| /* |
| * Copyright 2013 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Ben Skeggs |
| */ |
| #define gf100_ram(p) container_of((p), struct gf100_ram, base) |
| #include "ram.h" |
| #include "ramfuc.h" |
| |
| #include <core/option.h> |
| #include <subdev/bios.h> |
| #include <subdev/bios/pll.h> |
| #include <subdev/bios/rammap.h> |
| #include <subdev/bios/timing.h> |
| #include <subdev/clk.h> |
| #include <subdev/clk/pll.h> |
| |
| struct gf100_ramfuc { |
| struct ramfuc base; |
| |
| struct ramfuc_reg r_0x10fe20; |
| struct ramfuc_reg r_0x10fe24; |
| struct ramfuc_reg r_0x137320; |
| struct ramfuc_reg r_0x137330; |
| |
| struct ramfuc_reg r_0x132000; |
| struct ramfuc_reg r_0x132004; |
| struct ramfuc_reg r_0x132100; |
| |
| struct ramfuc_reg r_0x137390; |
| |
| struct ramfuc_reg r_0x10f290; |
| struct ramfuc_reg r_0x10f294; |
| struct ramfuc_reg r_0x10f298; |
| struct ramfuc_reg r_0x10f29c; |
| struct ramfuc_reg r_0x10f2a0; |
| |
| struct ramfuc_reg r_0x10f300; |
| struct ramfuc_reg r_0x10f338; |
| struct ramfuc_reg r_0x10f340; |
| struct ramfuc_reg r_0x10f344; |
| struct ramfuc_reg r_0x10f348; |
| |
| struct ramfuc_reg r_0x10f910; |
| struct ramfuc_reg r_0x10f914; |
| |
| struct ramfuc_reg r_0x100b0c; |
| struct ramfuc_reg r_0x10f050; |
| struct ramfuc_reg r_0x10f090; |
| struct ramfuc_reg r_0x10f200; |
| struct ramfuc_reg r_0x10f210; |
| struct ramfuc_reg r_0x10f310; |
| struct ramfuc_reg r_0x10f314; |
| struct ramfuc_reg r_0x10f610; |
| struct ramfuc_reg r_0x10f614; |
| struct ramfuc_reg r_0x10f800; |
| struct ramfuc_reg r_0x10f808; |
| struct ramfuc_reg r_0x10f824; |
| struct ramfuc_reg r_0x10f830; |
| struct ramfuc_reg r_0x10f988; |
| struct ramfuc_reg r_0x10f98c; |
| struct ramfuc_reg r_0x10f990; |
| struct ramfuc_reg r_0x10f998; |
| struct ramfuc_reg r_0x10f9b0; |
| struct ramfuc_reg r_0x10f9b4; |
| struct ramfuc_reg r_0x10fb04; |
| struct ramfuc_reg r_0x10fb08; |
| struct ramfuc_reg r_0x137300; |
| struct ramfuc_reg r_0x137310; |
| struct ramfuc_reg r_0x137360; |
| struct ramfuc_reg r_0x1373ec; |
| struct ramfuc_reg r_0x1373f0; |
| struct ramfuc_reg r_0x1373f8; |
| |
| struct ramfuc_reg r_0x61c140; |
| struct ramfuc_reg r_0x611200; |
| |
| struct ramfuc_reg r_0x13d8f4; |
| }; |
| |
| struct gf100_ram { |
| struct nvkm_ram base; |
| struct gf100_ramfuc fuc; |
| struct nvbios_pll refpll; |
| struct nvbios_pll mempll; |
| }; |
| |
| static void |
| gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic) |
| { |
| struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc); |
| struct nvkm_fb *fb = ram->base.fb; |
| struct nvkm_device *device = fb->subdev.device; |
| u32 part = nvkm_rd32(device, 0x022438), i; |
| u32 mask = nvkm_rd32(device, 0x022554); |
| u32 addr = 0x110974; |
| |
| ram_wr32(fuc, 0x10f910, magic); |
| ram_wr32(fuc, 0x10f914, magic); |
| |
| for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) { |
| if (mask & (1 << i)) |
| continue; |
| ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000); |
| } |
| } |
| |
| int |
| gf100_ram_calc(struct nvkm_ram *base, u32 freq) |
| { |
| struct gf100_ram *ram = gf100_ram(base); |
| struct gf100_ramfuc *fuc = &ram->fuc; |
| struct nvkm_subdev *subdev = &ram->base.fb->subdev; |
| struct nvkm_device *device = subdev->device; |
| struct nvkm_clk *clk = device->clk; |
| struct nvkm_bios *bios = device->bios; |
| struct nvbios_ramcfg cfg; |
| u8 ver, cnt, len, strap; |
| struct { |
| u32 data; |
| u8 size; |
| } rammap, ramcfg, timing; |
| int ref, div, out; |
| int from, mode; |
| int N1, M1, P; |
| int ret; |
| |
| /* lookup memory config data relevant to the target frequency */ |
| rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size, |
| &cnt, &ramcfg.size, &cfg); |
| if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) { |
| nvkm_error(subdev, "invalid/missing rammap entry\n"); |
| return -EINVAL; |
| } |
| |
| /* locate specific data set for the attached memory */ |
| strap = nvbios_ramcfg_index(subdev); |
| if (strap >= cnt) { |
| nvkm_error(subdev, "invalid ramcfg strap\n"); |
| return -EINVAL; |
| } |
| |
| ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size); |
| if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) { |
| nvkm_error(subdev, "invalid/missing ramcfg entry\n"); |
| return -EINVAL; |
| } |
| |
| /* lookup memory timings, if bios says they're present */ |
| strap = nvbios_rd08(bios, ramcfg.data + 0x01); |
| if (strap != 0xff) { |
| timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size, |
| &cnt, &len); |
| if (!timing.data || ver != 0x10 || timing.size < 0x19) { |
| nvkm_error(subdev, "invalid/missing timing entry\n"); |
| return -EINVAL; |
| } |
| } else { |
| timing.data = 0; |
| } |
| |
| ret = ram_init(fuc, ram->base.fb); |
| if (ret) |
| return ret; |
| |
| /* determine current mclk configuration */ |
| from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */ |
| |
| /* determine target mclk configuration */ |
| if (!(ram_rd32(fuc, 0x137300) & 0x00000100)) |
| ref = nvkm_clk_read(clk, nv_clk_src_sppll0); |
| else |
| ref = nvkm_clk_read(clk, nv_clk_src_sppll1); |
| div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2; |
| out = (ref * 2) / (div + 2); |
| mode = freq != out; |
| |
| ram_mask(fuc, 0x137360, 0x00000002, 0x00000000); |
| |
| if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) { |
| ram_nuke(fuc, 0x132000); |
| ram_mask(fuc, 0x132000, 0x00000002, 0x00000002); |
| ram_mask(fuc, 0x132000, 0x00000002, 0x00000000); |
| } |
| |
| if (mode == 1) { |
| ram_nuke(fuc, 0x10fe20); |
| ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002); |
| ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000); |
| } |
| |
| // 0x00020034 // 0x0000000a |
| ram_wr32(fuc, 0x132100, 0x00000001); |
| |
| if (mode == 1 && from == 0) { |
| /* calculate refpll */ |
| ret = gt215_pll_calc(subdev, &ram->refpll, ram->mempll.refclk, |
| &N1, NULL, &M1, &P); |
| if (ret <= 0) { |
| nvkm_error(subdev, "unable to calc refpll\n"); |
| return ret ? ret : -ERANGE; |
| } |
| |
| ram_wr32(fuc, 0x10fe20, 0x20010000); |
| ram_wr32(fuc, 0x137320, 0x00000003); |
| ram_wr32(fuc, 0x137330, 0x81200006); |
| ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1); |
| ram_wr32(fuc, 0x10fe20, 0x20010001); |
| ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000); |
| |
| /* calculate mempll */ |
| ret = gt215_pll_calc(subdev, &ram->mempll, freq, |
| &N1, NULL, &M1, &P); |
| if (ret <= 0) { |
| nvkm_error(subdev, "unable to calc refpll\n"); |
| return ret ? ret : -ERANGE; |
| } |
| |
| ram_wr32(fuc, 0x10fe20, 0x20010005); |
| ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1); |
| ram_wr32(fuc, 0x132000, 0x18010101); |
| ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000); |
| } else |
| if (mode == 0) { |
| ram_wr32(fuc, 0x137300, 0x00000003); |
| } |
| |
| if (from == 0) { |
| ram_nuke(fuc, 0x10fb04); |
| ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000); |
| ram_nuke(fuc, 0x10fb08); |
| ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000); |
| ram_wr32(fuc, 0x10f988, 0x2004ff00); |
| ram_wr32(fuc, 0x10f98c, 0x003fc040); |
| ram_wr32(fuc, 0x10f990, 0x20012001); |
| ram_wr32(fuc, 0x10f998, 0x00011a00); |
| ram_wr32(fuc, 0x13d8f4, 0x00000000); |
| } else { |
| ram_wr32(fuc, 0x10f988, 0x20010000); |
| ram_wr32(fuc, 0x10f98c, 0x00000000); |
| ram_wr32(fuc, 0x10f990, 0x20012001); |
| ram_wr32(fuc, 0x10f998, 0x00010a00); |
| } |
| |
| if (from == 0) { |
| // 0x00020039 // 0x000000ba |
| } |
| |
| // 0x0002003a // 0x00000002 |
| ram_wr32(fuc, 0x100b0c, 0x00080012); |
| // 0x00030014 // 0x00000000 // 0x02b5f070 |
| // 0x00030014 // 0x00010000 // 0x02b5f070 |
| ram_wr32(fuc, 0x611200, 0x00003300); |
| // 0x00020034 // 0x0000000a |
| // 0x00030020 // 0x00000001 // 0x00000000 |
| |
| ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000); |
| ram_wr32(fuc, 0x10f210, 0x00000000); |
| ram_nsec(fuc, 1000); |
| if (mode == 0) |
| gf100_ram_train(fuc, 0x000c1001); |
| ram_wr32(fuc, 0x10f310, 0x00000001); |
| ram_nsec(fuc, 1000); |
| ram_wr32(fuc, 0x10f090, 0x00000061); |
| ram_wr32(fuc, 0x10f090, 0xc000007f); |
| ram_nsec(fuc, 1000); |
| |
| if (from == 0) { |
| ram_wr32(fuc, 0x10f824, 0x00007fd4); |
| } else { |
| ram_wr32(fuc, 0x1373ec, 0x00020404); |
| } |
| |
| if (mode == 0) { |
| ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000); |
| ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000); |
| ram_wr32(fuc, 0x10f830, 0x41500010); |
| ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000); |
| ram_mask(fuc, 0x132100, 0x00000100, 0x00000100); |
| ram_wr32(fuc, 0x10f050, 0xff000090); |
| ram_wr32(fuc, 0x1373ec, 0x00020f0f); |
| ram_wr32(fuc, 0x1373f0, 0x00000003); |
| ram_wr32(fuc, 0x137310, 0x81201616); |
| ram_wr32(fuc, 0x132100, 0x00000001); |
| // 0x00020039 // 0x000000ba |
| ram_wr32(fuc, 0x10f830, 0x00300017); |
| ram_wr32(fuc, 0x1373f0, 0x00000001); |
| ram_wr32(fuc, 0x10f824, 0x00007e77); |
| ram_wr32(fuc, 0x132000, 0x18030001); |
| ram_wr32(fuc, 0x10f090, 0x4000007e); |
| ram_nsec(fuc, 2000); |
| ram_wr32(fuc, 0x10f314, 0x00000001); |
| ram_wr32(fuc, 0x10f210, 0x80000000); |
| ram_wr32(fuc, 0x10f338, 0x00300220); |
| ram_wr32(fuc, 0x10f300, 0x0000011d); |
| ram_nsec(fuc, 1000); |
| ram_wr32(fuc, 0x10f290, 0x02060505); |
| ram_wr32(fuc, 0x10f294, 0x34208288); |
| ram_wr32(fuc, 0x10f298, 0x44050411); |
| ram_wr32(fuc, 0x10f29c, 0x0000114c); |
| ram_wr32(fuc, 0x10f2a0, 0x42e10069); |
| ram_wr32(fuc, 0x10f614, 0x40044f77); |
| ram_wr32(fuc, 0x10f610, 0x40044f77); |
| ram_wr32(fuc, 0x10f344, 0x00600009); |
| ram_nsec(fuc, 1000); |
| ram_wr32(fuc, 0x10f348, 0x00700008); |
| ram_wr32(fuc, 0x61c140, 0x19240000); |
| ram_wr32(fuc, 0x10f830, 0x00300017); |
| gf100_ram_train(fuc, 0x80021001); |
| gf100_ram_train(fuc, 0x80081001); |
| ram_wr32(fuc, 0x10f340, 0x00500004); |
| ram_nsec(fuc, 1000); |
| ram_wr32(fuc, 0x10f830, 0x01300017); |
| ram_wr32(fuc, 0x10f830, 0x00300017); |
| // 0x00030020 // 0x00000000 // 0x00000000 |
| // 0x00020034 // 0x0000000b |
| ram_wr32(fuc, 0x100b0c, 0x00080028); |
| ram_wr32(fuc, 0x611200, 0x00003330); |
| } else { |
| ram_wr32(fuc, 0x10f800, 0x00001800); |
| ram_wr32(fuc, 0x13d8f4, 0x00000000); |
| ram_wr32(fuc, 0x1373ec, 0x00020404); |
| ram_wr32(fuc, 0x1373f0, 0x00000003); |
| ram_wr32(fuc, 0x10f830, 0x40700010); |
| ram_wr32(fuc, 0x10f830, 0x40500010); |
| ram_wr32(fuc, 0x13d8f4, 0x00000000); |
| ram_wr32(fuc, 0x1373f8, 0x00000000); |
| ram_wr32(fuc, 0x132100, 0x00000101); |
| ram_wr32(fuc, 0x137310, 0x89201616); |
| ram_wr32(fuc, 0x10f050, 0xff000090); |
| ram_wr32(fuc, 0x1373ec, 0x00030404); |
| ram_wr32(fuc, 0x1373f0, 0x00000002); |
| // 0x00020039 // 0x00000011 |
| ram_wr32(fuc, 0x132100, 0x00000001); |
| ram_wr32(fuc, 0x1373f8, 0x00002000); |
| ram_nsec(fuc, 2000); |
| ram_wr32(fuc, 0x10f808, 0x7aaa0050); |
| ram_wr32(fuc, 0x10f830, 0x00500010); |
| ram_wr32(fuc, 0x10f200, 0x00ce1000); |
| ram_wr32(fuc, 0x10f090, 0x4000007e); |
| ram_nsec(fuc, 2000); |
| ram_wr32(fuc, 0x10f314, 0x00000001); |
| ram_wr32(fuc, 0x10f210, 0x80000000); |
| ram_wr32(fuc, 0x10f338, 0x00300200); |
| ram_wr32(fuc, 0x10f300, 0x0000084d); |
| ram_nsec(fuc, 1000); |
| ram_wr32(fuc, 0x10f290, 0x0b343825); |
| ram_wr32(fuc, 0x10f294, 0x3483028e); |
| ram_wr32(fuc, 0x10f298, 0x440c0600); |
| ram_wr32(fuc, 0x10f29c, 0x0000214c); |
| ram_wr32(fuc, 0x10f2a0, 0x42e20069); |
| ram_wr32(fuc, 0x10f200, 0x00ce0000); |
| ram_wr32(fuc, 0x10f614, 0x60044e77); |
| ram_wr32(fuc, 0x10f610, 0x60044e77); |
| ram_wr32(fuc, 0x10f340, 0x00500000); |
| ram_nsec(fuc, 1000); |
| ram_wr32(fuc, 0x10f344, 0x00600228); |
| ram_nsec(fuc, 1000); |
| ram_wr32(fuc, 0x10f348, 0x00700000); |
| ram_wr32(fuc, 0x13d8f4, 0x00000000); |
| ram_wr32(fuc, 0x61c140, 0x09a40000); |
| |
| gf100_ram_train(fuc, 0x800e1008); |
| |
| ram_nsec(fuc, 1000); |
| ram_wr32(fuc, 0x10f800, 0x00001804); |
| // 0x00030020 // 0x00000000 // 0x00000000 |
| // 0x00020034 // 0x0000000b |
| ram_wr32(fuc, 0x13d8f4, 0x00000000); |
| ram_wr32(fuc, 0x100b0c, 0x00080028); |
| ram_wr32(fuc, 0x611200, 0x00003330); |
| ram_nsec(fuc, 100000); |
| ram_wr32(fuc, 0x10f9b0, 0x05313f41); |
| ram_wr32(fuc, 0x10f9b4, 0x00002f50); |
| |
| gf100_ram_train(fuc, 0x010c1001); |
| } |
| |
| ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800); |
| // 0x00020016 // 0x00000000 |
| |
| if (mode == 0) |
| ram_mask(fuc, 0x132000, 0x00000001, 0x00000000); |
| |
| return 0; |
| } |
| |
| int |
| gf100_ram_prog(struct nvkm_ram *base) |
| { |
| struct gf100_ram *ram = gf100_ram(base); |
| struct nvkm_device *device = ram->base.fb->subdev.device; |
| ram_exec(&ram->fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true)); |
| return 0; |
| } |
| |
| void |
| gf100_ram_tidy(struct nvkm_ram *base) |
| { |
| struct gf100_ram *ram = gf100_ram(base); |
| ram_exec(&ram->fuc, false); |
| } |
| |
| int |
| gf100_ram_init(struct nvkm_ram *base) |
| { |
| static const u8 train0[] = { |
| 0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc, |
| 0x00, 0xff, 0xff, 0x00, 0xff, 0x00, |
| }; |
| static const u32 train1[] = { |
| 0x00000000, 0xffffffff, |
| 0x55555555, 0xaaaaaaaa, |
| 0x33333333, 0xcccccccc, |
| 0xf0f0f0f0, 0x0f0f0f0f, |
| 0x00ff00ff, 0xff00ff00, |
| 0x0000ffff, 0xffff0000, |
| }; |
| struct gf100_ram *ram = gf100_ram(base); |
| struct nvkm_device *device = ram->base.fb->subdev.device; |
| int i; |
| |
| switch (ram->base.type) { |
| case NVKM_RAM_TYPE_GDDR5: |
| break; |
| default: |
| return 0; |
| } |
| |
| /* prepare for ddr link training, and load training patterns */ |
| for (i = 0; i < 0x30; i++) { |
| nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8)); |
| nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8)); |
| nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]); |
| nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]); |
| nvkm_wr32(device, 0x10f918, train1[i % 12]); |
| nvkm_wr32(device, 0x10f91c, train1[i % 12]); |
| nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]); |
| nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]); |
| nvkm_wr32(device, 0x10f918, train1[i % 12]); |
| nvkm_wr32(device, 0x10f91c, train1[i % 12]); |
| } |
| |
| return 0; |
| } |
| |
| u32 |
| gf100_ram_probe_fbpa_amount(struct nvkm_device *device, int fbpa) |
| { |
| return nvkm_rd32(device, 0x11020c + (fbpa * 0x1000)); |
| } |
| |
| u32 |
| gf100_ram_probe_fbp_amount(const struct nvkm_ram_func *func, u32 fbpao, |
| struct nvkm_device *device, int fbp, int *pltcs) |
| { |
| if (!(fbpao & BIT(fbp))) { |
| *pltcs = 1; |
| return func->probe_fbpa_amount(device, fbp); |
| } |
| return 0; |
| } |
| |
| u32 |
| gf100_ram_probe_fbp(const struct nvkm_ram_func *func, |
| struct nvkm_device *device, int fbp, int *pltcs) |
| { |
| u32 fbpao = nvkm_rd32(device, 0x022554); |
| return func->probe_fbp_amount(func, fbpao, device, fbp, pltcs); |
| } |
| |
| int |
| gf100_ram_ctor(const struct nvkm_ram_func *func, struct nvkm_fb *fb, |
| struct nvkm_ram *ram) |
| { |
| struct nvkm_subdev *subdev = &fb->subdev; |
| struct nvkm_device *device = subdev->device; |
| struct nvkm_bios *bios = device->bios; |
| const u32 rsvd_head = ( 256 * 1024); /* vga memory */ |
| const u32 rsvd_tail = (1024 * 1024); /* vbios etc */ |
| enum nvkm_ram_type type = nvkm_fb_bios_memtype(bios); |
| u32 fbps = nvkm_rd32(device, 0x022438); |
| u64 total = 0, lcomm = ~0, lower, ubase, usize; |
| int ret, fbp, ltcs, ltcn = 0; |
| |
| nvkm_debug(subdev, "%d FBP(s)\n", fbps); |
| for (fbp = 0; fbp < fbps; fbp++) { |
| u32 size = func->probe_fbp(func, device, fbp, <cs); |
| if (size) { |
| nvkm_debug(subdev, "FBP %d: %4d MiB, %d LTC(s)\n", |
| fbp, size, ltcs); |
| lcomm = min(lcomm, (u64)(size / ltcs) << 20); |
| total += (u64) size << 20; |
| ltcn += ltcs; |
| } else { |
| nvkm_debug(subdev, "FBP %d: disabled\n", fbp); |
| } |
| } |
| |
| lower = lcomm * ltcn; |
| ubase = lcomm + func->upper; |
| usize = total - lower; |
| |
| nvkm_debug(subdev, "Lower: %4lld MiB @ %010llx\n", lower >> 20, 0ULL); |
| nvkm_debug(subdev, "Upper: %4lld MiB @ %010llx\n", usize >> 20, ubase); |
| nvkm_debug(subdev, "Total: %4lld MiB\n", total >> 20); |
| |
| ret = nvkm_ram_ctor(func, fb, type, total, ram); |
| if (ret) |
| return ret; |
| |
| nvkm_mm_fini(&ram->vram); |
| |
| /* Some GPUs are in what's known as a "mixed memory" configuration. |
| * |
| * This is either where some FBPs have more memory than the others, |
| * or where LTCs have been disabled on a FBP. |
| */ |
| if (lower != total) { |
| /* The common memory amount is addressed normally. */ |
| ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL, |
| rsvd_head >> NVKM_RAM_MM_SHIFT, |
| (lower - rsvd_head) >> NVKM_RAM_MM_SHIFT, 1); |
| if (ret) |
| return ret; |
| |
| /* And the rest is much higher in the physical address |
| * space, and may not be usable for certain operations. |
| */ |
| ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_MIXED, |
| ubase >> NVKM_RAM_MM_SHIFT, |
| (usize - rsvd_tail) >> NVKM_RAM_MM_SHIFT, 1); |
| if (ret) |
| return ret; |
| } else { |
| /* GPUs without mixed-memory are a lot nicer... */ |
| ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL, |
| rsvd_head >> NVKM_RAM_MM_SHIFT, |
| (total - rsvd_head - rsvd_tail) >> |
| NVKM_RAM_MM_SHIFT, 1); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int |
| gf100_ram_new_(const struct nvkm_ram_func *func, |
| struct nvkm_fb *fb, struct nvkm_ram **pram) |
| { |
| struct nvkm_subdev *subdev = &fb->subdev; |
| struct nvkm_bios *bios = subdev->device->bios; |
| struct gf100_ram *ram; |
| int ret; |
| |
| if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL))) |
| return -ENOMEM; |
| *pram = &ram->base; |
| |
| ret = gf100_ram_ctor(func, fb, &ram->base); |
| if (ret) |
| return ret; |
| |
| ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll); |
| if (ret) { |
| nvkm_error(subdev, "mclk refpll data not found\n"); |
| return ret; |
| } |
| |
| ret = nvbios_pll_parse(bios, 0x04, &ram->mempll); |
| if (ret) { |
| nvkm_error(subdev, "mclk pll data not found\n"); |
| return ret; |
| } |
| |
| ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20); |
| ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24); |
| ram->fuc.r_0x137320 = ramfuc_reg(0x137320); |
| ram->fuc.r_0x137330 = ramfuc_reg(0x137330); |
| |
| ram->fuc.r_0x132000 = ramfuc_reg(0x132000); |
| ram->fuc.r_0x132004 = ramfuc_reg(0x132004); |
| ram->fuc.r_0x132100 = ramfuc_reg(0x132100); |
| |
| ram->fuc.r_0x137390 = ramfuc_reg(0x137390); |
| |
| ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290); |
| ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294); |
| ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298); |
| ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c); |
| ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0); |
| |
| ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300); |
| ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338); |
| ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340); |
| ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344); |
| ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348); |
| |
| ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910); |
| ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914); |
| |
| ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c); |
| ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050); |
| ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090); |
| ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200); |
| ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210); |
| ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310); |
| ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314); |
| ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610); |
| ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614); |
| ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800); |
| ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808); |
| ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824); |
| ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830); |
| ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988); |
| ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c); |
| ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990); |
| ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998); |
| ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0); |
| ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4); |
| ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04); |
| ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08); |
| ram->fuc.r_0x137310 = ramfuc_reg(0x137300); |
| ram->fuc.r_0x137310 = ramfuc_reg(0x137310); |
| ram->fuc.r_0x137360 = ramfuc_reg(0x137360); |
| ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec); |
| ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0); |
| ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8); |
| |
| ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140); |
| ram->fuc.r_0x611200 = ramfuc_reg(0x611200); |
| |
| ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4); |
| return 0; |
| } |
| |
| static const struct nvkm_ram_func |
| gf100_ram = { |
| .upper = 0x0200000000, |
| .probe_fbp = gf100_ram_probe_fbp, |
| .probe_fbp_amount = gf100_ram_probe_fbp_amount, |
| .probe_fbpa_amount = gf100_ram_probe_fbpa_amount, |
| .init = gf100_ram_init, |
| .calc = gf100_ram_calc, |
| .prog = gf100_ram_prog, |
| .tidy = gf100_ram_tidy, |
| }; |
| |
| int |
| gf100_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram) |
| { |
| return gf100_ram_new_(&gf100_ram, fb, pram); |
| } |