|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Handle caching attributes in page tables (PAT) | 
|  | * | 
|  | * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> | 
|  | *          Suresh B Siddha <suresh.b.siddha@intel.com> | 
|  | * | 
|  | * Interval tree (augmented rbtree) used to store the PAT memory type | 
|  | * reservations. | 
|  | */ | 
|  |  | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/rbtree_augmented.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/gfp.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/pat.h> | 
|  |  | 
|  | #include "pat_internal.h" | 
|  |  | 
|  | /* | 
|  | * The memtype tree keeps track of memory type for specific | 
|  | * physical memory areas. Without proper tracking, conflicting memory | 
|  | * types in different mappings can cause CPU cache corruption. | 
|  | * | 
|  | * The tree is an interval tree (augmented rbtree) with tree ordered | 
|  | * on starting address. Tree can contain multiple entries for | 
|  | * different regions which overlap. All the aliases have the same | 
|  | * cache attributes of course. | 
|  | * | 
|  | * memtype_lock protects the rbtree. | 
|  | */ | 
|  |  | 
|  | static struct rb_root memtype_rbroot = RB_ROOT; | 
|  |  | 
|  | static int is_node_overlap(struct memtype *node, u64 start, u64 end) | 
|  | { | 
|  | if (node->start >= end || node->end <= start) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static u64 get_subtree_max_end(struct rb_node *node) | 
|  | { | 
|  | u64 ret = 0; | 
|  | if (node) { | 
|  | struct memtype *data = rb_entry(node, struct memtype, rb); | 
|  | ret = data->subtree_max_end; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 compute_subtree_max_end(struct memtype *data) | 
|  | { | 
|  | u64 max_end = data->end, child_max_end; | 
|  |  | 
|  | child_max_end = get_subtree_max_end(data->rb.rb_right); | 
|  | if (child_max_end > max_end) | 
|  | max_end = child_max_end; | 
|  |  | 
|  | child_max_end = get_subtree_max_end(data->rb.rb_left); | 
|  | if (child_max_end > max_end) | 
|  | max_end = child_max_end; | 
|  |  | 
|  | return max_end; | 
|  | } | 
|  |  | 
|  | RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb, | 
|  | u64, subtree_max_end, compute_subtree_max_end) | 
|  |  | 
|  | /* Find the first (lowest start addr) overlapping range from rb tree */ | 
|  | static struct memtype *memtype_rb_lowest_match(struct rb_root *root, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | struct rb_node *node = root->rb_node; | 
|  | struct memtype *last_lower = NULL; | 
|  |  | 
|  | while (node) { | 
|  | struct memtype *data = rb_entry(node, struct memtype, rb); | 
|  |  | 
|  | if (get_subtree_max_end(node->rb_left) > start) { | 
|  | /* Lowest overlap if any must be on left side */ | 
|  | node = node->rb_left; | 
|  | } else if (is_node_overlap(data, start, end)) { | 
|  | last_lower = data; | 
|  | break; | 
|  | } else if (start >= data->start) { | 
|  | /* Lowest overlap if any must be on right side */ | 
|  | node = node->rb_right; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return last_lower; /* Returns NULL if there is no overlap */ | 
|  | } | 
|  |  | 
|  | enum { | 
|  | MEMTYPE_EXACT_MATCH	= 0, | 
|  | MEMTYPE_END_MATCH	= 1 | 
|  | }; | 
|  |  | 
|  | static struct memtype *memtype_rb_match(struct rb_root *root, | 
|  | u64 start, u64 end, int match_type) | 
|  | { | 
|  | struct memtype *match; | 
|  |  | 
|  | match = memtype_rb_lowest_match(root, start, end); | 
|  | while (match != NULL && match->start < end) { | 
|  | struct rb_node *node; | 
|  |  | 
|  | if ((match_type == MEMTYPE_EXACT_MATCH) && | 
|  | (match->start == start) && (match->end == end)) | 
|  | return match; | 
|  |  | 
|  | if ((match_type == MEMTYPE_END_MATCH) && | 
|  | (match->start < start) && (match->end == end)) | 
|  | return match; | 
|  |  | 
|  | node = rb_next(&match->rb); | 
|  | if (node) | 
|  | match = rb_entry(node, struct memtype, rb); | 
|  | else | 
|  | match = NULL; | 
|  | } | 
|  |  | 
|  | return NULL; /* Returns NULL if there is no match */ | 
|  | } | 
|  |  | 
|  | static int memtype_rb_check_conflict(struct rb_root *root, | 
|  | u64 start, u64 end, | 
|  | enum page_cache_mode reqtype, | 
|  | enum page_cache_mode *newtype) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct memtype *match; | 
|  | enum page_cache_mode found_type = reqtype; | 
|  |  | 
|  | match = memtype_rb_lowest_match(&memtype_rbroot, start, end); | 
|  | if (match == NULL) | 
|  | goto success; | 
|  |  | 
|  | if (match->type != found_type && newtype == NULL) | 
|  | goto failure; | 
|  |  | 
|  | dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end); | 
|  | found_type = match->type; | 
|  |  | 
|  | node = rb_next(&match->rb); | 
|  | while (node) { | 
|  | match = rb_entry(node, struct memtype, rb); | 
|  |  | 
|  | if (match->start >= end) /* Checked all possible matches */ | 
|  | goto success; | 
|  |  | 
|  | if (is_node_overlap(match, start, end) && | 
|  | match->type != found_type) { | 
|  | goto failure; | 
|  | } | 
|  |  | 
|  | node = rb_next(&match->rb); | 
|  | } | 
|  | success: | 
|  | if (newtype) | 
|  | *newtype = found_type; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | failure: | 
|  | pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n", | 
|  | current->comm, current->pid, start, end, | 
|  | cattr_name(found_type), cattr_name(match->type)); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata) | 
|  | { | 
|  | struct rb_node **node = &(root->rb_node); | 
|  | struct rb_node *parent = NULL; | 
|  |  | 
|  | while (*node) { | 
|  | struct memtype *data = rb_entry(*node, struct memtype, rb); | 
|  |  | 
|  | parent = *node; | 
|  | if (data->subtree_max_end < newdata->end) | 
|  | data->subtree_max_end = newdata->end; | 
|  | if (newdata->start <= data->start) | 
|  | node = &((*node)->rb_left); | 
|  | else if (newdata->start > data->start) | 
|  | node = &((*node)->rb_right); | 
|  | } | 
|  |  | 
|  | newdata->subtree_max_end = newdata->end; | 
|  | rb_link_node(&newdata->rb, parent, node); | 
|  | rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb); | 
|  | } | 
|  |  | 
|  | int rbt_memtype_check_insert(struct memtype *new, | 
|  | enum page_cache_mode *ret_type) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end, | 
|  | new->type, ret_type); | 
|  |  | 
|  | if (!err) { | 
|  | if (ret_type) | 
|  | new->type = *ret_type; | 
|  |  | 
|  | new->subtree_max_end = new->end; | 
|  | memtype_rb_insert(&memtype_rbroot, new); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | struct memtype *rbt_memtype_erase(u64 start, u64 end) | 
|  | { | 
|  | struct memtype *data; | 
|  |  | 
|  | /* | 
|  | * Since the memtype_rbroot tree allows overlapping ranges, | 
|  | * rbt_memtype_erase() checks with EXACT_MATCH first, i.e. free | 
|  | * a whole node for the munmap case.  If no such entry is found, | 
|  | * it then checks with END_MATCH, i.e. shrink the size of a node | 
|  | * from the end for the mremap case. | 
|  | */ | 
|  | data = memtype_rb_match(&memtype_rbroot, start, end, | 
|  | MEMTYPE_EXACT_MATCH); | 
|  | if (!data) { | 
|  | data = memtype_rb_match(&memtype_rbroot, start, end, | 
|  | MEMTYPE_END_MATCH); | 
|  | if (!data) | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (data->start == start) { | 
|  | /* munmap: erase this node */ | 
|  | rb_erase_augmented(&data->rb, &memtype_rbroot, | 
|  | &memtype_rb_augment_cb); | 
|  | } else { | 
|  | /* mremap: update the end value of this node */ | 
|  | rb_erase_augmented(&data->rb, &memtype_rbroot, | 
|  | &memtype_rb_augment_cb); | 
|  | data->end = start; | 
|  | data->subtree_max_end = data->end; | 
|  | memtype_rb_insert(&memtype_rbroot, data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | struct memtype *rbt_memtype_lookup(u64 addr) | 
|  | { | 
|  | return memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_FS) | 
|  | int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos) | 
|  | { | 
|  | struct rb_node *node; | 
|  | int i = 1; | 
|  |  | 
|  | node = rb_first(&memtype_rbroot); | 
|  | while (node && pos != i) { | 
|  | node = rb_next(node); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (node) { /* pos == i */ | 
|  | struct memtype *this = rb_entry(node, struct memtype, rb); | 
|  | *out = *this; | 
|  | return 0; | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | #endif |