|  | /* | 
|  | * Common EFI (Extensible Firmware Interface) support functions | 
|  | * Based on Extensible Firmware Interface Specification version 1.0 | 
|  | * | 
|  | * Copyright (C) 1999 VA Linux Systems | 
|  | * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
|  | * Copyright (C) 1999-2002 Hewlett-Packard Co. | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | * Copyright (C) 2005-2008 Intel Co. | 
|  | *	Fenghua Yu <fenghua.yu@intel.com> | 
|  | *	Bibo Mao <bibo.mao@intel.com> | 
|  | *	Chandramouli Narayanan <mouli@linux.intel.com> | 
|  | *	Huang Ying <ying.huang@intel.com> | 
|  | * | 
|  | * Copied from efi_32.c to eliminate the duplicated code between EFI | 
|  | * 32/64 support code. --ying 2007-10-26 | 
|  | * | 
|  | * All EFI Runtime Services are not implemented yet as EFI only | 
|  | * supports physical mode addressing on SoftSDV. This is to be fixed | 
|  | * in a future version.  --drummond 1999-07-20 | 
|  | * | 
|  | * Implemented EFI runtime services and virtual mode calls.  --davidm | 
|  | * | 
|  | * Goutham Rao: <goutham.rao@intel.com> | 
|  | *	Skip non-WB memory and ignore empty memory ranges. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/bcd.h> | 
|  |  | 
|  | #include <asm/setup.h> | 
|  | #include <asm/efi.h> | 
|  | #include <asm/time.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/x86_init.h> | 
|  |  | 
|  | #define EFI_DEBUG	1 | 
|  | #define PFX 		"EFI: " | 
|  |  | 
|  | int efi_enabled; | 
|  | EXPORT_SYMBOL(efi_enabled); | 
|  |  | 
|  | struct efi __read_mostly efi = { | 
|  | .mps        = EFI_INVALID_TABLE_ADDR, | 
|  | .acpi       = EFI_INVALID_TABLE_ADDR, | 
|  | .acpi20     = EFI_INVALID_TABLE_ADDR, | 
|  | .smbios     = EFI_INVALID_TABLE_ADDR, | 
|  | .sal_systab = EFI_INVALID_TABLE_ADDR, | 
|  | .boot_info  = EFI_INVALID_TABLE_ADDR, | 
|  | .hcdp       = EFI_INVALID_TABLE_ADDR, | 
|  | .uga        = EFI_INVALID_TABLE_ADDR, | 
|  | .uv_systab  = EFI_INVALID_TABLE_ADDR, | 
|  | }; | 
|  | EXPORT_SYMBOL(efi); | 
|  |  | 
|  | struct efi_memory_map memmap; | 
|  |  | 
|  | static struct efi efi_phys __initdata; | 
|  | static efi_system_table_t efi_systab __initdata; | 
|  |  | 
|  | static int __init setup_noefi(char *arg) | 
|  | { | 
|  | efi_enabled = 0; | 
|  | return 0; | 
|  | } | 
|  | early_param("noefi", setup_noefi); | 
|  |  | 
|  | int add_efi_memmap; | 
|  | EXPORT_SYMBOL(add_efi_memmap); | 
|  |  | 
|  | static int __init setup_add_efi_memmap(char *arg) | 
|  | { | 
|  | add_efi_memmap = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("add_efi_memmap", setup_add_efi_memmap); | 
|  |  | 
|  |  | 
|  | static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) | 
|  | { | 
|  | unsigned long flags; | 
|  | efi_status_t status; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | status = efi_call_virt2(get_time, tm, tc); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_set_time(efi_time_t *tm) | 
|  | { | 
|  | unsigned long flags; | 
|  | efi_status_t status; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | status = efi_call_virt1(set_time, tm); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled, | 
|  | efi_bool_t *pending, | 
|  | efi_time_t *tm) | 
|  | { | 
|  | unsigned long flags; | 
|  | efi_status_t status; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | status = efi_call_virt3(get_wakeup_time, | 
|  | enabled, pending, tm); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) | 
|  | { | 
|  | unsigned long flags; | 
|  | efi_status_t status; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | status = efi_call_virt2(set_wakeup_time, | 
|  | enabled, tm); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_get_variable(efi_char16_t *name, | 
|  | efi_guid_t *vendor, | 
|  | u32 *attr, | 
|  | unsigned long *data_size, | 
|  | void *data) | 
|  | { | 
|  | return efi_call_virt5(get_variable, | 
|  | name, vendor, attr, | 
|  | data_size, data); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_get_next_variable(unsigned long *name_size, | 
|  | efi_char16_t *name, | 
|  | efi_guid_t *vendor) | 
|  | { | 
|  | return efi_call_virt3(get_next_variable, | 
|  | name_size, name, vendor); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_set_variable(efi_char16_t *name, | 
|  | efi_guid_t *vendor, | 
|  | u32 attr, | 
|  | unsigned long data_size, | 
|  | void *data) | 
|  | { | 
|  | return efi_call_virt5(set_variable, | 
|  | name, vendor, attr, | 
|  | data_size, data); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_query_variable_info(u32 attr, | 
|  | u64 *storage_space, | 
|  | u64 *remaining_space, | 
|  | u64 *max_variable_size) | 
|  | { | 
|  | if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) | 
|  | return EFI_UNSUPPORTED; | 
|  |  | 
|  | return efi_call_virt4(query_variable_info, attr, storage_space, | 
|  | remaining_space, max_variable_size); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_get_next_high_mono_count(u32 *count) | 
|  | { | 
|  | return efi_call_virt1(get_next_high_mono_count, count); | 
|  | } | 
|  |  | 
|  | static void virt_efi_reset_system(int reset_type, | 
|  | efi_status_t status, | 
|  | unsigned long data_size, | 
|  | efi_char16_t *data) | 
|  | { | 
|  | efi_call_virt4(reset_system, reset_type, status, | 
|  | data_size, data); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules, | 
|  | unsigned long count, | 
|  | unsigned long sg_list) | 
|  | { | 
|  | if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) | 
|  | return EFI_UNSUPPORTED; | 
|  |  | 
|  | return efi_call_virt3(update_capsule, capsules, count, sg_list); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules, | 
|  | unsigned long count, | 
|  | u64 *max_size, | 
|  | int *reset_type) | 
|  | { | 
|  | if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) | 
|  | return EFI_UNSUPPORTED; | 
|  |  | 
|  | return efi_call_virt4(query_capsule_caps, capsules, count, max_size, | 
|  | reset_type); | 
|  | } | 
|  |  | 
|  | static efi_status_t __init phys_efi_set_virtual_address_map( | 
|  | unsigned long memory_map_size, | 
|  | unsigned long descriptor_size, | 
|  | u32 descriptor_version, | 
|  | efi_memory_desc_t *virtual_map) | 
|  | { | 
|  | efi_status_t status; | 
|  |  | 
|  | efi_call_phys_prelog(); | 
|  | status = efi_call_phys4(efi_phys.set_virtual_address_map, | 
|  | memory_map_size, descriptor_size, | 
|  | descriptor_version, virtual_map); | 
|  | efi_call_phys_epilog(); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static efi_status_t __init phys_efi_get_time(efi_time_t *tm, | 
|  | efi_time_cap_t *tc) | 
|  | { | 
|  | unsigned long flags; | 
|  | efi_status_t status; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | efi_call_phys_prelog(); | 
|  | status = efi_call_phys2(efi_phys.get_time, tm, tc); | 
|  | efi_call_phys_epilog(); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | int efi_set_rtc_mmss(unsigned long nowtime) | 
|  | { | 
|  | int real_seconds, real_minutes; | 
|  | efi_status_t 	status; | 
|  | efi_time_t 	eft; | 
|  | efi_time_cap_t 	cap; | 
|  |  | 
|  | status = efi.get_time(&eft, &cap); | 
|  | if (status != EFI_SUCCESS) { | 
|  | printk(KERN_ERR "Oops: efitime: can't read time!\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | real_seconds = nowtime % 60; | 
|  | real_minutes = nowtime / 60; | 
|  | if (((abs(real_minutes - eft.minute) + 15)/30) & 1) | 
|  | real_minutes += 30; | 
|  | real_minutes %= 60; | 
|  | eft.minute = real_minutes; | 
|  | eft.second = real_seconds; | 
|  |  | 
|  | status = efi.set_time(&eft); | 
|  | if (status != EFI_SUCCESS) { | 
|  | printk(KERN_ERR "Oops: efitime: can't write time!\n"); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long efi_get_time(void) | 
|  | { | 
|  | efi_status_t status; | 
|  | efi_time_t eft; | 
|  | efi_time_cap_t cap; | 
|  |  | 
|  | status = efi.get_time(&eft, &cap); | 
|  | if (status != EFI_SUCCESS) | 
|  | printk(KERN_ERR "Oops: efitime: can't read time!\n"); | 
|  |  | 
|  | return mktime(eft.year, eft.month, eft.day, eft.hour, | 
|  | eft.minute, eft.second); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tell the kernel about the EFI memory map.  This might include | 
|  | * more than the max 128 entries that can fit in the e820 legacy | 
|  | * (zeropage) memory map. | 
|  | */ | 
|  |  | 
|  | static void __init do_add_efi_memmap(void) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | efi_memory_desc_t *md = p; | 
|  | unsigned long long start = md->phys_addr; | 
|  | unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; | 
|  | int e820_type; | 
|  |  | 
|  | switch (md->type) { | 
|  | case EFI_LOADER_CODE: | 
|  | case EFI_LOADER_DATA: | 
|  | case EFI_BOOT_SERVICES_CODE: | 
|  | case EFI_BOOT_SERVICES_DATA: | 
|  | case EFI_CONVENTIONAL_MEMORY: | 
|  | if (md->attribute & EFI_MEMORY_WB) | 
|  | e820_type = E820_RAM; | 
|  | else | 
|  | e820_type = E820_RESERVED; | 
|  | break; | 
|  | case EFI_ACPI_RECLAIM_MEMORY: | 
|  | e820_type = E820_ACPI; | 
|  | break; | 
|  | case EFI_ACPI_MEMORY_NVS: | 
|  | e820_type = E820_NVS; | 
|  | break; | 
|  | case EFI_UNUSABLE_MEMORY: | 
|  | e820_type = E820_UNUSABLE; | 
|  | break; | 
|  | default: | 
|  | /* | 
|  | * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE | 
|  | * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO | 
|  | * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE | 
|  | */ | 
|  | e820_type = E820_RESERVED; | 
|  | break; | 
|  | } | 
|  | e820_add_region(start, size, e820_type); | 
|  | } | 
|  | sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); | 
|  | } | 
|  |  | 
|  | void __init efi_memblock_x86_reserve_range(void) | 
|  | { | 
|  | unsigned long pmap; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | pmap = boot_params.efi_info.efi_memmap; | 
|  | #else | 
|  | pmap = (boot_params.efi_info.efi_memmap | | 
|  | ((__u64)boot_params.efi_info.efi_memmap_hi<<32)); | 
|  | #endif | 
|  | memmap.phys_map = (void *)pmap; | 
|  | memmap.nr_map = boot_params.efi_info.efi_memmap_size / | 
|  | boot_params.efi_info.efi_memdesc_size; | 
|  | memmap.desc_version = boot_params.efi_info.efi_memdesc_version; | 
|  | memmap.desc_size = boot_params.efi_info.efi_memdesc_size; | 
|  | memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size, | 
|  | "EFI memmap"); | 
|  | } | 
|  |  | 
|  | #if EFI_DEBUG | 
|  | static void __init print_efi_memmap(void) | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  | int i; | 
|  |  | 
|  | for (p = memmap.map, i = 0; | 
|  | p < memmap.map_end; | 
|  | p += memmap.desc_size, i++) { | 
|  | md = p; | 
|  | printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, " | 
|  | "range=[0x%016llx-0x%016llx) (%lluMB)\n", | 
|  | i, md->type, md->attribute, md->phys_addr, | 
|  | md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), | 
|  | (md->num_pages >> (20 - EFI_PAGE_SHIFT))); | 
|  | } | 
|  | } | 
|  | #endif  /*  EFI_DEBUG  */ | 
|  |  | 
|  | void __init efi_reserve_boot_services(void) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | efi_memory_desc_t *md = p; | 
|  | u64 start = md->phys_addr; | 
|  | u64 size = md->num_pages << EFI_PAGE_SHIFT; | 
|  |  | 
|  | if (md->type != EFI_BOOT_SERVICES_CODE && | 
|  | md->type != EFI_BOOT_SERVICES_DATA) | 
|  | continue; | 
|  | /* Only reserve where possible: | 
|  | * - Not within any already allocated areas | 
|  | * - Not over any memory area (really needed, if above?) | 
|  | * - Not within any part of the kernel | 
|  | * - Not the bios reserved area | 
|  | */ | 
|  | if ((start+size >= virt_to_phys(_text) | 
|  | && start <= virt_to_phys(_end)) || | 
|  | !e820_all_mapped(start, start+size, E820_RAM) || | 
|  | memblock_x86_check_reserved_size(&start, &size, | 
|  | 1<<EFI_PAGE_SHIFT)) { | 
|  | /* Could not reserve, skip it */ | 
|  | md->num_pages = 0; | 
|  | memblock_dbg(PFX "Could not reserve boot range " | 
|  | "[0x%010llx-0x%010llx]\n", | 
|  | start, start+size-1); | 
|  | } else | 
|  | memblock_x86_reserve_range(start, start+size, | 
|  | "EFI Boot"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init efi_free_boot_services(void) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | efi_memory_desc_t *md = p; | 
|  | unsigned long long start = md->phys_addr; | 
|  | unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; | 
|  |  | 
|  | if (md->type != EFI_BOOT_SERVICES_CODE && | 
|  | md->type != EFI_BOOT_SERVICES_DATA) | 
|  | continue; | 
|  |  | 
|  | /* Could not reserve boot area */ | 
|  | if (!size) | 
|  | continue; | 
|  |  | 
|  | free_bootmem_late(start, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init efi_init(void) | 
|  | { | 
|  | efi_config_table_t *config_tables; | 
|  | efi_runtime_services_t *runtime; | 
|  | efi_char16_t *c16; | 
|  | char vendor[100] = "unknown"; | 
|  | int i = 0; | 
|  | void *tmp; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab; | 
|  | #else | 
|  | efi_phys.systab = (efi_system_table_t *) | 
|  | (boot_params.efi_info.efi_systab | | 
|  | ((__u64)boot_params.efi_info.efi_systab_hi<<32)); | 
|  | #endif | 
|  |  | 
|  | efi.systab = early_ioremap((unsigned long)efi_phys.systab, | 
|  | sizeof(efi_system_table_t)); | 
|  | if (efi.systab == NULL) | 
|  | printk(KERN_ERR "Couldn't map the EFI system table!\n"); | 
|  | memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t)); | 
|  | early_iounmap(efi.systab, sizeof(efi_system_table_t)); | 
|  | efi.systab = &efi_systab; | 
|  |  | 
|  | /* | 
|  | * Verify the EFI Table | 
|  | */ | 
|  | if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) | 
|  | printk(KERN_ERR "EFI system table signature incorrect!\n"); | 
|  | if ((efi.systab->hdr.revision >> 16) == 0) | 
|  | printk(KERN_ERR "Warning: EFI system table version " | 
|  | "%d.%02d, expected 1.00 or greater!\n", | 
|  | efi.systab->hdr.revision >> 16, | 
|  | efi.systab->hdr.revision & 0xffff); | 
|  |  | 
|  | /* | 
|  | * Show what we know for posterity | 
|  | */ | 
|  | c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2); | 
|  | if (c16) { | 
|  | for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i) | 
|  | vendor[i] = *c16++; | 
|  | vendor[i] = '\0'; | 
|  | } else | 
|  | printk(KERN_ERR PFX "Could not map the firmware vendor!\n"); | 
|  | early_iounmap(tmp, 2); | 
|  |  | 
|  | printk(KERN_INFO "EFI v%u.%.02u by %s\n", | 
|  | efi.systab->hdr.revision >> 16, | 
|  | efi.systab->hdr.revision & 0xffff, vendor); | 
|  |  | 
|  | /* | 
|  | * Let's see what config tables the firmware passed to us. | 
|  | */ | 
|  | config_tables = early_ioremap( | 
|  | efi.systab->tables, | 
|  | efi.systab->nr_tables * sizeof(efi_config_table_t)); | 
|  | if (config_tables == NULL) | 
|  | printk(KERN_ERR "Could not map EFI Configuration Table!\n"); | 
|  |  | 
|  | printk(KERN_INFO); | 
|  | for (i = 0; i < efi.systab->nr_tables; i++) { | 
|  | if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) { | 
|  | efi.mps = config_tables[i].table; | 
|  | printk(" MPS=0x%lx ", config_tables[i].table); | 
|  | } else if (!efi_guidcmp(config_tables[i].guid, | 
|  | ACPI_20_TABLE_GUID)) { | 
|  | efi.acpi20 = config_tables[i].table; | 
|  | printk(" ACPI 2.0=0x%lx ", config_tables[i].table); | 
|  | } else if (!efi_guidcmp(config_tables[i].guid, | 
|  | ACPI_TABLE_GUID)) { | 
|  | efi.acpi = config_tables[i].table; | 
|  | printk(" ACPI=0x%lx ", config_tables[i].table); | 
|  | } else if (!efi_guidcmp(config_tables[i].guid, | 
|  | SMBIOS_TABLE_GUID)) { | 
|  | efi.smbios = config_tables[i].table; | 
|  | printk(" SMBIOS=0x%lx ", config_tables[i].table); | 
|  | #ifdef CONFIG_X86_UV | 
|  | } else if (!efi_guidcmp(config_tables[i].guid, | 
|  | UV_SYSTEM_TABLE_GUID)) { | 
|  | efi.uv_systab = config_tables[i].table; | 
|  | printk(" UVsystab=0x%lx ", config_tables[i].table); | 
|  | #endif | 
|  | } else if (!efi_guidcmp(config_tables[i].guid, | 
|  | HCDP_TABLE_GUID)) { | 
|  | efi.hcdp = config_tables[i].table; | 
|  | printk(" HCDP=0x%lx ", config_tables[i].table); | 
|  | } else if (!efi_guidcmp(config_tables[i].guid, | 
|  | UGA_IO_PROTOCOL_GUID)) { | 
|  | efi.uga = config_tables[i].table; | 
|  | printk(" UGA=0x%lx ", config_tables[i].table); | 
|  | } | 
|  | } | 
|  | printk("\n"); | 
|  | early_iounmap(config_tables, | 
|  | efi.systab->nr_tables * sizeof(efi_config_table_t)); | 
|  |  | 
|  | /* | 
|  | * Check out the runtime services table. We need to map | 
|  | * the runtime services table so that we can grab the physical | 
|  | * address of several of the EFI runtime functions, needed to | 
|  | * set the firmware into virtual mode. | 
|  | */ | 
|  | runtime = early_ioremap((unsigned long)efi.systab->runtime, | 
|  | sizeof(efi_runtime_services_t)); | 
|  | if (runtime != NULL) { | 
|  | /* | 
|  | * We will only need *early* access to the following | 
|  | * two EFI runtime services before set_virtual_address_map | 
|  | * is invoked. | 
|  | */ | 
|  | efi_phys.get_time = (efi_get_time_t *)runtime->get_time; | 
|  | efi_phys.set_virtual_address_map = | 
|  | (efi_set_virtual_address_map_t *) | 
|  | runtime->set_virtual_address_map; | 
|  | /* | 
|  | * Make efi_get_time can be called before entering | 
|  | * virtual mode. | 
|  | */ | 
|  | efi.get_time = phys_efi_get_time; | 
|  | } else | 
|  | printk(KERN_ERR "Could not map the EFI runtime service " | 
|  | "table!\n"); | 
|  | early_iounmap(runtime, sizeof(efi_runtime_services_t)); | 
|  |  | 
|  | /* Map the EFI memory map */ | 
|  | memmap.map = early_ioremap((unsigned long)memmap.phys_map, | 
|  | memmap.nr_map * memmap.desc_size); | 
|  | if (memmap.map == NULL) | 
|  | printk(KERN_ERR "Could not map the EFI memory map!\n"); | 
|  | memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); | 
|  |  | 
|  | if (memmap.desc_size != sizeof(efi_memory_desc_t)) | 
|  | printk(KERN_WARNING | 
|  | "Kernel-defined memdesc doesn't match the one from EFI!\n"); | 
|  |  | 
|  | if (add_efi_memmap) | 
|  | do_add_efi_memmap(); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | x86_platform.get_wallclock = efi_get_time; | 
|  | x86_platform.set_wallclock = efi_set_rtc_mmss; | 
|  | #endif | 
|  |  | 
|  | #if EFI_DEBUG | 
|  | print_efi_memmap(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __init efi_set_executable(efi_memory_desc_t *md, bool executable) | 
|  | { | 
|  | u64 addr, npages; | 
|  |  | 
|  | addr = md->virt_addr; | 
|  | npages = md->num_pages; | 
|  |  | 
|  | memrange_efi_to_native(&addr, &npages); | 
|  |  | 
|  | if (executable) | 
|  | set_memory_x(addr, npages); | 
|  | else | 
|  | set_memory_nx(addr, npages); | 
|  | } | 
|  |  | 
|  | static void __init runtime_code_page_mkexec(void) | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | /* Make EFI runtime service code area executable */ | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  |  | 
|  | if (md->type != EFI_RUNTIME_SERVICES_CODE) | 
|  | continue; | 
|  |  | 
|  | efi_set_executable(md, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function will switch the EFI runtime services to virtual mode. | 
|  | * Essentially, look through the EFI memmap and map every region that | 
|  | * has the runtime attribute bit set in its memory descriptor and update | 
|  | * that memory descriptor with the virtual address obtained from ioremap(). | 
|  | * This enables the runtime services to be called without having to | 
|  | * thunk back into physical mode for every invocation. | 
|  | */ | 
|  | void __init efi_enter_virtual_mode(void) | 
|  | { | 
|  | efi_memory_desc_t *md, *prev_md = NULL; | 
|  | efi_status_t status; | 
|  | unsigned long size; | 
|  | u64 end, systab, addr, npages, end_pfn; | 
|  | void *p, *va, *new_memmap = NULL; | 
|  | int count = 0; | 
|  |  | 
|  | efi.systab = NULL; | 
|  |  | 
|  | /* Merge contiguous regions of the same type and attribute */ | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | u64 prev_size; | 
|  | md = p; | 
|  |  | 
|  | if (!prev_md) { | 
|  | prev_md = md; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (prev_md->type != md->type || | 
|  | prev_md->attribute != md->attribute) { | 
|  | prev_md = md; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; | 
|  |  | 
|  | if (md->phys_addr == (prev_md->phys_addr + prev_size)) { | 
|  | prev_md->num_pages += md->num_pages; | 
|  | md->type = EFI_RESERVED_TYPE; | 
|  | md->attribute = 0; | 
|  | continue; | 
|  | } | 
|  | prev_md = md; | 
|  | } | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  | if (!(md->attribute & EFI_MEMORY_RUNTIME) && | 
|  | md->type != EFI_BOOT_SERVICES_CODE && | 
|  | md->type != EFI_BOOT_SERVICES_DATA) | 
|  | continue; | 
|  |  | 
|  | size = md->num_pages << EFI_PAGE_SHIFT; | 
|  | end = md->phys_addr + size; | 
|  |  | 
|  | end_pfn = PFN_UP(end); | 
|  | if (end_pfn <= max_low_pfn_mapped | 
|  | || (end_pfn > (1UL << (32 - PAGE_SHIFT)) | 
|  | && end_pfn <= max_pfn_mapped)) | 
|  | va = __va(md->phys_addr); | 
|  | else | 
|  | va = efi_ioremap(md->phys_addr, size, md->type); | 
|  |  | 
|  | md->virt_addr = (u64) (unsigned long) va; | 
|  |  | 
|  | if (!va) { | 
|  | printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n", | 
|  | (unsigned long long)md->phys_addr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!(md->attribute & EFI_MEMORY_WB)) { | 
|  | addr = md->virt_addr; | 
|  | npages = md->num_pages; | 
|  | memrange_efi_to_native(&addr, &npages); | 
|  | set_memory_uc(addr, npages); | 
|  | } | 
|  |  | 
|  | systab = (u64) (unsigned long) efi_phys.systab; | 
|  | if (md->phys_addr <= systab && systab < end) { | 
|  | systab += md->virt_addr - md->phys_addr; | 
|  | efi.systab = (efi_system_table_t *) (unsigned long) systab; | 
|  | } | 
|  | new_memmap = krealloc(new_memmap, | 
|  | (count + 1) * memmap.desc_size, | 
|  | GFP_KERNEL); | 
|  | memcpy(new_memmap + (count * memmap.desc_size), md, | 
|  | memmap.desc_size); | 
|  | count++; | 
|  | } | 
|  |  | 
|  | BUG_ON(!efi.systab); | 
|  |  | 
|  | status = phys_efi_set_virtual_address_map( | 
|  | memmap.desc_size * count, | 
|  | memmap.desc_size, | 
|  | memmap.desc_version, | 
|  | (efi_memory_desc_t *)__pa(new_memmap)); | 
|  |  | 
|  | if (status != EFI_SUCCESS) { | 
|  | printk(KERN_ALERT "Unable to switch EFI into virtual mode " | 
|  | "(status=%lx)!\n", status); | 
|  | panic("EFI call to SetVirtualAddressMap() failed!"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Thankfully, it does seem that no runtime services other than | 
|  | * SetVirtualAddressMap() will touch boot services code, so we can | 
|  | * get rid of it all at this point | 
|  | */ | 
|  | efi_free_boot_services(); | 
|  |  | 
|  | /* | 
|  | * Now that EFI is in virtual mode, update the function | 
|  | * pointers in the runtime service table to the new virtual addresses. | 
|  | * | 
|  | * Call EFI services through wrapper functions. | 
|  | */ | 
|  | efi.get_time = virt_efi_get_time; | 
|  | efi.set_time = virt_efi_set_time; | 
|  | efi.get_wakeup_time = virt_efi_get_wakeup_time; | 
|  | efi.set_wakeup_time = virt_efi_set_wakeup_time; | 
|  | efi.get_variable = virt_efi_get_variable; | 
|  | efi.get_next_variable = virt_efi_get_next_variable; | 
|  | efi.set_variable = virt_efi_set_variable; | 
|  | efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; | 
|  | efi.reset_system = virt_efi_reset_system; | 
|  | efi.set_virtual_address_map = NULL; | 
|  | efi.query_variable_info = virt_efi_query_variable_info; | 
|  | efi.update_capsule = virt_efi_update_capsule; | 
|  | efi.query_capsule_caps = virt_efi_query_capsule_caps; | 
|  | if (__supported_pte_mask & _PAGE_NX) | 
|  | runtime_code_page_mkexec(); | 
|  | early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size); | 
|  | memmap.map = NULL; | 
|  | kfree(new_memmap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convenience functions to obtain memory types and attributes | 
|  | */ | 
|  | u32 efi_mem_type(unsigned long phys_addr) | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  | if ((md->phys_addr <= phys_addr) && | 
|  | (phys_addr < (md->phys_addr + | 
|  | (md->num_pages << EFI_PAGE_SHIFT)))) | 
|  | return md->type; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | u64 efi_mem_attributes(unsigned long phys_addr) | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  | if ((md->phys_addr <= phys_addr) && | 
|  | (phys_addr < (md->phys_addr + | 
|  | (md->num_pages << EFI_PAGE_SHIFT)))) | 
|  | return md->attribute; | 
|  | } | 
|  | return 0; | 
|  | } |