; | 
|  | break; | 
|  | case I915_TILING_Y: | 
|  | /* FIXME: Is this true? */ | 
|  | DRM_ERROR("Y tiled not allowed for scan out buffers\n"); | 
|  | return -EINVAL; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | dev_priv->mm.interruptible = false; | 
|  | ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined); | 
|  | if (ret) | 
|  | goto err_interruptible; | 
|  |  | 
|  | /* Install a fence for tiled scan-out. Pre-i965 always needs a | 
|  | * fence, whereas 965+ only requires a fence if using | 
|  | * framebuffer compression.  For simplicity, we always install | 
|  | * a fence as the cost is not that onerous. | 
|  | */ | 
|  | ret = i915_gem_object_get_fence(obj); | 
|  | if (ret) | 
|  | goto err_unpin; | 
|  |  | 
|  | i915_gem_object_pin_fence(obj); | 
|  |  | 
|  | dev_priv->mm.interruptible = true; | 
|  | return 0; | 
|  |  | 
|  | err_unpin: | 
|  | i915_gem_object_unpin(obj); | 
|  | err_interruptible: | 
|  | dev_priv->mm.interruptible = true; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void intel_unpin_fb_obj(struct drm_i915_gem_object *obj) | 
|  | { | 
|  | i915_gem_object_unpin_fence(obj); | 
|  | i915_gem_object_unpin(obj); | 
|  | } | 
|  |  | 
|  | /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel | 
|  | * is assumed to be a power-of-two. */ | 
|  | unsigned long intel_gen4_compute_page_offset(int *x, int *y, | 
|  | unsigned int tiling_mode, | 
|  | unsigned int cpp, | 
|  | unsigned int pitch) | 
|  | { | 
|  | if (tiling_mode != I915_TILING_NONE) { | 
|  | unsigned int tile_rows, tiles; | 
|  |  | 
|  | tile_rows = *y / 8; | 
|  | *y %= 8; | 
|  |  | 
|  | tiles = *x / (512/cpp); | 
|  | *x %= 512/cpp; | 
|  |  | 
|  | return tile_rows * pitch * 8 + tiles * 4096; | 
|  | } else { | 
|  | unsigned int offset; | 
|  |  | 
|  | offset = *y * pitch + *x * cpp; | 
|  | *y = 0; | 
|  | *x = (offset & 4095) / cpp; | 
|  | return offset & -4096; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb, | 
|  | int x, int y) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_framebuffer *intel_fb; | 
|  | struct drm_i915_gem_object *obj; | 
|  | int plane = intel_crtc->plane; | 
|  | unsigned long linear_offset; | 
|  | u32 dspcntr; | 
|  | u32 reg; | 
|  |  | 
|  | switch (plane) { | 
|  | case 0: | 
|  | case 1: | 
|  | break; | 
|  | default: | 
|  | DRM_ERROR("Can't update plane %d in SAREA\n", plane); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | intel_fb = to_intel_framebuffer(fb); | 
|  | obj = intel_fb->obj; | 
|  |  | 
|  | reg = DSPCNTR(plane); | 
|  | dspcntr = I915_READ(reg); | 
|  | /* Mask out pixel format bits in case we change it */ | 
|  | dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; | 
|  | switch (fb->pixel_format) { | 
|  | case DRM_FORMAT_C8: | 
|  | dspcntr |= DISPPLANE_8BPP; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB1555: | 
|  | case DRM_FORMAT_ARGB1555: | 
|  | dspcntr |= DISPPLANE_BGRX555; | 
|  | break; | 
|  | case DRM_FORMAT_RGB565: | 
|  | dspcntr |= DISPPLANE_BGRX565; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB8888: | 
|  | case DRM_FORMAT_ARGB8888: | 
|  | dspcntr |= DISPPLANE_BGRX888; | 
|  | break; | 
|  | case DRM_FORMAT_XBGR8888: | 
|  | case DRM_FORMAT_ABGR8888: | 
|  | dspcntr |= DISPPLANE_RGBX888; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB2101010: | 
|  | case DRM_FORMAT_ARGB2101010: | 
|  | dspcntr |= DISPPLANE_BGRX101010; | 
|  | break; | 
|  | case DRM_FORMAT_XBGR2101010: | 
|  | case DRM_FORMAT_ABGR2101010: | 
|  | dspcntr |= DISPPLANE_RGBX101010; | 
|  | break; | 
|  | default: | 
|  | DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | if (obj->tiling_mode != I915_TILING_NONE) | 
|  | dspcntr |= DISPPLANE_TILED; | 
|  | else | 
|  | dspcntr &= ~DISPPLANE_TILED; | 
|  | } | 
|  |  | 
|  | I915_WRITE(reg, dspcntr); | 
|  |  | 
|  | linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | intel_crtc->dspaddr_offset = | 
|  | intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode, | 
|  | fb->bits_per_pixel / 8, | 
|  | fb->pitches[0]); | 
|  | linear_offset -= intel_crtc->dspaddr_offset; | 
|  | } else { | 
|  | intel_crtc->dspaddr_offset = linear_offset; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n", | 
|  | obj->gtt_offset, linear_offset, x, y, fb->pitches[0]); | 
|  | I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | I915_MODIFY_DISPBASE(DSPSURF(plane), | 
|  | obj->gtt_offset + intel_crtc->dspaddr_offset); | 
|  | I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); | 
|  | I915_WRITE(DSPLINOFF(plane), linear_offset); | 
|  | } else | 
|  | I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset); | 
|  | POSTING_READ(reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ironlake_update_plane(struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, int x, int y) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_framebuffer *intel_fb; | 
|  | struct drm_i915_gem_object *obj; | 
|  | int plane = intel_crtc->plane; | 
|  | unsigned long linear_offset; | 
|  | u32 dspcntr; | 
|  | u32 reg; | 
|  |  | 
|  | switch (plane) { | 
|  | case 0: | 
|  | case 1: | 
|  | case 2: | 
|  | break; | 
|  | default: | 
|  | DRM_ERROR("Can't update plane %d in SAREA\n", plane); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | intel_fb = to_intel_framebuffer(fb); | 
|  | obj = intel_fb->obj; | 
|  |  | 
|  | reg = DSPCNTR(plane); | 
|  | dspcntr = I915_READ(reg); | 
|  | /* Mask out pixel format bits in case we change it */ | 
|  | dspcntr &= ~DISPPLANE_PIXFORMAT_MASK; | 
|  | switch (fb->pixel_format) { | 
|  | case DRM_FORMAT_C8: | 
|  | dspcntr |= DISPPLANE_8BPP; | 
|  | break; | 
|  | case DRM_FORMAT_RGB565: | 
|  | dspcntr |= DISPPLANE_BGRX565; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB8888: | 
|  | case DRM_FORMAT_ARGB8888: | 
|  | dspcntr |= DISPPLANE_BGRX888; | 
|  | break; | 
|  | case DRM_FORMAT_XBGR8888: | 
|  | case DRM_FORMAT_ABGR8888: | 
|  | dspcntr |= DISPPLANE_RGBX888; | 
|  | break; | 
|  | case DRM_FORMAT_XRGB2101010: | 
|  | case DRM_FORMAT_ARGB2101010: | 
|  | dspcntr |= DISPPLANE_BGRX101010; | 
|  | break; | 
|  | case DRM_FORMAT_XBGR2101010: | 
|  | case DRM_FORMAT_ABGR2101010: | 
|  | dspcntr |= DISPPLANE_RGBX101010; | 
|  | break; | 
|  | default: | 
|  | DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (obj->tiling_mode != I915_TILING_NONE) | 
|  | dspcntr |= DISPPLANE_TILED; | 
|  | else | 
|  | dspcntr &= ~DISPPLANE_TILED; | 
|  |  | 
|  | /* must disable */ | 
|  | dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; | 
|  |  | 
|  | I915_WRITE(reg, dspcntr); | 
|  |  | 
|  | linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8); | 
|  | intel_crtc->dspaddr_offset = | 
|  | intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode, | 
|  | fb->bits_per_pixel / 8, | 
|  | fb->pitches[0]); | 
|  | linear_offset -= intel_crtc->dspaddr_offset; | 
|  |  | 
|  | DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n", | 
|  | obj->gtt_offset, linear_offset, x, y, fb->pitches[0]); | 
|  | I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); | 
|  | I915_MODIFY_DISPBASE(DSPSURF(plane), | 
|  | obj->gtt_offset + intel_crtc->dspaddr_offset); | 
|  | if (IS_HASWELL(dev)) { | 
|  | I915_WRITE(DSPOFFSET(plane), (y << 16) | x); | 
|  | } else { | 
|  | I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); | 
|  | I915_WRITE(DSPLINOFF(plane), linear_offset); | 
|  | } | 
|  | POSTING_READ(reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Assume fb object is pinned & idle & fenced and just update base pointers */ | 
|  | static int | 
|  | intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, | 
|  | int x, int y, enum mode_set_atomic state) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (dev_priv->display.disable_fbc) | 
|  | dev_priv->display.disable_fbc(dev); | 
|  | intel_increase_pllclock(crtc); | 
|  |  | 
|  | return dev_priv->display.update_plane(crtc, fb, x, y); | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_finish_fb(struct drm_framebuffer *old_fb) | 
|  | { | 
|  | struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj; | 
|  | struct drm_i915_private *dev_priv = obj->base.dev->dev_private; | 
|  | bool was_interruptible = dev_priv->mm.interruptible; | 
|  | int ret; | 
|  |  | 
|  | /* Big Hammer, we also need to ensure that any pending | 
|  | * MI_WAIT_FOR_EVENT inside a user batch buffer on the | 
|  | * current scanout is retired before unpinning the old | 
|  | * framebuffer. | 
|  | * | 
|  | * This should only fail upon a hung GPU, in which case we | 
|  | * can safely continue. | 
|  | */ | 
|  | dev_priv->mm.interruptible = false; | 
|  | ret = i915_gem_object_finish_gpu(obj); | 
|  | dev_priv->mm.interruptible = was_interruptible; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_master_private *master_priv; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | if (!dev->primary->master) | 
|  | return; | 
|  |  | 
|  | master_priv = dev->primary->master->driver_priv; | 
|  | if (!master_priv->sarea_priv) | 
|  | return; | 
|  |  | 
|  | switch (intel_crtc->pipe) { | 
|  | case 0: | 
|  | master_priv->sarea_priv->pipeA_x = x; | 
|  | master_priv->sarea_priv->pipeA_y = y; | 
|  | break; | 
|  | case 1: | 
|  | master_priv->sarea_priv->pipeB_x = x; | 
|  | master_priv->sarea_priv->pipeB_y = y; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, | 
|  | struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct drm_framebuffer *old_fb; | 
|  | int ret; | 
|  |  | 
|  | /* no fb bound */ | 
|  | if (!fb) { | 
|  | DRM_ERROR("No FB bound\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if(intel_crtc->plane > dev_priv->num_pipe) { | 
|  | DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n", | 
|  | intel_crtc->plane, | 
|  | dev_priv->num_pipe); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | ret = intel_pin_and_fence_fb_obj(dev, | 
|  | to_intel_framebuffer(fb)->obj, | 
|  | NULL); | 
|  | if (ret != 0) { | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | DRM_ERROR("pin & fence failed\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (crtc->fb) | 
|  | intel_finish_fb(crtc->fb); | 
|  |  | 
|  | ret = dev_priv->display.update_plane(crtc, fb, x, y); | 
|  | if (ret) { | 
|  | intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | DRM_ERROR("failed to update base address\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | old_fb = crtc->fb; | 
|  | crtc->fb = fb; | 
|  | crtc->x = x; | 
|  | crtc->y = y; | 
|  |  | 
|  | if (old_fb) { | 
|  | intel_wait_for_vblank(dev, intel_crtc->pipe); | 
|  | intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj); | 
|  | } | 
|  |  | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | intel_crtc_update_sarea_pos(crtc, x, y); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_fdi_normal_train(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  | /* enable normal train */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if (IS_IVYBRIDGE(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE_IVB; | 
|  | temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; | 
|  | } else { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; | 
|  | } | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_NORMAL_CPT; | 
|  | } else { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_NONE; | 
|  | } | 
|  | I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); | 
|  |  | 
|  | /* wait one idle pattern time */ | 
|  | POSTING_READ(reg); | 
|  | udelay(1000); | 
|  |  | 
|  | /* IVB wants error correction enabled */ | 
|  | if (IS_IVYBRIDGE(dev)) | 
|  | I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | | 
|  | FDI_FE_ERRC_ENABLE); | 
|  | } | 
|  |  | 
|  | static void ivb_modeset_global_resources(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *pipe_B_crtc = | 
|  | to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]); | 
|  | struct intel_crtc *pipe_C_crtc = | 
|  | to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]); | 
|  | uint32_t temp; | 
|  |  | 
|  | /* When everything is off disable fdi C so that we could enable fdi B | 
|  | * with all lanes. XXX: This misses the case where a pipe is not using | 
|  | * any pch resources and so doesn't need any fdi lanes. */ | 
|  | if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) { | 
|  | WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); | 
|  | WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); | 
|  |  | 
|  | temp = I915_READ(SOUTH_CHICKEN1); | 
|  | temp &= ~FDI_BC_BIFURCATION_SELECT; | 
|  | DRM_DEBUG_KMS("disabling fdi C rx\n"); | 
|  | I915_WRITE(SOUTH_CHICKEN1, temp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The FDI link training functions for ILK/Ibexpeak. */ | 
|  | static void ironlake_fdi_link_train(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  | u32 reg, temp, tries; | 
|  |  | 
|  | /* FDI needs bits from pipe & plane first */ | 
|  | assert_pipe_enabled(dev_priv, pipe); | 
|  | assert_plane_enabled(dev_priv, plane); | 
|  |  | 
|  | /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit | 
|  | for train result */ | 
|  | reg = FDI_RX_IMR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_RX_SYMBOL_LOCK; | 
|  | temp &= ~FDI_RX_BIT_LOCK; | 
|  | I915_WRITE(reg, temp); | 
|  | I915_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | /* enable CPU FDI TX and PCH FDI RX */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(7 << 19); | 
|  | temp |= (intel_crtc->fdi_lanes - 1) << 19; | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | I915_WRITE(reg, temp | FDI_TX_ENABLE); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | I915_WRITE(reg, temp | FDI_RX_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | /* Ironlake workaround, enable clock pointer after FDI enable*/ | 
|  | I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); | 
|  | I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | | 
|  | FDI_RX_PHASE_SYNC_POINTER_EN); | 
|  |  | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | for (tries = 0; tries < 5; tries++) { | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  |  | 
|  | if ((temp & FDI_RX_BIT_LOCK)) { | 
|  | DRM_DEBUG_KMS("FDI train 1 done.\n"); | 
|  | I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (tries == 5) | 
|  | DRM_ERROR("FDI train 1 fail!\n"); | 
|  |  | 
|  | /* Train 2 */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | for (tries = 0; tries < 5; tries++) { | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  |  | 
|  | if (temp & FDI_RX_SYMBOL_LOCK) { | 
|  | I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); | 
|  | DRM_DEBUG_KMS("FDI train 2 done.\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (tries == 5) | 
|  | DRM_ERROR("FDI train 2 fail!\n"); | 
|  |  | 
|  | DRM_DEBUG_KMS("FDI train done\n"); | 
|  |  | 
|  | } | 
|  |  | 
|  | static const int snb_b_fdi_train_param[] = { | 
|  | FDI_LINK_TRAIN_400MV_0DB_SNB_B, | 
|  | FDI_LINK_TRAIN_400MV_6DB_SNB_B, | 
|  | FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, | 
|  | FDI_LINK_TRAIN_800MV_0DB_SNB_B, | 
|  | }; | 
|  |  | 
|  | /* The FDI link training functions for SNB/Cougarpoint. */ | 
|  | static void gen6_fdi_link_train(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp, i, retry; | 
|  |  | 
|  | /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit | 
|  | for train result */ | 
|  | reg = FDI_RX_IMR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_RX_SYMBOL_LOCK; | 
|  | temp &= ~FDI_RX_BIT_LOCK; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | /* enable CPU FDI TX and PCH FDI RX */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(7 << 19); | 
|  | temp |= (intel_crtc->fdi_lanes - 1) << 19; | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | /* SNB-B */ | 
|  | temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; | 
|  | I915_WRITE(reg, temp | FDI_TX_ENABLE); | 
|  |  | 
|  | I915_WRITE(FDI_RX_MISC(pipe), | 
|  | FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; | 
|  | } else { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | } | 
|  | I915_WRITE(reg, temp | FDI_RX_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | temp |= snb_b_fdi_train_param[i]; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(500); | 
|  |  | 
|  | for (retry = 0; retry < 5; retry++) { | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  | if (temp & FDI_RX_BIT_LOCK) { | 
|  | I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); | 
|  | DRM_DEBUG_KMS("FDI train 1 done.\n"); | 
|  | break; | 
|  | } | 
|  | udelay(50); | 
|  | } | 
|  | if (retry < 5) | 
|  | break; | 
|  | } | 
|  | if (i == 4) | 
|  | DRM_ERROR("FDI train 1 fail!\n"); | 
|  |  | 
|  | /* Train 2 */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2; | 
|  | if (IS_GEN6(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | /* SNB-B */ | 
|  | temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; | 
|  | } | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; | 
|  | } else { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2; | 
|  | } | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | temp |= snb_b_fdi_train_param[i]; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(500); | 
|  |  | 
|  | for (retry = 0; retry < 5; retry++) { | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  | if (temp & FDI_RX_SYMBOL_LOCK) { | 
|  | I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); | 
|  | DRM_DEBUG_KMS("FDI train 2 done.\n"); | 
|  | break; | 
|  | } | 
|  | udelay(50); | 
|  | } | 
|  | if (retry < 5) | 
|  | break; | 
|  | } | 
|  | if (i == 4) | 
|  | DRM_ERROR("FDI train 2 fail!\n"); | 
|  |  | 
|  | DRM_DEBUG_KMS("FDI train done.\n"); | 
|  | } | 
|  |  | 
|  | /* Manual link training for Ivy Bridge A0 parts */ | 
|  | static void ivb_manual_fdi_link_train(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp, i; | 
|  |  | 
|  | /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit | 
|  | for train result */ | 
|  | reg = FDI_RX_IMR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_RX_SYMBOL_LOCK; | 
|  | temp &= ~FDI_RX_BIT_LOCK; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", | 
|  | I915_READ(FDI_RX_IIR(pipe))); | 
|  |  | 
|  | /* enable CPU FDI TX and PCH FDI RX */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(7 << 19); | 
|  | temp |= (intel_crtc->fdi_lanes - 1) << 19; | 
|  | temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; | 
|  | temp |= FDI_COMPOSITE_SYNC; | 
|  | I915_WRITE(reg, temp | FDI_TX_ENABLE); | 
|  |  | 
|  | I915_WRITE(FDI_RX_MISC(pipe), | 
|  | FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_AUTO; | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; | 
|  | temp |= FDI_COMPOSITE_SYNC; | 
|  | I915_WRITE(reg, temp | FDI_RX_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | temp |= snb_b_fdi_train_param[i]; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(500); | 
|  |  | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  |  | 
|  | if (temp & FDI_RX_BIT_LOCK || | 
|  | (I915_READ(reg) & FDI_RX_BIT_LOCK)) { | 
|  | I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); | 
|  | DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == 4) | 
|  | DRM_ERROR("FDI train 1 fail!\n"); | 
|  |  | 
|  | /* Train 2 */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE_IVB; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(150); | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; | 
|  | temp |= snb_b_fdi_train_param[i]; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(500); | 
|  |  | 
|  | reg = FDI_RX_IIR(pipe); | 
|  | temp = I915_READ(reg); | 
|  | DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); | 
|  |  | 
|  | if (temp & FDI_RX_SYMBOL_LOCK) { | 
|  | I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); | 
|  | DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == 4) | 
|  | DRM_ERROR("FDI train 2 fail!\n"); | 
|  |  | 
|  | DRM_DEBUG_KMS("FDI train done.\n"); | 
|  | } | 
|  |  | 
|  | static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  |  | 
|  | /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~((0x7 << 19) | (0x7 << 16)); | 
|  | temp |= (intel_crtc->fdi_lanes - 1) << 19; | 
|  | temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; | 
|  | I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(200); | 
|  |  | 
|  | /* Switch from Rawclk to PCDclk */ | 
|  | temp = I915_READ(reg); | 
|  | I915_WRITE(reg, temp | FDI_PCDCLK); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(200); | 
|  |  | 
|  | /* Enable CPU FDI TX PLL, always on for Ironlake */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if ((temp & FDI_TX_PLL_ENABLE) == 0) { | 
|  | I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(100); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  | /* Switch from PCDclk to Rawclk */ | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | I915_WRITE(reg, temp & ~FDI_PCDCLK); | 
|  |  | 
|  | /* Disable CPU FDI TX PLL */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(100); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); | 
|  |  | 
|  | /* Wait for the clocks to turn off. */ | 
|  | POSTING_READ(reg); | 
|  | udelay(100); | 
|  | } | 
|  |  | 
|  | static void ironlake_fdi_disable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  | /* disable CPU FDI tx and PCH FDI rx */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | I915_WRITE(reg, temp & ~FDI_TX_ENABLE); | 
|  | POSTING_READ(reg); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(0x7 << 16); | 
|  | temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; | 
|  | I915_WRITE(reg, temp & ~FDI_RX_ENABLE); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(100); | 
|  |  | 
|  | /* Ironlake workaround, disable clock pointer after downing FDI */ | 
|  | if (HAS_PCH_IBX(dev)) { | 
|  | I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); | 
|  | } | 
|  |  | 
|  | /* still set train pattern 1 */ | 
|  | reg = FDI_TX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | reg = FDI_RX_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; | 
|  | } else { | 
|  | temp &= ~FDI_LINK_TRAIN_NONE; | 
|  | temp |= FDI_LINK_TRAIN_PATTERN_1; | 
|  | } | 
|  | /* BPC in FDI rx is consistent with that in PIPECONF */ | 
|  | temp &= ~(0x07 << 16); | 
|  | temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | POSTING_READ(reg); | 
|  | udelay(100); | 
|  | } | 
|  |  | 
|  | static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | unsigned long flags; | 
|  | bool pending; | 
|  |  | 
|  | if (i915_reset_in_progress(&dev_priv->gpu_error) || | 
|  | intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) | 
|  | return false; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | pending = to_intel_crtc(crtc)->unpin_work != NULL; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | return pending; | 
|  | } | 
|  |  | 
|  | static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (crtc->fb == NULL) | 
|  | return; | 
|  |  | 
|  | WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue)); | 
|  |  | 
|  | wait_event(dev_priv->pending_flip_queue, | 
|  | !intel_crtc_has_pending_flip(crtc)); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_finish_fb(crtc->fb); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_encoder *intel_encoder; | 
|  |  | 
|  | /* | 
|  | * If there's a non-PCH eDP on this crtc, it must be DP_A, and that | 
|  | * must be driven by its own crtc; no sharing is possible. | 
|  | */ | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) { | 
|  | switch (intel_encoder->type) { | 
|  | case INTEL_OUTPUT_EDP: | 
|  | if (!intel_encoder_is_pch_edp(&intel_encoder->base)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool haswell_crtc_driving_pch(struct drm_crtc *crtc) | 
|  | { | 
|  | return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG); | 
|  | } | 
|  |  | 
|  | /* Program iCLKIP clock to the desired frequency */ | 
|  | static void lpt_program_iclkip(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 divsel, phaseinc, auxdiv, phasedir = 0; | 
|  | u32 temp; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | /* It is necessary to ungate the pixclk gate prior to programming | 
|  | * the divisors, and gate it back when it is done. | 
|  | */ | 
|  | I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); | 
|  |  | 
|  | /* Disable SSCCTL */ | 
|  | intel_sbi_write(dev_priv, SBI_SSCCTL6, | 
|  | intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) | | 
|  | SBI_SSCCTL_DISABLE, | 
|  | SBI_ICLK); | 
|  |  | 
|  | /* 20MHz is a corner case which is out of range for the 7-bit divisor */ | 
|  | if (crtc->mode.clock == 20000) { | 
|  | auxdiv = 1; | 
|  | divsel = 0x41; | 
|  | phaseinc = 0x20; | 
|  | } else { | 
|  | /* The iCLK virtual clock root frequency is in MHz, | 
|  | * but the crtc->mode.clock in in KHz. To get the divisors, | 
|  | * it is necessary to divide one by another, so we | 
|  | * convert the virtual clock precision to KHz here for higher | 
|  | * precision. | 
|  | */ | 
|  | u32 iclk_virtual_root_freq = 172800 * 1000; | 
|  | u32 iclk_pi_range = 64; | 
|  | u32 desired_divisor, msb_divisor_value, pi_value; | 
|  |  | 
|  | desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock); | 
|  | msb_divisor_value = desired_divisor / iclk_pi_range; | 
|  | pi_value = desired_divisor % iclk_pi_range; | 
|  |  | 
|  | auxdiv = 0; | 
|  | divsel = msb_divisor_value - 2; | 
|  | phaseinc = pi_value; | 
|  | } | 
|  |  | 
|  | /* This should not happen with any sane values */ | 
|  | WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & | 
|  | ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); | 
|  | WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & | 
|  | ~SBI_SSCDIVINTPHASE_INCVAL_MASK); | 
|  |  | 
|  | DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", | 
|  | crtc->mode.clock, | 
|  | auxdiv, | 
|  | divsel, | 
|  | phasedir, | 
|  | phaseinc); | 
|  |  | 
|  | /* Program SSCDIVINTPHASE6 */ | 
|  | temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); | 
|  | temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; | 
|  | temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); | 
|  | temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; | 
|  | temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); | 
|  | temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); | 
|  | temp |= SBI_SSCDIVINTPHASE_PROPAGATE; | 
|  | intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); | 
|  |  | 
|  | /* Program SSCAUXDIV */ | 
|  | temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); | 
|  | temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); | 
|  | temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); | 
|  | intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); | 
|  |  | 
|  | /* Enable modulator and associated divider */ | 
|  | temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); | 
|  | temp &= ~SBI_SSCCTL_DISABLE; | 
|  | intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); | 
|  |  | 
|  | /* Wait for initialization time */ | 
|  | udelay(24); | 
|  |  | 
|  | I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable PCH resources required for PCH ports: | 
|  | *   - PCH PLLs | 
|  | *   - FDI training & RX/TX | 
|  | *   - update transcoder timings | 
|  | *   - DP transcoding bits | 
|  | *   - transcoder | 
|  | */ | 
|  | static void ironlake_pch_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 reg, temp; | 
|  |  | 
|  | assert_transcoder_disabled(dev_priv, pipe); | 
|  |  | 
|  | /* Write the TU size bits before fdi link training, so that error | 
|  | * detection works. */ | 
|  | I915_WRITE(FDI_RX_TUSIZE1(pipe), | 
|  | I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); | 
|  |  | 
|  | /* For PCH output, training FDI link */ | 
|  | dev_priv->display.fdi_link_train(crtc); | 
|  |  | 
|  | /* XXX: pch pll's can be enabled any time before we enable the PCH | 
|  | * transcoder, and we actually should do this to not upset any PCH | 
|  | * transcoder that already use the clock when we share it. | 
|  | * | 
|  | * Note that enable_pch_pll tries to do the right thing, but get_pch_pll | 
|  | * unconditionally resets the pll - we need that to have the right LVDS | 
|  | * enable sequence. */ | 
|  | ironlake_enable_pch_pll(intel_crtc); | 
|  |  | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | u32 sel; | 
|  |  | 
|  | temp = I915_READ(PCH_DPLL_SEL); | 
|  | switch (pipe) { | 
|  | default: | 
|  | case 0: | 
|  | temp |= TRANSA_DPLL_ENABLE; | 
|  | sel = TRANSA_DPLLB_SEL; | 
|  | break; | 
|  | case 1: | 
|  | temp |= TRANSB_DPLL_ENABLE; | 
|  | sel = TRANSB_DPLLB_SEL; | 
|  | break; | 
|  | case 2: | 
|  | temp |= TRANSC_DPLL_ENABLE; | 
|  | sel = TRANSC_DPLLB_SEL; | 
|  | break; | 
|  | } | 
|  | if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B) | 
|  | temp |= sel; | 
|  | else | 
|  | temp &= ~sel; | 
|  | I915_WRITE(PCH_DPLL_SEL, temp); | 
|  | } | 
|  |  | 
|  | /* set transcoder timing, panel must allow it */ | 
|  | assert_panel_unlocked(dev_priv, pipe); | 
|  | I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe))); | 
|  | I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe))); | 
|  | I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe))); | 
|  |  | 
|  | I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe))); | 
|  | I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe))); | 
|  | I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe))); | 
|  | I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe))); | 
|  |  | 
|  | intel_fdi_normal_train(crtc); | 
|  |  | 
|  | /* For PCH DP, enable TRANS_DP_CTL */ | 
|  | if (HAS_PCH_CPT(dev) && | 
|  | (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { | 
|  | u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; | 
|  | reg = TRANS_DP_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(TRANS_DP_PORT_SEL_MASK | | 
|  | TRANS_DP_SYNC_MASK | | 
|  | TRANS_DP_BPC_MASK); | 
|  | temp |= (TRANS_DP_OUTPUT_ENABLE | | 
|  | TRANS_DP_ENH_FRAMING); | 
|  | temp |= bpc << 9; /* same format but at 11:9 */ | 
|  |  | 
|  | if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC) | 
|  | temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; | 
|  | if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC) | 
|  | temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; | 
|  |  | 
|  | switch (intel_trans_dp_port_sel(crtc)) { | 
|  | case PCH_DP_B: | 
|  | temp |= TRANS_DP_PORT_SEL_B; | 
|  | break; | 
|  | case PCH_DP_C: | 
|  | temp |= TRANS_DP_PORT_SEL_C; | 
|  | break; | 
|  | case PCH_DP_D: | 
|  | temp |= TRANS_DP_PORT_SEL_D; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | I915_WRITE(reg, temp); | 
|  | } | 
|  |  | 
|  | ironlake_enable_pch_transcoder(dev_priv, pipe); | 
|  | } | 
|  |  | 
|  | static void lpt_pch_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; | 
|  |  | 
|  | assert_transcoder_disabled(dev_priv, TRANSCODER_A); | 
|  |  | 
|  | lpt_program_iclkip(crtc); | 
|  |  | 
|  | /* Set transcoder timing. */ | 
|  | I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder))); | 
|  | I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder))); | 
|  | I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder))); | 
|  |  | 
|  | I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder))); | 
|  | I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder))); | 
|  | I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder))); | 
|  | I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder))); | 
|  |  | 
|  | lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); | 
|  | } | 
|  |  | 
|  | static void intel_put_pch_pll(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct intel_pch_pll *pll = intel_crtc->pch_pll; | 
|  |  | 
|  | if (pll == NULL) | 
|  | return; | 
|  |  | 
|  | if (pll->refcount == 0) { | 
|  | WARN(1, "bad PCH PLL refcount\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | --pll->refcount; | 
|  | intel_crtc->pch_pll = NULL; | 
|  | } | 
|  |  | 
|  | static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private; | 
|  | struct intel_pch_pll *pll; | 
|  | int i; | 
|  |  | 
|  | pll = intel_crtc->pch_pll; | 
|  | if (pll) { | 
|  | DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n", | 
|  | intel_crtc->base.base.id, pll->pll_reg); | 
|  | goto prepare; | 
|  | } | 
|  |  | 
|  | if (HAS_PCH_IBX(dev_priv->dev)) { | 
|  | /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ | 
|  | i = intel_crtc->pipe; | 
|  | pll = &dev_priv->pch_plls[i]; | 
|  |  | 
|  | DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n", | 
|  | intel_crtc->base.base.id, pll->pll_reg); | 
|  |  | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < dev_priv->num_pch_pll; i++) { | 
|  | pll = &dev_priv->pch_plls[i]; | 
|  |  | 
|  | /* Only want to check enabled timings first */ | 
|  | if (pll->refcount == 0) | 
|  | continue; | 
|  |  | 
|  | if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) && | 
|  | fp == I915_READ(pll->fp0_reg)) { | 
|  | DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n", | 
|  | intel_crtc->base.base.id, | 
|  | pll->pll_reg, pll->refcount, pll->active); | 
|  |  | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ok no matching timings, maybe there's a free one? */ | 
|  | for (i = 0; i < dev_priv->num_pch_pll; i++) { | 
|  | pll = &dev_priv->pch_plls[i]; | 
|  | if (pll->refcount == 0) { | 
|  | DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n", | 
|  | intel_crtc->base.base.id, pll->pll_reg); | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  |  | 
|  | found: | 
|  | intel_crtc->pch_pll = pll; | 
|  | pll->refcount++; | 
|  | DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe); | 
|  | prepare: /* separate function? */ | 
|  | DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg); | 
|  |  | 
|  | /* Wait for the clocks to stabilize before rewriting the regs */ | 
|  | I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE); | 
|  | POSTING_READ(pll->pll_reg); | 
|  | udelay(150); | 
|  |  | 
|  | I915_WRITE(pll->fp0_reg, fp); | 
|  | I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE); | 
|  | pll->on = false; | 
|  | return pll; | 
|  | } | 
|  |  | 
|  | void intel_cpt_verify_modeset(struct drm_device *dev, int pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int dslreg = PIPEDSL(pipe); | 
|  | u32 temp; | 
|  |  | 
|  | temp = I915_READ(dslreg); | 
|  | udelay(500); | 
|  | if (wait_for(I915_READ(dslreg) != temp, 5)) { | 
|  | if (wait_for(I915_READ(dslreg) != temp, 5)) | 
|  | DRM_ERROR("mode set failed: pipe %d stuck\n", pipe); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ironlake_crtc_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  | u32 temp; | 
|  | bool is_pch_port; | 
|  |  | 
|  | WARN_ON(!crtc->enabled); | 
|  |  | 
|  | if (intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | intel_crtc->active = true; | 
|  | intel_update_watermarks(dev); | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | temp = I915_READ(PCH_LVDS); | 
|  | if ((temp & LVDS_PORT_EN) == 0) | 
|  | I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN); | 
|  | } | 
|  |  | 
|  | is_pch_port = ironlake_crtc_driving_pch(crtc); | 
|  |  | 
|  | if (is_pch_port) { | 
|  | /* Note: FDI PLL enabling _must_ be done before we enable the | 
|  | * cpu pipes, hence this is separate from all the other fdi/pch | 
|  | * enabling. */ | 
|  | ironlake_fdi_pll_enable(intel_crtc); | 
|  | } else { | 
|  | assert_fdi_tx_disabled(dev_priv, pipe); | 
|  | assert_fdi_rx_disabled(dev_priv, pipe); | 
|  | } | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_enable) | 
|  | encoder->pre_enable(encoder); | 
|  |  | 
|  | /* Enable panel fitting for LVDS */ | 
|  | if (dev_priv->pch_pf_size && | 
|  | (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { | 
|  | /* Force use of hard-coded filter coefficients | 
|  | * as some pre-programmed values are broken, | 
|  | * e.g. x201. | 
|  | */ | 
|  | if (IS_IVYBRIDGE(dev)) | 
|  | I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | | 
|  | PF_PIPE_SEL_IVB(pipe)); | 
|  | else | 
|  | I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); | 
|  | I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos); | 
|  | I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On ILK+ LUT must be loaded before the pipe is running but with | 
|  | * clocks enabled | 
|  | */ | 
|  | intel_crtc_load_lut(crtc); | 
|  |  | 
|  | intel_enable_pipe(dev_priv, pipe, is_pch_port); | 
|  | intel_enable_plane(dev_priv, plane, pipe); | 
|  |  | 
|  | if (is_pch_port) | 
|  | ironlake_pch_enable(crtc); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | intel_crtc_update_cursor(crtc, true); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->enable(encoder); | 
|  |  | 
|  | if (HAS_PCH_CPT(dev)) | 
|  | intel_cpt_verify_modeset(dev, intel_crtc->pipe); | 
|  |  | 
|  | /* | 
|  | * There seems to be a race in PCH platform hw (at least on some | 
|  | * outputs) where an enabled pipe still completes any pageflip right | 
|  | * away (as if the pipe is off) instead of waiting for vblank. As soon | 
|  | * as the first vblank happend, everything works as expected. Hence just | 
|  | * wait for one vblank before returning to avoid strange things | 
|  | * happening. | 
|  | */ | 
|  | intel_wait_for_vblank(dev, intel_crtc->pipe); | 
|  | } | 
|  |  | 
|  | static void haswell_crtc_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  | bool is_pch_port; | 
|  |  | 
|  | WARN_ON(!crtc->enabled); | 
|  |  | 
|  | if (intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | intel_crtc->active = true; | 
|  | intel_update_watermarks(dev); | 
|  |  | 
|  | is_pch_port = haswell_crtc_driving_pch(crtc); | 
|  |  | 
|  | if (is_pch_port) | 
|  | dev_priv->display.fdi_link_train(crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_enable) | 
|  | encoder->pre_enable(encoder); | 
|  |  | 
|  | intel_ddi_enable_pipe_clock(intel_crtc); | 
|  |  | 
|  | /* Enable panel fitting for eDP */ | 
|  | if (dev_priv->pch_pf_size && | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { | 
|  | /* Force use of hard-coded filter coefficients | 
|  | * as some pre-programmed values are broken, | 
|  | * e.g. x201. | 
|  | */ | 
|  | I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | | 
|  | PF_PIPE_SEL_IVB(pipe)); | 
|  | I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos); | 
|  | I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On ILK+ LUT must be loaded before the pipe is running but with | 
|  | * clocks enabled | 
|  | */ | 
|  | intel_crtc_load_lut(crtc); | 
|  |  | 
|  | intel_ddi_set_pipe_settings(crtc); | 
|  | intel_ddi_enable_pipe_func(crtc); | 
|  |  | 
|  | intel_enable_pipe(dev_priv, pipe, is_pch_port); | 
|  | intel_enable_plane(dev_priv, plane, pipe); | 
|  |  | 
|  | if (is_pch_port) | 
|  | lpt_pch_enable(crtc); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | intel_crtc_update_cursor(crtc, true); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->enable(encoder); | 
|  |  | 
|  | /* | 
|  | * There seems to be a race in PCH platform hw (at least on some | 
|  | * outputs) where an enabled pipe still completes any pageflip right | 
|  | * away (as if the pipe is off) instead of waiting for vblank. As soon | 
|  | * as the first vblank happend, everything works as expected. Hence just | 
|  | * wait for one vblank before returning to avoid strange things | 
|  | * happening. | 
|  | */ | 
|  | intel_wait_for_vblank(dev, intel_crtc->pipe); | 
|  | } | 
|  |  | 
|  | static void ironlake_crtc_disable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  | u32 reg, temp; | 
|  |  | 
|  |  | 
|  | if (!intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->disable(encoder); | 
|  |  | 
|  | intel_crtc_wait_for_pending_flips(crtc); | 
|  | drm_vblank_off(dev, pipe); | 
|  | intel_crtc_update_cursor(crtc, false); | 
|  |  | 
|  | intel_disable_plane(dev_priv, plane, pipe); | 
|  |  | 
|  | if (dev_priv->cfb_plane == plane) | 
|  | intel_disable_fbc(dev); | 
|  |  | 
|  | intel_disable_pipe(dev_priv, pipe); | 
|  |  | 
|  | /* Disable PF */ | 
|  | I915_WRITE(PF_CTL(pipe), 0); | 
|  | I915_WRITE(PF_WIN_SZ(pipe), 0); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->post_disable) | 
|  | encoder->post_disable(encoder); | 
|  |  | 
|  | ironlake_fdi_disable(crtc); | 
|  |  | 
|  | ironlake_disable_pch_transcoder(dev_priv, pipe); | 
|  |  | 
|  | if (HAS_PCH_CPT(dev)) { | 
|  | /* disable TRANS_DP_CTL */ | 
|  | reg = TRANS_DP_CTL(pipe); | 
|  | temp = I915_READ(reg); | 
|  | temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK); | 
|  | temp |= TRANS_DP_PORT_SEL_NONE; | 
|  | I915_WRITE(reg, temp); | 
|  |  | 
|  | /* disable DPLL_SEL */ | 
|  | temp = I915_READ(PCH_DPLL_SEL); | 
|  | switch (pipe) { | 
|  | case 0: | 
|  | temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL); | 
|  | break; | 
|  | case 1: | 
|  | temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL); | 
|  | break; | 
|  | case 2: | 
|  | /* C shares PLL A or B */ | 
|  | temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL); | 
|  | break; | 
|  | default: | 
|  | BUG(); /* wtf */ | 
|  | } | 
|  | I915_WRITE(PCH_DPLL_SEL, temp); | 
|  | } | 
|  |  | 
|  | /* disable PCH DPLL */ | 
|  | intel_disable_pch_pll(intel_crtc); | 
|  |  | 
|  | ironlake_fdi_pll_disable(intel_crtc); | 
|  |  | 
|  | intel_crtc->active = false; | 
|  | intel_update_watermarks(dev); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | static void haswell_crtc_disable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  | enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; | 
|  | bool is_pch_port; | 
|  |  | 
|  | if (!intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | is_pch_port = haswell_crtc_driving_pch(crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->disable(encoder); | 
|  |  | 
|  | intel_crtc_wait_for_pending_flips(crtc); | 
|  | drm_vblank_off(dev, pipe); | 
|  | intel_crtc_update_cursor(crtc, false); | 
|  |  | 
|  | intel_disable_plane(dev_priv, plane, pipe); | 
|  |  | 
|  | if (dev_priv->cfb_plane == plane) | 
|  | intel_disable_fbc(dev); | 
|  |  | 
|  | intel_disable_pipe(dev_priv, pipe); | 
|  |  | 
|  | intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder); | 
|  |  | 
|  | /* Disable PF */ | 
|  | I915_WRITE(PF_CTL(pipe), 0); | 
|  | I915_WRITE(PF_WIN_SZ(pipe), 0); | 
|  |  | 
|  | intel_ddi_disable_pipe_clock(intel_crtc); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->post_disable) | 
|  | encoder->post_disable(encoder); | 
|  |  | 
|  | if (is_pch_port) { | 
|  | lpt_disable_pch_transcoder(dev_priv); | 
|  | intel_ddi_fdi_disable(crtc); | 
|  | } | 
|  |  | 
|  | intel_crtc->active = false; | 
|  | intel_update_watermarks(dev); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | static void ironlake_crtc_off(struct drm_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | intel_put_pch_pll(intel_crtc); | 
|  | } | 
|  |  | 
|  | static void haswell_crtc_off(struct drm_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | /* Stop saying we're using TRANSCODER_EDP because some other CRTC might | 
|  | * start using it. */ | 
|  | intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe; | 
|  |  | 
|  | intel_ddi_put_crtc_pll(crtc); | 
|  | } | 
|  |  | 
|  | static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable) | 
|  | { | 
|  | if (!enable && intel_crtc->overlay) { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | dev_priv->mm.interruptible = false; | 
|  | (void) intel_overlay_switch_off(intel_crtc->overlay); | 
|  | dev_priv->mm.interruptible = true; | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | /* Let userspace switch the overlay on again. In most cases userspace | 
|  | * has to recompute where to put it anyway. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware | 
|  | * cursor plane briefly if not already running after enabling the display | 
|  | * plane. | 
|  | * This workaround avoids occasional blank screens when self refresh is | 
|  | * enabled. | 
|  | */ | 
|  | static void | 
|  | g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe) | 
|  | { | 
|  | u32 cntl = I915_READ(CURCNTR(pipe)); | 
|  |  | 
|  | if ((cntl & CURSOR_MODE) == 0) { | 
|  | u32 fw_bcl_self = I915_READ(FW_BLC_SELF); | 
|  |  | 
|  | I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN); | 
|  | I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX); | 
|  | intel_wait_for_vblank(dev_priv->dev, pipe); | 
|  | I915_WRITE(CURCNTR(pipe), cntl); | 
|  | I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe))); | 
|  | I915_WRITE(FW_BLC_SELF, fw_bcl_self); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void i9xx_crtc_enable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  |  | 
|  | WARN_ON(!crtc->enabled); | 
|  |  | 
|  | if (intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | intel_crtc->active = true; | 
|  | intel_update_watermarks(dev); | 
|  |  | 
|  | intel_enable_pll(dev_priv, pipe); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_enable) | 
|  | encoder->pre_enable(encoder); | 
|  |  | 
|  | intel_enable_pipe(dev_priv, pipe, false); | 
|  | intel_enable_plane(dev_priv, plane, pipe); | 
|  | if (IS_G4X(dev)) | 
|  | g4x_fixup_plane(dev_priv, pipe); | 
|  |  | 
|  | intel_crtc_load_lut(crtc); | 
|  | intel_update_fbc(dev); | 
|  |  | 
|  | /* Give the overlay scaler a chance to enable if it's on this pipe */ | 
|  | intel_crtc_dpms_overlay(intel_crtc, true); | 
|  | intel_crtc_update_cursor(crtc, true); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->enable(encoder); | 
|  | } | 
|  |  | 
|  | static void i9xx_crtc_disable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  | u32 pctl; | 
|  |  | 
|  |  | 
|  | if (!intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | encoder->disable(encoder); | 
|  |  | 
|  | /* Give the overlay scaler a chance to disable if it's on this pipe */ | 
|  | intel_crtc_wait_for_pending_flips(crtc); | 
|  | drm_vblank_off(dev, pipe); | 
|  | intel_crtc_dpms_overlay(intel_crtc, false); | 
|  | intel_crtc_update_cursor(crtc, false); | 
|  |  | 
|  | if (dev_priv->cfb_plane == plane) | 
|  | intel_disable_fbc(dev); | 
|  |  | 
|  | intel_disable_plane(dev_priv, plane, pipe); | 
|  | intel_disable_pipe(dev_priv, pipe); | 
|  |  | 
|  | /* Disable pannel fitter if it is on this pipe. */ | 
|  | pctl = I915_READ(PFIT_CONTROL); | 
|  | if ((pctl & PFIT_ENABLE) && | 
|  | ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe) | 
|  | I915_WRITE(PFIT_CONTROL, 0); | 
|  |  | 
|  | intel_disable_pll(dev_priv, pipe); | 
|  |  | 
|  | intel_crtc->active = false; | 
|  | intel_update_fbc(dev); | 
|  | intel_update_watermarks(dev); | 
|  | } | 
|  |  | 
|  | static void i9xx_crtc_off(struct drm_crtc *crtc) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void intel_crtc_update_sarea(struct drm_crtc *crtc, | 
|  | bool enabled) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_master_private *master_priv; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  |  | 
|  | if (!dev->primary->master) | 
|  | return; | 
|  |  | 
|  | master_priv = dev->primary->master->driver_priv; | 
|  | if (!master_priv->sarea_priv) | 
|  | return; | 
|  |  | 
|  | switch (pipe) { | 
|  | case 0: | 
|  | master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0; | 
|  | master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0; | 
|  | break; | 
|  | case 1: | 
|  | master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0; | 
|  | master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0; | 
|  | break; | 
|  | default: | 
|  | DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Sets the power management mode of the pipe and plane. | 
|  | */ | 
|  | void intel_crtc_update_dpms(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *intel_encoder; | 
|  | bool enable = false; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) | 
|  | enable |= intel_encoder->connectors_active; | 
|  |  | 
|  | if (enable) | 
|  | dev_priv->display.crtc_enable(crtc); | 
|  | else | 
|  | dev_priv->display.crtc_disable(crtc); | 
|  |  | 
|  | intel_crtc_update_sarea(crtc, enable); | 
|  | } | 
|  |  | 
|  | static void intel_crtc_disable(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_connector *connector; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | /* crtc should still be enabled when we disable it. */ | 
|  | WARN_ON(!crtc->enabled); | 
|  |  | 
|  | intel_crtc->eld_vld = false; | 
|  | dev_priv->display.crtc_disable(crtc); | 
|  | intel_crtc_update_sarea(crtc, false); | 
|  | dev_priv->display.off(crtc); | 
|  |  | 
|  | assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane); | 
|  | assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe); | 
|  |  | 
|  | if (crtc->fb) { | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | crtc->fb = NULL; | 
|  | } | 
|  |  | 
|  | /* Update computed state. */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, head) { | 
|  | if (!connector->encoder || !connector->encoder->crtc) | 
|  | continue; | 
|  |  | 
|  | if (connector->encoder->crtc != crtc) | 
|  | continue; | 
|  |  | 
|  | connector->dpms = DRM_MODE_DPMS_OFF; | 
|  | to_intel_encoder(connector->encoder)->connectors_active = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_modeset_disable(struct drm_device *dev) | 
|  | { | 
|  | struct drm_crtc *crtc; | 
|  |  | 
|  | list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { | 
|  | if (crtc->enabled) | 
|  | intel_crtc_disable(crtc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_encoder_destroy(struct drm_encoder *encoder) | 
|  | { | 
|  | struct intel_encoder *intel_encoder = to_intel_encoder(encoder); | 
|  |  | 
|  | drm_encoder_cleanup(encoder); | 
|  | kfree(intel_encoder); | 
|  | } | 
|  |  | 
|  | /* Simple dpms helper for encodres with just one connector, no cloning and only | 
|  | * one kind of off state. It clamps all !ON modes to fully OFF and changes the | 
|  | * state of the entire output pipe. */ | 
|  | void intel_encoder_dpms(struct intel_encoder *encoder, int mode) | 
|  | { | 
|  | if (mode == DRM_MODE_DPMS_ON) { | 
|  | encoder->connectors_active = true; | 
|  |  | 
|  | intel_crtc_update_dpms(encoder->base.crtc); | 
|  | } else { | 
|  | encoder->connectors_active = false; | 
|  |  | 
|  | intel_crtc_update_dpms(encoder->base.crtc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cross check the actual hw state with our own modeset state tracking (and it's | 
|  | * internal consistency). */ | 
|  | static void intel_connector_check_state(struct intel_connector *connector) | 
|  | { | 
|  | if (connector->get_hw_state(connector)) { | 
|  | struct intel_encoder *encoder = connector->encoder; | 
|  | struct drm_crtc *crtc; | 
|  | bool encoder_enabled; | 
|  | enum pipe pipe; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", | 
|  | connector->base.base.id, | 
|  | drm_get_connector_name(&connector->base)); | 
|  |  | 
|  | WARN(connector->base.dpms == DRM_MODE_DPMS_OFF, | 
|  | "wrong connector dpms state\n"); | 
|  | WARN(connector->base.encoder != &encoder->base, | 
|  | "active connector not linked to encoder\n"); | 
|  | WARN(!encoder->connectors_active, | 
|  | "encoder->connectors_active not set\n"); | 
|  |  | 
|  | encoder_enabled = encoder->get_hw_state(encoder, &pipe); | 
|  | WARN(!encoder_enabled, "encoder not enabled\n"); | 
|  | if (WARN_ON(!encoder->base.crtc)) | 
|  | return; | 
|  |  | 
|  | crtc = encoder->base.crtc; | 
|  |  | 
|  | WARN(!crtc->enabled, "crtc not enabled\n"); | 
|  | WARN(!to_intel_crtc(crtc)->active, "crtc not active\n"); | 
|  | WARN(pipe != to_intel_crtc(crtc)->pipe, | 
|  | "encoder active on the wrong pipe\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Even simpler default implementation, if there's really no special case to | 
|  | * consider. */ | 
|  | void intel_connector_dpms(struct drm_connector *connector, int mode) | 
|  | { | 
|  | struct intel_encoder *encoder = intel_attached_encoder(connector); | 
|  |  | 
|  | /* All the simple cases only support two dpms states. */ | 
|  | if (mode != DRM_MODE_DPMS_ON) | 
|  | mode = DRM_MODE_DPMS_OFF; | 
|  |  | 
|  | if (mode == connector->dpms) | 
|  | return; | 
|  |  | 
|  | connector->dpms = mode; | 
|  |  | 
|  | /* Only need to change hw state when actually enabled */ | 
|  | if (encoder->base.crtc) | 
|  | intel_encoder_dpms(encoder, mode); | 
|  | else | 
|  | WARN_ON(encoder->connectors_active != false); | 
|  |  | 
|  | intel_modeset_check_state(connector->dev); | 
|  | } | 
|  |  | 
|  | /* Simple connector->get_hw_state implementation for encoders that support only | 
|  | * one connector and no cloning and hence the encoder state determines the state | 
|  | * of the connector. */ | 
|  | bool intel_connector_get_hw_state(struct intel_connector *connector) | 
|  | { | 
|  | enum pipe pipe = 0; | 
|  | struct intel_encoder *encoder = connector->encoder; | 
|  |  | 
|  | return encoder->get_hw_state(encoder, &pipe); | 
|  | } | 
|  |  | 
|  | static bool intel_crtc_mode_fixup(struct drm_crtc *crtc, | 
|  | const struct drm_display_mode *mode, | 
|  | struct drm_display_mode *adjusted_mode) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) { | 
|  | /* FDI link clock is fixed at 2.7G */ | 
|  | if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* All interlaced capable intel hw wants timings in frames. Note though | 
|  | * that intel_lvds_mode_fixup does some funny tricks with the crtc | 
|  | * timings, so we need to be careful not to clobber these.*/ | 
|  | if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET)) | 
|  | drm_mode_set_crtcinfo(adjusted_mode, 0); | 
|  |  | 
|  | /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes | 
|  | * with a hsync front porch of 0. | 
|  | */ | 
|  | if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) && | 
|  | adjusted_mode->hsync_start == adjusted_mode->hdisplay) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int valleyview_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 400000; /* FIXME */ | 
|  | } | 
|  |  | 
|  | static int i945_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 400000; | 
|  | } | 
|  |  | 
|  | static int i915_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 333000; | 
|  | } | 
|  |  | 
|  | static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 200000; | 
|  | } | 
|  |  | 
|  | static int i915gm_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | u16 gcfgc = 0; | 
|  |  | 
|  | pci_read_config_word(dev->pdev, GCFGC, &gcfgc); | 
|  |  | 
|  | if (gcfgc & GC_LOW_FREQUENCY_ENABLE) | 
|  | return 133000; | 
|  | else { | 
|  | switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { | 
|  | case GC_DISPLAY_CLOCK_333_MHZ: | 
|  | return 333000; | 
|  | default: | 
|  | case GC_DISPLAY_CLOCK_190_200_MHZ: | 
|  | return 190000; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int i865_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 266000; | 
|  | } | 
|  |  | 
|  | static int i855_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | u16 hpllcc = 0; | 
|  | /* Assume that the hardware is in the high speed state.  This | 
|  | * should be the default. | 
|  | */ | 
|  | switch (hpllcc & GC_CLOCK_CONTROL_MASK) { | 
|  | case GC_CLOCK_133_200: | 
|  | case GC_CLOCK_100_200: | 
|  | return 200000; | 
|  | case GC_CLOCK_166_250: | 
|  | return 250000; | 
|  | case GC_CLOCK_100_133: | 
|  | return 133000; | 
|  | } | 
|  |  | 
|  | /* Shouldn't happen */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int i830_get_display_clock_speed(struct drm_device *dev) | 
|  | { | 
|  | return 133000; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_reduce_ratio(uint32_t *num, uint32_t *den) | 
|  | { | 
|  | while (*num > 0xffffff || *den > 0xffffff) { | 
|  | *num >>= 1; | 
|  | *den >>= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | intel_link_compute_m_n(int bits_per_pixel, int nlanes, | 
|  | int pixel_clock, int link_clock, | 
|  | struct intel_link_m_n *m_n) | 
|  | { | 
|  | m_n->tu = 64; | 
|  | m_n->gmch_m = bits_per_pixel * pixel_clock; | 
|  | m_n->gmch_n = link_clock * nlanes * 8; | 
|  | intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); | 
|  | m_n->link_m = pixel_clock; | 
|  | m_n->link_n = link_clock; | 
|  | intel_reduce_ratio(&m_n->link_m, &m_n->link_n); | 
|  | } | 
|  |  | 
|  | static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | if (i915_panel_use_ssc >= 0) | 
|  | return i915_panel_use_ssc != 0; | 
|  | return dev_priv->lvds_use_ssc | 
|  | && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send | 
|  | * @crtc: CRTC structure | 
|  | * @mode: requested mode | 
|  | * | 
|  | * A pipe may be connected to one or more outputs.  Based on the depth of the | 
|  | * attached framebuffer, choose a good color depth to use on the pipe. | 
|  | * | 
|  | * If possible, match the pipe depth to the fb depth.  In some cases, this | 
|  | * isn't ideal, because the connected output supports a lesser or restricted | 
|  | * set of depths.  Resolve that here: | 
|  | *    LVDS typically supports only 6bpc, so clamp down in that case | 
|  | *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc | 
|  | *    Displays may support a restricted set as well, check EDID and clamp as | 
|  | *      appropriate. | 
|  | *    DP may want to dither down to 6bpc to fit larger modes | 
|  | * | 
|  | * RETURNS: | 
|  | * Dithering requirement (i.e. false if display bpc and pipe bpc match, | 
|  | * true if they don't match). | 
|  | */ | 
|  | static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | unsigned int *pipe_bpp, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_connector *connector; | 
|  | struct intel_encoder *intel_encoder; | 
|  | unsigned int display_bpc = UINT_MAX, bpc; | 
|  |  | 
|  | /* Walk the encoders & connectors on this crtc, get min bpc */ | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) { | 
|  |  | 
|  | if (intel_encoder->type == INTEL_OUTPUT_LVDS) { | 
|  | unsigned int lvds_bpc; | 
|  |  | 
|  | if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == | 
|  | LVDS_A3_POWER_UP) | 
|  | lvds_bpc = 8; | 
|  | else | 
|  | lvds_bpc = 6; | 
|  |  | 
|  | if (lvds_bpc < display_bpc) { | 
|  | DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc); | 
|  | display_bpc = lvds_bpc; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Not one of the known troublemakers, check the EDID */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | head) { | 
|  | if (connector->encoder != &intel_encoder->base) | 
|  | continue; | 
|  |  | 
|  | /* Don't use an invalid EDID bpc value */ | 
|  | if (connector->display_info.bpc && | 
|  | connector->display_info.bpc < display_bpc) { | 
|  | DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc); | 
|  | display_bpc = connector->display_info.bpc; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (intel_encoder->type == INTEL_OUTPUT_EDP) { | 
|  | /* Use VBT settings if we have an eDP panel */ | 
|  | unsigned int edp_bpc = dev_priv->edp.bpp / 3; | 
|  |  | 
|  | if (edp_bpc && edp_bpc < display_bpc) { | 
|  | DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc); | 
|  | display_bpc = edp_bpc; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * HDMI is either 12 or 8, so if the display lets 10bpc sneak | 
|  | * through, clamp it down.  (Note: >12bpc will be caught below.) | 
|  | */ | 
|  | if (intel_encoder->type == INTEL_OUTPUT_HDMI) { | 
|  | if (display_bpc > 8 && display_bpc < 12) { | 
|  | DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n"); | 
|  | display_bpc = 12; | 
|  | } else { | 
|  | DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n"); | 
|  | display_bpc = 8; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) { | 
|  | DRM_DEBUG_KMS("Dithering DP to 6bpc\n"); | 
|  | display_bpc = 6; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We could just drive the pipe at the highest bpc all the time and | 
|  | * enable dithering as needed, but that costs bandwidth.  So choose | 
|  | * the minimum value that expresses the full color range of the fb but | 
|  | * also stays within the max display bpc discovered above. | 
|  | */ | 
|  |  | 
|  | switch (fb->depth) { | 
|  | case 8: | 
|  | bpc = 8; /* since we go through a colormap */ | 
|  | break; | 
|  | case 15: | 
|  | case 16: | 
|  | bpc = 6; /* min is 18bpp */ | 
|  | break; | 
|  | case 24: | 
|  | bpc = 8; | 
|  | break; | 
|  | case 30: | 
|  | bpc = 10; | 
|  | break; | 
|  | case 48: | 
|  | bpc = 12; | 
|  | break; | 
|  | default: | 
|  | DRM_DEBUG("unsupported depth, assuming 24 bits\n"); | 
|  | bpc = min((unsigned int)8, display_bpc); | 
|  | break; | 
|  | } | 
|  |  | 
|  | display_bpc = min(display_bpc, bpc); | 
|  |  | 
|  | DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n", | 
|  | bpc, display_bpc); | 
|  |  | 
|  | *pipe_bpp = display_bpc * 3; | 
|  |  | 
|  | return display_bpc != bpc; | 
|  | } | 
|  |  | 
|  | static int vlv_get_refclk(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int refclk = 27000; /* for DP & HDMI */ | 
|  |  | 
|  | return 100000; /* only one validated so far */ | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { | 
|  | refclk = 96000; | 
|  | } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | if (intel_panel_use_ssc(dev_priv)) | 
|  | refclk = 100000; | 
|  | else | 
|  | refclk = 96000; | 
|  | } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { | 
|  | refclk = 100000; | 
|  | } | 
|  |  | 
|  | return refclk; | 
|  | } | 
|  |  | 
|  | static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int refclk; | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev)) { | 
|  | refclk = vlv_get_refclk(crtc); | 
|  | } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && | 
|  | intel_panel_use_ssc(dev_priv) && num_connectors < 2) { | 
|  | refclk = dev_priv->lvds_ssc_freq * 1000; | 
|  | DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n", | 
|  | refclk / 1000); | 
|  | } else if (!IS_GEN2(dev)) { | 
|  | refclk = 96000; | 
|  | } else { | 
|  | refclk = 48000; | 
|  | } | 
|  |  | 
|  | return refclk; | 
|  | } | 
|  |  | 
|  | static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode, | 
|  | intel_clock_t *clock) | 
|  | { | 
|  | /* SDVO TV has fixed PLL values depend on its clock range, | 
|  | this mirrors vbios setting. */ | 
|  | if (adjusted_mode->clock >= 100000 | 
|  | && adjusted_mode->clock < 140500) { | 
|  | clock->p1 = 2; | 
|  | clock->p2 = 10; | 
|  | clock->n = 3; | 
|  | clock->m1 = 16; | 
|  | clock->m2 = 8; | 
|  | } else if (adjusted_mode->clock >= 140500 | 
|  | && adjusted_mode->clock <= 200000) { | 
|  | clock->p1 = 1; | 
|  | clock->p2 = 10; | 
|  | clock->n = 6; | 
|  | clock->m1 = 12; | 
|  | clock->m2 = 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void i9xx_update_pll_dividers(struct drm_crtc *crtc, | 
|  | intel_clock_t *clock, | 
|  | intel_clock_t *reduced_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 fp, fp2 = 0; | 
|  |  | 
|  | if (IS_PINEVIEW(dev)) { | 
|  | fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2; | 
|  | if (reduced_clock) | 
|  | fp2 = (1 << reduced_clock->n) << 16 | | 
|  | reduced_clock->m1 << 8 | reduced_clock->m2; | 
|  | } else { | 
|  | fp = clock->n << 16 | clock->m1 << 8 | clock->m2; | 
|  | if (reduced_clock) | 
|  | fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 | | 
|  | reduced_clock->m2; | 
|  | } | 
|  |  | 
|  | I915_WRITE(FP0(pipe), fp); | 
|  |  | 
|  | intel_crtc->lowfreq_avail = false; | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && | 
|  | reduced_clock && i915_powersave) { | 
|  | I915_WRITE(FP1(pipe), fp2); | 
|  | intel_crtc->lowfreq_avail = true; | 
|  | } else { | 
|  | I915_WRITE(FP1(pipe), fp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vlv_update_pll(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | intel_clock_t *clock, intel_clock_t *reduced_clock, | 
|  | int num_connectors) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 dpll, mdiv, pdiv; | 
|  | u32 bestn, bestm1, bestm2, bestp1, bestp2; | 
|  | bool is_sdvo; | 
|  | u32 temp; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) || | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI); | 
|  |  | 
|  | dpll = DPLL_VGA_MODE_DIS; | 
|  | dpll |= DPLL_EXT_BUFFER_ENABLE_VLV; | 
|  | dpll |= DPLL_REFA_CLK_ENABLE_VLV; | 
|  | dpll |= DPLL_INTEGRATED_CLOCK_VLV; | 
|  |  | 
|  | I915_WRITE(DPLL(pipe), dpll); | 
|  | POSTING_READ(DPLL(pipe)); | 
|  |  | 
|  | bestn = clock->n; | 
|  | bestm1 = clock->m1; | 
|  | bestm2 = clock->m2; | 
|  | bestp1 = clock->p1; | 
|  | bestp2 = clock->p2; | 
|  |  | 
|  | /* | 
|  | * In Valleyview PLL and program lane counter registers are exposed | 
|  | * through DPIO interface | 
|  | */ | 
|  | mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); | 
|  | mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); | 
|  | mdiv |= ((bestn << DPIO_N_SHIFT)); | 
|  | mdiv |= (1 << DPIO_POST_DIV_SHIFT); | 
|  | mdiv |= (1 << DPIO_K_SHIFT); | 
|  | mdiv |= DPIO_ENABLE_CALIBRATION; | 
|  | intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv); | 
|  |  | 
|  | intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000); | 
|  |  | 
|  | pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) | | 
|  | (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) | | 
|  | (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) | | 
|  | (5 << DPIO_CLK_BIAS_CTL_SHIFT); | 
|  | intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv); | 
|  |  | 
|  | intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b); | 
|  |  | 
|  | dpll |= DPLL_VCO_ENABLE; | 
|  | I915_WRITE(DPLL(pipe), dpll); | 
|  | POSTING_READ(DPLL(pipe)); | 
|  | if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) | 
|  | DRM_ERROR("DPLL %d failed to lock\n", pipe); | 
|  |  | 
|  | intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620); | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) | 
|  | intel_dp_set_m_n(crtc, mode, adjusted_mode); | 
|  |  | 
|  | I915_WRITE(DPLL(pipe), dpll); | 
|  |  | 
|  | /* Wait for the clocks to stabilize. */ | 
|  | POSTING_READ(DPLL(pipe)); | 
|  | udelay(150); | 
|  |  | 
|  | temp = 0; | 
|  | if (is_sdvo) { | 
|  | temp = intel_mode_get_pixel_multiplier(adjusted_mode); | 
|  | if (temp > 1) | 
|  | temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; | 
|  | else | 
|  | temp = 0; | 
|  | } | 
|  | I915_WRITE(DPLL_MD(pipe), temp); | 
|  | POSTING_READ(DPLL_MD(pipe)); | 
|  |  | 
|  | /* Now program lane control registers */ | 
|  | if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) | 
|  | || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) | 
|  | { | 
|  | temp = 0x1000C4; | 
|  | if(pipe == 1) | 
|  | temp |= (1 << 21); | 
|  | intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp); | 
|  | } | 
|  | if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP)) | 
|  | { | 
|  | temp = 0x1000C4; | 
|  | if(pipe == 1) | 
|  | temp |= (1 << 21); | 
|  | intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | static void i9xx_update_pll(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | intel_clock_t *clock, intel_clock_t *reduced_clock, | 
|  | int num_connectors) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 dpll; | 
|  | bool is_sdvo; | 
|  |  | 
|  | i9xx_update_pll_dividers(crtc, clock, reduced_clock); | 
|  |  | 
|  | is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) || | 
|  | intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI); | 
|  |  | 
|  | dpll = DPLL_VGA_MODE_DIS; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) | 
|  | dpll |= DPLLB_MODE_LVDS; | 
|  | else | 
|  | dpll |= DPLLB_MODE_DAC_SERIAL; | 
|  | if (is_sdvo) { | 
|  | int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); | 
|  | if (pixel_multiplier > 1) { | 
|  | if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) | 
|  | dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; | 
|  | } | 
|  | dpll |= DPLL_DVO_HIGH_SPEED; | 
|  | } | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) | 
|  | dpll |= DPLL_DVO_HIGH_SPEED; | 
|  |  | 
|  | /* compute bitmask from p1 value */ | 
|  | if (IS_PINEVIEW(dev)) | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; | 
|  | else { | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | if (IS_G4X(dev) && reduced_clock) | 
|  | dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; | 
|  | } | 
|  | switch (clock->p2) { | 
|  | case 5: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; | 
|  | break; | 
|  | case 7: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; | 
|  | break; | 
|  | case 10: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; | 
|  | break; | 
|  | case 14: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; | 
|  | break; | 
|  | } | 
|  | if (INTEL_INFO(dev)->gen >= 4) | 
|  | dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); | 
|  |  | 
|  | if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT)) | 
|  | dpll |= PLL_REF_INPUT_TVCLKINBC; | 
|  | else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT)) | 
|  | /* XXX: just matching BIOS for now */ | 
|  | /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */ | 
|  | dpll |= 3; | 
|  | else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && | 
|  | intel_panel_use_ssc(dev_priv) && num_connectors < 2) | 
|  | dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; | 
|  | else | 
|  | dpll |= PLL_REF_INPUT_DREFCLK; | 
|  |  | 
|  | dpll |= DPLL_VCO_ENABLE; | 
|  | I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE); | 
|  | POSTING_READ(DPLL(pipe)); | 
|  | udelay(150); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_pll_enable) | 
|  | encoder->pre_pll_enable(encoder); | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) | 
|  | intel_dp_set_m_n(crtc, mode, adjusted_mode); | 
|  |  | 
|  | I915_WRITE(DPLL(pipe), dpll); | 
|  |  | 
|  | /* Wait for the clocks to stabilize. */ | 
|  | POSTING_READ(DPLL(pipe)); | 
|  | udelay(150); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | u32 temp = 0; | 
|  | if (is_sdvo) { | 
|  | temp = intel_mode_get_pixel_multiplier(adjusted_mode); | 
|  | if (temp > 1) | 
|  | temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; | 
|  | else | 
|  | temp = 0; | 
|  | } | 
|  | I915_WRITE(DPLL_MD(pipe), temp); | 
|  | } else { | 
|  | /* The pixel multiplier can only be updated once the | 
|  | * DPLL is enabled and the clocks are stable. | 
|  | * | 
|  | * So write it again. | 
|  | */ | 
|  | I915_WRITE(DPLL(pipe), dpll); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void i8xx_update_pll(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | intel_clock_t *clock, intel_clock_t *reduced_clock, | 
|  | int num_connectors) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_encoder *encoder; | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 dpll; | 
|  |  | 
|  | i9xx_update_pll_dividers(crtc, clock, reduced_clock); | 
|  |  | 
|  | dpll = DPLL_VGA_MODE_DIS; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | } else { | 
|  | if (clock->p1 == 2) | 
|  | dpll |= PLL_P1_DIVIDE_BY_TWO; | 
|  | else | 
|  | dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | if (clock->p2 == 4) | 
|  | dpll |= PLL_P2_DIVIDE_BY_4; | 
|  | } | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT)) | 
|  | /* XXX: just matching BIOS for now */ | 
|  | /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */ | 
|  | dpll |= 3; | 
|  | else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && | 
|  | intel_panel_use_ssc(dev_priv) && num_connectors < 2) | 
|  | dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; | 
|  | else | 
|  | dpll |= PLL_REF_INPUT_DREFCLK; | 
|  |  | 
|  | dpll |= DPLL_VCO_ENABLE; | 
|  | I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE); | 
|  | POSTING_READ(DPLL(pipe)); | 
|  | udelay(150); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_pll_enable) | 
|  | encoder->pre_pll_enable(encoder); | 
|  |  | 
|  | I915_WRITE(DPLL(pipe), dpll); | 
|  |  | 
|  | /* Wait for the clocks to stabilize. */ | 
|  | POSTING_READ(DPLL(pipe)); | 
|  | udelay(150); | 
|  |  | 
|  | /* The pixel multiplier can only be updated once the | 
|  | * DPLL is enabled and the clocks are stable. | 
|  | * | 
|  | * So write it again. | 
|  | */ | 
|  | I915_WRITE(DPLL(pipe), dpll); | 
|  | } | 
|  |  | 
|  | static void intel_set_pipe_timings(struct intel_crtc *intel_crtc, | 
|  | struct drm_display_mode *mode, | 
|  | struct drm_display_mode *adjusted_mode) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; | 
|  | uint32_t vsyncshift; | 
|  |  | 
|  | if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { | 
|  | /* the chip adds 2 halflines automatically */ | 
|  | adjusted_mode->crtc_vtotal -= 1; | 
|  | adjusted_mode->crtc_vblank_end -= 1; | 
|  | vsyncshift = adjusted_mode->crtc_hsync_start | 
|  | - adjusted_mode->crtc_htotal / 2; | 
|  | } else { | 
|  | vsyncshift = 0; | 
|  | } | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen > 3) | 
|  | I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); | 
|  |  | 
|  | I915_WRITE(HTOTAL(cpu_transcoder), | 
|  | (adjusted_mode->crtc_hdisplay - 1) | | 
|  | ((adjusted_mode->crtc_htotal - 1) << 16)); | 
|  | I915_WRITE(HBLANK(cpu_transcoder), | 
|  | (adjusted_mode->crtc_hblank_start - 1) | | 
|  | ((adjusted_mode->crtc_hblank_end - 1) << 16)); | 
|  | I915_WRITE(HSYNC(cpu_transcoder), | 
|  | (adjusted_mode->crtc_hsync_start - 1) | | 
|  | ((adjusted_mode->crtc_hsync_end - 1) << 16)); | 
|  |  | 
|  | I915_WRITE(VTOTAL(cpu_transcoder), | 
|  | (adjusted_mode->crtc_vdisplay - 1) | | 
|  | ((adjusted_mode->crtc_vtotal - 1) << 16)); | 
|  | I915_WRITE(VBLANK(cpu_transcoder), | 
|  | (adjusted_mode->crtc_vblank_start - 1) | | 
|  | ((adjusted_mode->crtc_vblank_end - 1) << 16)); | 
|  | I915_WRITE(VSYNC(cpu_transcoder), | 
|  | (adjusted_mode->crtc_vsync_start - 1) | | 
|  | ((adjusted_mode->crtc_vsync_end - 1) << 16)); | 
|  |  | 
|  | /* Workaround: when the EDP input selection is B, the VTOTAL_B must be | 
|  | * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is | 
|  | * documented on the DDI_FUNC_CTL register description, EDP Input Select | 
|  | * bits. */ | 
|  | if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP && | 
|  | (pipe == PIPE_B || pipe == PIPE_C)) | 
|  | I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); | 
|  |  | 
|  | /* pipesrc controls the size that is scaled from, which should | 
|  | * always be the user's requested size. | 
|  | */ | 
|  | I915_WRITE(PIPESRC(pipe), | 
|  | ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1)); | 
|  | } | 
|  |  | 
|  | static int i9xx_crtc_mode_set(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | int x, int y, | 
|  | struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  | int refclk, num_connectors = 0; | 
|  | intel_clock_t clock, reduced_clock; | 
|  | u32 dspcntr, pipeconf; | 
|  | bool ok, has_reduced_clock = false, is_sdvo = false; | 
|  | bool is_lvds = false, is_tv = false, is_dp = false; | 
|  | struct intel_encoder *encoder; | 
|  | const intel_limit_t *limit; | 
|  | int ret; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | is_lvds = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_SDVO: | 
|  | case INTEL_OUTPUT_HDMI: | 
|  | is_sdvo = true; | 
|  | if (encoder->needs_tv_clock) | 
|  | is_tv = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_TVOUT: | 
|  | is_tv = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_DISPLAYPORT: | 
|  | is_dp = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | num_connectors++; | 
|  | } | 
|  |  | 
|  | refclk = i9xx_get_refclk(crtc, num_connectors); | 
|  |  | 
|  | /* | 
|  | * Returns a set of divisors for the desired target clock with the given | 
|  | * refclk, or FALSE.  The returned values represent the clock equation: | 
|  | * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. | 
|  | */ | 
|  | limit = intel_limit(crtc, refclk); | 
|  | ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL, | 
|  | &clock); | 
|  | if (!ok) { | 
|  | DRM_ERROR("Couldn't find PLL settings for mode!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Ensure that the cursor is valid for the new mode before changing... */ | 
|  | intel_crtc_update_cursor(crtc, true); | 
|  |  | 
|  | if (is_lvds && dev_priv->lvds_downclock_avail) { | 
|  | /* | 
|  | * Ensure we match the reduced clock's P to the target clock. | 
|  | * If the clocks don't match, we can't switch the display clock | 
|  | * by using the FP0/FP1. In such case we will disable the LVDS | 
|  | * downclock feature. | 
|  | */ | 
|  | has_reduced_clock = limit->find_pll(limit, crtc, | 
|  | dev_priv->lvds_downclock, | 
|  | refclk, | 
|  | &clock, | 
|  | &reduced_clock); | 
|  | } | 
|  |  | 
|  | if (is_sdvo && is_tv) | 
|  | i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock); | 
|  |  | 
|  | if (IS_GEN2(dev)) | 
|  | i8xx_update_pll(crtc, adjusted_mode, &clock, | 
|  | has_reduced_clock ? &reduced_clock : NULL, | 
|  | num_connectors); | 
|  | else if (IS_VALLEYVIEW(dev)) | 
|  | vlv_update_pll(crtc, mode, adjusted_mode, &clock, | 
|  | has_reduced_clock ? &reduced_clock : NULL, | 
|  | num_connectors); | 
|  | else | 
|  | i9xx_update_pll(crtc, mode, adjusted_mode, &clock, | 
|  | has_reduced_clock ? &reduced_clock : NULL, | 
|  | num_connectors); | 
|  |  | 
|  | /* setup pipeconf */ | 
|  | pipeconf = I915_READ(PIPECONF(pipe)); | 
|  |  | 
|  | /* Set up the display plane register */ | 
|  | dspcntr = DISPPLANE_GAMMA_ENABLE; | 
|  |  | 
|  | if (pipe == 0) | 
|  | dspcntr &= ~DISPPLANE_SEL_PIPE_MASK; | 
|  | else | 
|  | dspcntr |= DISPPLANE_SEL_PIPE_B; | 
|  |  | 
|  | if (pipe == 0 && INTEL_INFO(dev)->gen < 4) { | 
|  | /* Enable pixel doubling when the dot clock is > 90% of the (display) | 
|  | * core speed. | 
|  | * | 
|  | * XXX: No double-wide on 915GM pipe B. Is that the only reason for the | 
|  | * pipe == 0 check? | 
|  | */ | 
|  | if (mode->clock > | 
|  | dev_priv->display.get_display_clock_speed(dev) * 9 / 10) | 
|  | pipeconf |= PIPECONF_DOUBLE_WIDE; | 
|  | else | 
|  | pipeconf &= ~PIPECONF_DOUBLE_WIDE; | 
|  | } | 
|  |  | 
|  | /* default to 8bpc */ | 
|  | pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN); | 
|  | if (is_dp) { | 
|  | if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) { | 
|  | pipeconf |= PIPECONF_6BPC | | 
|  | PIPECONF_DITHER_EN | | 
|  | PIPECONF_DITHER_TYPE_SP; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) { | 
|  | if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) { | 
|  | pipeconf |= PIPECONF_6BPC | | 
|  | PIPECONF_ENABLE | | 
|  | I965_PIPECONF_ACTIVE; | 
|  | } | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B'); | 
|  | drm_mode_debug_printmodeline(mode); | 
|  |  | 
|  | if (HAS_PIPE_CXSR(dev)) { | 
|  | if (intel_crtc->lowfreq_avail) { | 
|  | DRM_DEBUG_KMS("enabling CxSR downclocking\n"); | 
|  | pipeconf |= PIPECONF_CXSR_DOWNCLOCK; | 
|  | } else { | 
|  | DRM_DEBUG_KMS("disabling CxSR downclocking\n"); | 
|  | pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK; | 
|  | } | 
|  | } | 
|  |  | 
|  | pipeconf &= ~PIPECONF_INTERLACE_MASK; | 
|  | if (!IS_GEN2(dev) && | 
|  | adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) | 
|  | pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; | 
|  | else | 
|  | pipeconf |= PIPECONF_PROGRESSIVE; | 
|  |  | 
|  | intel_set_pipe_timings(intel_crtc, mode, adjusted_mode); | 
|  |  | 
|  | /* pipesrc and dspsize control the size that is scaled from, | 
|  | * which should always be the user's requested size. | 
|  | */ | 
|  | I915_WRITE(DSPSIZE(plane), | 
|  | ((mode->vdisplay - 1) << 16) | | 
|  | (mode->hdisplay - 1)); | 
|  | I915_WRITE(DSPPOS(plane), 0); | 
|  |  | 
|  | I915_WRITE(PIPECONF(pipe), pipeconf); | 
|  | POSTING_READ(PIPECONF(pipe)); | 
|  | intel_enable_pipe(dev_priv, pipe, false); | 
|  |  | 
|  | intel_wait_for_vblank(dev, pipe); | 
|  |  | 
|  | I915_WRITE(DSPCNTR(plane), dspcntr); | 
|  | POSTING_READ(DSPCNTR(plane)); | 
|  |  | 
|  | ret = intel_pipe_set_base(crtc, x, y, fb); | 
|  |  | 
|  | intel_update_watermarks(dev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ironlake_init_pch_refclk(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_mode_config *mode_config = &dev->mode_config; | 
|  | struct intel_encoder *encoder; | 
|  | u32 temp; | 
|  | bool has_lvds = false; | 
|  | bool has_cpu_edp = false; | 
|  | bool has_pch_edp = false; | 
|  | bool has_panel = false; | 
|  | bool has_ck505 = false; | 
|  | bool can_ssc = false; | 
|  |  | 
|  | /* We need to take the global config into account */ | 
|  | list_for_each_entry(encoder, &mode_config->encoder_list, | 
|  | base.head) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | has_panel = true; | 
|  | has_lvds = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_EDP: | 
|  | has_panel = true; | 
|  | if (intel_encoder_is_pch_edp(&encoder->base)) | 
|  | has_pch_edp = true; | 
|  | else | 
|  | has_cpu_edp = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HAS_PCH_IBX(dev)) { | 
|  | has_ck505 = dev_priv->display_clock_mode; | 
|  | can_ssc = has_ck505; | 
|  | } else { | 
|  | has_ck505 = false; | 
|  | can_ssc = true; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n", | 
|  | has_panel, has_lvds, has_pch_edp, has_cpu_edp, | 
|  | has_ck505); | 
|  |  | 
|  | /* Ironlake: try to setup display ref clock before DPLL | 
|  | * enabling. This is only under driver's control after | 
|  | * PCH B stepping, previous chipset stepping should be | 
|  | * ignoring this setting. | 
|  | */ | 
|  | temp = I915_READ(PCH_DREF_CONTROL); | 
|  | /* Always enable nonspread source */ | 
|  | temp &= ~DREF_NONSPREAD_SOURCE_MASK; | 
|  |  | 
|  | if (has_ck505) | 
|  | temp |= DREF_NONSPREAD_CK505_ENABLE; | 
|  | else | 
|  | temp |= DREF_NONSPREAD_SOURCE_ENABLE; | 
|  |  | 
|  | if (has_panel) { | 
|  | temp &= ~DREF_SSC_SOURCE_MASK; | 
|  | temp |= DREF_SSC_SOURCE_ENABLE; | 
|  |  | 
|  | /* SSC must be turned on before enabling the CPU output  */ | 
|  | if (intel_panel_use_ssc(dev_priv) && can_ssc) { | 
|  | DRM_DEBUG_KMS("Using SSC on panel\n"); | 
|  | temp |= DREF_SSC1_ENABLE; | 
|  | } else | 
|  | temp &= ~DREF_SSC1_ENABLE; | 
|  |  | 
|  | /* Get SSC going before enabling the outputs */ | 
|  | I915_WRITE(PCH_DREF_CONTROL, temp); | 
|  | POSTING_READ(PCH_DREF_CONTROL); | 
|  | udelay(200); | 
|  |  | 
|  | temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK; | 
|  |  | 
|  | /* Enable CPU source on CPU attached eDP */ | 
|  | if (has_cpu_edp) { | 
|  | if (intel_panel_use_ssc(dev_priv) && can_ssc) { | 
|  | DRM_DEBUG_KMS("Using SSC on eDP\n"); | 
|  | temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; | 
|  | } | 
|  | else | 
|  | temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; | 
|  | } else | 
|  | temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE; | 
|  |  | 
|  | I915_WRITE(PCH_DREF_CONTROL, temp); | 
|  | POSTING_READ(PCH_DREF_CONTROL); | 
|  | udelay(200); | 
|  | } else { | 
|  | DRM_DEBUG_KMS("Disabling SSC entirely\n"); | 
|  |  | 
|  | temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK; | 
|  |  | 
|  | /* Turn off CPU output */ | 
|  | temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE; | 
|  |  | 
|  | I915_WRITE(PCH_DREF_CONTROL, temp); | 
|  | POSTING_READ(PCH_DREF_CONTROL); | 
|  | udelay(200); | 
|  |  | 
|  | /* Turn off the SSC source */ | 
|  | temp &= ~DREF_SSC_SOURCE_MASK; | 
|  | temp |= DREF_SSC_SOURCE_DISABLE; | 
|  |  | 
|  | /* Turn off SSC1 */ | 
|  | temp &= ~ DREF_SSC1_ENABLE; | 
|  |  | 
|  | I915_WRITE(PCH_DREF_CONTROL, temp); | 
|  | POSTING_READ(PCH_DREF_CONTROL); | 
|  | udelay(200); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */ | 
|  | static void lpt_init_pch_refclk(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_mode_config *mode_config = &dev->mode_config; | 
|  | struct intel_encoder *encoder; | 
|  | bool has_vga = false; | 
|  | bool is_sdv = false; | 
|  | u32 tmp; | 
|  |  | 
|  | list_for_each_entry(encoder, &mode_config->encoder_list, base.head) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_ANALOG: | 
|  | has_vga = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!has_vga) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | /* XXX: Rip out SDV support once Haswell ships for real. */ | 
|  | if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00) | 
|  | is_sdv = true; | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); | 
|  | tmp &= ~SBI_SSCCTL_DISABLE; | 
|  | tmp |= SBI_SSCCTL_PATHALT; | 
|  | intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); | 
|  |  | 
|  | udelay(24); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); | 
|  | tmp &= ~SBI_SSCCTL_PATHALT; | 
|  | intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); | 
|  |  | 
|  | if (!is_sdv) { | 
|  | tmp = I915_READ(SOUTH_CHICKEN2); | 
|  | tmp |= FDI_MPHY_IOSFSB_RESET_CTL; | 
|  | I915_WRITE(SOUTH_CHICKEN2, tmp); | 
|  |  | 
|  | if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) & | 
|  | FDI_MPHY_IOSFSB_RESET_STATUS, 100)) | 
|  | DRM_ERROR("FDI mPHY reset assert timeout\n"); | 
|  |  | 
|  | tmp = I915_READ(SOUTH_CHICKEN2); | 
|  | tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; | 
|  | I915_WRITE(SOUTH_CHICKEN2, tmp); | 
|  |  | 
|  | if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) & | 
|  | FDI_MPHY_IOSFSB_RESET_STATUS) == 0, | 
|  | 100)) | 
|  | DRM_ERROR("FDI mPHY reset de-assert timeout\n"); | 
|  | } | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); | 
|  | tmp &= ~(0xFF << 24); | 
|  | tmp |= (0x12 << 24); | 
|  | intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); | 
|  |  | 
|  | if (!is_sdv) { | 
|  | tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY); | 
|  | tmp &= ~(0x3 << 6); | 
|  | tmp |= (1 << 6) | (1 << 0); | 
|  | intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY); | 
|  | } | 
|  |  | 
|  | if (is_sdv) { | 
|  | tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY); | 
|  | tmp |= 0x7FFF; | 
|  | intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY); | 
|  | } | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); | 
|  | tmp |= (1 << 11); | 
|  | intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); | 
|  | tmp |= (1 << 11); | 
|  | intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); | 
|  |  | 
|  | if (is_sdv) { | 
|  | tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY); | 
|  | tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16); | 
|  | intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY); | 
|  | tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16); | 
|  | intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY); | 
|  | tmp |= (0x3F << 8); | 
|  | intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY); | 
|  | tmp |= (0x3F << 8); | 
|  | intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY); | 
|  | } | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); | 
|  | tmp |= (1 << 24) | (1 << 21) | (1 << 18); | 
|  | intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); | 
|  | tmp |= (1 << 24) | (1 << 21) | (1 << 18); | 
|  | intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); | 
|  |  | 
|  | if (!is_sdv) { | 
|  | tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); | 
|  | tmp &= ~(7 << 13); | 
|  | tmp |= (5 << 13); | 
|  | intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); | 
|  | tmp &= ~(7 << 13); | 
|  | tmp |= (5 << 13); | 
|  | intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); | 
|  | } | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); | 
|  | tmp &= ~0xFF; | 
|  | tmp |= 0x1C; | 
|  | intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); | 
|  | tmp &= ~0xFF; | 
|  | tmp |= 0x1C; | 
|  | intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); | 
|  | tmp &= ~(0xFF << 16); | 
|  | tmp |= (0x1C << 16); | 
|  | intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); | 
|  | tmp &= ~(0xFF << 16); | 
|  | tmp |= (0x1C << 16); | 
|  | intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); | 
|  |  | 
|  | if (!is_sdv) { | 
|  | tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); | 
|  | tmp |= (1 << 27); | 
|  | intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); | 
|  | tmp |= (1 << 27); | 
|  | intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); | 
|  | tmp &= ~(0xF << 28); | 
|  | tmp |= (4 << 28); | 
|  | intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); | 
|  |  | 
|  | tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); | 
|  | tmp &= ~(0xF << 28); | 
|  | tmp |= (4 << 28); | 
|  | intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); | 
|  | } | 
|  |  | 
|  | /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */ | 
|  | tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK); | 
|  | tmp |= SBI_DBUFF0_ENABLE; | 
|  | intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK); | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize reference clocks when the driver loads | 
|  | */ | 
|  | void intel_init_pch_refclk(struct drm_device *dev) | 
|  | { | 
|  | if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) | 
|  | ironlake_init_pch_refclk(dev); | 
|  | else if (HAS_PCH_LPT(dev)) | 
|  | lpt_init_pch_refclk(dev); | 
|  | } | 
|  |  | 
|  | static int ironlake_get_refclk(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_encoder *edp_encoder = NULL; | 
|  | int num_connectors = 0; | 
|  | bool is_lvds = false; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | is_lvds = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_EDP: | 
|  | edp_encoder = encoder; | 
|  | break; | 
|  | } | 
|  | num_connectors++; | 
|  | } | 
|  |  | 
|  | if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) { | 
|  | DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n", | 
|  | dev_priv->lvds_ssc_freq); | 
|  | return dev_priv->lvds_ssc_freq * 1000; | 
|  | } | 
|  |  | 
|  | return 120000; | 
|  | } | 
|  |  | 
|  | static void ironlake_set_pipeconf(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | bool dither) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = crtc->dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | uint32_t val; | 
|  |  | 
|  | val = I915_READ(PIPECONF(pipe)); | 
|  |  | 
|  | val &= ~PIPECONF_BPC_MASK; | 
|  | switch (intel_crtc->bpp) { | 
|  | case 18: | 
|  | val |= PIPECONF_6BPC; | 
|  | break; | 
|  | case 24: | 
|  | val |= PIPECONF_8BPC; | 
|  | break; | 
|  | case 30: | 
|  | val |= PIPECONF_10BPC; | 
|  | break; | 
|  | case 36: | 
|  | val |= PIPECONF_12BPC; | 
|  | break; | 
|  | default: | 
|  | /* Case prevented by intel_choose_pipe_bpp_dither. */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK); | 
|  | if (dither) | 
|  | val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); | 
|  |  | 
|  | val &= ~PIPECONF_INTERLACE_MASK; | 
|  | if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) | 
|  | val |= PIPECONF_INTERLACED_ILK; | 
|  | else | 
|  | val |= PIPECONF_PROGRESSIVE; | 
|  |  | 
|  | if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE) | 
|  | val |= PIPECONF_COLOR_RANGE_SELECT; | 
|  | else | 
|  | val &= ~PIPECONF_COLOR_RANGE_SELECT; | 
|  |  | 
|  | I915_WRITE(PIPECONF(pipe), val); | 
|  | POSTING_READ(PIPECONF(pipe)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the pipe CSC unit. | 
|  | * | 
|  | * Currently only full range RGB to limited range RGB conversion | 
|  | * is supported, but eventually this should handle various | 
|  | * RGB<->YCbCr scenarios as well. | 
|  | */ | 
|  | static void intel_set_pipe_csc(struct drm_crtc *crtc, | 
|  | const struct drm_display_mode *adjusted_mode) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | uint16_t coeff = 0x7800; /* 1.0 */ | 
|  |  | 
|  | /* | 
|  | * TODO: Check what kind of values actually come out of the pipe | 
|  | * with these coeff/postoff values and adjust to get the best | 
|  | * accuracy. Perhaps we even need to take the bpc value into | 
|  | * consideration. | 
|  | */ | 
|  |  | 
|  | if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE) | 
|  | coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */ | 
|  |  | 
|  | /* | 
|  | * GY/GU and RY/RU should be the other way around according | 
|  | * to BSpec, but reality doesn't agree. Just set them up in | 
|  | * a way that results in the correct picture. | 
|  | */ | 
|  | I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16); | 
|  | I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0); | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff); | 
|  | I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0); | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0); | 
|  | I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16); | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0); | 
|  | I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0); | 
|  | I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0); | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen > 6) { | 
|  | uint16_t postoff = 0; | 
|  |  | 
|  | if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE) | 
|  | postoff = (16 * (1 << 13) / 255) & 0x1fff; | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff); | 
|  | I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff); | 
|  | I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff); | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_MODE(pipe), 0); | 
|  | } else { | 
|  | uint32_t mode = CSC_MODE_YUV_TO_RGB; | 
|  |  | 
|  | if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE) | 
|  | mode |= CSC_BLACK_SCREEN_OFFSET; | 
|  |  | 
|  | I915_WRITE(PIPE_CSC_MODE(pipe), mode); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void haswell_set_pipeconf(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | bool dither) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = crtc->dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; | 
|  | uint32_t val; | 
|  |  | 
|  | val = I915_READ(PIPECONF(cpu_transcoder)); | 
|  |  | 
|  | val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK); | 
|  | if (dither) | 
|  | val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); | 
|  |  | 
|  | val &= ~PIPECONF_INTERLACE_MASK_HSW; | 
|  | if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) | 
|  | val |= PIPECONF_INTERLACED_ILK; | 
|  | else | 
|  | val |= PIPECONF_PROGRESSIVE; | 
|  |  | 
|  | I915_WRITE(PIPECONF(cpu_transcoder), val); | 
|  | POSTING_READ(PIPECONF(cpu_transcoder)); | 
|  | } | 
|  |  | 
|  | static bool ironlake_compute_clocks(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | intel_clock_t *clock, | 
|  | bool *has_reduced_clock, | 
|  | intel_clock_t *reduced_clock) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *intel_encoder; | 
|  | int refclk; | 
|  | const intel_limit_t *limit; | 
|  | bool ret, is_sdvo = false, is_tv = false, is_lvds = false; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) { | 
|  | switch (intel_encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | is_lvds = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_SDVO: | 
|  | case INTEL_OUTPUT_HDMI: | 
|  | is_sdvo = true; | 
|  | if (intel_encoder->needs_tv_clock) | 
|  | is_tv = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_TVOUT: | 
|  | is_tv = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | refclk = ironlake_get_refclk(crtc); | 
|  |  | 
|  | /* | 
|  | * Returns a set of divisors for the desired target clock with the given | 
|  | * refclk, or FALSE.  The returned values represent the clock equation: | 
|  | * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. | 
|  | */ | 
|  | limit = intel_limit(crtc, refclk); | 
|  | ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL, | 
|  | clock); | 
|  | if (!ret) | 
|  | return false; | 
|  |  | 
|  | if (is_lvds && dev_priv->lvds_downclock_avail) { | 
|  | /* | 
|  | * Ensure we match the reduced clock's P to the target clock. | 
|  | * If the clocks don't match, we can't switch the display clock | 
|  | * by using the FP0/FP1. In such case we will disable the LVDS | 
|  | * downclock feature. | 
|  | */ | 
|  | *has_reduced_clock = limit->find_pll(limit, crtc, | 
|  | dev_priv->lvds_downclock, | 
|  | refclk, | 
|  | clock, | 
|  | reduced_clock); | 
|  | } | 
|  |  | 
|  | if (is_sdvo && is_tv) | 
|  | i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t temp; | 
|  |  | 
|  | temp = I915_READ(SOUTH_CHICKEN1); | 
|  | if (temp & FDI_BC_BIFURCATION_SELECT) | 
|  | return; | 
|  |  | 
|  | WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); | 
|  | WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); | 
|  |  | 
|  | temp |= FDI_BC_BIFURCATION_SELECT; | 
|  | DRM_DEBUG_KMS("enabling fdi C rx\n"); | 
|  | I915_WRITE(SOUTH_CHICKEN1, temp); | 
|  | POSTING_READ(SOUTH_CHICKEN1); | 
|  | } | 
|  |  | 
|  | static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | struct drm_device *dev = intel_crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *pipe_B_crtc = | 
|  | to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]); | 
|  |  | 
|  | DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n", | 
|  | intel_crtc->pipe, intel_crtc->fdi_lanes); | 
|  | if (intel_crtc->fdi_lanes > 4) { | 
|  | DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n", | 
|  | intel_crtc->pipe, intel_crtc->fdi_lanes); | 
|  | /* Clamp lanes to avoid programming the hw with bogus values. */ | 
|  | intel_crtc->fdi_lanes = 4; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (dev_priv->num_pipe == 2) | 
|  | return true; | 
|  |  | 
|  | switch (intel_crtc->pipe) { | 
|  | case PIPE_A: | 
|  | return true; | 
|  | case PIPE_B: | 
|  | if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled && | 
|  | intel_crtc->fdi_lanes > 2) { | 
|  | DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n", | 
|  | intel_crtc->pipe, intel_crtc->fdi_lanes); | 
|  | /* Clamp lanes to avoid programming the hw with bogus values. */ | 
|  | intel_crtc->fdi_lanes = 2; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (intel_crtc->fdi_lanes > 2) | 
|  | WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT); | 
|  | else | 
|  | cpt_enable_fdi_bc_bifurcation(dev); | 
|  |  | 
|  | return true; | 
|  | case PIPE_C: | 
|  | if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) { | 
|  | if (intel_crtc->fdi_lanes > 2) { | 
|  | DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n", | 
|  | intel_crtc->pipe, intel_crtc->fdi_lanes); | 
|  | /* Clamp lanes to avoid programming the hw with bogus values. */ | 
|  | intel_crtc->fdi_lanes = 2; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | cpt_enable_fdi_bc_bifurcation(dev); | 
|  |  | 
|  | return true; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) | 
|  | { | 
|  | /* | 
|  | * Account for spread spectrum to avoid | 
|  | * oversubscribing the link. Max center spread | 
|  | * is 2.5%; use 5% for safety's sake. | 
|  | */ | 
|  | u32 bps = target_clock * bpp * 21 / 20; | 
|  | return bps / (link_bw * 8) + 1; | 
|  | } | 
|  |  | 
|  | static void ironlake_set_m_n(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode, | 
|  | struct drm_display_mode *adjusted_mode) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; | 
|  | struct intel_encoder *intel_encoder, *edp_encoder = NULL; | 
|  | struct intel_link_m_n m_n = {0}; | 
|  | int target_clock, pixel_multiplier, lane, link_bw; | 
|  | bool is_dp = false, is_cpu_edp = false; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) { | 
|  | switch (intel_encoder->type) { | 
|  | case INTEL_OUTPUT_DISPLAYPORT: | 
|  | is_dp = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_EDP: | 
|  | is_dp = true; | 
|  | if (!intel_encoder_is_pch_edp(&intel_encoder->base)) | 
|  | is_cpu_edp = true; | 
|  | edp_encoder = intel_encoder; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* FDI link */ | 
|  | pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); | 
|  | lane = 0; | 
|  | /* CPU eDP doesn't require FDI link, so just set DP M/N | 
|  | according to current link config */ | 
|  | if (is_cpu_edp) { | 
|  | intel_edp_link_config(edp_encoder, &lane, &link_bw); | 
|  | } else { | 
|  | /* FDI is a binary signal running at ~2.7GHz, encoding | 
|  | * each output octet as 10 bits. The actual frequency | 
|  | * is stored as a divider into a 100MHz clock, and the | 
|  | * mode pixel clock is stored in units of 1KHz. | 
|  | * Hence the bw of each lane in terms of the mode signal | 
|  | * is: | 
|  | */ | 
|  | link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10; | 
|  | } | 
|  |  | 
|  | /* [e]DP over FDI requires target mode clock instead of link clock. */ | 
|  | if (edp_encoder) | 
|  | target_clock = intel_edp_target_clock(edp_encoder, mode); | 
|  | else if (is_dp) | 
|  | target_clock = mode->clock; | 
|  | else | 
|  | target_clock = adjusted_mode->clock; | 
|  |  | 
|  | if (!lane) | 
|  | lane = ironlake_get_lanes_required(target_clock, link_bw, | 
|  | intel_crtc->bpp); | 
|  |  | 
|  | intel_crtc->fdi_lanes = lane; | 
|  |  | 
|  | if (pixel_multiplier > 1) | 
|  | link_bw *= pixel_multiplier; | 
|  | intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n); | 
|  |  | 
|  | I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m); | 
|  | I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n); | 
|  | I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m); | 
|  | I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n); | 
|  | } | 
|  |  | 
|  | static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | intel_clock_t *clock, u32 fp) | 
|  | { | 
|  | struct drm_crtc *crtc = &intel_crtc->base; | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *intel_encoder; | 
|  | uint32_t dpll; | 
|  | int factor, pixel_multiplier, num_connectors = 0; | 
|  | bool is_lvds = false, is_sdvo = false, is_tv = false; | 
|  | bool is_dp = false, is_cpu_edp = false; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) { | 
|  | switch (intel_encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | is_lvds = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_SDVO: | 
|  | case INTEL_OUTPUT_HDMI: | 
|  | is_sdvo = true; | 
|  | if (intel_encoder->needs_tv_clock) | 
|  | is_tv = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_TVOUT: | 
|  | is_tv = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_DISPLAYPORT: | 
|  | is_dp = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_EDP: | 
|  | is_dp = true; | 
|  | if (!intel_encoder_is_pch_edp(&intel_encoder->base)) | 
|  | is_cpu_edp = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | num_connectors++; | 
|  | } | 
|  |  | 
|  | /* Enable autotuning of the PLL clock (if permissible) */ | 
|  | factor = 21; | 
|  | if (is_lvds) { | 
|  | if ((intel_panel_use_ssc(dev_priv) && | 
|  | dev_priv->lvds_ssc_freq == 100) || | 
|  | intel_is_dual_link_lvds(dev)) | 
|  | factor = 25; | 
|  | } else if (is_sdvo && is_tv) | 
|  | factor = 20; | 
|  |  | 
|  | if (clock->m < factor * clock->n) | 
|  | fp |= FP_CB_TUNE; | 
|  |  | 
|  | dpll = 0; | 
|  |  | 
|  | if (is_lvds) | 
|  | dpll |= DPLLB_MODE_LVDS; | 
|  | else | 
|  | dpll |= DPLLB_MODE_DAC_SERIAL; | 
|  | if (is_sdvo) { | 
|  | pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode); | 
|  | if (pixel_multiplier > 1) { | 
|  | dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; | 
|  | } | 
|  | dpll |= DPLL_DVO_HIGH_SPEED; | 
|  | } | 
|  | if (is_dp && !is_cpu_edp) | 
|  | dpll |= DPLL_DVO_HIGH_SPEED; | 
|  |  | 
|  | /* compute bitmask from p1 value */ | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; | 
|  | /* also FPA1 */ | 
|  | dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; | 
|  |  | 
|  | switch (clock->p2) { | 
|  | case 5: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; | 
|  | break; | 
|  | case 7: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; | 
|  | break; | 
|  | case 10: | 
|  | dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; | 
|  | break; | 
|  | case 14: | 
|  | dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (is_sdvo && is_tv) | 
|  | dpll |= PLL_REF_INPUT_TVCLKINBC; | 
|  | else if (is_tv) | 
|  | /* XXX: just matching BIOS for now */ | 
|  | /*	dpll |= PLL_REF_INPUT_TVCLKINBC; */ | 
|  | dpll |= 3; | 
|  | else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) | 
|  | dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; | 
|  | else | 
|  | dpll |= PLL_REF_INPUT_DREFCLK; | 
|  |  | 
|  | return dpll; | 
|  | } | 
|  |  | 
|  | static int ironlake_crtc_mode_set(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | int x, int y, | 
|  | struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  | int num_connectors = 0; | 
|  | intel_clock_t clock, reduced_clock; | 
|  | u32 dpll, fp = 0, fp2 = 0; | 
|  | bool ok, has_reduced_clock = false; | 
|  | bool is_lvds = false, is_dp = false, is_cpu_edp = false; | 
|  | struct intel_encoder *encoder; | 
|  | int ret; | 
|  | bool dither, fdi_config_ok; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_LVDS: | 
|  | is_lvds = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_DISPLAYPORT: | 
|  | is_dp = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_EDP: | 
|  | is_dp = true; | 
|  | if (!intel_encoder_is_pch_edp(&encoder->base)) | 
|  | is_cpu_edp = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | num_connectors++; | 
|  | } | 
|  |  | 
|  | WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)), | 
|  | "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev)); | 
|  |  | 
|  | ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock, | 
|  | &has_reduced_clock, &reduced_clock); | 
|  | if (!ok) { | 
|  | DRM_ERROR("Couldn't find PLL settings for mode!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Ensure that the cursor is valid for the new mode before changing... */ | 
|  | intel_crtc_update_cursor(crtc, true); | 
|  |  | 
|  | /* determine panel color depth */ | 
|  | dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, | 
|  | adjusted_mode); | 
|  | if (is_lvds && dev_priv->lvds_dither) | 
|  | dither = true; | 
|  |  | 
|  | fp = clock.n << 16 | clock.m1 << 8 | clock.m2; | 
|  | if (has_reduced_clock) | 
|  | fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 | | 
|  | reduced_clock.m2; | 
|  |  | 
|  | dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp); | 
|  |  | 
|  | DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe); | 
|  | drm_mode_debug_printmodeline(mode); | 
|  |  | 
|  | /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ | 
|  | if (!is_cpu_edp) { | 
|  | struct intel_pch_pll *pll; | 
|  |  | 
|  | pll = intel_get_pch_pll(intel_crtc, dpll, fp); | 
|  | if (pll == NULL) { | 
|  | DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n", | 
|  | pipe); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else | 
|  | intel_put_pch_pll(intel_crtc); | 
|  |  | 
|  | if (is_dp && !is_cpu_edp) | 
|  | intel_dp_set_m_n(crtc, mode, adjusted_mode); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) | 
|  | if (encoder->pre_pll_enable) | 
|  | encoder->pre_pll_enable(encoder); | 
|  |  | 
|  | if (intel_crtc->pch_pll) { | 
|  | I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll); | 
|  |  | 
|  | /* Wait for the clocks to stabilize. */ | 
|  | POSTING_READ(intel_crtc->pch_pll->pll_reg); | 
|  | udelay(150); | 
|  |  | 
|  | /* The pixel multiplier can only be updated once the | 
|  | * DPLL is enabled and the clocks are stable. | 
|  | * | 
|  | * So write it again. | 
|  | */ | 
|  | I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll); | 
|  | } | 
|  |  | 
|  | intel_crtc->lowfreq_avail = false; | 
|  | if (intel_crtc->pch_pll) { | 
|  | if (is_lvds && has_reduced_clock && i915_powersave) { | 
|  | I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2); | 
|  | intel_crtc->lowfreq_avail = true; | 
|  | } else { | 
|  | I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp); | 
|  | } | 
|  | } | 
|  |  | 
|  | intel_set_pipe_timings(intel_crtc, mode, adjusted_mode); | 
|  |  | 
|  | /* Note, this also computes intel_crtc->fdi_lanes which is used below in | 
|  | * ironlake_check_fdi_lanes. */ | 
|  | ironlake_set_m_n(crtc, mode, adjusted_mode); | 
|  |  | 
|  | fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc); | 
|  |  | 
|  | ironlake_set_pipeconf(crtc, adjusted_mode, dither); | 
|  |  | 
|  | intel_wait_for_vblank(dev, pipe); | 
|  |  | 
|  | /* Set up the display plane register */ | 
|  | I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE); | 
|  | POSTING_READ(DSPCNTR(plane)); | 
|  |  | 
|  | ret = intel_pipe_set_base(crtc, x, y, fb); | 
|  |  | 
|  | intel_update_watermarks(dev); | 
|  |  | 
|  | intel_update_linetime_watermarks(dev, pipe, adjusted_mode); | 
|  |  | 
|  | return fdi_config_ok ? ret : -EINVAL; | 
|  | } | 
|  |  | 
|  | static void haswell_modeset_global_resources(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | bool enable = false; | 
|  | struct intel_crtc *crtc; | 
|  | struct intel_encoder *encoder; | 
|  |  | 
|  | list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) { | 
|  | if (crtc->pipe != PIPE_A && crtc->base.enabled) | 
|  | enable = true; | 
|  | /* XXX: Should check for edp transcoder here, but thanks to init | 
|  | * sequence that's not yet available. Just in case desktop eDP | 
|  | * on PORT D is possible on haswell, too. */ | 
|  | } | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | if (encoder->type != INTEL_OUTPUT_EDP && | 
|  | encoder->connectors_active) | 
|  | enable = true; | 
|  | } | 
|  |  | 
|  | /* Even the eDP panel fitter is outside the always-on well. */ | 
|  | if (dev_priv->pch_pf_size) | 
|  | enable = true; | 
|  |  | 
|  | intel_set_power_well(dev, enable); | 
|  | } | 
|  |  | 
|  | static int haswell_crtc_mode_set(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | int x, int y, | 
|  | struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | int plane = intel_crtc->plane; | 
|  | int num_connectors = 0; | 
|  | bool is_dp = false, is_cpu_edp = false; | 
|  | struct intel_encoder *encoder; | 
|  | int ret; | 
|  | bool dither; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) { | 
|  | switch (encoder->type) { | 
|  | case INTEL_OUTPUT_DISPLAYPORT: | 
|  | is_dp = true; | 
|  | break; | 
|  | case INTEL_OUTPUT_EDP: | 
|  | is_dp = true; | 
|  | if (!intel_encoder_is_pch_edp(&encoder->base)) | 
|  | is_cpu_edp = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | num_connectors++; | 
|  | } | 
|  |  | 
|  | /* We are not sure yet this won't happen. */ | 
|  | WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n", | 
|  | INTEL_PCH_TYPE(dev)); | 
|  |  | 
|  | WARN(num_connectors != 1, "%d connectors attached to pipe %c\n", | 
|  | num_connectors, pipe_name(pipe)); | 
|  |  | 
|  | WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) & | 
|  | (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE)); | 
|  |  | 
|  | WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE); | 
|  |  | 
|  | if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Ensure that the cursor is valid for the new mode before changing... */ | 
|  | intel_crtc_update_cursor(crtc, true); | 
|  |  | 
|  | /* determine panel color depth */ | 
|  | dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp, | 
|  | adjusted_mode); | 
|  |  | 
|  | DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe); | 
|  | drm_mode_debug_printmodeline(mode); | 
|  |  | 
|  | if (is_dp && !is_cpu_edp) | 
|  | intel_dp_set_m_n(crtc, mode, adjusted_mode); | 
|  |  | 
|  | intel_crtc->lowfreq_avail = false; | 
|  |  | 
|  | intel_set_pipe_timings(intel_crtc, mode, adjusted_mode); | 
|  |  | 
|  | if (!is_dp || is_cpu_edp) | 
|  | ironlake_set_m_n(crtc, mode, adjusted_mode); | 
|  |  | 
|  | haswell_set_pipeconf(crtc, adjusted_mode, dither); | 
|  |  | 
|  | intel_set_pipe_csc(crtc, adjusted_mode); | 
|  |  | 
|  | /* Set up the display plane register */ | 
|  | I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE); | 
|  | POSTING_READ(DSPCNTR(plane)); | 
|  |  | 
|  | ret = intel_pipe_set_base(crtc, x, y, fb); | 
|  |  | 
|  | intel_update_watermarks(dev); | 
|  |  | 
|  | intel_update_linetime_watermarks(dev, pipe, adjusted_mode); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_crtc_mode_set(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode, | 
|  | struct drm_display_mode *adjusted_mode, | 
|  | int x, int y, | 
|  | struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_encoder_helper_funcs *encoder_funcs; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | int ret; | 
|  |  | 
|  | if (IS_HASWELL(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) | 
|  | intel_crtc->cpu_transcoder = TRANSCODER_EDP; | 
|  | else | 
|  | intel_crtc->cpu_transcoder = pipe; | 
|  |  | 
|  | drm_vblank_pre_modeset(dev, pipe); | 
|  |  | 
|  | ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode, | 
|  | x, y, fb); | 
|  | drm_vblank_post_modeset(dev, pipe); | 
|  |  | 
|  | if (ret != 0) | 
|  | return ret; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, encoder) { | 
|  | DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n", | 
|  | encoder->base.base.id, | 
|  | drm_get_encoder_name(&encoder->base), | 
|  | mode->base.id, mode->name); | 
|  | encoder_funcs = encoder->base.helper_private; | 
|  | encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool intel_eld_uptodate(struct drm_connector *connector, | 
|  | int reg_eldv, uint32_t bits_eldv, | 
|  | int reg_elda, uint32_t bits_elda, | 
|  | int reg_edid) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = connector->dev->dev_private; | 
|  | uint8_t *eld = connector->eld; | 
|  | uint32_t i; | 
|  |  | 
|  | i = I915_READ(reg_eldv); | 
|  | i &= bits_eldv; | 
|  |  | 
|  | if (!eld[0]) | 
|  | return !i; | 
|  |  | 
|  | if (!i) | 
|  | return false; | 
|  |  | 
|  | i = I915_READ(reg_elda); | 
|  | i &= ~bits_elda; | 
|  | I915_WRITE(reg_elda, i); | 
|  |  | 
|  | for (i = 0; i < eld[2]; i++) | 
|  | if (I915_READ(reg_edid) != *((uint32_t *)eld + i)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void g4x_write_eld(struct drm_connector *connector, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = connector->dev->dev_private; | 
|  | uint8_t *eld = connector->eld; | 
|  | uint32_t eldv; | 
|  | uint32_t len; | 
|  | uint32_t i; | 
|  |  | 
|  | i = I915_READ(G4X_AUD_VID_DID); | 
|  |  | 
|  | if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL) | 
|  | eldv = G4X_ELDV_DEVCL_DEVBLC; | 
|  | else | 
|  | eldv = G4X_ELDV_DEVCTG; | 
|  |  | 
|  | if (intel_eld_uptodate(connector, | 
|  | G4X_AUD_CNTL_ST, eldv, | 
|  | G4X_AUD_CNTL_ST, G4X_ELD_ADDR, | 
|  | G4X_HDMIW_HDMIEDID)) | 
|  | return; | 
|  |  | 
|  | i = I915_READ(G4X_AUD_CNTL_ST); | 
|  | i &= ~(eldv | G4X_ELD_ADDR); | 
|  | len = (i >> 9) & 0x1f;		/* ELD buffer size */ | 
|  | I915_WRITE(G4X_AUD_CNTL_ST, i); | 
|  |  | 
|  | if (!eld[0]) | 
|  | return; | 
|  |  | 
|  | len = min_t(uint8_t, eld[2], len); | 
|  | DRM_DEBUG_DRIVER("ELD size %d\n", len); | 
|  | for (i = 0; i < len; i++) | 
|  | I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i)); | 
|  |  | 
|  | i = I915_READ(G4X_AUD_CNTL_ST); | 
|  | i |= eldv; | 
|  | I915_WRITE(G4X_AUD_CNTL_ST, i); | 
|  | } | 
|  |  | 
|  | static void haswell_write_eld(struct drm_connector *connector, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = connector->dev->dev_private; | 
|  | uint8_t *eld = connector->eld; | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | uint32_t eldv; | 
|  | uint32_t i; | 
|  | int len; | 
|  | int pipe = to_intel_crtc(crtc)->pipe; | 
|  | int tmp; | 
|  |  | 
|  | int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe); | 
|  | int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe); | 
|  | int aud_config = HSW_AUD_CFG(pipe); | 
|  | int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD; | 
|  |  | 
|  |  | 
|  | DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n"); | 
|  |  | 
|  | /* Audio output enable */ | 
|  | DRM_DEBUG_DRIVER("HDMI audio: enable codec\n"); | 
|  | tmp = I915_READ(aud_cntrl_st2); | 
|  | tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4)); | 
|  | I915_WRITE(aud_cntrl_st2, tmp); | 
|  |  | 
|  | /* Wait for 1 vertical blank */ | 
|  | intel_wait_for_vblank(dev, pipe); | 
|  |  | 
|  | /* Set ELD valid state */ | 
|  | tmp = I915_READ(aud_cntrl_st2); | 
|  | DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp); | 
|  | tmp |= (AUDIO_ELD_VALID_A << (pipe * 4)); | 
|  | I915_WRITE(aud_cntrl_st2, tmp); | 
|  | tmp = I915_READ(aud_cntrl_st2); | 
|  | DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp); | 
|  |  | 
|  | /* Enable HDMI mode */ | 
|  | tmp = I915_READ(aud_config); | 
|  | DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp); | 
|  | /* clear N_programing_enable and N_value_index */ | 
|  | tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE); | 
|  | I915_WRITE(aud_config, tmp); | 
|  |  | 
|  | DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe)); | 
|  |  | 
|  | eldv = AUDIO_ELD_VALID_A << (pipe * 4); | 
|  | intel_crtc->eld_vld = true; | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { | 
|  | DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n"); | 
|  | eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */ | 
|  | I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */ | 
|  | } else | 
|  | I915_WRITE(aud_config, 0); | 
|  |  | 
|  | if (intel_eld_uptodate(connector, | 
|  | aud_cntrl_st2, eldv, | 
|  | aud_cntl_st, IBX_ELD_ADDRESS, | 
|  | hdmiw_hdmiedid)) | 
|  | return; | 
|  |  | 
|  | i = I915_READ(aud_cntrl_st2); | 
|  | i &= ~eldv; | 
|  | I915_WRITE(aud_cntrl_st2, i); | 
|  |  | 
|  | if (!eld[0]) | 
|  | return; | 
|  |  | 
|  | i = I915_READ(aud_cntl_st); | 
|  | i &= ~IBX_ELD_ADDRESS; | 
|  | I915_WRITE(aud_cntl_st, i); | 
|  | i = (i >> 29) & DIP_PORT_SEL_MASK;		/* DIP_Port_Select, 0x1 = PortB */ | 
|  | DRM_DEBUG_DRIVER("port num:%d\n", i); | 
|  |  | 
|  | len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */ | 
|  | DRM_DEBUG_DRIVER("ELD size %d\n", len); | 
|  | for (i = 0; i < len; i++) | 
|  | I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i)); | 
|  |  | 
|  | i = I915_READ(aud_cntrl_st2); | 
|  | i |= eldv; | 
|  | I915_WRITE(aud_cntrl_st2, i); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void ironlake_write_eld(struct drm_connector *connector, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = connector->dev->dev_private; | 
|  | uint8_t *eld = connector->eld; | 
|  | uint32_t eldv; | 
|  | uint32_t i; | 
|  | int len; | 
|  | int hdmiw_hdmiedid; | 
|  | int aud_config; | 
|  | int aud_cntl_st; | 
|  | int aud_cntrl_st2; | 
|  | int pipe = to_intel_crtc(crtc)->pipe; | 
|  |  | 
|  | if (HAS_PCH_IBX(connector->dev)) { | 
|  | hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe); | 
|  | aud_config = IBX_AUD_CFG(pipe); | 
|  | aud_cntl_st = IBX_AUD_CNTL_ST(pipe); | 
|  | aud_cntrl_st2 = IBX_AUD_CNTL_ST2; | 
|  | } else { | 
|  | hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe); | 
|  | aud_config = CPT_AUD_CFG(pipe); | 
|  | aud_cntl_st = CPT_AUD_CNTL_ST(pipe); | 
|  | aud_cntrl_st2 = CPT_AUD_CNTRL_ST2; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe)); | 
|  |  | 
|  | i = I915_READ(aud_cntl_st); | 
|  | i = (i >> 29) & DIP_PORT_SEL_MASK;		/* DIP_Port_Select, 0x1 = PortB */ | 
|  | if (!i) { | 
|  | DRM_DEBUG_DRIVER("Audio directed to unknown port\n"); | 
|  | /* operate blindly on all ports */ | 
|  | eldv = IBX_ELD_VALIDB; | 
|  | eldv |= IBX_ELD_VALIDB << 4; | 
|  | eldv |= IBX_ELD_VALIDB << 8; | 
|  | } else { | 
|  | DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i); | 
|  | eldv = IBX_ELD_VALIDB << ((i - 1) * 4); | 
|  | } | 
|  |  | 
|  | if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { | 
|  | DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n"); | 
|  | eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */ | 
|  | I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */ | 
|  | } else | 
|  | I915_WRITE(aud_config, 0); | 
|  |  | 
|  | if (intel_eld_uptodate(connector, | 
|  | aud_cntrl_st2, eldv, | 
|  | aud_cntl_st, IBX_ELD_ADDRESS, | 
|  | hdmiw_hdmiedid)) | 
|  | return; | 
|  |  | 
|  | i = I915_READ(aud_cntrl_st2); | 
|  | i &= ~eldv; | 
|  | I915_WRITE(aud_cntrl_st2, i); | 
|  |  | 
|  | if (!eld[0]) | 
|  | return; | 
|  |  | 
|  | i = I915_READ(aud_cntl_st); | 
|  | i &= ~IBX_ELD_ADDRESS; | 
|  | I915_WRITE(aud_cntl_st, i); | 
|  |  | 
|  | len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */ | 
|  | DRM_DEBUG_DRIVER("ELD size %d\n", len); | 
|  | for (i = 0; i < len; i++) | 
|  | I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i)); | 
|  |  | 
|  | i = I915_READ(aud_cntrl_st2); | 
|  | i |= eldv; | 
|  | I915_WRITE(aud_cntrl_st2, i); | 
|  | } | 
|  |  | 
|  | void intel_write_eld(struct drm_encoder *encoder, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | struct drm_crtc *crtc = encoder->crtc; | 
|  | struct drm_connector *connector; | 
|  | struct drm_device *dev = encoder->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | connector = drm_select_eld(encoder, mode); | 
|  | if (!connector) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", | 
|  | connector->base.id, | 
|  | drm_get_connector_name(connector), | 
|  | connector->encoder->base.id, | 
|  | drm_get_encoder_name(connector->encoder)); | 
|  |  | 
|  | connector->eld[6] = drm_av_sync_delay(connector, mode) / 2; | 
|  |  | 
|  | if (dev_priv->display.write_eld) | 
|  | dev_priv->display.write_eld(connector, crtc); | 
|  | } | 
|  |  | 
|  | /** Loads the palette/gamma unit for the CRTC with the prepared values */ | 
|  | void intel_crtc_load_lut(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int palreg = PALETTE(intel_crtc->pipe); | 
|  | int i; | 
|  |  | 
|  | /* The clocks have to be on to load the palette. */ | 
|  | if (!crtc->enabled || !intel_crtc->active) | 
|  | return; | 
|  |  | 
|  | /* use legacy palette for Ironlake */ | 
|  | if (HAS_PCH_SPLIT(dev)) | 
|  | palreg = LGC_PALETTE(intel_crtc->pipe); | 
|  |  | 
|  | for (i = 0; i < 256; i++) { | 
|  | I915_WRITE(palreg + 4 * i, | 
|  | (intel_crtc->lut_r[i] << 16) | | 
|  | (intel_crtc->lut_g[i] << 8) | | 
|  | intel_crtc->lut_b[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void i845_update_cursor(struct drm_crtc *crtc, u32 base) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | bool visible = base != 0; | 
|  | u32 cntl; | 
|  |  | 
|  | if (intel_crtc->cursor_visible == visible) | 
|  | return; | 
|  |  | 
|  | cntl = I915_READ(_CURACNTR); | 
|  | if (visible) { | 
|  | /* On these chipsets we can only modify the base whilst | 
|  | * the cursor is disabled. | 
|  | */ | 
|  | I915_WRITE(_CURABASE, base); | 
|  |  | 
|  | cntl &= ~(CURSOR_FORMAT_MASK); | 
|  | /* XXX width must be 64, stride 256 => 0x00 << 28 */ | 
|  | cntl |= CURSOR_ENABLE | | 
|  | CURSOR_GAMMA_ENABLE | | 
|  | CURSOR_FORMAT_ARGB; | 
|  | } else | 
|  | cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE); | 
|  | I915_WRITE(_CURACNTR, cntl); | 
|  |  | 
|  | intel_crtc->cursor_visible = visible; | 
|  | } | 
|  |  | 
|  | static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | bool visible = base != 0; | 
|  |  | 
|  | if (intel_crtc->cursor_visible != visible) { | 
|  | uint32_t cntl = I915_READ(CURCNTR(pipe)); | 
|  | if (base) { | 
|  | cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT); | 
|  | cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; | 
|  | cntl |= pipe << 28; /* Connect to correct pipe */ | 
|  | } else { | 
|  | cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); | 
|  | cntl |= CURSOR_MODE_DISABLE; | 
|  | } | 
|  | I915_WRITE(CURCNTR(pipe), cntl); | 
|  |  | 
|  | intel_crtc->cursor_visible = visible; | 
|  | } | 
|  | /* and commit changes on next vblank */ | 
|  | I915_WRITE(CURBASE(pipe), base); | 
|  | } | 
|  |  | 
|  | static void ivb_update_cursor(struct drm_crtc *crtc, u32 base) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | bool visible = base != 0; | 
|  |  | 
|  | if (intel_crtc->cursor_visible != visible) { | 
|  | uint32_t cntl = I915_READ(CURCNTR_IVB(pipe)); | 
|  | if (base) { | 
|  | cntl &= ~CURSOR_MODE; | 
|  | cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE; | 
|  | } else { | 
|  | cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE); | 
|  | cntl |= CURSOR_MODE_DISABLE; | 
|  | } | 
|  | if (IS_HASWELL(dev)) | 
|  | cntl |= CURSOR_PIPE_CSC_ENABLE; | 
|  | I915_WRITE(CURCNTR_IVB(pipe), cntl); | 
|  |  | 
|  | intel_crtc->cursor_visible = visible; | 
|  | } | 
|  | /* and commit changes on next vblank */ | 
|  | I915_WRITE(CURBASE_IVB(pipe), base); | 
|  | } | 
|  |  | 
|  | /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ | 
|  | static void intel_crtc_update_cursor(struct drm_crtc *crtc, | 
|  | bool on) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | int x = intel_crtc->cursor_x; | 
|  | int y = intel_crtc->cursor_y; | 
|  | u32 base, pos; | 
|  | bool visible; | 
|  |  | 
|  | pos = 0; | 
|  |  | 
|  | if (on && crtc->enabled && crtc->fb) { | 
|  | base = intel_crtc->cursor_addr; | 
|  | if (x > (int) crtc->fb->width) | 
|  | base = 0; | 
|  |  | 
|  | if (y > (int) crtc->fb->height) | 
|  | base = 0; | 
|  | } else | 
|  | base = 0; | 
|  |  | 
|  | if (x < 0) { | 
|  | if (x + intel_crtc->cursor_width < 0) | 
|  | base = 0; | 
|  |  | 
|  | pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; | 
|  | x = -x; | 
|  | } | 
|  | pos |= x << CURSOR_X_SHIFT; | 
|  |  | 
|  | if (y < 0) { | 
|  | if (y + intel_crtc->cursor_height < 0) | 
|  | base = 0; | 
|  |  | 
|  | pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; | 
|  | y = -y; | 
|  | } | 
|  | pos |= y << CURSOR_Y_SHIFT; | 
|  |  | 
|  | visible = base != 0; | 
|  | if (!visible && !intel_crtc->cursor_visible) | 
|  | return; | 
|  |  | 
|  | if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) { | 
|  | I915_WRITE(CURPOS_IVB(pipe), pos); | 
|  | ivb_update_cursor(crtc, base); | 
|  | } else { | 
|  | I915_WRITE(CURPOS(pipe), pos); | 
|  | if (IS_845G(dev) || IS_I865G(dev)) | 
|  | i845_update_cursor(crtc, base); | 
|  | else | 
|  | i9xx_update_cursor(crtc, base); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int intel_crtc_cursor_set(struct drm_crtc *crtc, | 
|  | struct drm_file *file, | 
|  | uint32_t handle, | 
|  | uint32_t width, uint32_t height) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct drm_i915_gem_object *obj; | 
|  | uint32_t addr; | 
|  | int ret; | 
|  |  | 
|  | /* if we want to turn off the cursor ignore width and height */ | 
|  | if (!handle) { | 
|  | DRM_DEBUG_KMS("cursor off\n"); | 
|  | addr = 0; | 
|  | obj = NULL; | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | /* Currently we only support 64x64 cursors */ | 
|  | if (width != 64 || height != 64) { | 
|  | DRM_ERROR("we currently only support 64x64 cursors\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle)); | 
|  | if (&obj->base == NULL) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (obj->base.size < width * height * 4) { | 
|  | DRM_ERROR("buffer is to small\n"); | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* we only need to pin inside GTT if cursor is non-phy */ | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | if (!dev_priv->info->cursor_needs_physical) { | 
|  | if (obj->tiling_mode) { | 
|  | DRM_ERROR("cursor cannot be tiled\n"); | 
|  | ret = -EINVAL; | 
|  | goto fail_locked; | 
|  | } | 
|  |  | 
|  | ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL); | 
|  | if (ret) { | 
|  | DRM_ERROR("failed to move cursor bo into the GTT\n"); | 
|  | goto fail_locked; | 
|  | } | 
|  |  | 
|  | ret = i915_gem_object_put_fence(obj); | 
|  | if (ret) { | 
|  | DRM_ERROR("failed to release fence for cursor"); | 
|  | goto fail_unpin; | 
|  | } | 
|  |  | 
|  | addr = obj->gtt_offset; | 
|  | } else { | 
|  | int align = IS_I830(dev) ? 16 * 1024 : 256; | 
|  | ret = i915_gem_attach_phys_object(dev, obj, | 
|  | (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1, | 
|  | align); | 
|  | if (ret) { | 
|  | DRM_ERROR("failed to attach phys object\n"); | 
|  | goto fail_locked; | 
|  | } | 
|  | addr = obj->phys_obj->handle->busaddr; | 
|  | } | 
|  |  | 
|  | if (IS_GEN2(dev)) | 
|  | I915_WRITE(CURSIZE, (height << 12) | width); | 
|  |  | 
|  | finish: | 
|  | if (intel_crtc->cursor_bo) { | 
|  | if (dev_priv->info->cursor_needs_physical) { | 
|  | if (intel_crtc->cursor_bo != obj) | 
|  | i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo); | 
|  | } else | 
|  | i915_gem_object_unpin(intel_crtc->cursor_bo); | 
|  | drm_gem_object_unreference(&intel_crtc->cursor_bo->base); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | intel_crtc->cursor_addr = addr; | 
|  | intel_crtc->cursor_bo = obj; | 
|  | intel_crtc->cursor_width = width; | 
|  | intel_crtc->cursor_height = height; | 
|  |  | 
|  | intel_crtc_update_cursor(crtc, true); | 
|  |  | 
|  | return 0; | 
|  | fail_unpin: | 
|  | i915_gem_object_unpin(obj); | 
|  | fail_locked: | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | fail: | 
|  | drm_gem_object_unreference_unlocked(&obj->base); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | intel_crtc->cursor_x = x; | 
|  | intel_crtc->cursor_y = y; | 
|  |  | 
|  | intel_crtc_update_cursor(crtc, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** Sets the color ramps on behalf of RandR */ | 
|  | void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, | 
|  | u16 blue, int regno) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | intel_crtc->lut_r[regno] = red >> 8; | 
|  | intel_crtc->lut_g[regno] = green >> 8; | 
|  | intel_crtc->lut_b[regno] = blue >> 8; | 
|  | } | 
|  |  | 
|  | void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, | 
|  | u16 *blue, int regno) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | *red = intel_crtc->lut_r[regno] << 8; | 
|  | *green = intel_crtc->lut_g[regno] << 8; | 
|  | *blue = intel_crtc->lut_b[regno] << 8; | 
|  | } | 
|  |  | 
|  | static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, | 
|  | u16 *blue, uint32_t start, uint32_t size) | 
|  | { | 
|  | int end = (start + size > 256) ? 256 : start + size, i; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | for (i = start; i < end; i++) { | 
|  | intel_crtc->lut_r[i] = red[i] >> 8; | 
|  | intel_crtc->lut_g[i] = green[i] >> 8; | 
|  | intel_crtc->lut_b[i] = blue[i] >> 8; | 
|  | } | 
|  |  | 
|  | intel_crtc_load_lut(crtc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get a pipe with a simple mode set on it for doing load-based monitor | 
|  | * detection. | 
|  | * | 
|  | * It will be up to the load-detect code to adjust the pipe as appropriate for | 
|  | * its requirements.  The pipe will be connected to no other encoders. | 
|  | * | 
|  | * Currently this code will only succeed if there is a pipe with no encoders | 
|  | * configured for it.  In the future, it could choose to temporarily disable | 
|  | * some outputs to free up a pipe for its use. | 
|  | * | 
|  | * \return crtc, or NULL if no pipes are available. | 
|  | */ | 
|  |  | 
|  | /* VESA 640x480x72Hz mode to set on the pipe */ | 
|  | static struct drm_display_mode load_detect_mode = { | 
|  | DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, | 
|  | 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), | 
|  | }; | 
|  |  | 
|  | static struct drm_framebuffer * | 
|  | intel_framebuffer_create(struct drm_device *dev, | 
|  | struct drm_mode_fb_cmd2 *mode_cmd, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | struct intel_framebuffer *intel_fb; | 
|  | int ret; | 
|  |  | 
|  | intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); | 
|  | if (!intel_fb) { | 
|  | drm_gem_object_unreference_unlocked(&obj->base); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); | 
|  | if (ret) { | 
|  | drm_gem_object_unreference_unlocked(&obj->base); | 
|  | kfree(intel_fb); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | return &intel_fb->base; | 
|  | } | 
|  |  | 
|  | static u32 | 
|  | intel_framebuffer_pitch_for_width(int width, int bpp) | 
|  | { | 
|  | u32 pitch = DIV_ROUND_UP(width * bpp, 8); | 
|  | return ALIGN(pitch, 64); | 
|  | } | 
|  |  | 
|  | static u32 | 
|  | intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp) | 
|  | { | 
|  | u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp); | 
|  | return ALIGN(pitch * mode->vdisplay, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static struct drm_framebuffer * | 
|  | intel_framebuffer_create_for_mode(struct drm_device *dev, | 
|  | struct drm_display_mode *mode, | 
|  | int depth, int bpp) | 
|  | { | 
|  | struct drm_i915_gem_object *obj; | 
|  | struct drm_mode_fb_cmd2 mode_cmd = { 0 }; | 
|  |  | 
|  | obj = i915_gem_alloc_object(dev, | 
|  | intel_framebuffer_size_for_mode(mode, bpp)); | 
|  | if (obj == NULL) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | mode_cmd.width = mode->hdisplay; | 
|  | mode_cmd.height = mode->vdisplay; | 
|  | mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width, | 
|  | bpp); | 
|  | mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth); | 
|  |  | 
|  | return intel_framebuffer_create(dev, &mode_cmd, obj); | 
|  | } | 
|  |  | 
|  | static struct drm_framebuffer * | 
|  | mode_fits_in_fbdev(struct drm_device *dev, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_i915_gem_object *obj; | 
|  | struct drm_framebuffer *fb; | 
|  |  | 
|  | if (dev_priv->fbdev == NULL) | 
|  | return NULL; | 
|  |  | 
|  | obj = dev_priv->fbdev->ifb.obj; | 
|  | if (obj == NULL) | 
|  | return NULL; | 
|  |  | 
|  | fb = &dev_priv->fbdev->ifb.base; | 
|  | if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay, | 
|  | fb->bits_per_pixel)) | 
|  | return NULL; | 
|  |  | 
|  | if (obj->base.size < mode->vdisplay * fb->pitches[0]) | 
|  | return NULL; | 
|  |  | 
|  | return fb; | 
|  | } | 
|  |  | 
|  | bool intel_get_load_detect_pipe(struct drm_connector *connector, | 
|  | struct drm_display_mode *mode, | 
|  | struct intel_load_detect_pipe *old) | 
|  | { | 
|  | struct intel_crtc *intel_crtc; | 
|  | struct intel_encoder *intel_encoder = | 
|  | intel_attached_encoder(connector); | 
|  | struct drm_crtc *possible_crtc; | 
|  | struct drm_encoder *encoder = &intel_encoder->base; | 
|  | struct drm_crtc *crtc = NULL; | 
|  | struct drm_device *dev = encoder->dev; | 
|  | struct drm_framebuffer *fb; | 
|  | int i = -1; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", | 
|  | connector->base.id, drm_get_connector_name(connector), | 
|  | encoder->base.id, drm_get_encoder_name(encoder)); | 
|  |  | 
|  | /* | 
|  | * Algorithm gets a little messy: | 
|  | * | 
|  | *   - if the connector already has an assigned crtc, use it (but make | 
|  | *     sure it's on first) | 
|  | * | 
|  | *   - try to find the first unused crtc that can drive this connector, | 
|  | *     and use that if we find one | 
|  | */ | 
|  |  | 
|  | /* See if we already have a CRTC for this connector */ | 
|  | if (encoder->crtc) { | 
|  | crtc = encoder->crtc; | 
|  |  | 
|  | mutex_lock(&crtc->mutex); | 
|  |  | 
|  | old->dpms_mode = connector->dpms; | 
|  | old->load_detect_temp = false; | 
|  |  | 
|  | /* Make sure the crtc and connector are running */ | 
|  | if (connector->dpms != DRM_MODE_DPMS_ON) | 
|  | connector->funcs->dpms(connector, DRM_MODE_DPMS_ON); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Find an unused one (if possible) */ | 
|  | list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) { | 
|  | i++; | 
|  | if (!(encoder->possible_crtcs & (1 << i))) | 
|  | continue; | 
|  | if (!possible_crtc->enabled) { | 
|  | crtc = possible_crtc; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we didn't find an unused CRTC, don't use any. | 
|  | */ | 
|  | if (!crtc) { | 
|  | DRM_DEBUG_KMS("no pipe available for load-detect\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | mutex_lock(&crtc->mutex); | 
|  | intel_encoder->new_crtc = to_intel_crtc(crtc); | 
|  | to_intel_connector(connector)->new_encoder = intel_encoder; | 
|  |  | 
|  | intel_crtc = to_intel_crtc(crtc); | 
|  | old->dpms_mode = connector->dpms; | 
|  | old->load_detect_temp = true; | 
|  | old->release_fb = NULL; | 
|  |  | 
|  | if (!mode) | 
|  | mode = &load_detect_mode; | 
|  |  | 
|  | /* We need a framebuffer large enough to accommodate all accesses | 
|  | * that the plane may generate whilst we perform load detection. | 
|  | * We can not rely on the fbcon either being present (we get called | 
|  | * during its initialisation to detect all boot displays, or it may | 
|  | * not even exist) or that it is large enough to satisfy the | 
|  | * requested mode. | 
|  | */ | 
|  | fb = mode_fits_in_fbdev(dev, mode); | 
|  | if (fb == NULL) { | 
|  | DRM_DEBUG_KMS("creating tmp fb for load-detection\n"); | 
|  | fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32); | 
|  | old->release_fb = fb; | 
|  | } else | 
|  | DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n"); | 
|  | if (IS_ERR(fb)) { | 
|  | DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n"); | 
|  | mutex_unlock(&crtc->mutex); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (intel_set_mode(crtc, mode, 0, 0, fb)) { | 
|  | DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); | 
|  | if (old->release_fb) | 
|  | old->release_fb->funcs->destroy(old->release_fb); | 
|  | mutex_unlock(&crtc->mutex); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* let the connector get through one full cycle before testing */ | 
|  | intel_wait_for_vblank(dev, intel_crtc->pipe); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void intel_release_load_detect_pipe(struct drm_connector *connector, | 
|  | struct intel_load_detect_pipe *old) | 
|  | { | 
|  | struct intel_encoder *intel_encoder = | 
|  | intel_attached_encoder(connector); | 
|  | struct drm_encoder *encoder = &intel_encoder->base; | 
|  | struct drm_crtc *crtc = encoder->crtc; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", | 
|  | connector->base.id, drm_get_connector_name(connector), | 
|  | encoder->base.id, drm_get_encoder_name(encoder)); | 
|  |  | 
|  | if (old->load_detect_temp) { | 
|  | to_intel_connector(connector)->new_encoder = NULL; | 
|  | intel_encoder->new_crtc = NULL; | 
|  | intel_set_mode(crtc, NULL, 0, 0, NULL); | 
|  |  | 
|  | if (old->release_fb) { | 
|  | drm_framebuffer_unregister_private(old->release_fb); | 
|  | drm_framebuffer_unreference(old->release_fb); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&crtc->mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Switch crtc and encoder back off if necessary */ | 
|  | if (old->dpms_mode != DRM_MODE_DPMS_ON) | 
|  | connector->funcs->dpms(connector, old->dpms_mode); | 
|  |  | 
|  | mutex_unlock(&crtc->mutex); | 
|  | } | 
|  |  | 
|  | /* Returns the clock of the currently programmed mode of the given pipe. */ | 
|  | static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 dpll = I915_READ(DPLL(pipe)); | 
|  | u32 fp; | 
|  | intel_clock_t clock; | 
|  |  | 
|  | if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) | 
|  | fp = I915_READ(FP0(pipe)); | 
|  | else | 
|  | fp = I915_READ(FP1(pipe)); | 
|  |  | 
|  | clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; | 
|  | if (IS_PINEVIEW(dev)) { | 
|  | clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; | 
|  | clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; | 
|  | } else { | 
|  | clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; | 
|  | clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; | 
|  | } | 
|  |  | 
|  | if (!IS_GEN2(dev)) { | 
|  | if (IS_PINEVIEW(dev)) | 
|  | clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); | 
|  | else | 
|  | clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT); | 
|  |  | 
|  | switch (dpll & DPLL_MODE_MASK) { | 
|  | case DPLLB_MODE_DAC_SERIAL: | 
|  | clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? | 
|  | 5 : 10; | 
|  | break; | 
|  | case DPLLB_MODE_LVDS: | 
|  | clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? | 
|  | 7 : 14; | 
|  | break; | 
|  | default: | 
|  | DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " | 
|  | "mode\n", (int)(dpll & DPLL_MODE_MASK)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* XXX: Handle the 100Mhz refclk */ | 
|  | intel_clock(dev, 96000, &clock); | 
|  | } else { | 
|  | bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN); | 
|  |  | 
|  | if (is_lvds) { | 
|  | clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT); | 
|  | clock.p2 = 14; | 
|  |  | 
|  | if ((dpll & PLL_REF_INPUT_MASK) == | 
|  | PLLB_REF_INPUT_SPREADSPECTRUMIN) { | 
|  | /* XXX: might not be 66MHz */ | 
|  | intel_clock(dev, 66000, &clock); | 
|  | } else | 
|  | intel_clock(dev, 48000, &clock); | 
|  | } else { | 
|  | if (dpll & PLL_P1_DIVIDE_BY_TWO) | 
|  | clock.p1 = 2; | 
|  | else { | 
|  | clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> | 
|  | DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; | 
|  | } | 
|  | if (dpll & PLL_P2_DIVIDE_BY_4) | 
|  | clock.p2 = 4; | 
|  | else | 
|  | clock.p2 = 2; | 
|  |  | 
|  | intel_clock(dev, 48000, &clock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* XXX: It would be nice to validate the clocks, but we can't reuse | 
|  | * i830PllIsValid() because it relies on the xf86_config connector | 
|  | * configuration being accurate, which it isn't necessarily. | 
|  | */ | 
|  |  | 
|  | return clock.dot; | 
|  | } | 
|  |  | 
|  | /** Returns the currently programmed mode of the given pipe. */ | 
|  | struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder; | 
|  | struct drm_display_mode *mode; | 
|  | int htot = I915_READ(HTOTAL(cpu_transcoder)); | 
|  | int hsync = I915_READ(HSYNC(cpu_transcoder)); | 
|  | int vtot = I915_READ(VTOTAL(cpu_transcoder)); | 
|  | int vsync = I915_READ(VSYNC(cpu_transcoder)); | 
|  |  | 
|  | mode = kzalloc(sizeof(*mode), GFP_KERNEL); | 
|  | if (!mode) | 
|  | return NULL; | 
|  |  | 
|  | mode->clock = intel_crtc_clock_get(dev, crtc); | 
|  | mode->hdisplay = (htot & 0xffff) + 1; | 
|  | mode->htotal = ((htot & 0xffff0000) >> 16) + 1; | 
|  | mode->hsync_start = (hsync & 0xffff) + 1; | 
|  | mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; | 
|  | mode->vdisplay = (vtot & 0xffff) + 1; | 
|  | mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; | 
|  | mode->vsync_start = (vsync & 0xffff) + 1; | 
|  | mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; | 
|  |  | 
|  | drm_mode_set_name(mode); | 
|  |  | 
|  | return mode; | 
|  | } | 
|  |  | 
|  | static void intel_increase_pllclock(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | int pipe = intel_crtc->pipe; | 
|  | int dpll_reg = DPLL(pipe); | 
|  | int dpll; | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) | 
|  | return; | 
|  |  | 
|  | if (!dev_priv->lvds_downclock_avail) | 
|  | return; | 
|  |  | 
|  | dpll = I915_READ(dpll_reg); | 
|  | if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) { | 
|  | DRM_DEBUG_DRIVER("upclocking LVDS\n"); | 
|  |  | 
|  | assert_panel_unlocked(dev_priv, pipe); | 
|  |  | 
|  | dpll &= ~DISPLAY_RATE_SELECT_FPA1; | 
|  | I915_WRITE(dpll_reg, dpll); | 
|  | intel_wait_for_vblank(dev, pipe); | 
|  |  | 
|  | dpll = I915_READ(dpll_reg); | 
|  | if (dpll & DISPLAY_RATE_SELECT_FPA1) | 
|  | DRM_DEBUG_DRIVER("failed to upclock LVDS!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_decrease_pllclock(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) | 
|  | return; | 
|  |  | 
|  | if (!dev_priv->lvds_downclock_avail) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Since this is called by a timer, we should never get here in | 
|  | * the manual case. | 
|  | */ | 
|  | if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) { | 
|  | int pipe = intel_crtc->pipe; | 
|  | int dpll_reg = DPLL(pipe); | 
|  | int dpll; | 
|  |  | 
|  | DRM_DEBUG_DRIVER("downclocking LVDS\n"); | 
|  |  | 
|  | assert_panel_unlocked(dev_priv, pipe); | 
|  |  | 
|  | dpll = I915_READ(dpll_reg); | 
|  | dpll |= DISPLAY_RATE_SELECT_FPA1; | 
|  | I915_WRITE(dpll_reg, dpll); | 
|  | intel_wait_for_vblank(dev, pipe); | 
|  | dpll = I915_READ(dpll_reg); | 
|  | if (!(dpll & DISPLAY_RATE_SELECT_FPA1)) | 
|  | DRM_DEBUG_DRIVER("failed to downclock LVDS!\n"); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | void intel_mark_busy(struct drm_device *dev) | 
|  | { | 
|  | i915_update_gfx_val(dev->dev_private); | 
|  | } | 
|  |  | 
|  | void intel_mark_idle(struct drm_device *dev) | 
|  | { | 
|  | struct drm_crtc *crtc; | 
|  |  | 
|  | if (!i915_powersave) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { | 
|  | if (!crtc->fb) | 
|  | continue; | 
|  |  | 
|  | intel_decrease_pllclock(crtc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_mark_fb_busy(struct drm_i915_gem_object *obj) | 
|  | { | 
|  | struct drm_device *dev = obj->base.dev; | 
|  | struct drm_crtc *crtc; | 
|  |  | 
|  | if (!i915_powersave) | 
|  | return; | 
|  |  | 
|  | list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { | 
|  | if (!crtc->fb) | 
|  | continue; | 
|  |  | 
|  | if (to_intel_framebuffer(crtc->fb)->obj == obj) | 
|  | intel_increase_pllclock(crtc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_crtc_destroy(struct drm_crtc *crtc) | 
|  | { | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_unpin_work *work; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | work = intel_crtc->unpin_work; | 
|  | intel_crtc->unpin_work = NULL; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | if (work) { | 
|  | cancel_work_sync(&work->work); | 
|  | kfree(work); | 
|  | } | 
|  |  | 
|  | drm_crtc_cleanup(crtc); | 
|  |  | 
|  | kfree(intel_crtc); | 
|  | } | 
|  |  | 
|  | static void intel_unpin_work_fn(struct work_struct *__work) | 
|  | { | 
|  | struct intel_unpin_work *work = | 
|  | container_of(__work, struct intel_unpin_work, work); | 
|  | struct drm_device *dev = work->crtc->dev; | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_unpin_fb_obj(work->old_fb_obj); | 
|  | drm_gem_object_unreference(&work->pending_flip_obj->base); | 
|  | drm_gem_object_unreference(&work->old_fb_obj->base); | 
|  |  | 
|  | intel_update_fbc(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0); | 
|  | atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count); | 
|  |  | 
|  | kfree(work); | 
|  | } | 
|  |  | 
|  | static void do_intel_finish_page_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_unpin_work *work; | 
|  | struct drm_i915_gem_object *obj; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Ignore early vblank irqs */ | 
|  | if (intel_crtc == NULL) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | work = intel_crtc->unpin_work; | 
|  |  | 
|  | /* Ensure we don't miss a work->pending update ... */ | 
|  | smp_rmb(); | 
|  |  | 
|  | if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) { | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* and that the unpin work is consistent wrt ->pending. */ | 
|  | smp_rmb(); | 
|  |  | 
|  | intel_crtc->unpin_work = NULL; | 
|  |  | 
|  | if (work->event) | 
|  | drm_send_vblank_event(dev, intel_crtc->pipe, work->event); | 
|  |  | 
|  | drm_vblank_put(dev, intel_crtc->pipe); | 
|  |  | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | obj = work->old_fb_obj; | 
|  |  | 
|  | wake_up_all(&dev_priv->pending_flip_queue); | 
|  |  | 
|  | queue_work(dev_priv->wq, &work->work); | 
|  |  | 
|  | trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj); | 
|  | } | 
|  |  | 
|  | void intel_finish_page_flip(struct drm_device *dev, int pipe) | 
|  | { | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; | 
|  |  | 
|  | do_intel_finish_page_flip(dev, crtc); | 
|  | } | 
|  |  | 
|  | void intel_finish_page_flip_plane(struct drm_device *dev, int plane) | 
|  | { | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane]; | 
|  |  | 
|  | do_intel_finish_page_flip(dev, crtc); | 
|  | } | 
|  |  | 
|  | void intel_prepare_page_flip(struct drm_device *dev, int plane) | 
|  | { | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = | 
|  | to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* NB: An MMIO update of the plane base pointer will also | 
|  | * generate a page-flip completion irq, i.e. every modeset | 
|  | * is also accompanied by a spurious intel_prepare_page_flip(). | 
|  | */ | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | if (intel_crtc->unpin_work) | 
|  | atomic_inc_not_zero(&intel_crtc->unpin_work->pending); | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | } | 
|  |  | 
|  | inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc) | 
|  | { | 
|  | /* Ensure that the work item is consistent when activating it ... */ | 
|  | smp_wmb(); | 
|  | atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING); | 
|  | /* and that it is marked active as soon as the irq could fire. */ | 
|  | smp_wmb(); | 
|  | } | 
|  |  | 
|  | static int intel_gen2_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | u32 flip_mask; | 
|  | struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; | 
|  | int ret; | 
|  |  | 
|  | ret = intel_pin_and_fence_fb_obj(dev, obj, ring); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = intel_ring_begin(ring, 6); | 
|  | if (ret) | 
|  | goto err_unpin; | 
|  |  | 
|  | /* Can't queue multiple flips, so wait for the previous | 
|  | * one to finish before executing the next. | 
|  | */ | 
|  | if (intel_crtc->plane) | 
|  | flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; | 
|  | else | 
|  | flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; | 
|  | intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); | 
|  | intel_ring_emit(ring, MI_NOOP); | 
|  | intel_ring_emit(ring, MI_DISPLAY_FLIP | | 
|  | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); | 
|  | intel_ring_emit(ring, fb->pitches[0]); | 
|  | intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); | 
|  | intel_ring_emit(ring, 0); /* aux display base address, unused */ | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  | intel_ring_advance(ring); | 
|  | return 0; | 
|  |  | 
|  | err_unpin: | 
|  | intel_unpin_fb_obj(obj); | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_gen3_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | u32 flip_mask; | 
|  | struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; | 
|  | int ret; | 
|  |  | 
|  | ret = intel_pin_and_fence_fb_obj(dev, obj, ring); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = intel_ring_begin(ring, 6); | 
|  | if (ret) | 
|  | goto err_unpin; | 
|  |  | 
|  | if (intel_crtc->plane) | 
|  | flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; | 
|  | else | 
|  | flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; | 
|  | intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); | 
|  | intel_ring_emit(ring, MI_NOOP); | 
|  | intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | | 
|  | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); | 
|  | intel_ring_emit(ring, fb->pitches[0]); | 
|  | intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); | 
|  | intel_ring_emit(ring, MI_NOOP); | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  | intel_ring_advance(ring); | 
|  | return 0; | 
|  |  | 
|  | err_unpin: | 
|  | intel_unpin_fb_obj(obj); | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_gen4_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | uint32_t pf, pipesrc; | 
|  | struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; | 
|  | int ret; | 
|  |  | 
|  | ret = intel_pin_and_fence_fb_obj(dev, obj, ring); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = intel_ring_begin(ring, 4); | 
|  | if (ret) | 
|  | goto err_unpin; | 
|  |  | 
|  | /* i965+ uses the linear or tiled offsets from the | 
|  | * Display Registers (which do not change across a page-flip) | 
|  | * so we need only reprogram the base address. | 
|  | */ | 
|  | intel_ring_emit(ring, MI_DISPLAY_FLIP | | 
|  | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); | 
|  | intel_ring_emit(ring, fb->pitches[0]); | 
|  | intel_ring_emit(ring, | 
|  | (obj->gtt_offset + intel_crtc->dspaddr_offset) | | 
|  | obj->tiling_mode); | 
|  |  | 
|  | /* XXX Enabling the panel-fitter across page-flip is so far | 
|  | * untested on non-native modes, so ignore it for now. | 
|  | * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; | 
|  | */ | 
|  | pf = 0; | 
|  | pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; | 
|  | intel_ring_emit(ring, pf | pipesrc); | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  | intel_ring_advance(ring); | 
|  | return 0; | 
|  |  | 
|  | err_unpin: | 
|  | intel_unpin_fb_obj(obj); | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_gen6_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_ring_buffer *ring = &dev_priv->ring[RCS]; | 
|  | uint32_t pf, pipesrc; | 
|  | int ret; | 
|  |  | 
|  | ret = intel_pin_and_fence_fb_obj(dev, obj, ring); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = intel_ring_begin(ring, 4); | 
|  | if (ret) | 
|  | goto err_unpin; | 
|  |  | 
|  | intel_ring_emit(ring, MI_DISPLAY_FLIP | | 
|  | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); | 
|  | intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode); | 
|  | intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); | 
|  |  | 
|  | /* Contrary to the suggestions in the documentation, | 
|  | * "Enable Panel Fitter" does not seem to be required when page | 
|  | * flipping with a non-native mode, and worse causes a normal | 
|  | * modeset to fail. | 
|  | * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE; | 
|  | */ | 
|  | pf = 0; | 
|  | pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; | 
|  | intel_ring_emit(ring, pf | pipesrc); | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  | intel_ring_advance(ring); | 
|  | return 0; | 
|  |  | 
|  | err_unpin: | 
|  | intel_unpin_fb_obj(obj); | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On gen7 we currently use the blit ring because (in early silicon at least) | 
|  | * the render ring doesn't give us interrpts for page flip completion, which | 
|  | * means clients will hang after the first flip is queued.  Fortunately the | 
|  | * blit ring generates interrupts properly, so use it instead. | 
|  | */ | 
|  | static int intel_gen7_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_ring_buffer *ring = &dev_priv->ring[BCS]; | 
|  | uint32_t plane_bit = 0; | 
|  | int ret; | 
|  |  | 
|  | ret = intel_pin_and_fence_fb_obj(dev, obj, ring); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | switch(intel_crtc->plane) { | 
|  | case PLANE_A: | 
|  | plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A; | 
|  | break; | 
|  | case PLANE_B: | 
|  | plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B; | 
|  | break; | 
|  | case PLANE_C: | 
|  | plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C; | 
|  | break; | 
|  | default: | 
|  | WARN_ONCE(1, "unknown plane in flip command\n"); | 
|  | ret = -ENODEV; | 
|  | goto err_unpin; | 
|  | } | 
|  |  | 
|  | ret = intel_ring_begin(ring, 4); | 
|  | if (ret) | 
|  | goto err_unpin; | 
|  |  | 
|  | intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit); | 
|  | intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode)); | 
|  | intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset); | 
|  | intel_ring_emit(ring, (MI_NOOP)); | 
|  |  | 
|  | intel_mark_page_flip_active(intel_crtc); | 
|  | intel_ring_advance(ring); | 
|  | return 0; | 
|  |  | 
|  | err_unpin: | 
|  | intel_unpin_fb_obj(obj); | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_default_queue_flip(struct drm_device *dev, | 
|  | struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int intel_crtc_page_flip(struct drm_crtc *crtc, | 
|  | struct drm_framebuffer *fb, | 
|  | struct drm_pending_vblank_event *event) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_framebuffer *old_fb = crtc->fb; | 
|  | struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  | struct intel_unpin_work *work; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | /* Can't change pixel format via MI display flips. */ | 
|  | if (fb->pixel_format != crtc->fb->pixel_format) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * TILEOFF/LINOFF registers can't be changed via MI display flips. | 
|  | * Note that pitch changes could also affect these register. | 
|  | */ | 
|  | if (INTEL_INFO(dev)->gen > 3 && | 
|  | (fb->offsets[0] != crtc->fb->offsets[0] || | 
|  | fb->pitches[0] != crtc->fb->pitches[0])) | 
|  | return -EINVAL; | 
|  |  | 
|  | work = kzalloc(sizeof *work, GFP_KERNEL); | 
|  | if (work == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | work->event = event; | 
|  | work->crtc = crtc; | 
|  | work->old_fb_obj = to_intel_framebuffer(old_fb)->obj; | 
|  | INIT_WORK(&work->work, intel_unpin_work_fn); | 
|  |  | 
|  | ret = drm_vblank_get(dev, intel_crtc->pipe); | 
|  | if (ret) | 
|  | goto free_work; | 
|  |  | 
|  | /* We borrow the event spin lock for protecting unpin_work */ | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | if (intel_crtc->unpin_work) { | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | kfree(work); | 
|  | drm_vblank_put(dev, intel_crtc->pipe); | 
|  |  | 
|  | DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | intel_crtc->unpin_work = work; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | if (atomic_read(&intel_crtc->unpin_work_count) >= 2) | 
|  | flush_workqueue(dev_priv->wq); | 
|  |  | 
|  | ret = i915_mutex_lock_interruptible(dev); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | /* Reference the objects for the scheduled work. */ | 
|  | drm_gem_object_reference(&work->old_fb_obj->base); | 
|  | drm_gem_object_reference(&obj->base); | 
|  |  | 
|  | crtc->fb = fb; | 
|  |  | 
|  | work->pending_flip_obj = obj; | 
|  |  | 
|  | work->enable_stall_check = true; | 
|  |  | 
|  | atomic_inc(&intel_crtc->unpin_work_count); | 
|  | intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); | 
|  |  | 
|  | ret = dev_priv->display.queue_flip(dev, crtc, fb, obj); | 
|  | if (ret) | 
|  | goto cleanup_pending; | 
|  |  | 
|  | intel_disable_fbc(dev); | 
|  | intel_mark_fb_busy(obj); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | trace_i915_flip_request(intel_crtc->plane, obj); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cleanup_pending: | 
|  | atomic_dec(&intel_crtc->unpin_work_count); | 
|  | crtc->fb = old_fb; | 
|  | drm_gem_object_unreference(&work->old_fb_obj->base); | 
|  | drm_gem_object_unreference(&obj->base); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | cleanup: | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | intel_crtc->unpin_work = NULL; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | drm_vblank_put(dev, intel_crtc->pipe); | 
|  | free_work: | 
|  | kfree(work); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct drm_crtc_helper_funcs intel_helper_funcs = { | 
|  | .mode_set_base_atomic = intel_pipe_set_base_atomic, | 
|  | .load_lut = intel_crtc_load_lut, | 
|  | }; | 
|  |  | 
|  | bool intel_encoder_check_is_cloned(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_encoder *other_encoder; | 
|  | struct drm_crtc *crtc = &encoder->new_crtc->base; | 
|  |  | 
|  | if (WARN_ON(!crtc)) | 
|  | return false; | 
|  |  | 
|  | list_for_each_entry(other_encoder, | 
|  | &crtc->dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  |  | 
|  | if (&other_encoder->new_crtc->base != crtc || | 
|  | encoder == other_encoder) | 
|  | continue; | 
|  | else | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool intel_encoder_crtc_ok(struct drm_encoder *encoder, | 
|  | struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev; | 
|  | struct drm_crtc *tmp; | 
|  | int crtc_mask = 1; | 
|  |  | 
|  | WARN(!crtc, "checking null crtc?\n"); | 
|  |  | 
|  | dev = crtc->dev; | 
|  |  | 
|  | list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) { | 
|  | if (tmp == crtc) | 
|  | break; | 
|  | crtc_mask <<= 1; | 
|  | } | 
|  |  | 
|  | if (encoder->possible_crtcs & crtc_mask) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_modeset_update_staged_output_state | 
|  | * | 
|  | * Updates the staged output configuration state, e.g. after we've read out the | 
|  | * current hw state. | 
|  | */ | 
|  | static void intel_modeset_update_staged_output_state(struct drm_device *dev) | 
|  | { | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | connector->new_encoder = | 
|  | to_intel_encoder(connector->base.encoder); | 
|  | } | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | encoder->new_crtc = | 
|  | to_intel_crtc(encoder->base.crtc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_modeset_commit_output_state | 
|  | * | 
|  | * This function copies the stage display pipe configuration to the real one. | 
|  | */ | 
|  | static void intel_modeset_commit_output_state(struct drm_device *dev) | 
|  | { | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | connector->base.encoder = &connector->new_encoder->base; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | encoder->base.crtc = &encoder->new_crtc->base; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct drm_display_mode * | 
|  | intel_modeset_adjusted_mode(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_display_mode *adjusted_mode; | 
|  | struct drm_encoder_helper_funcs *encoder_funcs; | 
|  | struct intel_encoder *encoder; | 
|  |  | 
|  | adjusted_mode = drm_mode_duplicate(dev, mode); | 
|  | if (!adjusted_mode) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* Pass our mode to the connectors and the CRTC to give them a chance to | 
|  | * adjust it according to limitations or connector properties, and also | 
|  | * a chance to reject the mode entirely. | 
|  | */ | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  |  | 
|  | if (&encoder->new_crtc->base != crtc) | 
|  | continue; | 
|  | encoder_funcs = encoder->base.helper_private; | 
|  | if (!(encoder_funcs->mode_fixup(&encoder->base, mode, | 
|  | adjusted_mode))) { | 
|  | DRM_DEBUG_KMS("Encoder fixup failed\n"); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) { | 
|  | DRM_DEBUG_KMS("CRTC fixup failed\n"); | 
|  | goto fail; | 
|  | } | 
|  | DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id); | 
|  |  | 
|  | return adjusted_mode; | 
|  | fail: | 
|  | drm_mode_destroy(dev, adjusted_mode); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | /* Computes which crtcs are affected and sets the relevant bits in the mask. For | 
|  | * simplicity we use the crtc's pipe number (because it's easier to obtain). */ | 
|  | static void | 
|  | intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes, | 
|  | unsigned *prepare_pipes, unsigned *disable_pipes) | 
|  | { | 
|  | struct intel_crtc *intel_crtc; | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  | struct drm_crtc *tmp_crtc; | 
|  |  | 
|  | *disable_pipes = *modeset_pipes = *prepare_pipes = 0; | 
|  |  | 
|  | /* Check which crtcs have changed outputs connected to them, these need | 
|  | * to be part of the prepare_pipes mask. We don't (yet) support global | 
|  | * modeset across multiple crtcs, so modeset_pipes will only have one | 
|  | * bit set at most. */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->base.encoder == &connector->new_encoder->base) | 
|  | continue; | 
|  |  | 
|  | if (connector->base.encoder) { | 
|  | tmp_crtc = connector->base.encoder->crtc; | 
|  |  | 
|  | *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe; | 
|  | } | 
|  |  | 
|  | if (connector->new_encoder) | 
|  | *prepare_pipes |= | 
|  | 1 << connector->new_encoder->new_crtc->pipe; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | if (encoder->base.crtc == &encoder->new_crtc->base) | 
|  | continue; | 
|  |  | 
|  | if (encoder->base.crtc) { | 
|  | tmp_crtc = encoder->base.crtc; | 
|  |  | 
|  | *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe; | 
|  | } | 
|  |  | 
|  | if (encoder->new_crtc) | 
|  | *prepare_pipes |= 1 << encoder->new_crtc->pipe; | 
|  | } | 
|  |  | 
|  | /* Check for any pipes that will be fully disabled ... */ | 
|  | list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, | 
|  | base.head) { | 
|  | bool used = false; | 
|  |  | 
|  | /* Don't try to disable disabled crtcs. */ | 
|  | if (!intel_crtc->base.enabled) | 
|  | continue; | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | if (encoder->new_crtc == intel_crtc) | 
|  | used = true; | 
|  | } | 
|  |  | 
|  | if (!used) | 
|  | *disable_pipes |= 1 << intel_crtc->pipe; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* set_mode is also used to update properties on life display pipes. */ | 
|  | intel_crtc = to_intel_crtc(crtc); | 
|  | if (crtc->enabled) | 
|  | *prepare_pipes |= 1 << intel_crtc->pipe; | 
|  |  | 
|  | /* We only support modeset on one single crtc, hence we need to do that | 
|  | * only for the passed in crtc iff we change anything else than just | 
|  | * disable crtcs. | 
|  | * | 
|  | * This is actually not true, to be fully compatible with the old crtc | 
|  | * helper we automatically disable _any_ output (i.e. doesn't need to be | 
|  | * connected to the crtc we're modesetting on) if it's disconnected. | 
|  | * Which is a rather nutty api (since changed the output configuration | 
|  | * without userspace's explicit request can lead to confusion), but | 
|  | * alas. Hence we currently need to modeset on all pipes we prepare. */ | 
|  | if (*prepare_pipes) | 
|  | *modeset_pipes = *prepare_pipes; | 
|  |  | 
|  | /* ... and mask these out. */ | 
|  | *modeset_pipes &= ~(*disable_pipes); | 
|  | *prepare_pipes &= ~(*disable_pipes); | 
|  | } | 
|  |  | 
|  | static bool intel_crtc_in_use(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_encoder *encoder; | 
|  | struct drm_device *dev = crtc->dev; | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) | 
|  | if (encoder->crtc == crtc) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes) | 
|  | { | 
|  | struct intel_encoder *intel_encoder; | 
|  | struct intel_crtc *intel_crtc; | 
|  | struct drm_connector *connector; | 
|  |  | 
|  | list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | if (!intel_encoder->base.crtc) | 
|  | continue; | 
|  |  | 
|  | intel_crtc = to_intel_crtc(intel_encoder->base.crtc); | 
|  |  | 
|  | if (prepare_pipes & (1 << intel_crtc->pipe)) | 
|  | intel_encoder->connectors_active = false; | 
|  | } | 
|  |  | 
|  | intel_modeset_commit_output_state(dev); | 
|  |  | 
|  | /* Update computed state. */ | 
|  | list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, | 
|  | base.head) { | 
|  | intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base); | 
|  | } | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, head) { | 
|  | if (!connector->encoder || !connector->encoder->crtc) | 
|  | continue; | 
|  |  | 
|  | intel_crtc = to_intel_crtc(connector->encoder->crtc); | 
|  |  | 
|  | if (prepare_pipes & (1 << intel_crtc->pipe)) { | 
|  | struct drm_property *dpms_property = | 
|  | dev->mode_config.dpms_property; | 
|  |  | 
|  | connector->dpms = DRM_MODE_DPMS_ON; | 
|  | drm_object_property_set_value(&connector->base, | 
|  | dpms_property, | 
|  | DRM_MODE_DPMS_ON); | 
|  |  | 
|  | intel_encoder = to_intel_encoder(connector->encoder); | 
|  | intel_encoder->connectors_active = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \ | 
|  | list_for_each_entry((intel_crtc), \ | 
|  | &(dev)->mode_config.crtc_list, \ | 
|  | base.head) \ | 
|  | if (mask & (1 <<(intel_crtc)->pipe)) \ | 
|  |  | 
|  | void | 
|  | intel_modeset_check_state(struct drm_device *dev) | 
|  | { | 
|  | struct intel_crtc *crtc; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | /* This also checks the encoder/connector hw state with the | 
|  | * ->get_hw_state callbacks. */ | 
|  | intel_connector_check_state(connector); | 
|  |  | 
|  | WARN(&connector->new_encoder->base != connector->base.encoder, | 
|  | "connector's staged encoder doesn't match current encoder\n"); | 
|  | } | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | bool enabled = false; | 
|  | bool active = false; | 
|  | enum pipe pipe, tracked_pipe; | 
|  |  | 
|  | DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", | 
|  | encoder->base.base.id, | 
|  | drm_get_encoder_name(&encoder->base)); | 
|  |  | 
|  | WARN(&encoder->new_crtc->base != encoder->base.crtc, | 
|  | "encoder's stage crtc doesn't match current crtc\n"); | 
|  | WARN(encoder->connectors_active && !encoder->base.crtc, | 
|  | "encoder's active_connectors set, but no crtc\n"); | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->base.encoder != &encoder->base) | 
|  | continue; | 
|  | enabled = true; | 
|  | if (connector->base.dpms != DRM_MODE_DPMS_OFF) | 
|  | active = true; | 
|  | } | 
|  | WARN(!!encoder->base.crtc != enabled, | 
|  | "encoder's enabled state mismatch " | 
|  | "(expected %i, found %i)\n", | 
|  | !!encoder->base.crtc, enabled); | 
|  | WARN(active && !encoder->base.crtc, | 
|  | "active encoder with no crtc\n"); | 
|  |  | 
|  | WARN(encoder->connectors_active != active, | 
|  | "encoder's computed active state doesn't match tracked active state " | 
|  | "(expected %i, found %i)\n", active, encoder->connectors_active); | 
|  |  | 
|  | active = encoder->get_hw_state(encoder, &pipe); | 
|  | WARN(active != encoder->connectors_active, | 
|  | "encoder's hw state doesn't match sw tracking " | 
|  | "(expected %i, found %i)\n", | 
|  | encoder->connectors_active, active); | 
|  |  | 
|  | if (!encoder->base.crtc) | 
|  | continue; | 
|  |  | 
|  | tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe; | 
|  | WARN(active && pipe != tracked_pipe, | 
|  | "active encoder's pipe doesn't match" | 
|  | "(expected %i, found %i)\n", | 
|  | tracked_pipe, pipe); | 
|  |  | 
|  | } | 
|  |  | 
|  | list_for_each_entry(crtc, &dev->mode_config.crtc_list, | 
|  | base.head) { | 
|  | bool enabled = false; | 
|  | bool active = false; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CRTC:%d]\n", | 
|  | crtc->base.base.id); | 
|  |  | 
|  | WARN(crtc->active && !crtc->base.enabled, | 
|  | "active crtc, but not enabled in sw tracking\n"); | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | if (encoder->base.crtc != &crtc->base) | 
|  | continue; | 
|  | enabled = true; | 
|  | if (encoder->connectors_active) | 
|  | active = true; | 
|  | } | 
|  | WARN(active != crtc->active, | 
|  | "crtc's computed active state doesn't match tracked active state " | 
|  | "(expected %i, found %i)\n", active, crtc->active); | 
|  | WARN(enabled != crtc->base.enabled, | 
|  | "crtc's computed enabled state doesn't match tracked enabled state " | 
|  | "(expected %i, found %i)\n", enabled, crtc->base.enabled); | 
|  |  | 
|  | assert_pipe(dev->dev_private, crtc->pipe, crtc->active); | 
|  | } | 
|  | } | 
|  |  | 
|  | int intel_set_mode(struct drm_crtc *crtc, | 
|  | struct drm_display_mode *mode, | 
|  | int x, int y, struct drm_framebuffer *fb) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode; | 
|  | struct intel_crtc *intel_crtc; | 
|  | unsigned disable_pipes, prepare_pipes, modeset_pipes; | 
|  | int ret = 0; | 
|  |  | 
|  | saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL); | 
|  | if (!saved_mode) | 
|  | return -ENOMEM; | 
|  | saved_hwmode = saved_mode + 1; | 
|  |  | 
|  | intel_modeset_affected_pipes(crtc, &modeset_pipes, | 
|  | &prepare_pipes, &disable_pipes); | 
|  |  | 
|  | DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n", | 
|  | modeset_pipes, prepare_pipes, disable_pipes); | 
|  |  | 
|  | for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc) | 
|  | intel_crtc_disable(&intel_crtc->base); | 
|  |  | 
|  | *saved_hwmode = crtc->hwmode; | 
|  | *saved_mode = crtc->mode; | 
|  |  | 
|  | /* Hack: Because we don't (yet) support global modeset on multiple | 
|  | * crtcs, we don't keep track of the new mode for more than one crtc. | 
|  | * Hence simply check whether any bit is set in modeset_pipes in all the | 
|  | * pieces of code that are not yet converted to deal with mutliple crtcs | 
|  | * changing their mode at the same time. */ | 
|  | adjusted_mode = NULL; | 
|  | if (modeset_pipes) { | 
|  | adjusted_mode = intel_modeset_adjusted_mode(crtc, mode); | 
|  | if (IS_ERR(adjusted_mode)) { | 
|  | ret = PTR_ERR(adjusted_mode); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) { | 
|  | if (intel_crtc->base.enabled) | 
|  | dev_priv->display.crtc_disable(&intel_crtc->base); | 
|  | } | 
|  |  | 
|  | /* crtc->mode is already used by the ->mode_set callbacks, hence we need | 
|  | * to set it here already despite that we pass it down the callchain. | 
|  | */ | 
|  | if (modeset_pipes) | 
|  | crtc->mode = *mode; | 
|  |  | 
|  | /* Only after disabling all output pipelines that will be changed can we | 
|  | * update the the output configuration. */ | 
|  | intel_modeset_update_state(dev, prepare_pipes); | 
|  |  | 
|  | if (dev_priv->display.modeset_global_resources) | 
|  | dev_priv->display.modeset_global_resources(dev); | 
|  |  | 
|  | /* Set up the DPLL and any encoders state that needs to adjust or depend | 
|  | * on the DPLL. | 
|  | */ | 
|  | for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) { | 
|  | ret = intel_crtc_mode_set(&intel_crtc->base, | 
|  | mode, adjusted_mode, | 
|  | x, y, fb); | 
|  | if (ret) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Now enable the clocks, plane, pipe, and connectors that we set up. */ | 
|  | for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) | 
|  | dev_priv->display.crtc_enable(&intel_crtc->base); | 
|  |  | 
|  | if (modeset_pipes) { | 
|  | /* Store real post-adjustment hardware mode. */ | 
|  | crtc->hwmode = *adjusted_mode; | 
|  |  | 
|  | /* Calculate and store various constants which | 
|  | * are later needed by vblank and swap-completion | 
|  | * timestamping. They are derived from true hwmode. | 
|  | */ | 
|  | drm_calc_timestamping_constants(crtc); | 
|  | } | 
|  |  | 
|  | /* FIXME: add subpixel order */ | 
|  | done: | 
|  | drm_mode_destroy(dev, adjusted_mode); | 
|  | if (ret && crtc->enabled) { | 
|  | crtc->hwmode = *saved_hwmode; | 
|  | crtc->mode = *saved_mode; | 
|  | } else { | 
|  | intel_modeset_check_state(dev); | 
|  | } | 
|  |  | 
|  | out: | 
|  | kfree(saved_mode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void intel_crtc_restore_mode(struct drm_crtc *crtc) | 
|  | { | 
|  | intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb); | 
|  | } | 
|  |  | 
|  | #undef for_each_intel_crtc_masked | 
|  |  | 
|  | static void intel_set_config_free(struct intel_set_config *config) | 
|  | { | 
|  | if (!config) | 
|  | return; | 
|  |  | 
|  | kfree(config->save_connector_encoders); | 
|  | kfree(config->save_encoder_crtcs); | 
|  | kfree(config); | 
|  | } | 
|  |  | 
|  | static int intel_set_config_save_state(struct drm_device *dev, | 
|  | struct intel_set_config *config) | 
|  | { | 
|  | struct drm_encoder *encoder; | 
|  | struct drm_connector *connector; | 
|  | int count; | 
|  |  | 
|  | config->save_encoder_crtcs = | 
|  | kcalloc(dev->mode_config.num_encoder, | 
|  | sizeof(struct drm_crtc *), GFP_KERNEL); | 
|  | if (!config->save_encoder_crtcs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | config->save_connector_encoders = | 
|  | kcalloc(dev->mode_config.num_connector, | 
|  | sizeof(struct drm_encoder *), GFP_KERNEL); | 
|  | if (!config->save_connector_encoders) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Copy data. Note that driver private data is not affected. | 
|  | * Should anything bad happen only the expected state is | 
|  | * restored, not the drivers personal bookkeeping. | 
|  | */ | 
|  | count = 0; | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { | 
|  | config->save_encoder_crtcs[count++] = encoder->crtc; | 
|  | } | 
|  |  | 
|  | count = 0; | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, head) { | 
|  | config->save_connector_encoders[count++] = connector->encoder; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_set_config_restore_state(struct drm_device *dev, | 
|  | struct intel_set_config *config) | 
|  | { | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  | int count; | 
|  |  | 
|  | count = 0; | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { | 
|  | encoder->new_crtc = | 
|  | to_intel_crtc(config->save_encoder_crtcs[count++]); | 
|  | } | 
|  |  | 
|  | count = 0; | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { | 
|  | connector->new_encoder = | 
|  | to_intel_encoder(config->save_connector_encoders[count++]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_set_config_compute_mode_changes(struct drm_mode_set *set, | 
|  | struct intel_set_config *config) | 
|  | { | 
|  |  | 
|  | /* We should be able to check here if the fb has the same properties | 
|  | * and then just flip_or_move it */ | 
|  | if (set->crtc->fb != set->fb) { | 
|  | /* If we have no fb then treat it as a full mode set */ | 
|  | if (set->crtc->fb == NULL) { | 
|  | DRM_DEBUG_KMS("crtc has no fb, full mode set\n"); | 
|  | config->mode_changed = true; | 
|  | } else if (set->fb == NULL) { | 
|  | config->mode_changed = true; | 
|  | } else if (set->fb->depth != set->crtc->fb->depth) { | 
|  | config->mode_changed = true; | 
|  | } else if (set->fb->bits_per_pixel != | 
|  | set->crtc->fb->bits_per_pixel) { | 
|  | config->mode_changed = true; | 
|  | } else | 
|  | config->fb_changed = true; | 
|  | } | 
|  |  | 
|  | if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y)) | 
|  | config->fb_changed = true; | 
|  |  | 
|  | if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) { | 
|  | DRM_DEBUG_KMS("modes are different, full mode set\n"); | 
|  | drm_mode_debug_printmodeline(&set->crtc->mode); | 
|  | drm_mode_debug_printmodeline(set->mode); | 
|  | config->mode_changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_modeset_stage_output_state(struct drm_device *dev, | 
|  | struct drm_mode_set *set, | 
|  | struct intel_set_config *config) | 
|  | { | 
|  | struct drm_crtc *new_crtc; | 
|  | struct intel_connector *connector; | 
|  | struct intel_encoder *encoder; | 
|  | int count, ro; | 
|  |  | 
|  | /* The upper layers ensure that we either disable a crtc or have a list | 
|  | * of connectors. For paranoia, double-check this. */ | 
|  | WARN_ON(!set->fb && (set->num_connectors != 0)); | 
|  | WARN_ON(set->fb && (set->num_connectors == 0)); | 
|  |  | 
|  | count = 0; | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | /* Otherwise traverse passed in connector list and get encoders | 
|  | * for them. */ | 
|  | for (ro = 0; ro < set->num_connectors; ro++) { | 
|  | if (set->connectors[ro] == &connector->base) { | 
|  | connector->new_encoder = connector->encoder; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we disable the crtc, disable all its connectors. Also, if | 
|  | * the connector is on the changing crtc but not on the new | 
|  | * connector list, disable it. */ | 
|  | if ((!set->fb || ro == set->num_connectors) && | 
|  | connector->base.encoder && | 
|  | connector->base.encoder->crtc == set->crtc) { | 
|  | connector->new_encoder = NULL; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n", | 
|  | connector->base.base.id, | 
|  | drm_get_connector_name(&connector->base)); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (&connector->new_encoder->base != connector->base.encoder) { | 
|  | DRM_DEBUG_KMS("encoder changed, full mode switch\n"); | 
|  | config->mode_changed = true; | 
|  | } | 
|  | } | 
|  | /* connector->new_encoder is now updated for all connectors. */ | 
|  |  | 
|  | /* Update crtc of enabled connectors. */ | 
|  | count = 0; | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (!connector->new_encoder) | 
|  | continue; | 
|  |  | 
|  | new_crtc = connector->new_encoder->base.crtc; | 
|  |  | 
|  | for (ro = 0; ro < set->num_connectors; ro++) { | 
|  | if (set->connectors[ro] == &connector->base) | 
|  | new_crtc = set->crtc; | 
|  | } | 
|  |  | 
|  | /* Make sure the new CRTC will work with the encoder */ | 
|  | if (!intel_encoder_crtc_ok(&connector->new_encoder->base, | 
|  | new_crtc)) { | 
|  | return -EINVAL; | 
|  | } | 
|  | connector->encoder->new_crtc = to_intel_crtc(new_crtc); | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n", | 
|  | connector->base.base.id, | 
|  | drm_get_connector_name(&connector->base), | 
|  | new_crtc->base.id); | 
|  | } | 
|  |  | 
|  | /* Check for any encoders that needs to be disabled. */ | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | list_for_each_entry(connector, | 
|  | &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->new_encoder == encoder) { | 
|  | WARN_ON(!connector->new_encoder->new_crtc); | 
|  |  | 
|  | goto next_encoder; | 
|  | } | 
|  | } | 
|  | encoder->new_crtc = NULL; | 
|  | next_encoder: | 
|  | /* Only now check for crtc changes so we don't miss encoders | 
|  | * that will be disabled. */ | 
|  | if (&encoder->new_crtc->base != encoder->base.crtc) { | 
|  | DRM_DEBUG_KMS("crtc changed, full mode switch\n"); | 
|  | config->mode_changed = true; | 
|  | } | 
|  | } | 
|  | /* Now we've also updated encoder->new_crtc for all encoders. */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_crtc_set_config(struct drm_mode_set *set) | 
|  | { | 
|  | struct drm_device *dev; | 
|  | struct drm_mode_set save_set; | 
|  | struct intel_set_config *config; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!set); | 
|  | BUG_ON(!set->crtc); | 
|  | BUG_ON(!set->crtc->helper_private); | 
|  |  | 
|  | /* Enforce sane interface api - has been abused by the fb helper. */ | 
|  | BUG_ON(!set->mode && set->fb); | 
|  | BUG_ON(set->fb && set->num_connectors == 0); | 
|  |  | 
|  | if (set->fb) { | 
|  | DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n", | 
|  | set->crtc->base.id, set->fb->base.id, | 
|  | (int)set->num_connectors, set->x, set->y); | 
|  | } else { | 
|  | DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id); | 
|  | } | 
|  |  | 
|  | dev = set->crtc->dev; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | config = kzalloc(sizeof(*config), GFP_KERNEL); | 
|  | if (!config) | 
|  | goto out_config; | 
|  |  | 
|  | ret = intel_set_config_save_state(dev, config); | 
|  | if (ret) | 
|  | goto out_config; | 
|  |  | 
|  | save_set.crtc = set->crtc; | 
|  | save_set.mode = &set->crtc->mode; | 
|  | save_set.x = set->crtc->x; | 
|  | save_set.y = set->crtc->y; | 
|  | save_set.fb = set->crtc->fb; | 
|  |  | 
|  | /* Compute whether we need a full modeset, only an fb base update or no | 
|  | * change at all. In the future we might also check whether only the | 
|  | * mode changed, e.g. for LVDS where we only change the panel fitter in | 
|  | * such cases. */ | 
|  | intel_set_config_compute_mode_changes(set, config); | 
|  |  | 
|  | ret = intel_modeset_stage_output_state(dev, set, config); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | if (config->mode_changed) { | 
|  | if (set->mode) { | 
|  | DRM_DEBUG_KMS("attempting to set mode from" | 
|  | " userspace\n"); | 
|  | drm_mode_debug_printmodeline(set->mode); | 
|  | } | 
|  |  | 
|  | ret = intel_set_mode(set->crtc, set->mode, | 
|  | set->x, set->y, set->fb); | 
|  | if (ret) { | 
|  | DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n", | 
|  | set->crtc->base.id, ret); | 
|  | goto fail; | 
|  | } | 
|  | } else if (config->fb_changed) { | 
|  | ret = intel_pipe_set_base(set->crtc, | 
|  | set->x, set->y, set->fb); | 
|  | } | 
|  |  | 
|  | intel_set_config_free(config); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | intel_set_config_restore_state(dev, config); | 
|  |  | 
|  | /* Try to restore the config */ | 
|  | if (config->mode_changed && | 
|  | intel_set_mode(save_set.crtc, save_set.mode, | 
|  | save_set.x, save_set.y, save_set.fb)) | 
|  | DRM_ERROR("failed to restore config after modeset failure\n"); | 
|  |  | 
|  | out_config: | 
|  | intel_set_config_free(config); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct drm_crtc_funcs intel_crtc_funcs = { | 
|  | .cursor_set = intel_crtc_cursor_set, | 
|  | .cursor_move = intel_crtc_cursor_move, | 
|  | .gamma_set = intel_crtc_gamma_set, | 
|  | .set_config = intel_crtc_set_config, | 
|  | .destroy = intel_crtc_destroy, | 
|  | .page_flip = intel_crtc_page_flip, | 
|  | }; | 
|  |  | 
|  | static void intel_cpu_pll_init(struct drm_device *dev) | 
|  | { | 
|  | if (HAS_DDI(dev)) | 
|  | intel_ddi_pll_init(dev); | 
|  | } | 
|  |  | 
|  | static void intel_pch_pll_init(struct drm_device *dev) | 
|  | { | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | int i; | 
|  |  | 
|  | if (dev_priv->num_pch_pll == 0) { | 
|  | DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < dev_priv->num_pch_pll; i++) { | 
|  | dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i); | 
|  | dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i); | 
|  | dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_crtc_init(struct drm_device *dev, int pipe) | 
|  | { | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc; | 
|  | int i; | 
|  |  | 
|  | intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); | 
|  | if (intel_crtc == NULL) | 
|  | return; | 
|  |  | 
|  | drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs); | 
|  |  | 
|  | drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256); | 
|  | for (i = 0; i < 256; i++) { | 
|  | intel_crtc->lut_r[i] = i; | 
|  | intel_crtc->lut_g[i] = i; | 
|  | intel_crtc->lut_b[i] = i; | 
|  | } | 
|  |  | 
|  | /* Swap pipes & planes for FBC on pre-965 */ | 
|  | intel_crtc->pipe = pipe; | 
|  | intel_crtc->plane = pipe; | 
|  | intel_crtc->cpu_transcoder = pipe; | 
|  | if (IS_MOBILE(dev) && IS_GEN3(dev)) { | 
|  | DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); | 
|  | intel_crtc->plane = !pipe; | 
|  | } | 
|  |  | 
|  | BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || | 
|  | dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); | 
|  | dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; | 
|  | dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; | 
|  |  | 
|  | intel_crtc->bpp = 24; /* default for pre-Ironlake */ | 
|  |  | 
|  | drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); | 
|  | } | 
|  |  | 
|  | int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, | 
|  | struct drm_file *file) | 
|  | { | 
|  | struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; | 
|  | struct drm_mode_object *drmmode_obj; | 
|  | struct intel_crtc *crtc; | 
|  |  | 
|  | if (!drm_core_check_feature(dev, DRIVER_MODESET)) | 
|  | return -ENODEV; | 
|  |  | 
|  | drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id, | 
|  | DRM_MODE_OBJECT_CRTC); | 
|  |  | 
|  | if (!drmmode_obj) { | 
|  | DRM_ERROR("no such CRTC id\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | crtc = to_intel_crtc(obj_to_crtc(drmmode_obj)); | 
|  | pipe_from_crtc_id->pipe = crtc->pipe; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_encoder_clones(struct intel_encoder *encoder) | 
|  | { | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct intel_encoder *source_encoder; | 
|  | int index_mask = 0; | 
|  | int entry = 0; | 
|  |  | 
|  | list_for_each_entry(source_encoder, | 
|  | &dev->mode_config.encoder_list, base.head) { | 
|  |  | 
|  | if (encoder == source_encoder) | 
|  | index_mask |= (1 << entry); | 
|  |  | 
|  | /* Intel hw has only one MUX where enocoders could be cloned. */ | 
|  | if (encoder->cloneable && source_encoder->cloneable) | 
|  | index_mask |= (1 << entry); | 
|  |  | 
|  | entry++; | 
|  | } | 
|  |  | 
|  | return index_mask; | 
|  | } | 
|  |  | 
|  | static bool has_edp_a(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (!IS_MOBILE(dev)) | 
|  | return false; | 
|  |  | 
|  | if ((I915_READ(DP_A) & DP_DETECTED) == 0) | 
|  | return false; | 
|  |  | 
|  | if (IS_GEN5(dev) && | 
|  | (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void intel_setup_outputs(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *encoder; | 
|  | bool dpd_is_edp = false; | 
|  | bool has_lvds; | 
|  |  | 
|  | has_lvds = intel_lvds_init(dev); | 
|  | if (!has_lvds && !HAS_PCH_SPLIT(dev)) { | 
|  | /* disable the panel fitter on everything but LVDS */ | 
|  | I915_WRITE(PFIT_CONTROL, 0); | 
|  | } | 
|  |  | 
|  | if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES))) | 
|  | intel_crt_init(dev); | 
|  |  | 
|  | if (HAS_DDI(dev)) { | 
|  | int found; | 
|  |  | 
|  | /* Haswell uses DDI functions to detect digital outputs */ | 
|  | found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED; | 
|  | /* DDI A only supports eDP */ | 
|  | if (found) | 
|  | intel_ddi_init(dev, PORT_A); | 
|  |  | 
|  | /* DDI B, C and D detection is indicated by the SFUSE_STRAP | 
|  | * register */ | 
|  | found = I915_READ(SFUSE_STRAP); | 
|  |  | 
|  | if (found & SFUSE_STRAP_DDIB_DETECTED) | 
|  | intel_ddi_init(dev, PORT_B); | 
|  | if (found & SFUSE_STRAP_DDIC_DETECTED) | 
|  | intel_ddi_init(dev, PORT_C); | 
|  | if (found & SFUSE_STRAP_DDID_DETECTED) | 
|  | intel_ddi_init(dev, PORT_D); | 
|  | } else if (HAS_PCH_SPLIT(dev)) { | 
|  | int found; | 
|  | dpd_is_edp = intel_dpd_is_edp(dev); | 
|  |  | 
|  | if (has_edp_a(dev)) | 
|  | intel_dp_init(dev, DP_A, PORT_A); | 
|  |  | 
|  | if (I915_READ(HDMIB) & PORT_DETECTED) { | 
|  | /* PCH SDVOB multiplex with HDMIB */ | 
|  | found = intel_sdvo_init(dev, PCH_SDVOB, true); | 
|  | if (!found) | 
|  | intel_hdmi_init(dev, HDMIB, PORT_B); | 
|  | if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) | 
|  | intel_dp_init(dev, PCH_DP_B, PORT_B); | 
|  | } | 
|  |  | 
|  | if (I915_READ(HDMIC) & PORT_DETECTED) | 
|  | intel_hdmi_init(dev, HDMIC, PORT_C); | 
|  |  | 
|  | if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED) | 
|  | intel_hdmi_init(dev, HDMID, PORT_D); | 
|  |  | 
|  | if (I915_READ(PCH_DP_C) & DP_DETECTED) | 
|  | intel_dp_init(dev, PCH_DP_C, PORT_C); | 
|  |  | 
|  | if (I915_READ(PCH_DP_D) & DP_DETECTED) | 
|  | intel_dp_init(dev, PCH_DP_D, PORT_D); | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */ | 
|  | if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED) | 
|  | intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C); | 
|  |  | 
|  | if (I915_READ(VLV_DISPLAY_BASE + SDVOB) & PORT_DETECTED) { | 
|  | intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOB, PORT_B); | 
|  | if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED) | 
|  | intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B); | 
|  | } | 
|  |  | 
|  | if (I915_READ(VLV_DISPLAY_BASE + SDVOC) & PORT_DETECTED) | 
|  | intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOC, PORT_C); | 
|  |  | 
|  | } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) { | 
|  | bool found = false; | 
|  |  | 
|  | if (I915_READ(SDVOB) & SDVO_DETECTED) { | 
|  | DRM_DEBUG_KMS("probing SDVOB\n"); | 
|  | found = intel_sdvo_init(dev, SDVOB, true); | 
|  | if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) { | 
|  | DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); | 
|  | intel_hdmi_init(dev, SDVOB, PORT_B); | 
|  | } | 
|  |  | 
|  | if (!found && SUPPORTS_INTEGRATED_DP(dev)) { | 
|  | DRM_DEBUG_KMS("probing DP_B\n"); | 
|  | intel_dp_init(dev, DP_B, PORT_B); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Before G4X SDVOC doesn't have its own detect register */ | 
|  |  | 
|  | if (I915_READ(SDVOB) & SDVO_DETECTED) { | 
|  | DRM_DEBUG_KMS("probing SDVOC\n"); | 
|  | found = intel_sdvo_init(dev, SDVOC, false); | 
|  | } | 
|  |  | 
|  | if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) { | 
|  |  | 
|  | if (SUPPORTS_INTEGRATED_HDMI(dev)) { | 
|  | DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); | 
|  | intel_hdmi_init(dev, SDVOC, PORT_C); | 
|  | } | 
|  | if (SUPPORTS_INTEGRATED_DP(dev)) { | 
|  | DRM_DEBUG_KMS("probing DP_C\n"); | 
|  | intel_dp_init(dev, DP_C, PORT_C); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SUPPORTS_INTEGRATED_DP(dev) && | 
|  | (I915_READ(DP_D) & DP_DETECTED)) { | 
|  | DRM_DEBUG_KMS("probing DP_D\n"); | 
|  | intel_dp_init(dev, DP_D, PORT_D); | 
|  | } | 
|  | } else if (IS_GEN2(dev)) | 
|  | intel_dvo_init(dev); | 
|  |  | 
|  | if (SUPPORTS_TV(dev)) | 
|  | intel_tv_init(dev); | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { | 
|  | encoder->base.possible_crtcs = encoder->crtc_mask; | 
|  | encoder->base.possible_clones = | 
|  | intel_encoder_clones(encoder); | 
|  | } | 
|  |  | 
|  | intel_init_pch_refclk(dev); | 
|  |  | 
|  | drm_helper_move_panel_connectors_to_head(dev); | 
|  | } | 
|  |  | 
|  | static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) | 
|  | { | 
|  | struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); | 
|  |  | 
|  | drm_framebuffer_cleanup(fb); | 
|  | drm_gem_object_unreference_unlocked(&intel_fb->obj->base); | 
|  |  | 
|  | kfree(intel_fb); | 
|  | } | 
|  |  | 
|  | static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, | 
|  | struct drm_file *file, | 
|  | unsigned int *handle) | 
|  | { | 
|  | struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); | 
|  | struct drm_i915_gem_object *obj = intel_fb->obj; | 
|  |  | 
|  | return drm_gem_handle_create(file, &obj->base, handle); | 
|  | } | 
|  |  | 
|  | static const struct drm_framebuffer_funcs intel_fb_funcs = { | 
|  | .destroy = intel_user_framebuffer_destroy, | 
|  | .create_handle = intel_user_framebuffer_create_handle, | 
|  | }; | 
|  |  | 
|  | int intel_framebuffer_init(struct drm_device *dev, | 
|  | struct intel_framebuffer *intel_fb, | 
|  | struct drm_mode_fb_cmd2 *mode_cmd, | 
|  | struct drm_i915_gem_object *obj) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (obj->tiling_mode == I915_TILING_Y) { | 
|  | DRM_DEBUG("hardware does not support tiling Y\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (mode_cmd->pitches[0] & 63) { | 
|  | DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n", | 
|  | mode_cmd->pitches[0]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* FIXME <= Gen4 stride limits are bit unclear */ | 
|  | if (mode_cmd->pitches[0] > 32768) { | 
|  | DRM_DEBUG("pitch (%d) must be at less than 32768\n", | 
|  | mode_cmd->pitches[0]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (obj->tiling_mode != I915_TILING_NONE && | 
|  | mode_cmd->pitches[0] != obj->stride) { | 
|  | DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n", | 
|  | mode_cmd->pitches[0], obj->stride); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Reject formats not supported by any plane early. */ | 
|  | switch (mode_cmd->pixel_format) { | 
|  | case DRM_FORMAT_C8: | 
|  | case DRM_FORMAT_RGB565: | 
|  | case DRM_FORMAT_XRGB8888: | 
|  | case DRM_FORMAT_ARGB8888: | 
|  | break; | 
|  | case DRM_FORMAT_XRGB1555: | 
|  | case DRM_FORMAT_ARGB1555: | 
|  | if (INTEL_INFO(dev)->gen > 3) { | 
|  | DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case DRM_FORMAT_XBGR8888: | 
|  | case DRM_FORMAT_ABGR8888: | 
|  | case DRM_FORMAT_XRGB2101010: | 
|  | case DRM_FORMAT_ARGB2101010: | 
|  | case DRM_FORMAT_XBGR2101010: | 
|  | case DRM_FORMAT_ABGR2101010: | 
|  | if (INTEL_INFO(dev)->gen < 4) { | 
|  | DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | case DRM_FORMAT_YUYV: | 
|  | case DRM_FORMAT_UYVY: | 
|  | case DRM_FORMAT_YVYU: | 
|  | case DRM_FORMAT_VYUY: | 
|  | if (INTEL_INFO(dev)->gen < 5) { | 
|  | DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ | 
|  | if (mode_cmd->offsets[0] != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); | 
|  | intel_fb->obj = obj; | 
|  |  | 
|  | ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); | 
|  | if (ret) { | 
|  | DRM_ERROR("framebuffer init failed %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct drm_framebuffer * | 
|  | intel_user_framebuffer_create(struct drm_device *dev, | 
|  | struct drm_file *filp, | 
|  | struct drm_mode_fb_cmd2 *mode_cmd) | 
|  | { | 
|  | struct drm_i915_gem_object *obj; | 
|  |  | 
|  | obj = to_intel_bo(drm_gem_object_lookup(dev, filp, | 
|  | mode_cmd->handles[0])); | 
|  | if (&obj->base == NULL) | 
|  | return ERR_PTR(-ENOENT); | 
|  |  | 
|  | return intel_framebuffer_create(dev, mode_cmd, obj); | 
|  | } | 
|  |  | 
|  | static const struct drm_mode_config_funcs intel_mode_funcs = { | 
|  | .fb_create = intel_user_framebuffer_create, | 
|  | .output_poll_changed = intel_fb_output_poll_changed, | 
|  | }; | 
|  |  | 
|  | /* Set up chip specific display functions */ | 
|  | static void intel_init_display(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | /* We always want a DPMS function */ | 
|  | if (HAS_DDI(dev)) { | 
|  | dev_priv->display.crtc_mode_set = haswell_crtc_mode_set; | 
|  | dev_priv->display.crtc_enable = haswell_crtc_enable; | 
|  | dev_priv->display.crtc_disable = haswell_crtc_disable; | 
|  | dev_priv->display.off = haswell_crtc_off; | 
|  | dev_priv->display.update_plane = ironlake_update_plane; | 
|  | } else if (HAS_PCH_SPLIT(dev)) { | 
|  | dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set; | 
|  | dev_priv->display.crtc_enable = ironlake_crtc_enable; | 
|  | dev_priv->display.crtc_disable = ironlake_crtc_disable; | 
|  | dev_priv->display.off = ironlake_crtc_off; | 
|  | dev_priv->display.update_plane = ironlake_update_plane; | 
|  | } else { | 
|  | dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set; | 
|  | dev_priv->display.crtc_enable = i9xx_crtc_enable; | 
|  | dev_priv->display.crtc_disable = i9xx_crtc_disable; | 
|  | dev_priv->display.off = i9xx_crtc_off; | 
|  | dev_priv->display.update_plane = i9xx_update_plane; | 
|  | } | 
|  |  | 
|  | /* Returns the core display clock speed */ | 
|  | if (IS_VALLEYVIEW(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | valleyview_get_display_clock_speed; | 
|  | else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev))) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i945_get_display_clock_speed; | 
|  | else if (IS_I915G(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i915_get_display_clock_speed; | 
|  | else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i9xx_misc_get_display_clock_speed; | 
|  | else if (IS_I915GM(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i915gm_get_display_clock_speed; | 
|  | else if (IS_I865G(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i865_get_display_clock_speed; | 
|  | else if (IS_I85X(dev)) | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i855_get_display_clock_speed; | 
|  | else /* 852, 830 */ | 
|  | dev_priv->display.get_display_clock_speed = | 
|  | i830_get_display_clock_speed; | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) { | 
|  | if (IS_GEN5(dev)) { | 
|  | dev_priv->display.fdi_link_train = ironlake_fdi_link_train; | 
|  | dev_priv->display.write_eld = ironlake_write_eld; | 
|  | } else if (IS_GEN6(dev)) { | 
|  | dev_priv->display.fdi_link_train = gen6_fdi_link_train; | 
|  | dev_priv->display.write_eld = ironlake_write_eld; | 
|  | } else if (IS_IVYBRIDGE(dev)) { | 
|  | /* FIXME: detect B0+ stepping and use auto training */ | 
|  | dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; | 
|  | dev_priv->display.write_eld = ironlake_write_eld; | 
|  | dev_priv->display.modeset_global_resources = | 
|  | ivb_modeset_global_resources; | 
|  | } else if (IS_HASWELL(dev)) { | 
|  | dev_priv->display.fdi_link_train = hsw_fdi_link_train; | 
|  | dev_priv->display.write_eld = haswell_write_eld; | 
|  | dev_priv->display.modeset_global_resources = | 
|  | haswell_modeset_global_resources; | 
|  | } | 
|  | } else if (IS_G4X(dev)) { | 
|  | dev_priv->display.write_eld = g4x_write_eld; | 
|  | } | 
|  |  | 
|  | /* Default just returns -ENODEV to indicate unsupported */ | 
|  | dev_priv->display.queue_flip = intel_default_queue_flip; | 
|  |  | 
|  | switch (INTEL_INFO(dev)->gen) { | 
|  | case 2: | 
|  | dev_priv->display.queue_flip = intel_gen2_queue_flip; | 
|  | break; | 
|  |  | 
|  | case 3: | 
|  | dev_priv->display.queue_flip = intel_gen3_queue_flip; | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | case 5: | 
|  | dev_priv->display.queue_flip = intel_gen4_queue_flip; | 
|  | break; | 
|  |  | 
|  | case 6: | 
|  | dev_priv->display.queue_flip = intel_gen6_queue_flip; | 
|  | break; | 
|  | case 7: | 
|  | dev_priv->display.queue_flip = intel_gen7_queue_flip; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, | 
|  | * resume, or other times.  This quirk makes sure that's the case for | 
|  | * affected systems. | 
|  | */ | 
|  | static void quirk_pipea_force(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | dev_priv->quirks |= QUIRK_PIPEA_FORCE; | 
|  | DRM_INFO("applying pipe a force quirk\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason | 
|  | */ | 
|  | static void quirk_ssc_force_disable(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE; | 
|  | DRM_INFO("applying lvds SSC disable quirk\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight | 
|  | * brightness value | 
|  | */ | 
|  | static void quirk_invert_brightness(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS; | 
|  | DRM_INFO("applying inverted panel brightness quirk\n"); | 
|  | } | 
|  |  | 
|  | struct intel_quirk { | 
|  | int device; | 
|  | int subsystem_vendor; | 
|  | int subsystem_device; | 
|  | void (*hook)(struct drm_device *dev); | 
|  | }; | 
|  |  | 
|  | /* For systems that don't have a meaningful PCI subdevice/subvendor ID */ | 
|  | struct intel_dmi_quirk { | 
|  | void (*hook)(struct drm_device *dev); | 
|  | const struct dmi_system_id (*dmi_id_list)[]; | 
|  | }; | 
|  |  | 
|  | static int intel_dmi_reverse_brightness(const struct dmi_system_id *id) | 
|  | { | 
|  | DRM_INFO("Backlight polarity reversed on %s\n", id->ident); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const struct intel_dmi_quirk intel_dmi_quirks[] = { | 
|  | { | 
|  | .dmi_id_list = &(const struct dmi_system_id[]) { | 
|  | { | 
|  | .callback = intel_dmi_reverse_brightness, | 
|  | .ident = "NCR Corporation", | 
|  | .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"), | 
|  | DMI_MATCH(DMI_PRODUCT_NAME, ""), | 
|  | }, | 
|  | }, | 
|  | { }  /* terminating entry */ | 
|  | }, | 
|  | .hook = quirk_invert_brightness, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct intel_quirk intel_quirks[] = { | 
|  | /* HP Mini needs pipe A force quirk (LP: #322104) */ | 
|  | { 0x27ae, 0x103c, 0x361a, quirk_pipea_force }, | 
|  |  | 
|  | /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ | 
|  | { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, | 
|  |  | 
|  | /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ | 
|  | { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, | 
|  |  | 
|  | /* 830/845 need to leave pipe A & dpll A up */ | 
|  | { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, | 
|  | { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, | 
|  |  | 
|  | /* Lenovo U160 cannot use SSC on LVDS */ | 
|  | { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable }, | 
|  |  | 
|  | /* Sony Vaio Y cannot use SSC on LVDS */ | 
|  | { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable }, | 
|  |  | 
|  | /* Acer Aspire 5734Z must invert backlight brightness */ | 
|  | { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness }, | 
|  |  | 
|  | /* Acer/eMachines G725 */ | 
|  | { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness }, | 
|  |  | 
|  | /* Acer/eMachines e725 */ | 
|  | { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness }, | 
|  |  | 
|  | /* Acer/Packard Bell NCL20 */ | 
|  | { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness }, | 
|  |  | 
|  | /* Acer Aspire 4736Z */ | 
|  | { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness }, | 
|  | }; | 
|  |  | 
|  | static void intel_init_quirks(struct drm_device *dev) | 
|  | { | 
|  | struct pci_dev *d = dev->pdev; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { | 
|  | struct intel_quirk *q = &intel_quirks[i]; | 
|  |  | 
|  | if (d->device == q->device && | 
|  | (d->subsystem_vendor == q->subsystem_vendor || | 
|  | q->subsystem_vendor == PCI_ANY_ID) && | 
|  | (d->subsystem_device == q->subsystem_device || | 
|  | q->subsystem_device == PCI_ANY_ID)) | 
|  | q->hook(dev); | 
|  | } | 
|  | for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) { | 
|  | if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0) | 
|  | intel_dmi_quirks[i].hook(dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Disable the VGA plane that we never use */ | 
|  | static void i915_disable_vga(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u8 sr1; | 
|  | u32 vga_reg = i915_vgacntrl_reg(dev); | 
|  |  | 
|  | vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); | 
|  | outb(SR01, VGA_SR_INDEX); | 
|  | sr1 = inb(VGA_SR_DATA); | 
|  | outb(sr1 | 1<<5, VGA_SR_DATA); | 
|  | vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); | 
|  | udelay(300); | 
|  |  | 
|  | I915_WRITE(vga_reg, VGA_DISP_DISABLE); | 
|  | POSTING_READ(vga_reg); | 
|  | } | 
|  |  | 
|  | void intel_modeset_init_hw(struct drm_device *dev) | 
|  | { | 
|  | intel_init_power_well(dev); | 
|  |  | 
|  | intel_prepare_ddi(dev); | 
|  |  | 
|  | intel_init_clock_gating(dev); | 
|  |  | 
|  | mutex_lock(&dev->struct_mutex); | 
|  | intel_enable_gt_powersave(dev); | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  | } | 
|  |  | 
|  | void intel_modeset_init(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int i, ret; | 
|  |  | 
|  | drm_mode_config_init(dev); | 
|  |  | 
|  | dev->mode_config.min_width = 0; | 
|  | dev->mode_config.min_height = 0; | 
|  |  | 
|  | dev->mode_config.preferred_depth = 24; | 
|  | dev->mode_config.prefer_shadow = 1; | 
|  |  | 
|  | dev->mode_config.funcs = &intel_mode_funcs; | 
|  |  | 
|  | intel_init_quirks(dev); | 
|  |  | 
|  | intel_init_pm(dev); | 
|  |  | 
|  | intel_init_display(dev); | 
|  |  | 
|  | if (IS_GEN2(dev)) { | 
|  | dev->mode_config.max_width = 2048; | 
|  | dev->mode_config.max_height = 2048; | 
|  | } else if (IS_GEN3(dev)) { | 
|  | dev->mode_config.max_width = 4096; | 
|  | dev->mode_config.max_height = 4096; | 
|  | } else { | 
|  | dev->mode_config.max_width = 8192; | 
|  | dev->mode_config.max_height = 8192; | 
|  | } | 
|  | dev->mode_config.fb_base = dev_priv->gtt.mappable_base; | 
|  |  | 
|  | DRM_DEBUG_KMS("%d display pipe%s available.\n", | 
|  | dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : ""); | 
|  |  | 
|  | for (i = 0; i < dev_priv->num_pipe; i++) { | 
|  | intel_crtc_init(dev, i); | 
|  | ret = intel_plane_init(dev, i); | 
|  | if (ret) | 
|  | DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret); | 
|  | } | 
|  |  | 
|  | intel_cpu_pll_init(dev); | 
|  | intel_pch_pll_init(dev); | 
|  |  | 
|  | /* Just disable it once at startup */ | 
|  | i915_disable_vga(dev); | 
|  | intel_setup_outputs(dev); | 
|  |  | 
|  | /* Just in case the BIOS is doing something questionable. */ | 
|  | intel_disable_fbc(dev); | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_connector_break_all_links(struct intel_connector *connector) | 
|  | { | 
|  | connector->base.dpms = DRM_MODE_DPMS_OFF; | 
|  | connector->base.encoder = NULL; | 
|  | connector->encoder->connectors_active = false; | 
|  | connector->encoder->base.crtc = NULL; | 
|  | } | 
|  |  | 
|  | static void intel_enable_pipe_a(struct drm_device *dev) | 
|  | { | 
|  | struct intel_connector *connector; | 
|  | struct drm_connector *crt = NULL; | 
|  | struct intel_load_detect_pipe load_detect_temp; | 
|  |  | 
|  | /* We can't just switch on the pipe A, we need to set things up with a | 
|  | * proper mode and output configuration. As a gross hack, enable pipe A | 
|  | * by enabling the load detect pipe once. */ | 
|  | list_for_each_entry(connector, | 
|  | &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->encoder->type == INTEL_OUTPUT_ANALOG) { | 
|  | crt = &connector->base; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!crt) | 
|  | return; | 
|  |  | 
|  | if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp)) | 
|  | intel_release_load_detect_pipe(crt, &load_detect_temp); | 
|  |  | 
|  |  | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_check_plane_mapping(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; | 
|  | u32 reg, val; | 
|  |  | 
|  | if (dev_priv->num_pipe == 1) | 
|  | return true; | 
|  |  | 
|  | reg = DSPCNTR(!crtc->plane); | 
|  | val = I915_READ(reg); | 
|  |  | 
|  | if ((val & DISPLAY_PLANE_ENABLE) && | 
|  | (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void intel_sanitize_crtc(struct intel_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 reg; | 
|  |  | 
|  | /* Clear any frame start delays used for debugging left by the BIOS */ | 
|  | reg = PIPECONF(crtc->cpu_transcoder); | 
|  | I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); | 
|  |  | 
|  | /* We need to sanitize the plane -> pipe mapping first because this will | 
|  | * disable the crtc (and hence change the state) if it is wrong. Note | 
|  | * that gen4+ has a fixed plane -> pipe mapping.  */ | 
|  | if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) { | 
|  | struct intel_connector *connector; | 
|  | bool plane; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n", | 
|  | crtc->base.base.id); | 
|  |  | 
|  | /* Pipe has the wrong plane attached and the plane is active. | 
|  | * Temporarily change the plane mapping and disable everything | 
|  | * ...  */ | 
|  | plane = crtc->plane; | 
|  | crtc->plane = !plane; | 
|  | dev_priv->display.crtc_disable(&crtc->base); | 
|  | crtc->plane = plane; | 
|  |  | 
|  | /* ... and break all links. */ | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->encoder->base.crtc != &crtc->base) | 
|  | continue; | 
|  |  | 
|  | intel_connector_break_all_links(connector); | 
|  | } | 
|  |  | 
|  | WARN_ON(crtc->active); | 
|  | crtc->base.enabled = false; | 
|  | } | 
|  |  | 
|  | if (dev_priv->quirks & QUIRK_PIPEA_FORCE && | 
|  | crtc->pipe == PIPE_A && !crtc->active) { | 
|  | /* BIOS forgot to enable pipe A, this mostly happens after | 
|  | * resume. Force-enable the pipe to fix this, the update_dpms | 
|  | * call below we restore the pipe to the right state, but leave | 
|  | * the required bits on. */ | 
|  | intel_enable_pipe_a(dev); | 
|  | } | 
|  |  | 
|  | /* Adjust the state of the output pipe according to whether we | 
|  | * have active connectors/encoders. */ | 
|  | intel_crtc_update_dpms(&crtc->base); | 
|  |  | 
|  | if (crtc->active != crtc->base.enabled) { | 
|  | struct intel_encoder *encoder; | 
|  |  | 
|  | /* This can happen either due to bugs in the get_hw_state | 
|  | * functions or because the pipe is force-enabled due to the | 
|  | * pipe A quirk. */ | 
|  | DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n", | 
|  | crtc->base.base.id, | 
|  | crtc->base.enabled ? "enabled" : "disabled", | 
|  | crtc->active ? "enabled" : "disabled"); | 
|  |  | 
|  | crtc->base.enabled = crtc->active; | 
|  |  | 
|  | /* Because we only establish the connector -> encoder -> | 
|  | * crtc links if something is active, this means the | 
|  | * crtc is now deactivated. Break the links. connector | 
|  | * -> encoder links are only establish when things are | 
|  | *  actually up, hence no need to break them. */ | 
|  | WARN_ON(crtc->active); | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, &crtc->base, encoder) { | 
|  | WARN_ON(encoder->connectors_active); | 
|  | encoder->base.crtc = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_sanitize_encoder(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_connector *connector; | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  |  | 
|  | /* We need to check both for a crtc link (meaning that the | 
|  | * encoder is active and trying to read from a pipe) and the | 
|  | * pipe itself being active. */ | 
|  | bool has_active_crtc = encoder->base.crtc && | 
|  | to_intel_crtc(encoder->base.crtc)->active; | 
|  |  | 
|  | if (encoder->connectors_active && !has_active_crtc) { | 
|  | DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", | 
|  | encoder->base.base.id, | 
|  | drm_get_encoder_name(&encoder->base)); | 
|  |  | 
|  | /* Connector is active, but has no active pipe. This is | 
|  | * fallout from our resume register restoring. Disable | 
|  | * the encoder manually again. */ | 
|  | if (encoder->base.crtc) { | 
|  | DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", | 
|  | encoder->base.base.id, | 
|  | drm_get_encoder_name(&encoder->base)); | 
|  | encoder->disable(encoder); | 
|  | } | 
|  |  | 
|  | /* Inconsistent output/port/pipe state happens presumably due to | 
|  | * a bug in one of the get_hw_state functions. Or someplace else | 
|  | * in our code, like the register restore mess on resume. Clamp | 
|  | * things to off as a safer default. */ | 
|  | list_for_each_entry(connector, | 
|  | &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->encoder != encoder) | 
|  | continue; | 
|  |  | 
|  | intel_connector_break_all_links(connector); | 
|  | } | 
|  | } | 
|  | /* Enabled encoders without active connectors will be fixed in | 
|  | * the crtc fixup. */ | 
|  | } | 
|  |  | 
|  | void i915_redisable_vga(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 vga_reg = i915_vgacntrl_reg(dev); | 
|  |  | 
|  | if (I915_READ(vga_reg) != VGA_DISP_DISABLE) { | 
|  | DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n"); | 
|  | i915_disable_vga(dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Scan out the current hw modeset state, sanitizes it and maps it into the drm | 
|  | * and i915 state tracking structures. */ | 
|  | void intel_modeset_setup_hw_state(struct drm_device *dev, | 
|  | bool force_restore) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum pipe pipe; | 
|  | u32 tmp; | 
|  | struct intel_crtc *crtc; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_connector *connector; | 
|  |  | 
|  | if (HAS_DDI(dev)) { | 
|  | tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); | 
|  |  | 
|  | if (tmp & TRANS_DDI_FUNC_ENABLE) { | 
|  | switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { | 
|  | case TRANS_DDI_EDP_INPUT_A_ON: | 
|  | case TRANS_DDI_EDP_INPUT_A_ONOFF: | 
|  | pipe = PIPE_A; | 
|  | break; | 
|  | case TRANS_DDI_EDP_INPUT_B_ONOFF: | 
|  | pipe = PIPE_B; | 
|  | break; | 
|  | case TRANS_DDI_EDP_INPUT_C_ONOFF: | 
|  | pipe = PIPE_C; | 
|  | break; | 
|  | } | 
|  |  | 
|  | crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); | 
|  | crtc->cpu_transcoder = TRANSCODER_EDP; | 
|  |  | 
|  | DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n", | 
|  | pipe_name(pipe)); | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_pipe(pipe) { | 
|  | crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); | 
|  |  | 
|  | tmp = I915_READ(PIPECONF(crtc->cpu_transcoder)); | 
|  | if (tmp & PIPECONF_ENABLE) | 
|  | crtc->active = true; | 
|  | else | 
|  | crtc->active = false; | 
|  |  | 
|  | crtc->base.enabled = crtc->active; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n", | 
|  | crtc->base.base.id, | 
|  | crtc->active ? "enabled" : "disabled"); | 
|  | } | 
|  |  | 
|  | if (HAS_DDI(dev)) | 
|  | intel_ddi_setup_hw_pll_state(dev); | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | pipe = 0; | 
|  |  | 
|  | if (encoder->get_hw_state(encoder, &pipe)) { | 
|  | encoder->base.crtc = | 
|  | dev_priv->pipe_to_crtc_mapping[pipe]; | 
|  | } else { | 
|  | encoder->base.crtc = NULL; | 
|  | } | 
|  |  | 
|  | encoder->connectors_active = false; | 
|  | DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n", | 
|  | encoder->base.base.id, | 
|  | drm_get_encoder_name(&encoder->base), | 
|  | encoder->base.crtc ? "enabled" : "disabled", | 
|  | pipe); | 
|  | } | 
|  |  | 
|  | list_for_each_entry(connector, &dev->mode_config.connector_list, | 
|  | base.head) { | 
|  | if (connector->get_hw_state(connector)) { | 
|  | connector->base.dpms = DRM_MODE_DPMS_ON; | 
|  | connector->encoder->connectors_active = true; | 
|  | connector->base.encoder = &connector->encoder->base; | 
|  | } else { | 
|  | connector->base.dpms = DRM_MODE_DPMS_OFF; | 
|  | connector->base.encoder = NULL; | 
|  | } | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", | 
|  | connector->base.base.id, | 
|  | drm_get_connector_name(&connector->base), | 
|  | connector->base.encoder ? "enabled" : "disabled"); | 
|  | } | 
|  |  | 
|  | /* HW state is read out, now we need to sanitize this mess. */ | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | intel_sanitize_encoder(encoder); | 
|  | } | 
|  |  | 
|  | for_each_pipe(pipe) { | 
|  | crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); | 
|  | intel_sanitize_crtc(crtc); | 
|  | } | 
|  |  | 
|  | if (force_restore) { | 
|  | for_each_pipe(pipe) { | 
|  | intel_crtc_restore_mode(dev_priv->pipe_to_crtc_mapping[pipe]); | 
|  | } | 
|  |  | 
|  | i915_redisable_vga(dev); | 
|  | } else { | 
|  | intel_modeset_update_staged_output_state(dev); | 
|  | } | 
|  |  | 
|  | intel_modeset_check_state(dev); | 
|  |  | 
|  | drm_mode_config_reset(dev); | 
|  | } | 
|  |  | 
|  | void intel_modeset_gem_init(struct drm_device *dev) | 
|  | { | 
|  | intel_modeset_init_hw(dev); | 
|  |  | 
|  | intel_setup_overlay(dev); | 
|  |  | 
|  | intel_modeset_setup_hw_state(dev, false); | 
|  | } | 
|  |  | 
|  | void intel_modeset_cleanup(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc; | 
|  | struct intel_crtc *intel_crtc; | 
|  |  | 
|  | drm_kms_helper_poll_fini(dev); | 
|  | mutex_lock(&dev->struct_mutex); | 
|  |  | 
|  | intel_unregister_dsm_handler(); | 
|  |  | 
|  |  | 
|  | list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { | 
|  | /* Skip inactive CRTCs */ | 
|  | if (!crtc->fb) | 
|  | continue; | 
|  |  | 
|  | intel_crtc = to_intel_crtc(crtc); | 
|  | intel_increase_pllclock(crtc); | 
|  | } | 
|  |  | 
|  | intel_disable_fbc(dev); | 
|  |  | 
|  | intel_disable_gt_powersave(dev); | 
|  |  | 
|  | ironlake_teardown_rc6(dev); | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev)) | 
|  | vlv_init_dpio(dev); | 
|  |  | 
|  | mutex_unlock(&dev->struct_mutex); | 
|  |  | 
|  | /* Disable the irq before mode object teardown, for the irq might | 
|  | * enqueue unpin/hotplug work. */ | 
|  | drm_irq_uninstall(dev); | 
|  | cancel_work_sync(&dev_priv->hotplug_work); | 
|  | cancel_work_sync(&dev_priv->rps.work); | 
|  |  | 
|  | /* flush any delayed tasks or pending work */ | 
|  | flush_scheduled_work(); | 
|  |  | 
|  | drm_mode_config_cleanup(dev); | 
|  |  | 
|  | intel_cleanup_overlay(dev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return which encoder is currently attached for connector. | 
|  | */ | 
|  | struct drm_encoder *intel_best_encoder(struct drm_connector *connector) | 
|  | { | 
|  | return &intel_attached_encoder(connector)->base; | 
|  | } | 
|  |  | 
|  | void intel_connector_attach_encoder(struct intel_connector *connector, | 
|  | struct intel_encoder *encoder) | 
|  | { | 
|  | connector->encoder = encoder; | 
|  | drm_mode_connector_attach_encoder(&connector->base, | 
|  | &encoder->base); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set vga decode state - true == enable VGA decode | 
|  | */ | 
|  | int intel_modeset_vga_set_state(struct drm_device *dev, bool state) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u16 gmch_ctrl; | 
|  |  | 
|  | pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl); | 
|  | if (state) | 
|  | gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; | 
|  | else | 
|  | gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; | 
|  | pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | #include <linux/seq_file.h> | 
|  |  | 
|  | struct intel_display_error_state { | 
|  | struct intel_cursor_error_state { | 
|  | u32 control; | 
|  | u32 position; | 
|  | u32 base; | 
|  | u32 size; | 
|  | } cursor[I915_MAX_PIPES]; | 
|  |  | 
|  | struct intel_pipe_error_state { | 
|  | u32 conf; | 
|  | u32 source; | 
|  |  | 
|  | u32 htotal; | 
|  | u32 hblank; | 
|  | u32 hsync; | 
|  | u32 vtotal; | 
|  | u32 vblank; | 
|  | u32 vsync; | 
|  | } pipe[I915_MAX_PIPES]; | 
|  |  | 
|  | struct intel_plane_error_state { | 
|  | u32 control; | 
|  | u32 stride; | 
|  | u32 size; | 
|  | u32 pos; | 
|  | u32 addr; | 
|  | u32 surface; | 
|  | u32 tile_offset; | 
|  | } plane[I915_MAX_PIPES]; | 
|  | }; | 
|  |  | 
|  | struct intel_display_error_state * | 
|  | intel_display_capture_error_state(struct drm_device *dev) | 
|  | { | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | struct intel_display_error_state *error; | 
|  | enum transcoder cpu_transcoder; | 
|  | int i; | 
|  |  | 
|  | error = kmalloc(sizeof(*error), GFP_ATOMIC); | 
|  | if (error == NULL) | 
|  | return NULL; | 
|  |  | 
|  | for_each_pipe(i) { | 
|  | cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i); | 
|  |  | 
|  | error->cursor[i].control = I915_READ(CURCNTR(i)); | 
|  | error->cursor[i].position = I915_READ(CURPOS(i)); | 
|  | error->cursor[i].base = I915_READ(CURBASE(i)); | 
|  |  | 
|  | error->plane[i].control = I915_READ(DSPCNTR(i)); | 
|  | error->plane[i].stride = I915_READ(DSPSTRIDE(i)); | 
|  | error->plane[i].size = I915_READ(DSPSIZE(i)); | 
|  | error->plane[i].pos = I915_READ(DSPPOS(i)); | 
|  | error->plane[i].addr = I915_READ(DSPADDR(i)); | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | error->plane[i].surface = I915_READ(DSPSURF(i)); | 
|  | error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); | 
|  | } | 
|  |  | 
|  | error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder)); | 
|  | error->pipe[i].source = I915_READ(PIPESRC(i)); | 
|  | error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); | 
|  | error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder)); | 
|  | error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder)); | 
|  | error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); | 
|  | error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder)); | 
|  | error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder)); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void | 
|  | intel_display_print_error_state(struct seq_file *m, | 
|  | struct drm_device *dev, | 
|  | struct intel_display_error_state *error) | 
|  | { | 
|  | drm_i915_private_t *dev_priv = dev->dev_private; | 
|  | int i; | 
|  |  | 
|  | seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe); | 
|  | for_each_pipe(i) { | 
|  | seq_printf(m, "Pipe [%d]:\n", i); | 
|  | seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf); | 
|  | seq_printf(m, "  SRC: %08x\n", error->pipe[i].source); | 
|  | seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal); | 
|  | seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank); | 
|  | seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync); | 
|  | seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal); | 
|  | seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank); | 
|  | seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync); | 
|  |  | 
|  | seq_printf(m, "Plane [%d]:\n", i); | 
|  | seq_printf(m, "  CNTR: %08x\n", error->plane[i].control); | 
|  | seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride); | 
|  | seq_printf(m, "  SIZE: %08x\n", error->plane[i].size); | 
|  | seq_printf(m, "  POS: %08x\n", error->plane[i].pos); | 
|  | seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr); | 
|  | if (INTEL_INFO(dev)->gen >= 4) { | 
|  | seq_printf(m, "  SURF: %08x\n", error->plane[i].surface); | 
|  | seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset); | 
|  | } | 
|  |  | 
|  | seq_printf(m, "Cursor [%d]:\n", i); | 
|  | seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control); | 
|  | seq_printf(m, "  POS: %08x\n", error->cursor[i].position); | 
|  | seq_printf(m, "  BASE: %08x\n", error->cursor[i].base); | 
|  | } | 
|  | } | 
|  | #endif |