|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * This file implements KASLR memory randomization for x86_64. It randomizes | 
|  | * the virtual address space of kernel memory regions (physical memory | 
|  | * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates | 
|  | * exploits relying on predictable kernel addresses. | 
|  | * | 
|  | * Entropy is generated using the KASLR early boot functions now shared in | 
|  | * the lib directory (originally written by Kees Cook). Randomization is | 
|  | * done on PGD & P4D/PUD page table levels to increase possible addresses. | 
|  | * The physical memory mapping code was adapted to support P4D/PUD level | 
|  | * virtual addresses. This implementation on the best configuration provides | 
|  | * 30,000 possible virtual addresses in average for each memory region. | 
|  | * An additional low memory page is used to ensure each CPU can start with | 
|  | * a PGD aligned virtual address (for realmode). | 
|  | * | 
|  | * The order of each memory region is not changed. The feature looks at | 
|  | * the available space for the regions based on different configuration | 
|  | * options and randomizes the base and space between each. The size of the | 
|  | * physical memory mapping is the available physical memory. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/random.h> | 
|  |  | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/kaslr.h> | 
|  |  | 
|  | #include "mm_internal.h" | 
|  |  | 
|  | #define TB_SHIFT 40 | 
|  |  | 
|  | /* | 
|  | * The end address could depend on more configuration options to make the | 
|  | * highest amount of space for randomization available, but that's too hard | 
|  | * to keep straight and caused issues already. | 
|  | */ | 
|  | static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE; | 
|  |  | 
|  | /* | 
|  | * Memory regions randomized by KASLR (except modules that use a separate logic | 
|  | * earlier during boot). The list is ordered based on virtual addresses. This | 
|  | * order is kept after randomization. | 
|  | */ | 
|  | static __initdata struct kaslr_memory_region { | 
|  | unsigned long *base; | 
|  | unsigned long size_tb; | 
|  | } kaslr_regions[] = { | 
|  | { &page_offset_base, 0 }, | 
|  | { &vmalloc_base, 0 }, | 
|  | { &vmemmap_base, 1 }, | 
|  | }; | 
|  |  | 
|  | /* Get size in bytes used by the memory region */ | 
|  | static inline unsigned long get_padding(struct kaslr_memory_region *region) | 
|  | { | 
|  | return (region->size_tb << TB_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Apply no randomization if KASLR was disabled at boot or if KASAN | 
|  | * is enabled. KASAN shadow mappings rely on regions being PGD aligned. | 
|  | */ | 
|  | static inline bool kaslr_memory_enabled(void) | 
|  | { | 
|  | return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN); | 
|  | } | 
|  |  | 
|  | /* Initialize base and padding for each memory region randomized with KASLR */ | 
|  | void __init kernel_randomize_memory(void) | 
|  | { | 
|  | size_t i; | 
|  | unsigned long vaddr_start, vaddr; | 
|  | unsigned long rand, memory_tb; | 
|  | struct rnd_state rand_state; | 
|  | unsigned long remain_entropy; | 
|  |  | 
|  | vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4; | 
|  | vaddr = vaddr_start; | 
|  |  | 
|  | /* | 
|  | * These BUILD_BUG_ON checks ensure the memory layout is consistent | 
|  | * with the vaddr_start/vaddr_end variables. These checks are very | 
|  | * limited.... | 
|  | */ | 
|  | BUILD_BUG_ON(vaddr_start >= vaddr_end); | 
|  | BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE); | 
|  | BUILD_BUG_ON(vaddr_end > __START_KERNEL_map); | 
|  |  | 
|  | if (!kaslr_memory_enabled()) | 
|  | return; | 
|  |  | 
|  | kaslr_regions[0].size_tb = 1 << (__PHYSICAL_MASK_SHIFT - TB_SHIFT); | 
|  | kaslr_regions[1].size_tb = VMALLOC_SIZE_TB; | 
|  |  | 
|  | /* | 
|  | * Update Physical memory mapping to available and | 
|  | * add padding if needed (especially for memory hotplug support). | 
|  | */ | 
|  | BUG_ON(kaslr_regions[0].base != &page_offset_base); | 
|  | memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) + | 
|  | CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING; | 
|  |  | 
|  | /* Adapt phyiscal memory region size based on available memory */ | 
|  | if (memory_tb < kaslr_regions[0].size_tb) | 
|  | kaslr_regions[0].size_tb = memory_tb; | 
|  |  | 
|  | /* Calculate entropy available between regions */ | 
|  | remain_entropy = vaddr_end - vaddr_start; | 
|  | for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) | 
|  | remain_entropy -= get_padding(&kaslr_regions[i]); | 
|  |  | 
|  | prandom_seed_state(&rand_state, kaslr_get_random_long("Memory")); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) { | 
|  | unsigned long entropy; | 
|  |  | 
|  | /* | 
|  | * Select a random virtual address using the extra entropy | 
|  | * available. | 
|  | */ | 
|  | entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i); | 
|  | prandom_bytes_state(&rand_state, &rand, sizeof(rand)); | 
|  | if (pgtable_l5_enabled()) | 
|  | entropy = (rand % (entropy + 1)) & P4D_MASK; | 
|  | else | 
|  | entropy = (rand % (entropy + 1)) & PUD_MASK; | 
|  | vaddr += entropy; | 
|  | *kaslr_regions[i].base = vaddr; | 
|  |  | 
|  | /* | 
|  | * Jump the region and add a minimum padding based on | 
|  | * randomization alignment. | 
|  | */ | 
|  | vaddr += get_padding(&kaslr_regions[i]); | 
|  | if (pgtable_l5_enabled()) | 
|  | vaddr = round_up(vaddr + 1, P4D_SIZE); | 
|  | else | 
|  | vaddr = round_up(vaddr + 1, PUD_SIZE); | 
|  | remain_entropy -= entropy; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __meminit init_trampoline_pud(void) | 
|  | { | 
|  | unsigned long paddr, paddr_next; | 
|  | pgd_t *pgd; | 
|  | pud_t *pud_page, *pud_page_tramp; | 
|  | int i; | 
|  |  | 
|  | pud_page_tramp = alloc_low_page(); | 
|  |  | 
|  | paddr = 0; | 
|  | pgd = pgd_offset_k((unsigned long)__va(paddr)); | 
|  | pud_page = (pud_t *) pgd_page_vaddr(*pgd); | 
|  |  | 
|  | for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) { | 
|  | pud_t *pud, *pud_tramp; | 
|  | unsigned long vaddr = (unsigned long)__va(paddr); | 
|  |  | 
|  | pud_tramp = pud_page_tramp + pud_index(paddr); | 
|  | pud = pud_page + pud_index(vaddr); | 
|  | paddr_next = (paddr & PUD_MASK) + PUD_SIZE; | 
|  |  | 
|  | *pud_tramp = *pud; | 
|  | } | 
|  |  | 
|  | set_pgd(&trampoline_pgd_entry, | 
|  | __pgd(_KERNPG_TABLE | __pa(pud_page_tramp))); | 
|  | } | 
|  |  | 
|  | static void __meminit init_trampoline_p4d(void) | 
|  | { | 
|  | unsigned long paddr, paddr_next; | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d_page, *p4d_page_tramp; | 
|  | int i; | 
|  |  | 
|  | p4d_page_tramp = alloc_low_page(); | 
|  |  | 
|  | paddr = 0; | 
|  | pgd = pgd_offset_k((unsigned long)__va(paddr)); | 
|  | p4d_page = (p4d_t *) pgd_page_vaddr(*pgd); | 
|  |  | 
|  | for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) { | 
|  | p4d_t *p4d, *p4d_tramp; | 
|  | unsigned long vaddr = (unsigned long)__va(paddr); | 
|  |  | 
|  | p4d_tramp = p4d_page_tramp + p4d_index(paddr); | 
|  | p4d = p4d_page + p4d_index(vaddr); | 
|  | paddr_next = (paddr & P4D_MASK) + P4D_SIZE; | 
|  |  | 
|  | *p4d_tramp = *p4d; | 
|  | } | 
|  |  | 
|  | set_pgd(&trampoline_pgd_entry, | 
|  | __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create PGD aligned trampoline table to allow real mode initialization | 
|  | * of additional CPUs. Consume only 1 low memory page. | 
|  | */ | 
|  | void __meminit init_trampoline(void) | 
|  | { | 
|  |  | 
|  | if (!kaslr_memory_enabled()) { | 
|  | init_trampoline_default(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (pgtable_l5_enabled()) | 
|  | init_trampoline_p4d(); | 
|  | else | 
|  | init_trampoline_pud(); | 
|  | } |