|  | /** | 
|  | * inode.c - NTFS kernel inode handling. | 
|  | * | 
|  | * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc. | 
|  | * | 
|  | * This program/include file is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as published | 
|  | * by the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program/include file is distributed in the hope that it will be | 
|  | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty | 
|  | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program (in the main directory of the Linux-NTFS | 
|  | * distribution in the file COPYING); if not, write to the Free Software | 
|  | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/quotaops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/aio.h> | 
|  |  | 
|  | #include "aops.h" | 
|  | #include "attrib.h" | 
|  | #include "bitmap.h" | 
|  | #include "dir.h" | 
|  | #include "debug.h" | 
|  | #include "inode.h" | 
|  | #include "lcnalloc.h" | 
|  | #include "malloc.h" | 
|  | #include "mft.h" | 
|  | #include "time.h" | 
|  | #include "ntfs.h" | 
|  |  | 
|  | /** | 
|  | * ntfs_test_inode - compare two (possibly fake) inodes for equality | 
|  | * @vi:		vfs inode which to test | 
|  | * @na:		ntfs attribute which is being tested with | 
|  | * | 
|  | * Compare the ntfs attribute embedded in the ntfs specific part of the vfs | 
|  | * inode @vi for equality with the ntfs attribute @na. | 
|  | * | 
|  | * If searching for the normal file/directory inode, set @na->type to AT_UNUSED. | 
|  | * @na->name and @na->name_len are then ignored. | 
|  | * | 
|  | * Return 1 if the attributes match and 0 if not. | 
|  | * | 
|  | * NOTE: This function runs with the inode_hash_lock spin lock held so it is not | 
|  | * allowed to sleep. | 
|  | */ | 
|  | int ntfs_test_inode(struct inode *vi, ntfs_attr *na) | 
|  | { | 
|  | ntfs_inode *ni; | 
|  |  | 
|  | if (vi->i_ino != na->mft_no) | 
|  | return 0; | 
|  | ni = NTFS_I(vi); | 
|  | /* If !NInoAttr(ni), @vi is a normal file or directory inode. */ | 
|  | if (likely(!NInoAttr(ni))) { | 
|  | /* If not looking for a normal inode this is a mismatch. */ | 
|  | if (unlikely(na->type != AT_UNUSED)) | 
|  | return 0; | 
|  | } else { | 
|  | /* A fake inode describing an attribute. */ | 
|  | if (ni->type != na->type) | 
|  | return 0; | 
|  | if (ni->name_len != na->name_len) | 
|  | return 0; | 
|  | if (na->name_len && memcmp(ni->name, na->name, | 
|  | na->name_len * sizeof(ntfschar))) | 
|  | return 0; | 
|  | } | 
|  | /* Match! */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_init_locked_inode - initialize an inode | 
|  | * @vi:		vfs inode to initialize | 
|  | * @na:		ntfs attribute which to initialize @vi to | 
|  | * | 
|  | * Initialize the vfs inode @vi with the values from the ntfs attribute @na in | 
|  | * order to enable ntfs_test_inode() to do its work. | 
|  | * | 
|  | * If initializing the normal file/directory inode, set @na->type to AT_UNUSED. | 
|  | * In that case, @na->name and @na->name_len should be set to NULL and 0, | 
|  | * respectively. Although that is not strictly necessary as | 
|  | * ntfs_read_locked_inode() will fill them in later. | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | * | 
|  | * NOTE: This function runs with the inode->i_lock spin lock held so it is not | 
|  | * allowed to sleep. (Hence the GFP_ATOMIC allocation.) | 
|  | */ | 
|  | static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na) | 
|  | { | 
|  | ntfs_inode *ni = NTFS_I(vi); | 
|  |  | 
|  | vi->i_ino = na->mft_no; | 
|  |  | 
|  | ni->type = na->type; | 
|  | if (na->type == AT_INDEX_ALLOCATION) | 
|  | NInoSetMstProtected(ni); | 
|  |  | 
|  | ni->name = na->name; | 
|  | ni->name_len = na->name_len; | 
|  |  | 
|  | /* If initializing a normal inode, we are done. */ | 
|  | if (likely(na->type == AT_UNUSED)) { | 
|  | BUG_ON(na->name); | 
|  | BUG_ON(na->name_len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* It is a fake inode. */ | 
|  | NInoSetAttr(ni); | 
|  |  | 
|  | /* | 
|  | * We have I30 global constant as an optimization as it is the name | 
|  | * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC | 
|  | * allocation but that is ok. And most attributes are unnamed anyway, | 
|  | * thus the fraction of named attributes with name != I30 is actually | 
|  | * absolutely tiny. | 
|  | */ | 
|  | if (na->name_len && na->name != I30) { | 
|  | unsigned int i; | 
|  |  | 
|  | BUG_ON(!na->name); | 
|  | i = na->name_len * sizeof(ntfschar); | 
|  | ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC); | 
|  | if (!ni->name) | 
|  | return -ENOMEM; | 
|  | memcpy(ni->name, na->name, i); | 
|  | ni->name[na->name_len] = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | typedef int (*set_t)(struct inode *, void *); | 
|  | static int ntfs_read_locked_inode(struct inode *vi); | 
|  | static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi); | 
|  | static int ntfs_read_locked_index_inode(struct inode *base_vi, | 
|  | struct inode *vi); | 
|  |  | 
|  | /** | 
|  | * ntfs_iget - obtain a struct inode corresponding to a specific normal inode | 
|  | * @sb:		super block of mounted volume | 
|  | * @mft_no:	mft record number / inode number to obtain | 
|  | * | 
|  | * Obtain the struct inode corresponding to a specific normal inode (i.e. a | 
|  | * file or directory). | 
|  | * | 
|  | * If the inode is in the cache, it is just returned with an increased | 
|  | * reference count. Otherwise, a new struct inode is allocated and initialized, | 
|  | * and finally ntfs_read_locked_inode() is called to read in the inode and | 
|  | * fill in the remainder of the inode structure. | 
|  | * | 
|  | * Return the struct inode on success. Check the return value with IS_ERR() and | 
|  | * if true, the function failed and the error code is obtained from PTR_ERR(). | 
|  | */ | 
|  | struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no) | 
|  | { | 
|  | struct inode *vi; | 
|  | int err; | 
|  | ntfs_attr na; | 
|  |  | 
|  | na.mft_no = mft_no; | 
|  | na.type = AT_UNUSED; | 
|  | na.name = NULL; | 
|  | na.name_len = 0; | 
|  |  | 
|  | vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode, | 
|  | (set_t)ntfs_init_locked_inode, &na); | 
|  | if (unlikely(!vi)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | /* If this is a freshly allocated inode, need to read it now. */ | 
|  | if (vi->i_state & I_NEW) { | 
|  | err = ntfs_read_locked_inode(vi); | 
|  | unlock_new_inode(vi); | 
|  | } | 
|  | /* | 
|  | * There is no point in keeping bad inodes around if the failure was | 
|  | * due to ENOMEM. We want to be able to retry again later. | 
|  | */ | 
|  | if (unlikely(err == -ENOMEM)) { | 
|  | iput(vi); | 
|  | vi = ERR_PTR(err); | 
|  | } | 
|  | return vi; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_iget - obtain a struct inode corresponding to an attribute | 
|  | * @base_vi:	vfs base inode containing the attribute | 
|  | * @type:	attribute type | 
|  | * @name:	Unicode name of the attribute (NULL if unnamed) | 
|  | * @name_len:	length of @name in Unicode characters (0 if unnamed) | 
|  | * | 
|  | * Obtain the (fake) struct inode corresponding to the attribute specified by | 
|  | * @type, @name, and @name_len, which is present in the base mft record | 
|  | * specified by the vfs inode @base_vi. | 
|  | * | 
|  | * If the attribute inode is in the cache, it is just returned with an | 
|  | * increased reference count. Otherwise, a new struct inode is allocated and | 
|  | * initialized, and finally ntfs_read_locked_attr_inode() is called to read the | 
|  | * attribute and fill in the inode structure. | 
|  | * | 
|  | * Note, for index allocation attributes, you need to use ntfs_index_iget() | 
|  | * instead of ntfs_attr_iget() as working with indices is a lot more complex. | 
|  | * | 
|  | * Return the struct inode of the attribute inode on success. Check the return | 
|  | * value with IS_ERR() and if true, the function failed and the error code is | 
|  | * obtained from PTR_ERR(). | 
|  | */ | 
|  | struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type, | 
|  | ntfschar *name, u32 name_len) | 
|  | { | 
|  | struct inode *vi; | 
|  | int err; | 
|  | ntfs_attr na; | 
|  |  | 
|  | /* Make sure no one calls ntfs_attr_iget() for indices. */ | 
|  | BUG_ON(type == AT_INDEX_ALLOCATION); | 
|  |  | 
|  | na.mft_no = base_vi->i_ino; | 
|  | na.type = type; | 
|  | na.name = name; | 
|  | na.name_len = name_len; | 
|  |  | 
|  | vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, | 
|  | (set_t)ntfs_init_locked_inode, &na); | 
|  | if (unlikely(!vi)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | /* If this is a freshly allocated inode, need to read it now. */ | 
|  | if (vi->i_state & I_NEW) { | 
|  | err = ntfs_read_locked_attr_inode(base_vi, vi); | 
|  | unlock_new_inode(vi); | 
|  | } | 
|  | /* | 
|  | * There is no point in keeping bad attribute inodes around. This also | 
|  | * simplifies things in that we never need to check for bad attribute | 
|  | * inodes elsewhere. | 
|  | */ | 
|  | if (unlikely(err)) { | 
|  | iput(vi); | 
|  | vi = ERR_PTR(err); | 
|  | } | 
|  | return vi; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_index_iget - obtain a struct inode corresponding to an index | 
|  | * @base_vi:	vfs base inode containing the index related attributes | 
|  | * @name:	Unicode name of the index | 
|  | * @name_len:	length of @name in Unicode characters | 
|  | * | 
|  | * Obtain the (fake) struct inode corresponding to the index specified by @name | 
|  | * and @name_len, which is present in the base mft record specified by the vfs | 
|  | * inode @base_vi. | 
|  | * | 
|  | * If the index inode is in the cache, it is just returned with an increased | 
|  | * reference count.  Otherwise, a new struct inode is allocated and | 
|  | * initialized, and finally ntfs_read_locked_index_inode() is called to read | 
|  | * the index related attributes and fill in the inode structure. | 
|  | * | 
|  | * Return the struct inode of the index inode on success. Check the return | 
|  | * value with IS_ERR() and if true, the function failed and the error code is | 
|  | * obtained from PTR_ERR(). | 
|  | */ | 
|  | struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name, | 
|  | u32 name_len) | 
|  | { | 
|  | struct inode *vi; | 
|  | int err; | 
|  | ntfs_attr na; | 
|  |  | 
|  | na.mft_no = base_vi->i_ino; | 
|  | na.type = AT_INDEX_ALLOCATION; | 
|  | na.name = name; | 
|  | na.name_len = name_len; | 
|  |  | 
|  | vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode, | 
|  | (set_t)ntfs_init_locked_inode, &na); | 
|  | if (unlikely(!vi)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | /* If this is a freshly allocated inode, need to read it now. */ | 
|  | if (vi->i_state & I_NEW) { | 
|  | err = ntfs_read_locked_index_inode(base_vi, vi); | 
|  | unlock_new_inode(vi); | 
|  | } | 
|  | /* | 
|  | * There is no point in keeping bad index inodes around.  This also | 
|  | * simplifies things in that we never need to check for bad index | 
|  | * inodes elsewhere. | 
|  | */ | 
|  | if (unlikely(err)) { | 
|  | iput(vi); | 
|  | vi = ERR_PTR(err); | 
|  | } | 
|  | return vi; | 
|  | } | 
|  |  | 
|  | struct inode *ntfs_alloc_big_inode(struct super_block *sb) | 
|  | { | 
|  | ntfs_inode *ni; | 
|  |  | 
|  | ntfs_debug("Entering."); | 
|  | ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS); | 
|  | if (likely(ni != NULL)) { | 
|  | ni->state = 0; | 
|  | return VFS_I(ni); | 
|  | } | 
|  | ntfs_error(sb, "Allocation of NTFS big inode structure failed."); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void ntfs_i_callback(struct rcu_head *head) | 
|  | { | 
|  | struct inode *inode = container_of(head, struct inode, i_rcu); | 
|  | kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode)); | 
|  | } | 
|  |  | 
|  | void ntfs_destroy_big_inode(struct inode *inode) | 
|  | { | 
|  | ntfs_inode *ni = NTFS_I(inode); | 
|  |  | 
|  | ntfs_debug("Entering."); | 
|  | BUG_ON(ni->page); | 
|  | if (!atomic_dec_and_test(&ni->count)) | 
|  | BUG(); | 
|  | call_rcu(&inode->i_rcu, ntfs_i_callback); | 
|  | } | 
|  |  | 
|  | static inline ntfs_inode *ntfs_alloc_extent_inode(void) | 
|  | { | 
|  | ntfs_inode *ni; | 
|  |  | 
|  | ntfs_debug("Entering."); | 
|  | ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS); | 
|  | if (likely(ni != NULL)) { | 
|  | ni->state = 0; | 
|  | return ni; | 
|  | } | 
|  | ntfs_error(NULL, "Allocation of NTFS inode structure failed."); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void ntfs_destroy_extent_inode(ntfs_inode *ni) | 
|  | { | 
|  | ntfs_debug("Entering."); | 
|  | BUG_ON(ni->page); | 
|  | if (!atomic_dec_and_test(&ni->count)) | 
|  | BUG(); | 
|  | kmem_cache_free(ntfs_inode_cache, ni); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The attribute runlist lock has separate locking rules from the | 
|  | * normal runlist lock, so split the two lock-classes: | 
|  | */ | 
|  | static struct lock_class_key attr_list_rl_lock_class; | 
|  |  | 
|  | /** | 
|  | * __ntfs_init_inode - initialize ntfs specific part of an inode | 
|  | * @sb:		super block of mounted volume | 
|  | * @ni:		freshly allocated ntfs inode which to initialize | 
|  | * | 
|  | * Initialize an ntfs inode to defaults. | 
|  | * | 
|  | * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left | 
|  | * untouched. Make sure to initialize them elsewhere. | 
|  | * | 
|  | * Return zero on success and -ENOMEM on error. | 
|  | */ | 
|  | void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni) | 
|  | { | 
|  | ntfs_debug("Entering."); | 
|  | rwlock_init(&ni->size_lock); | 
|  | ni->initialized_size = ni->allocated_size = 0; | 
|  | ni->seq_no = 0; | 
|  | atomic_set(&ni->count, 1); | 
|  | ni->vol = NTFS_SB(sb); | 
|  | ntfs_init_runlist(&ni->runlist); | 
|  | mutex_init(&ni->mrec_lock); | 
|  | ni->page = NULL; | 
|  | ni->page_ofs = 0; | 
|  | ni->attr_list_size = 0; | 
|  | ni->attr_list = NULL; | 
|  | ntfs_init_runlist(&ni->attr_list_rl); | 
|  | lockdep_set_class(&ni->attr_list_rl.lock, | 
|  | &attr_list_rl_lock_class); | 
|  | ni->itype.index.block_size = 0; | 
|  | ni->itype.index.vcn_size = 0; | 
|  | ni->itype.index.collation_rule = 0; | 
|  | ni->itype.index.block_size_bits = 0; | 
|  | ni->itype.index.vcn_size_bits = 0; | 
|  | mutex_init(&ni->extent_lock); | 
|  | ni->nr_extents = 0; | 
|  | ni->ext.base_ntfs_ino = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extent inodes get MFT-mapped in a nested way, while the base inode | 
|  | * is still mapped. Teach this nesting to the lock validator by creating | 
|  | * a separate class for nested inode's mrec_lock's: | 
|  | */ | 
|  | static struct lock_class_key extent_inode_mrec_lock_key; | 
|  |  | 
|  | inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb, | 
|  | unsigned long mft_no) | 
|  | { | 
|  | ntfs_inode *ni = ntfs_alloc_extent_inode(); | 
|  |  | 
|  | ntfs_debug("Entering."); | 
|  | if (likely(ni != NULL)) { | 
|  | __ntfs_init_inode(sb, ni); | 
|  | lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key); | 
|  | ni->mft_no = mft_no; | 
|  | ni->type = AT_UNUSED; | 
|  | ni->name = NULL; | 
|  | ni->name_len = 0; | 
|  | } | 
|  | return ni; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_is_extended_system_file - check if a file is in the $Extend directory | 
|  | * @ctx:	initialized attribute search context | 
|  | * | 
|  | * Search all file name attributes in the inode described by the attribute | 
|  | * search context @ctx and check if any of the names are in the $Extend system | 
|  | * directory. | 
|  | * | 
|  | * Return values: | 
|  | *	   1: file is in $Extend directory | 
|  | *	   0: file is not in $Extend directory | 
|  | *    -errno: failed to determine if the file is in the $Extend directory | 
|  | */ | 
|  | static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | int nr_links, err; | 
|  |  | 
|  | /* Restart search. */ | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  |  | 
|  | /* Get number of hard links. */ | 
|  | nr_links = le16_to_cpu(ctx->mrec->link_count); | 
|  |  | 
|  | /* Loop through all hard links. */ | 
|  | while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0, | 
|  | ctx))) { | 
|  | FILE_NAME_ATTR *file_name_attr; | 
|  | ATTR_RECORD *attr = ctx->attr; | 
|  | u8 *p, *p2; | 
|  |  | 
|  | nr_links--; | 
|  | /* | 
|  | * Maximum sanity checking as we are called on an inode that | 
|  | * we suspect might be corrupt. | 
|  | */ | 
|  | p = (u8*)attr + le32_to_cpu(attr->length); | 
|  | if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec + | 
|  | le32_to_cpu(ctx->mrec->bytes_in_use)) { | 
|  | err_corrupt_attr: | 
|  | ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name " | 
|  | "attribute. You should run chkdsk."); | 
|  | return -EIO; | 
|  | } | 
|  | if (attr->non_resident) { | 
|  | ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file " | 
|  | "name. You should run chkdsk."); | 
|  | return -EIO; | 
|  | } | 
|  | if (attr->flags) { | 
|  | ntfs_error(ctx->ntfs_ino->vol->sb, "File name with " | 
|  | "invalid flags. You should run " | 
|  | "chkdsk."); | 
|  | return -EIO; | 
|  | } | 
|  | if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) { | 
|  | ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file " | 
|  | "name. You should run chkdsk."); | 
|  | return -EIO; | 
|  | } | 
|  | file_name_attr = (FILE_NAME_ATTR*)((u8*)attr + | 
|  | le16_to_cpu(attr->data.resident.value_offset)); | 
|  | p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length); | 
|  | if (p2 < (u8*)attr || p2 > p) | 
|  | goto err_corrupt_attr; | 
|  | /* This attribute is ok, but is it in the $Extend directory? */ | 
|  | if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend) | 
|  | return 1;	/* YES, it's an extended system file. */ | 
|  | } | 
|  | if (unlikely(err != -ENOENT)) | 
|  | return err; | 
|  | if (unlikely(nr_links)) { | 
|  | ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count " | 
|  | "doesn't match number of name attributes. You " | 
|  | "should run chkdsk."); | 
|  | return -EIO; | 
|  | } | 
|  | return 0;	/* NO, it is not an extended system file. */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_read_locked_inode - read an inode from its device | 
|  | * @vi:		inode to read | 
|  | * | 
|  | * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode | 
|  | * described by @vi into memory from the device. | 
|  | * | 
|  | * The only fields in @vi that we need to/can look at when the function is | 
|  | * called are i_sb, pointing to the mounted device's super block, and i_ino, | 
|  | * the number of the inode to load. | 
|  | * | 
|  | * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino | 
|  | * for reading and sets up the necessary @vi fields as well as initializing | 
|  | * the ntfs inode. | 
|  | * | 
|  | * Q: What locks are held when the function is called? | 
|  | * A: i_state has I_NEW set, hence the inode is locked, also | 
|  | *    i_count is set to 1, so it is not going to go away | 
|  | *    i_flags is set to 0 and we have no business touching it.  Only an ioctl() | 
|  | *    is allowed to write to them. We should of course be honouring them but | 
|  | *    we need to do that using the IS_* macros defined in include/linux/fs.h. | 
|  | *    In any case ntfs_read_locked_inode() has nothing to do with i_flags. | 
|  | * | 
|  | * Return 0 on success and -errno on error.  In the error case, the inode will | 
|  | * have had make_bad_inode() executed on it. | 
|  | */ | 
|  | static int ntfs_read_locked_inode(struct inode *vi) | 
|  | { | 
|  | ntfs_volume *vol = NTFS_SB(vi->i_sb); | 
|  | ntfs_inode *ni; | 
|  | struct inode *bvi; | 
|  | MFT_RECORD *m; | 
|  | ATTR_RECORD *a; | 
|  | STANDARD_INFORMATION *si; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | int err = 0; | 
|  |  | 
|  | ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); | 
|  |  | 
|  | /* Setup the generic vfs inode parts now. */ | 
|  |  | 
|  | /* | 
|  | * This is for checking whether an inode has changed w.r.t. a file so | 
|  | * that the file can be updated if necessary (compare with f_version). | 
|  | */ | 
|  | vi->i_version = 1; | 
|  |  | 
|  | vi->i_uid = vol->uid; | 
|  | vi->i_gid = vol->gid; | 
|  | vi->i_mode = 0; | 
|  |  | 
|  | /* | 
|  | * Initialize the ntfs specific part of @vi special casing | 
|  | * FILE_MFT which we need to do at mount time. | 
|  | */ | 
|  | if (vi->i_ino != FILE_MFT) | 
|  | ntfs_init_big_inode(vi); | 
|  | ni = NTFS_I(vi); | 
|  |  | 
|  | m = map_mft_record(ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | goto err_out; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(ni, m); | 
|  | if (!ctx) { | 
|  | err = -ENOMEM; | 
|  | goto unm_err_out; | 
|  | } | 
|  |  | 
|  | if (!(m->flags & MFT_RECORD_IN_USE)) { | 
|  | ntfs_error(vi->i_sb, "Inode is not in use!"); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (m->base_mft_record) { | 
|  | ntfs_error(vi->i_sb, "Inode is an extent inode!"); | 
|  | goto unm_err_out; | 
|  | } | 
|  |  | 
|  | /* Transfer information from mft record into vfs and ntfs inodes. */ | 
|  | vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); | 
|  |  | 
|  | /* | 
|  | * FIXME: Keep in mind that link_count is two for files which have both | 
|  | * a long file name and a short file name as separate entries, so if | 
|  | * we are hiding short file names this will be too high. Either we need | 
|  | * to account for the short file names by subtracting them or we need | 
|  | * to make sure we delete files even though i_nlink is not zero which | 
|  | * might be tricky due to vfs interactions. Need to think about this | 
|  | * some more when implementing the unlink command. | 
|  | */ | 
|  | set_nlink(vi, le16_to_cpu(m->link_count)); | 
|  | /* | 
|  | * FIXME: Reparse points can have the directory bit set even though | 
|  | * they would be S_IFLNK. Need to deal with this further below when we | 
|  | * implement reparse points / symbolic links but it will do for now. | 
|  | * Also if not a directory, it could be something else, rather than | 
|  | * a regular file. But again, will do for now. | 
|  | */ | 
|  | /* Everyone gets all permissions. */ | 
|  | vi->i_mode |= S_IRWXUGO; | 
|  | /* If read-only, no one gets write permissions. */ | 
|  | if (IS_RDONLY(vi)) | 
|  | vi->i_mode &= ~S_IWUGO; | 
|  | if (m->flags & MFT_RECORD_IS_DIRECTORY) { | 
|  | vi->i_mode |= S_IFDIR; | 
|  | /* | 
|  | * Apply the directory permissions mask set in the mount | 
|  | * options. | 
|  | */ | 
|  | vi->i_mode &= ~vol->dmask; | 
|  | /* Things break without this kludge! */ | 
|  | if (vi->i_nlink > 1) | 
|  | set_nlink(vi, 1); | 
|  | } else { | 
|  | vi->i_mode |= S_IFREG; | 
|  | /* Apply the file permissions mask set in the mount options. */ | 
|  | vi->i_mode &= ~vol->fmask; | 
|  | } | 
|  | /* | 
|  | * Find the standard information attribute in the mft record. At this | 
|  | * stage we haven't setup the attribute list stuff yet, so this could | 
|  | * in fact fail if the standard information is in an extent record, but | 
|  | * I don't think this actually ever happens. | 
|  | */ | 
|  | err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0, | 
|  | ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) { | 
|  | /* | 
|  | * TODO: We should be performing a hot fix here (if the | 
|  | * recover mount option is set) by creating a new | 
|  | * attribute. | 
|  | */ | 
|  | ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute " | 
|  | "is missing."); | 
|  | } | 
|  | goto unm_err_out; | 
|  | } | 
|  | a = ctx->attr; | 
|  | /* Get the standard information attribute value. */ | 
|  | si = (STANDARD_INFORMATION*)((u8*)a + | 
|  | le16_to_cpu(a->data.resident.value_offset)); | 
|  |  | 
|  | /* Transfer information from the standard information into vi. */ | 
|  | /* | 
|  | * Note: The i_?times do not quite map perfectly onto the NTFS times, | 
|  | * but they are close enough, and in the end it doesn't really matter | 
|  | * that much... | 
|  | */ | 
|  | /* | 
|  | * mtime is the last change of the data within the file. Not changed | 
|  | * when only metadata is changed, e.g. a rename doesn't affect mtime. | 
|  | */ | 
|  | vi->i_mtime = ntfs2utc(si->last_data_change_time); | 
|  | /* | 
|  | * ctime is the last change of the metadata of the file. This obviously | 
|  | * always changes, when mtime is changed. ctime can be changed on its | 
|  | * own, mtime is then not changed, e.g. when a file is renamed. | 
|  | */ | 
|  | vi->i_ctime = ntfs2utc(si->last_mft_change_time); | 
|  | /* | 
|  | * Last access to the data within the file. Not changed during a rename | 
|  | * for example but changed whenever the file is written to. | 
|  | */ | 
|  | vi->i_atime = ntfs2utc(si->last_access_time); | 
|  |  | 
|  | /* Find the attribute list attribute if present. */ | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); | 
|  | if (err) { | 
|  | if (unlikely(err != -ENOENT)) { | 
|  | ntfs_error(vi->i_sb, "Failed to lookup attribute list " | 
|  | "attribute."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | } else /* if (!err) */ { | 
|  | if (vi->i_ino == FILE_MFT) | 
|  | goto skip_attr_list_load; | 
|  | ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino); | 
|  | NInoSetAttrList(ni); | 
|  | a = ctx->attr; | 
|  | if (a->flags & ATTR_COMPRESSION_MASK) { | 
|  | ntfs_error(vi->i_sb, "Attribute list attribute is " | 
|  | "compressed."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->flags & ATTR_IS_ENCRYPTED || | 
|  | a->flags & ATTR_IS_SPARSE) { | 
|  | if (a->non_resident) { | 
|  | ntfs_error(vi->i_sb, "Non-resident attribute " | 
|  | "list attribute is encrypted/" | 
|  | "sparse."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | ntfs_warning(vi->i_sb, "Resident attribute list " | 
|  | "attribute in inode 0x%lx is marked " | 
|  | "encrypted/sparse which is not true.  " | 
|  | "However, Windows allows this and " | 
|  | "chkdsk does not detect or correct it " | 
|  | "so we will just ignore the invalid " | 
|  | "flags and pretend they are not set.", | 
|  | vi->i_ino); | 
|  | } | 
|  | /* Now allocate memory for the attribute list. */ | 
|  | ni->attr_list_size = (u32)ntfs_attr_size(a); | 
|  | ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); | 
|  | if (!ni->attr_list) { | 
|  | ntfs_error(vi->i_sb, "Not enough memory to allocate " | 
|  | "buffer for attribute list."); | 
|  | err = -ENOMEM; | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->non_resident) { | 
|  | NInoSetAttrListNonResident(ni); | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | ntfs_error(vi->i_sb, "Attribute list has non " | 
|  | "zero lowest_vcn."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* | 
|  | * Setup the runlist. No need for locking as we have | 
|  | * exclusive access to the inode at this time. | 
|  | */ | 
|  | ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, | 
|  | a, NULL); | 
|  | if (IS_ERR(ni->attr_list_rl.rl)) { | 
|  | err = PTR_ERR(ni->attr_list_rl.rl); | 
|  | ni->attr_list_rl.rl = NULL; | 
|  | ntfs_error(vi->i_sb, "Mapping pairs " | 
|  | "decompression failed."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* Now load the attribute list. */ | 
|  | if ((err = load_attribute_list(vol, &ni->attr_list_rl, | 
|  | ni->attr_list, ni->attr_list_size, | 
|  | sle64_to_cpu(a->data.non_resident. | 
|  | initialized_size)))) { | 
|  | ntfs_error(vi->i_sb, "Failed to load " | 
|  | "attribute list attribute."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | } else /* if (!a->non_resident) */ { | 
|  | if ((u8*)a + le16_to_cpu(a->data.resident.value_offset) | 
|  | + le32_to_cpu( | 
|  | a->data.resident.value_length) > | 
|  | (u8*)ctx->mrec + vol->mft_record_size) { | 
|  | ntfs_error(vi->i_sb, "Corrupt attribute list " | 
|  | "in inode."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* Now copy the attribute list. */ | 
|  | memcpy(ni->attr_list, (u8*)a + le16_to_cpu( | 
|  | a->data.resident.value_offset), | 
|  | le32_to_cpu( | 
|  | a->data.resident.value_length)); | 
|  | } | 
|  | } | 
|  | skip_attr_list_load: | 
|  | /* | 
|  | * If an attribute list is present we now have the attribute list value | 
|  | * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes. | 
|  | */ | 
|  | if (S_ISDIR(vi->i_mode)) { | 
|  | loff_t bvi_size; | 
|  | ntfs_inode *bni; | 
|  | INDEX_ROOT *ir; | 
|  | u8 *ir_end, *index_end; | 
|  |  | 
|  | /* It is a directory, find index root attribute. */ | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE, | 
|  | 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) { | 
|  | // FIXME: File is corrupt! Hot-fix with empty | 
|  | // index root attribute if recovery option is | 
|  | // set. | 
|  | ntfs_error(vi->i_sb, "$INDEX_ROOT attribute " | 
|  | "is missing."); | 
|  | } | 
|  | goto unm_err_out; | 
|  | } | 
|  | a = ctx->attr; | 
|  | /* Set up the state. */ | 
|  | if (unlikely(a->non_resident)) { | 
|  | ntfs_error(vol->sb, "$INDEX_ROOT attribute is not " | 
|  | "resident."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* Ensure the attribute name is placed before the value. */ | 
|  | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= | 
|  | le16_to_cpu(a->data.resident.value_offset)))) { | 
|  | ntfs_error(vol->sb, "$INDEX_ROOT attribute name is " | 
|  | "placed after the attribute value."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* | 
|  | * Compressed/encrypted index root just means that the newly | 
|  | * created files in that directory should be created compressed/ | 
|  | * encrypted. However index root cannot be both compressed and | 
|  | * encrypted. | 
|  | */ | 
|  | if (a->flags & ATTR_COMPRESSION_MASK) | 
|  | NInoSetCompressed(ni); | 
|  | if (a->flags & ATTR_IS_ENCRYPTED) { | 
|  | if (a->flags & ATTR_COMPRESSION_MASK) { | 
|  | ntfs_error(vi->i_sb, "Found encrypted and " | 
|  | "compressed attribute."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | NInoSetEncrypted(ni); | 
|  | } | 
|  | if (a->flags & ATTR_IS_SPARSE) | 
|  | NInoSetSparse(ni); | 
|  | ir = (INDEX_ROOT*)((u8*)a + | 
|  | le16_to_cpu(a->data.resident.value_offset)); | 
|  | ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); | 
|  | if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { | 
|  | ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " | 
|  | "corrupt."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | index_end = (u8*)&ir->index + | 
|  | le32_to_cpu(ir->index.index_length); | 
|  | if (index_end > ir_end) { | 
|  | ntfs_error(vi->i_sb, "Directory index is corrupt."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (ir->type != AT_FILE_NAME) { | 
|  | ntfs_error(vi->i_sb, "Indexed attribute is not " | 
|  | "$FILE_NAME."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (ir->collation_rule != COLLATION_FILE_NAME) { | 
|  | ntfs_error(vi->i_sb, "Index collation rule is not " | 
|  | "COLLATION_FILE_NAME."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | ni->itype.index.collation_rule = ir->collation_rule; | 
|  | ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); | 
|  | if (ni->itype.index.block_size & | 
|  | (ni->itype.index.block_size - 1)) { | 
|  | ntfs_error(vi->i_sb, "Index block size (%u) is not a " | 
|  | "power of two.", | 
|  | ni->itype.index.block_size); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { | 
|  | ntfs_error(vi->i_sb, "Index block size (%u) > " | 
|  | "PAGE_CACHE_SIZE (%ld) is not " | 
|  | "supported.  Sorry.", | 
|  | ni->itype.index.block_size, | 
|  | PAGE_CACHE_SIZE); | 
|  | err = -EOPNOTSUPP; | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { | 
|  | ntfs_error(vi->i_sb, "Index block size (%u) < " | 
|  | "NTFS_BLOCK_SIZE (%i) is not " | 
|  | "supported.  Sorry.", | 
|  | ni->itype.index.block_size, | 
|  | NTFS_BLOCK_SIZE); | 
|  | err = -EOPNOTSUPP; | 
|  | goto unm_err_out; | 
|  | } | 
|  | ni->itype.index.block_size_bits = | 
|  | ffs(ni->itype.index.block_size) - 1; | 
|  | /* Determine the size of a vcn in the directory index. */ | 
|  | if (vol->cluster_size <= ni->itype.index.block_size) { | 
|  | ni->itype.index.vcn_size = vol->cluster_size; | 
|  | ni->itype.index.vcn_size_bits = vol->cluster_size_bits; | 
|  | } else { | 
|  | ni->itype.index.vcn_size = vol->sector_size; | 
|  | ni->itype.index.vcn_size_bits = vol->sector_size_bits; | 
|  | } | 
|  |  | 
|  | /* Setup the index allocation attribute, even if not present. */ | 
|  | NInoSetMstProtected(ni); | 
|  | ni->type = AT_INDEX_ALLOCATION; | 
|  | ni->name = I30; | 
|  | ni->name_len = 4; | 
|  |  | 
|  | if (!(ir->index.flags & LARGE_INDEX)) { | 
|  | /* No index allocation. */ | 
|  | vi->i_size = ni->initialized_size = | 
|  | ni->allocated_size = 0; | 
|  | /* We are done with the mft record, so we release it. */ | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(ni); | 
|  | m = NULL; | 
|  | ctx = NULL; | 
|  | goto skip_large_dir_stuff; | 
|  | } /* LARGE_INDEX: Index allocation present. Setup state. */ | 
|  | NInoSetIndexAllocPresent(ni); | 
|  | /* Find index allocation attribute. */ | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION " | 
|  | "attribute is not present but " | 
|  | "$INDEX_ROOT indicated it is."); | 
|  | else | 
|  | ntfs_error(vi->i_sb, "Failed to lookup " | 
|  | "$INDEX_ALLOCATION " | 
|  | "attribute."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | a = ctx->attr; | 
|  | if (!a->non_resident) { | 
|  | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " | 
|  | "is resident."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* | 
|  | * Ensure the attribute name is placed before the mapping pairs | 
|  | * array. | 
|  | */ | 
|  | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= | 
|  | le16_to_cpu( | 
|  | a->data.non_resident.mapping_pairs_offset)))) { | 
|  | ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name " | 
|  | "is placed after the mapping pairs " | 
|  | "array."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->flags & ATTR_IS_ENCRYPTED) { | 
|  | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " | 
|  | "is encrypted."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->flags & ATTR_IS_SPARSE) { | 
|  | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " | 
|  | "is sparse."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->flags & ATTR_COMPRESSION_MASK) { | 
|  | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute " | 
|  | "is compressed."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | ntfs_error(vi->i_sb, "First extent of " | 
|  | "$INDEX_ALLOCATION attribute has non " | 
|  | "zero lowest_vcn."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); | 
|  | ni->initialized_size = sle64_to_cpu( | 
|  | a->data.non_resident.initialized_size); | 
|  | ni->allocated_size = sle64_to_cpu( | 
|  | a->data.non_resident.allocated_size); | 
|  | /* | 
|  | * We are done with the mft record, so we release it. Otherwise | 
|  | * we would deadlock in ntfs_attr_iget(). | 
|  | */ | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(ni); | 
|  | m = NULL; | 
|  | ctx = NULL; | 
|  | /* Get the index bitmap attribute inode. */ | 
|  | bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4); | 
|  | if (IS_ERR(bvi)) { | 
|  | ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); | 
|  | err = PTR_ERR(bvi); | 
|  | goto unm_err_out; | 
|  | } | 
|  | bni = NTFS_I(bvi); | 
|  | if (NInoCompressed(bni) || NInoEncrypted(bni) || | 
|  | NInoSparse(bni)) { | 
|  | ntfs_error(vi->i_sb, "$BITMAP attribute is compressed " | 
|  | "and/or encrypted and/or sparse."); | 
|  | goto iput_unm_err_out; | 
|  | } | 
|  | /* Consistency check bitmap size vs. index allocation size. */ | 
|  | bvi_size = i_size_read(bvi); | 
|  | if ((bvi_size << 3) < (vi->i_size >> | 
|  | ni->itype.index.block_size_bits)) { | 
|  | ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) " | 
|  | "for index allocation (0x%llx).", | 
|  | bvi_size << 3, vi->i_size); | 
|  | goto iput_unm_err_out; | 
|  | } | 
|  | /* No longer need the bitmap attribute inode. */ | 
|  | iput(bvi); | 
|  | skip_large_dir_stuff: | 
|  | /* Setup the operations for this inode. */ | 
|  | vi->i_op = &ntfs_dir_inode_ops; | 
|  | vi->i_fop = &ntfs_dir_ops; | 
|  | vi->i_mapping->a_ops = &ntfs_mst_aops; | 
|  | } else { | 
|  | /* It is a file. */ | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  |  | 
|  | /* Setup the data attribute, even if not present. */ | 
|  | ni->type = AT_DATA; | 
|  | ni->name = NULL; | 
|  | ni->name_len = 0; | 
|  |  | 
|  | /* Find first extent of the unnamed data attribute. */ | 
|  | err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | vi->i_size = ni->initialized_size = | 
|  | ni->allocated_size = 0; | 
|  | if (err != -ENOENT) { | 
|  | ntfs_error(vi->i_sb, "Failed to lookup $DATA " | 
|  | "attribute."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* | 
|  | * FILE_Secure does not have an unnamed $DATA | 
|  | * attribute, so we special case it here. | 
|  | */ | 
|  | if (vi->i_ino == FILE_Secure) | 
|  | goto no_data_attr_special_case; | 
|  | /* | 
|  | * Most if not all the system files in the $Extend | 
|  | * system directory do not have unnamed data | 
|  | * attributes so we need to check if the parent | 
|  | * directory of the file is FILE_Extend and if it is | 
|  | * ignore this error. To do this we need to get the | 
|  | * name of this inode from the mft record as the name | 
|  | * contains the back reference to the parent directory. | 
|  | */ | 
|  | if (ntfs_is_extended_system_file(ctx) > 0) | 
|  | goto no_data_attr_special_case; | 
|  | // FIXME: File is corrupt! Hot-fix with empty data | 
|  | // attribute if recovery option is set. | 
|  | ntfs_error(vi->i_sb, "$DATA attribute is missing."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | a = ctx->attr; | 
|  | /* Setup the state. */ | 
|  | if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { | 
|  | if (a->flags & ATTR_COMPRESSION_MASK) { | 
|  | NInoSetCompressed(ni); | 
|  | if (vol->cluster_size > 4096) { | 
|  | ntfs_error(vi->i_sb, "Found " | 
|  | "compressed data but " | 
|  | "compression is " | 
|  | "disabled due to " | 
|  | "cluster size (%i) > " | 
|  | "4kiB.", | 
|  | vol->cluster_size); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if ((a->flags & ATTR_COMPRESSION_MASK) | 
|  | != ATTR_IS_COMPRESSED) { | 
|  | ntfs_error(vi->i_sb, "Found unknown " | 
|  | "compression method " | 
|  | "or corrupt file."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | } | 
|  | if (a->flags & ATTR_IS_SPARSE) | 
|  | NInoSetSparse(ni); | 
|  | } | 
|  | if (a->flags & ATTR_IS_ENCRYPTED) { | 
|  | if (NInoCompressed(ni)) { | 
|  | ntfs_error(vi->i_sb, "Found encrypted and " | 
|  | "compressed data."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | NInoSetEncrypted(ni); | 
|  | } | 
|  | if (a->non_resident) { | 
|  | NInoSetNonResident(ni); | 
|  | if (NInoCompressed(ni) || NInoSparse(ni)) { | 
|  | if (NInoCompressed(ni) && a->data.non_resident. | 
|  | compression_unit != 4) { | 
|  | ntfs_error(vi->i_sb, "Found " | 
|  | "non-standard " | 
|  | "compression unit (%u " | 
|  | "instead of 4).  " | 
|  | "Cannot handle this.", | 
|  | a->data.non_resident. | 
|  | compression_unit); | 
|  | err = -EOPNOTSUPP; | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->data.non_resident.compression_unit) { | 
|  | ni->itype.compressed.block_size = 1U << | 
|  | (a->data.non_resident. | 
|  | compression_unit + | 
|  | vol->cluster_size_bits); | 
|  | ni->itype.compressed.block_size_bits = | 
|  | ffs(ni->itype. | 
|  | compressed. | 
|  | block_size) - 1; | 
|  | ni->itype.compressed.block_clusters = | 
|  | 1U << a->data. | 
|  | non_resident. | 
|  | compression_unit; | 
|  | } else { | 
|  | ni->itype.compressed.block_size = 0; | 
|  | ni->itype.compressed.block_size_bits = | 
|  | 0; | 
|  | ni->itype.compressed.block_clusters = | 
|  | 0; | 
|  | } | 
|  | ni->itype.compressed.size = sle64_to_cpu( | 
|  | a->data.non_resident. | 
|  | compressed_size); | 
|  | } | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | ntfs_error(vi->i_sb, "First extent of $DATA " | 
|  | "attribute has non zero " | 
|  | "lowest_vcn."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | vi->i_size = sle64_to_cpu( | 
|  | a->data.non_resident.data_size); | 
|  | ni->initialized_size = sle64_to_cpu( | 
|  | a->data.non_resident.initialized_size); | 
|  | ni->allocated_size = sle64_to_cpu( | 
|  | a->data.non_resident.allocated_size); | 
|  | } else { /* Resident attribute. */ | 
|  | vi->i_size = ni->initialized_size = le32_to_cpu( | 
|  | a->data.resident.value_length); | 
|  | ni->allocated_size = le32_to_cpu(a->length) - | 
|  | le16_to_cpu( | 
|  | a->data.resident.value_offset); | 
|  | if (vi->i_size > ni->allocated_size) { | 
|  | ntfs_error(vi->i_sb, "Resident data attribute " | 
|  | "is corrupt (size exceeds " | 
|  | "allocation)."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | } | 
|  | no_data_attr_special_case: | 
|  | /* We are done with the mft record, so we release it. */ | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(ni); | 
|  | m = NULL; | 
|  | ctx = NULL; | 
|  | /* Setup the operations for this inode. */ | 
|  | vi->i_op = &ntfs_file_inode_ops; | 
|  | vi->i_fop = &ntfs_file_ops; | 
|  | vi->i_mapping->a_ops = &ntfs_normal_aops; | 
|  | if (NInoMstProtected(ni)) | 
|  | vi->i_mapping->a_ops = &ntfs_mst_aops; | 
|  | else if (NInoCompressed(ni)) | 
|  | vi->i_mapping->a_ops = &ntfs_compressed_aops; | 
|  | } | 
|  | /* | 
|  | * The number of 512-byte blocks used on disk (for stat). This is in so | 
|  | * far inaccurate as it doesn't account for any named streams or other | 
|  | * special non-resident attributes, but that is how Windows works, too, | 
|  | * so we are at least consistent with Windows, if not entirely | 
|  | * consistent with the Linux Way. Doing it the Linux Way would cause a | 
|  | * significant slowdown as it would involve iterating over all | 
|  | * attributes in the mft record and adding the allocated/compressed | 
|  | * sizes of all non-resident attributes present to give us the Linux | 
|  | * correct size that should go into i_blocks (after division by 512). | 
|  | */ | 
|  | if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni))) | 
|  | vi->i_blocks = ni->itype.compressed.size >> 9; | 
|  | else | 
|  | vi->i_blocks = ni->allocated_size >> 9; | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | iput_unm_err_out: | 
|  | iput(bvi); | 
|  | unm_err_out: | 
|  | if (!err) | 
|  | err = -EIO; | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (m) | 
|  | unmap_mft_record(ni); | 
|  | err_out: | 
|  | ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt " | 
|  | "inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino); | 
|  | make_bad_inode(vi); | 
|  | if (err != -EOPNOTSUPP && err != -ENOMEM) | 
|  | NVolSetErrors(vol); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_read_locked_attr_inode - read an attribute inode from its base inode | 
|  | * @base_vi:	base inode | 
|  | * @vi:		attribute inode to read | 
|  | * | 
|  | * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the | 
|  | * attribute inode described by @vi into memory from the base mft record | 
|  | * described by @base_ni. | 
|  | * | 
|  | * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for | 
|  | * reading and looks up the attribute described by @vi before setting up the | 
|  | * necessary fields in @vi as well as initializing the ntfs inode. | 
|  | * | 
|  | * Q: What locks are held when the function is called? | 
|  | * A: i_state has I_NEW set, hence the inode is locked, also | 
|  | *    i_count is set to 1, so it is not going to go away | 
|  | * | 
|  | * Return 0 on success and -errno on error.  In the error case, the inode will | 
|  | * have had make_bad_inode() executed on it. | 
|  | * | 
|  | * Note this cannot be called for AT_INDEX_ALLOCATION. | 
|  | */ | 
|  | static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi) | 
|  | { | 
|  | ntfs_volume *vol = NTFS_SB(vi->i_sb); | 
|  | ntfs_inode *ni, *base_ni; | 
|  | MFT_RECORD *m; | 
|  | ATTR_RECORD *a; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | int err = 0; | 
|  |  | 
|  | ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); | 
|  |  | 
|  | ntfs_init_big_inode(vi); | 
|  |  | 
|  | ni	= NTFS_I(vi); | 
|  | base_ni = NTFS_I(base_vi); | 
|  |  | 
|  | /* Just mirror the values from the base inode. */ | 
|  | vi->i_version	= base_vi->i_version; | 
|  | vi->i_uid	= base_vi->i_uid; | 
|  | vi->i_gid	= base_vi->i_gid; | 
|  | set_nlink(vi, base_vi->i_nlink); | 
|  | vi->i_mtime	= base_vi->i_mtime; | 
|  | vi->i_ctime	= base_vi->i_ctime; | 
|  | vi->i_atime	= base_vi->i_atime; | 
|  | vi->i_generation = ni->seq_no = base_ni->seq_no; | 
|  |  | 
|  | /* Set inode type to zero but preserve permissions. */ | 
|  | vi->i_mode	= base_vi->i_mode & ~S_IFMT; | 
|  |  | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | goto err_out; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (!ctx) { | 
|  | err = -ENOMEM; | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* Find the attribute. */ | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) | 
|  | goto unm_err_out; | 
|  | a = ctx->attr; | 
|  | if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) { | 
|  | if (a->flags & ATTR_COMPRESSION_MASK) { | 
|  | NInoSetCompressed(ni); | 
|  | if ((ni->type != AT_DATA) || (ni->type == AT_DATA && | 
|  | ni->name_len)) { | 
|  | ntfs_error(vi->i_sb, "Found compressed " | 
|  | "non-data or named data " | 
|  | "attribute.  Please report " | 
|  | "you saw this message to " | 
|  | "linux-ntfs-dev@lists." | 
|  | "sourceforge.net"); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (vol->cluster_size > 4096) { | 
|  | ntfs_error(vi->i_sb, "Found compressed " | 
|  | "attribute but compression is " | 
|  | "disabled due to cluster size " | 
|  | "(%i) > 4kiB.", | 
|  | vol->cluster_size); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if ((a->flags & ATTR_COMPRESSION_MASK) != | 
|  | ATTR_IS_COMPRESSED) { | 
|  | ntfs_error(vi->i_sb, "Found unknown " | 
|  | "compression method."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * The compressed/sparse flag set in an index root just means | 
|  | * to compress all files. | 
|  | */ | 
|  | if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { | 
|  | ntfs_error(vi->i_sb, "Found mst protected attribute " | 
|  | "but the attribute is %s.  Please " | 
|  | "report you saw this message to " | 
|  | "linux-ntfs-dev@lists.sourceforge.net", | 
|  | NInoCompressed(ni) ? "compressed" : | 
|  | "sparse"); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->flags & ATTR_IS_SPARSE) | 
|  | NInoSetSparse(ni); | 
|  | } | 
|  | if (a->flags & ATTR_IS_ENCRYPTED) { | 
|  | if (NInoCompressed(ni)) { | 
|  | ntfs_error(vi->i_sb, "Found encrypted and compressed " | 
|  | "data."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* | 
|  | * The encryption flag set in an index root just means to | 
|  | * encrypt all files. | 
|  | */ | 
|  | if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) { | 
|  | ntfs_error(vi->i_sb, "Found mst protected attribute " | 
|  | "but the attribute is encrypted.  " | 
|  | "Please report you saw this message " | 
|  | "to linux-ntfs-dev@lists.sourceforge." | 
|  | "net"); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (ni->type != AT_DATA) { | 
|  | ntfs_error(vi->i_sb, "Found encrypted non-data " | 
|  | "attribute."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | NInoSetEncrypted(ni); | 
|  | } | 
|  | if (!a->non_resident) { | 
|  | /* Ensure the attribute name is placed before the value. */ | 
|  | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= | 
|  | le16_to_cpu(a->data.resident.value_offset)))) { | 
|  | ntfs_error(vol->sb, "Attribute name is placed after " | 
|  | "the attribute value."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (NInoMstProtected(ni)) { | 
|  | ntfs_error(vi->i_sb, "Found mst protected attribute " | 
|  | "but the attribute is resident.  " | 
|  | "Please report you saw this message to " | 
|  | "linux-ntfs-dev@lists.sourceforge.net"); | 
|  | goto unm_err_out; | 
|  | } | 
|  | vi->i_size = ni->initialized_size = le32_to_cpu( | 
|  | a->data.resident.value_length); | 
|  | ni->allocated_size = le32_to_cpu(a->length) - | 
|  | le16_to_cpu(a->data.resident.value_offset); | 
|  | if (vi->i_size > ni->allocated_size) { | 
|  | ntfs_error(vi->i_sb, "Resident attribute is corrupt " | 
|  | "(size exceeds allocation)."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | } else { | 
|  | NInoSetNonResident(ni); | 
|  | /* | 
|  | * Ensure the attribute name is placed before the mapping pairs | 
|  | * array. | 
|  | */ | 
|  | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= | 
|  | le16_to_cpu( | 
|  | a->data.non_resident.mapping_pairs_offset)))) { | 
|  | ntfs_error(vol->sb, "Attribute name is placed after " | 
|  | "the mapping pairs array."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (NInoCompressed(ni) || NInoSparse(ni)) { | 
|  | if (NInoCompressed(ni) && a->data.non_resident. | 
|  | compression_unit != 4) { | 
|  | ntfs_error(vi->i_sb, "Found non-standard " | 
|  | "compression unit (%u instead " | 
|  | "of 4).  Cannot handle this.", | 
|  | a->data.non_resident. | 
|  | compression_unit); | 
|  | err = -EOPNOTSUPP; | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->data.non_resident.compression_unit) { | 
|  | ni->itype.compressed.block_size = 1U << | 
|  | (a->data.non_resident. | 
|  | compression_unit + | 
|  | vol->cluster_size_bits); | 
|  | ni->itype.compressed.block_size_bits = | 
|  | ffs(ni->itype.compressed. | 
|  | block_size) - 1; | 
|  | ni->itype.compressed.block_clusters = 1U << | 
|  | a->data.non_resident. | 
|  | compression_unit; | 
|  | } else { | 
|  | ni->itype.compressed.block_size = 0; | 
|  | ni->itype.compressed.block_size_bits = 0; | 
|  | ni->itype.compressed.block_clusters = 0; | 
|  | } | 
|  | ni->itype.compressed.size = sle64_to_cpu( | 
|  | a->data.non_resident.compressed_size); | 
|  | } | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | ntfs_error(vi->i_sb, "First extent of attribute has " | 
|  | "non-zero lowest_vcn."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); | 
|  | ni->initialized_size = sle64_to_cpu( | 
|  | a->data.non_resident.initialized_size); | 
|  | ni->allocated_size = sle64_to_cpu( | 
|  | a->data.non_resident.allocated_size); | 
|  | } | 
|  | vi->i_mapping->a_ops = &ntfs_normal_aops; | 
|  | if (NInoMstProtected(ni)) | 
|  | vi->i_mapping->a_ops = &ntfs_mst_aops; | 
|  | else if (NInoCompressed(ni)) | 
|  | vi->i_mapping->a_ops = &ntfs_compressed_aops; | 
|  | if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT) | 
|  | vi->i_blocks = ni->itype.compressed.size >> 9; | 
|  | else | 
|  | vi->i_blocks = ni->allocated_size >> 9; | 
|  | /* | 
|  | * Make sure the base inode does not go away and attach it to the | 
|  | * attribute inode. | 
|  | */ | 
|  | igrab(base_vi); | 
|  | ni->ext.base_ntfs_ino = base_ni; | 
|  | ni->nr_extents = -1; | 
|  |  | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  |  | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  |  | 
|  | unm_err_out: | 
|  | if (!err) | 
|  | err = -EIO; | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | err_out: | 
|  | ntfs_error(vol->sb, "Failed with error code %i while reading attribute " | 
|  | "inode (mft_no 0x%lx, type 0x%x, name_len %i).  " | 
|  | "Marking corrupt inode and base inode 0x%lx as bad.  " | 
|  | "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len, | 
|  | base_vi->i_ino); | 
|  | make_bad_inode(vi); | 
|  | if (err != -ENOMEM) | 
|  | NVolSetErrors(vol); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_read_locked_index_inode - read an index inode from its base inode | 
|  | * @base_vi:	base inode | 
|  | * @vi:		index inode to read | 
|  | * | 
|  | * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the | 
|  | * index inode described by @vi into memory from the base mft record described | 
|  | * by @base_ni. | 
|  | * | 
|  | * ntfs_read_locked_index_inode() maps, pins and locks the base inode for | 
|  | * reading and looks up the attributes relating to the index described by @vi | 
|  | * before setting up the necessary fields in @vi as well as initializing the | 
|  | * ntfs inode. | 
|  | * | 
|  | * Note, index inodes are essentially attribute inodes (NInoAttr() is true) | 
|  | * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they | 
|  | * are setup like directory inodes since directories are a special case of | 
|  | * indices ao they need to be treated in much the same way.  Most importantly, | 
|  | * for small indices the index allocation attribute might not actually exist. | 
|  | * However, the index root attribute always exists but this does not need to | 
|  | * have an inode associated with it and this is why we define a new inode type | 
|  | * index.  Also, like for directories, we need to have an attribute inode for | 
|  | * the bitmap attribute corresponding to the index allocation attribute and we | 
|  | * can store this in the appropriate field of the inode, just like we do for | 
|  | * normal directory inodes. | 
|  | * | 
|  | * Q: What locks are held when the function is called? | 
|  | * A: i_state has I_NEW set, hence the inode is locked, also | 
|  | *    i_count is set to 1, so it is not going to go away | 
|  | * | 
|  | * Return 0 on success and -errno on error.  In the error case, the inode will | 
|  | * have had make_bad_inode() executed on it. | 
|  | */ | 
|  | static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi) | 
|  | { | 
|  | loff_t bvi_size; | 
|  | ntfs_volume *vol = NTFS_SB(vi->i_sb); | 
|  | ntfs_inode *ni, *base_ni, *bni; | 
|  | struct inode *bvi; | 
|  | MFT_RECORD *m; | 
|  | ATTR_RECORD *a; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | INDEX_ROOT *ir; | 
|  | u8 *ir_end, *index_end; | 
|  | int err = 0; | 
|  |  | 
|  | ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino); | 
|  | ntfs_init_big_inode(vi); | 
|  | ni	= NTFS_I(vi); | 
|  | base_ni = NTFS_I(base_vi); | 
|  | /* Just mirror the values from the base inode. */ | 
|  | vi->i_version	= base_vi->i_version; | 
|  | vi->i_uid	= base_vi->i_uid; | 
|  | vi->i_gid	= base_vi->i_gid; | 
|  | set_nlink(vi, base_vi->i_nlink); | 
|  | vi->i_mtime	= base_vi->i_mtime; | 
|  | vi->i_ctime	= base_vi->i_ctime; | 
|  | vi->i_atime	= base_vi->i_atime; | 
|  | vi->i_generation = ni->seq_no = base_ni->seq_no; | 
|  | /* Set inode type to zero but preserve permissions. */ | 
|  | vi->i_mode	= base_vi->i_mode & ~S_IFMT; | 
|  | /* Map the mft record for the base inode. */ | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | goto err_out; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (!ctx) { | 
|  | err = -ENOMEM; | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* Find the index root attribute. */ | 
|  | err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is " | 
|  | "missing."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | a = ctx->attr; | 
|  | /* Set up the state. */ | 
|  | if (unlikely(a->non_resident)) { | 
|  | ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* Ensure the attribute name is placed before the value. */ | 
|  | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= | 
|  | le16_to_cpu(a->data.resident.value_offset)))) { | 
|  | ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed " | 
|  | "after the attribute value."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* | 
|  | * Compressed/encrypted/sparse index root is not allowed, except for | 
|  | * directories of course but those are not dealt with here. | 
|  | */ | 
|  | if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED | | 
|  | ATTR_IS_SPARSE)) { | 
|  | ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index " | 
|  | "root attribute."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset)); | 
|  | ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length); | 
|  | if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) { | 
|  | ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); | 
|  | if (index_end > ir_end) { | 
|  | ntfs_error(vi->i_sb, "Index is corrupt."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (ir->type) { | 
|  | ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).", | 
|  | le32_to_cpu(ir->type)); | 
|  | goto unm_err_out; | 
|  | } | 
|  | ni->itype.index.collation_rule = ir->collation_rule; | 
|  | ntfs_debug("Index collation rule is 0x%x.", | 
|  | le32_to_cpu(ir->collation_rule)); | 
|  | ni->itype.index.block_size = le32_to_cpu(ir->index_block_size); | 
|  | if (!is_power_of_2(ni->itype.index.block_size)) { | 
|  | ntfs_error(vi->i_sb, "Index block size (%u) is not a power of " | 
|  | "two.", ni->itype.index.block_size); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (ni->itype.index.block_size > PAGE_CACHE_SIZE) { | 
|  | ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE " | 
|  | "(%ld) is not supported.  Sorry.", | 
|  | ni->itype.index.block_size, PAGE_CACHE_SIZE); | 
|  | err = -EOPNOTSUPP; | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) { | 
|  | ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE " | 
|  | "(%i) is not supported.  Sorry.", | 
|  | ni->itype.index.block_size, NTFS_BLOCK_SIZE); | 
|  | err = -EOPNOTSUPP; | 
|  | goto unm_err_out; | 
|  | } | 
|  | ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1; | 
|  | /* Determine the size of a vcn in the index. */ | 
|  | if (vol->cluster_size <= ni->itype.index.block_size) { | 
|  | ni->itype.index.vcn_size = vol->cluster_size; | 
|  | ni->itype.index.vcn_size_bits = vol->cluster_size_bits; | 
|  | } else { | 
|  | ni->itype.index.vcn_size = vol->sector_size; | 
|  | ni->itype.index.vcn_size_bits = vol->sector_size_bits; | 
|  | } | 
|  | /* Check for presence of index allocation attribute. */ | 
|  | if (!(ir->index.flags & LARGE_INDEX)) { | 
|  | /* No index allocation. */ | 
|  | vi->i_size = ni->initialized_size = ni->allocated_size = 0; | 
|  | /* We are done with the mft record, so we release it. */ | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | m = NULL; | 
|  | ctx = NULL; | 
|  | goto skip_large_index_stuff; | 
|  | } /* LARGE_INDEX:  Index allocation present.  Setup state. */ | 
|  | NInoSetIndexAllocPresent(ni); | 
|  | /* Find index allocation attribute. */ | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " | 
|  | "not present but $INDEX_ROOT " | 
|  | "indicated it is."); | 
|  | else | 
|  | ntfs_error(vi->i_sb, "Failed to lookup " | 
|  | "$INDEX_ALLOCATION attribute."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | a = ctx->attr; | 
|  | if (!a->non_resident) { | 
|  | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " | 
|  | "resident."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* | 
|  | * Ensure the attribute name is placed before the mapping pairs array. | 
|  | */ | 
|  | if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >= | 
|  | le16_to_cpu( | 
|  | a->data.non_resident.mapping_pairs_offset)))) { | 
|  | ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is " | 
|  | "placed after the mapping pairs array."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->flags & ATTR_IS_ENCRYPTED) { | 
|  | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " | 
|  | "encrypted."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->flags & ATTR_IS_SPARSE) { | 
|  | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->flags & ATTR_COMPRESSION_MASK) { | 
|  | ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is " | 
|  | "compressed."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION " | 
|  | "attribute has non zero lowest_vcn."); | 
|  | goto unm_err_out; | 
|  | } | 
|  | vi->i_size = sle64_to_cpu(a->data.non_resident.data_size); | 
|  | ni->initialized_size = sle64_to_cpu( | 
|  | a->data.non_resident.initialized_size); | 
|  | ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size); | 
|  | /* | 
|  | * We are done with the mft record, so we release it.  Otherwise | 
|  | * we would deadlock in ntfs_attr_iget(). | 
|  | */ | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | m = NULL; | 
|  | ctx = NULL; | 
|  | /* Get the index bitmap attribute inode. */ | 
|  | bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len); | 
|  | if (IS_ERR(bvi)) { | 
|  | ntfs_error(vi->i_sb, "Failed to get bitmap attribute."); | 
|  | err = PTR_ERR(bvi); | 
|  | goto unm_err_out; | 
|  | } | 
|  | bni = NTFS_I(bvi); | 
|  | if (NInoCompressed(bni) || NInoEncrypted(bni) || | 
|  | NInoSparse(bni)) { | 
|  | ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or " | 
|  | "encrypted and/or sparse."); | 
|  | goto iput_unm_err_out; | 
|  | } | 
|  | /* Consistency check bitmap size vs. index allocation size. */ | 
|  | bvi_size = i_size_read(bvi); | 
|  | if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) { | 
|  | ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for " | 
|  | "index allocation (0x%llx).", bvi_size << 3, | 
|  | vi->i_size); | 
|  | goto iput_unm_err_out; | 
|  | } | 
|  | iput(bvi); | 
|  | skip_large_index_stuff: | 
|  | /* Setup the operations for this index inode. */ | 
|  | vi->i_mapping->a_ops = &ntfs_mst_aops; | 
|  | vi->i_blocks = ni->allocated_size >> 9; | 
|  | /* | 
|  | * Make sure the base inode doesn't go away and attach it to the | 
|  | * index inode. | 
|  | */ | 
|  | igrab(base_vi); | 
|  | ni->ext.base_ntfs_ino = base_ni; | 
|  | ni->nr_extents = -1; | 
|  |  | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | iput_unm_err_out: | 
|  | iput(bvi); | 
|  | unm_err_out: | 
|  | if (!err) | 
|  | err = -EIO; | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (m) | 
|  | unmap_mft_record(base_ni); | 
|  | err_out: | 
|  | ntfs_error(vi->i_sb, "Failed with error code %i while reading index " | 
|  | "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino, | 
|  | ni->name_len); | 
|  | make_bad_inode(vi); | 
|  | if (err != -EOPNOTSUPP && err != -ENOMEM) | 
|  | NVolSetErrors(vol); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The MFT inode has special locking, so teach the lock validator | 
|  | * about this by splitting off the locking rules of the MFT from | 
|  | * the locking rules of other inodes. The MFT inode can never be | 
|  | * accessed from the VFS side (or even internally), only by the | 
|  | * map_mft functions. | 
|  | */ | 
|  | static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key; | 
|  |  | 
|  | /** | 
|  | * ntfs_read_inode_mount - special read_inode for mount time use only | 
|  | * @vi:		inode to read | 
|  | * | 
|  | * Read inode FILE_MFT at mount time, only called with super_block lock | 
|  | * held from within the read_super() code path. | 
|  | * | 
|  | * This function exists because when it is called the page cache for $MFT/$DATA | 
|  | * is not initialized and hence we cannot get at the contents of mft records | 
|  | * by calling map_mft_record*(). | 
|  | * | 
|  | * Further it needs to cope with the circular references problem, i.e. cannot | 
|  | * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because | 
|  | * we do not know where the other extent mft records are yet and again, because | 
|  | * we cannot call map_mft_record*() yet.  Obviously this applies only when an | 
|  | * attribute list is actually present in $MFT inode. | 
|  | * | 
|  | * We solve these problems by starting with the $DATA attribute before anything | 
|  | * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each | 
|  | * extent is found, we ntfs_mapping_pairs_decompress() including the implied | 
|  | * ntfs_runlists_merge().  Each step of the iteration necessarily provides | 
|  | * sufficient information for the next step to complete. | 
|  | * | 
|  | * This should work but there are two possible pit falls (see inline comments | 
|  | * below), but only time will tell if they are real pits or just smoke... | 
|  | */ | 
|  | int ntfs_read_inode_mount(struct inode *vi) | 
|  | { | 
|  | VCN next_vcn, last_vcn, highest_vcn; | 
|  | s64 block; | 
|  | struct super_block *sb = vi->i_sb; | 
|  | ntfs_volume *vol = NTFS_SB(sb); | 
|  | struct buffer_head *bh; | 
|  | ntfs_inode *ni; | 
|  | MFT_RECORD *m = NULL; | 
|  | ATTR_RECORD *a; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | unsigned int i, nr_blocks; | 
|  | int err; | 
|  |  | 
|  | ntfs_debug("Entering."); | 
|  |  | 
|  | /* Initialize the ntfs specific part of @vi. */ | 
|  | ntfs_init_big_inode(vi); | 
|  |  | 
|  | ni = NTFS_I(vi); | 
|  |  | 
|  | /* Setup the data attribute. It is special as it is mst protected. */ | 
|  | NInoSetNonResident(ni); | 
|  | NInoSetMstProtected(ni); | 
|  | NInoSetSparseDisabled(ni); | 
|  | ni->type = AT_DATA; | 
|  | ni->name = NULL; | 
|  | ni->name_len = 0; | 
|  | /* | 
|  | * This sets up our little cheat allowing us to reuse the async read io | 
|  | * completion handler for directories. | 
|  | */ | 
|  | ni->itype.index.block_size = vol->mft_record_size; | 
|  | ni->itype.index.block_size_bits = vol->mft_record_size_bits; | 
|  |  | 
|  | /* Very important! Needed to be able to call map_mft_record*(). */ | 
|  | vol->mft_ino = vi; | 
|  |  | 
|  | /* Allocate enough memory to read the first mft record. */ | 
|  | if (vol->mft_record_size > 64 * 1024) { | 
|  | ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).", | 
|  | vol->mft_record_size); | 
|  | goto err_out; | 
|  | } | 
|  | i = vol->mft_record_size; | 
|  | if (i < sb->s_blocksize) | 
|  | i = sb->s_blocksize; | 
|  | m = (MFT_RECORD*)ntfs_malloc_nofs(i); | 
|  | if (!m) { | 
|  | ntfs_error(sb, "Failed to allocate buffer for $MFT record 0."); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* Determine the first block of the $MFT/$DATA attribute. */ | 
|  | block = vol->mft_lcn << vol->cluster_size_bits >> | 
|  | sb->s_blocksize_bits; | 
|  | nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits; | 
|  | if (!nr_blocks) | 
|  | nr_blocks = 1; | 
|  |  | 
|  | /* Load $MFT/$DATA's first mft record. */ | 
|  | for (i = 0; i < nr_blocks; i++) { | 
|  | bh = sb_bread(sb, block++); | 
|  | if (!bh) { | 
|  | ntfs_error(sb, "Device read failed."); | 
|  | goto err_out; | 
|  | } | 
|  | memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data, | 
|  | sb->s_blocksize); | 
|  | brelse(bh); | 
|  | } | 
|  |  | 
|  | /* Apply the mst fixups. */ | 
|  | if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) { | 
|  | /* FIXME: Try to use the $MFTMirr now. */ | 
|  | ntfs_error(sb, "MST fixup failed. $MFT is corrupt."); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* Need this to sanity check attribute list references to $MFT. */ | 
|  | vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); | 
|  |  | 
|  | /* Provides readpage() and sync_page() for map_mft_record(). */ | 
|  | vi->i_mapping->a_ops = &ntfs_mst_aops; | 
|  |  | 
|  | ctx = ntfs_attr_get_search_ctx(ni, m); | 
|  | if (!ctx) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* Find the attribute list attribute if present. */ | 
|  | err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx); | 
|  | if (err) { | 
|  | if (unlikely(err != -ENOENT)) { | 
|  | ntfs_error(sb, "Failed to lookup attribute list " | 
|  | "attribute. You should run chkdsk."); | 
|  | goto put_err_out; | 
|  | } | 
|  | } else /* if (!err) */ { | 
|  | ATTR_LIST_ENTRY *al_entry, *next_al_entry; | 
|  | u8 *al_end; | 
|  | static const char *es = "  Not allowed.  $MFT is corrupt.  " | 
|  | "You should run chkdsk."; | 
|  |  | 
|  | ntfs_debug("Attribute list attribute found in $MFT."); | 
|  | NInoSetAttrList(ni); | 
|  | a = ctx->attr; | 
|  | if (a->flags & ATTR_COMPRESSION_MASK) { | 
|  | ntfs_error(sb, "Attribute list attribute is " | 
|  | "compressed.%s", es); | 
|  | goto put_err_out; | 
|  | } | 
|  | if (a->flags & ATTR_IS_ENCRYPTED || | 
|  | a->flags & ATTR_IS_SPARSE) { | 
|  | if (a->non_resident) { | 
|  | ntfs_error(sb, "Non-resident attribute list " | 
|  | "attribute is encrypted/" | 
|  | "sparse.%s", es); | 
|  | goto put_err_out; | 
|  | } | 
|  | ntfs_warning(sb, "Resident attribute list attribute " | 
|  | "in $MFT system file is marked " | 
|  | "encrypted/sparse which is not true.  " | 
|  | "However, Windows allows this and " | 
|  | "chkdsk does not detect or correct it " | 
|  | "so we will just ignore the invalid " | 
|  | "flags and pretend they are not set."); | 
|  | } | 
|  | /* Now allocate memory for the attribute list. */ | 
|  | ni->attr_list_size = (u32)ntfs_attr_size(a); | 
|  | ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size); | 
|  | if (!ni->attr_list) { | 
|  | ntfs_error(sb, "Not enough memory to allocate buffer " | 
|  | "for attribute list."); | 
|  | goto put_err_out; | 
|  | } | 
|  | if (a->non_resident) { | 
|  | NInoSetAttrListNonResident(ni); | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | ntfs_error(sb, "Attribute list has non zero " | 
|  | "lowest_vcn. $MFT is corrupt. " | 
|  | "You should run chkdsk."); | 
|  | goto put_err_out; | 
|  | } | 
|  | /* Setup the runlist. */ | 
|  | ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol, | 
|  | a, NULL); | 
|  | if (IS_ERR(ni->attr_list_rl.rl)) { | 
|  | err = PTR_ERR(ni->attr_list_rl.rl); | 
|  | ni->attr_list_rl.rl = NULL; | 
|  | ntfs_error(sb, "Mapping pairs decompression " | 
|  | "failed with error code %i.", | 
|  | -err); | 
|  | goto put_err_out; | 
|  | } | 
|  | /* Now load the attribute list. */ | 
|  | if ((err = load_attribute_list(vol, &ni->attr_list_rl, | 
|  | ni->attr_list, ni->attr_list_size, | 
|  | sle64_to_cpu(a->data. | 
|  | non_resident.initialized_size)))) { | 
|  | ntfs_error(sb, "Failed to load attribute list " | 
|  | "attribute with error code %i.", | 
|  | -err); | 
|  | goto put_err_out; | 
|  | } | 
|  | } else /* if (!ctx.attr->non_resident) */ { | 
|  | if ((u8*)a + le16_to_cpu( | 
|  | a->data.resident.value_offset) + | 
|  | le32_to_cpu( | 
|  | a->data.resident.value_length) > | 
|  | (u8*)ctx->mrec + vol->mft_record_size) { | 
|  | ntfs_error(sb, "Corrupt attribute list " | 
|  | "attribute."); | 
|  | goto put_err_out; | 
|  | } | 
|  | /* Now copy the attribute list. */ | 
|  | memcpy(ni->attr_list, (u8*)a + le16_to_cpu( | 
|  | a->data.resident.value_offset), | 
|  | le32_to_cpu( | 
|  | a->data.resident.value_length)); | 
|  | } | 
|  | /* The attribute list is now setup in memory. */ | 
|  | /* | 
|  | * FIXME: I don't know if this case is actually possible. | 
|  | * According to logic it is not possible but I have seen too | 
|  | * many weird things in MS software to rely on logic... Thus we | 
|  | * perform a manual search and make sure the first $MFT/$DATA | 
|  | * extent is in the base inode. If it is not we abort with an | 
|  | * error and if we ever see a report of this error we will need | 
|  | * to do some magic in order to have the necessary mft record | 
|  | * loaded and in the right place in the page cache. But | 
|  | * hopefully logic will prevail and this never happens... | 
|  | */ | 
|  | al_entry = (ATTR_LIST_ENTRY*)ni->attr_list; | 
|  | al_end = (u8*)al_entry + ni->attr_list_size; | 
|  | for (;; al_entry = next_al_entry) { | 
|  | /* Out of bounds check. */ | 
|  | if ((u8*)al_entry < ni->attr_list || | 
|  | (u8*)al_entry > al_end) | 
|  | goto em_put_err_out; | 
|  | /* Catch the end of the attribute list. */ | 
|  | if ((u8*)al_entry == al_end) | 
|  | goto em_put_err_out; | 
|  | if (!al_entry->length) | 
|  | goto em_put_err_out; | 
|  | if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + | 
|  | le16_to_cpu(al_entry->length) > al_end) | 
|  | goto em_put_err_out; | 
|  | next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + | 
|  | le16_to_cpu(al_entry->length)); | 
|  | if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA)) | 
|  | goto em_put_err_out; | 
|  | if (AT_DATA != al_entry->type) | 
|  | continue; | 
|  | /* We want an unnamed attribute. */ | 
|  | if (al_entry->name_length) | 
|  | goto em_put_err_out; | 
|  | /* Want the first entry, i.e. lowest_vcn == 0. */ | 
|  | if (al_entry->lowest_vcn) | 
|  | goto em_put_err_out; | 
|  | /* First entry has to be in the base mft record. */ | 
|  | if (MREF_LE(al_entry->mft_reference) != vi->i_ino) { | 
|  | /* MFT references do not match, logic fails. */ | 
|  | ntfs_error(sb, "BUG: The first $DATA extent " | 
|  | "of $MFT is not in the base " | 
|  | "mft record. Please report " | 
|  | "you saw this message to " | 
|  | "linux-ntfs-dev@lists." | 
|  | "sourceforge.net"); | 
|  | goto put_err_out; | 
|  | } else { | 
|  | /* Sequence numbers must match. */ | 
|  | if (MSEQNO_LE(al_entry->mft_reference) != | 
|  | ni->seq_no) | 
|  | goto em_put_err_out; | 
|  | /* Got it. All is ok. We can stop now. */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  |  | 
|  | /* Now load all attribute extents. */ | 
|  | a = NULL; | 
|  | next_vcn = last_vcn = highest_vcn = 0; | 
|  | while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0, | 
|  | ctx))) { | 
|  | runlist_element *nrl; | 
|  |  | 
|  | /* Cache the current attribute. */ | 
|  | a = ctx->attr; | 
|  | /* $MFT must be non-resident. */ | 
|  | if (!a->non_resident) { | 
|  | ntfs_error(sb, "$MFT must be non-resident but a " | 
|  | "resident extent was found. $MFT is " | 
|  | "corrupt. Run chkdsk."); | 
|  | goto put_err_out; | 
|  | } | 
|  | /* $MFT must be uncompressed and unencrypted. */ | 
|  | if (a->flags & ATTR_COMPRESSION_MASK || | 
|  | a->flags & ATTR_IS_ENCRYPTED || | 
|  | a->flags & ATTR_IS_SPARSE) { | 
|  | ntfs_error(sb, "$MFT must be uncompressed, " | 
|  | "non-sparse, and unencrypted but a " | 
|  | "compressed/sparse/encrypted extent " | 
|  | "was found. $MFT is corrupt. Run " | 
|  | "chkdsk."); | 
|  | goto put_err_out; | 
|  | } | 
|  | /* | 
|  | * Decompress the mapping pairs array of this extent and merge | 
|  | * the result into the existing runlist. No need for locking | 
|  | * as we have exclusive access to the inode at this time and we | 
|  | * are a mount in progress task, too. | 
|  | */ | 
|  | nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl); | 
|  | if (IS_ERR(nrl)) { | 
|  | ntfs_error(sb, "ntfs_mapping_pairs_decompress() " | 
|  | "failed with error code %ld.  $MFT is " | 
|  | "corrupt.", PTR_ERR(nrl)); | 
|  | goto put_err_out; | 
|  | } | 
|  | ni->runlist.rl = nrl; | 
|  |  | 
|  | /* Are we in the first extent? */ | 
|  | if (!next_vcn) { | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | ntfs_error(sb, "First extent of $DATA " | 
|  | "attribute has non zero " | 
|  | "lowest_vcn. $MFT is corrupt. " | 
|  | "You should run chkdsk."); | 
|  | goto put_err_out; | 
|  | } | 
|  | /* Get the last vcn in the $DATA attribute. */ | 
|  | last_vcn = sle64_to_cpu( | 
|  | a->data.non_resident.allocated_size) | 
|  | >> vol->cluster_size_bits; | 
|  | /* Fill in the inode size. */ | 
|  | vi->i_size = sle64_to_cpu( | 
|  | a->data.non_resident.data_size); | 
|  | ni->initialized_size = sle64_to_cpu( | 
|  | a->data.non_resident.initialized_size); | 
|  | ni->allocated_size = sle64_to_cpu( | 
|  | a->data.non_resident.allocated_size); | 
|  | /* | 
|  | * Verify the number of mft records does not exceed | 
|  | * 2^32 - 1. | 
|  | */ | 
|  | if ((vi->i_size >> vol->mft_record_size_bits) >= | 
|  | (1ULL << 32)) { | 
|  | ntfs_error(sb, "$MFT is too big! Aborting."); | 
|  | goto put_err_out; | 
|  | } | 
|  | /* | 
|  | * We have got the first extent of the runlist for | 
|  | * $MFT which means it is now relatively safe to call | 
|  | * the normal ntfs_read_inode() function. | 
|  | * Complete reading the inode, this will actually | 
|  | * re-read the mft record for $MFT, this time entering | 
|  | * it into the page cache with which we complete the | 
|  | * kick start of the volume. It should be safe to do | 
|  | * this now as the first extent of $MFT/$DATA is | 
|  | * already known and we would hope that we don't need | 
|  | * further extents in order to find the other | 
|  | * attributes belonging to $MFT. Only time will tell if | 
|  | * this is really the case. If not we will have to play | 
|  | * magic at this point, possibly duplicating a lot of | 
|  | * ntfs_read_inode() at this point. We will need to | 
|  | * ensure we do enough of its work to be able to call | 
|  | * ntfs_read_inode() on extents of $MFT/$DATA. But lets | 
|  | * hope this never happens... | 
|  | */ | 
|  | ntfs_read_locked_inode(vi); | 
|  | if (is_bad_inode(vi)) { | 
|  | ntfs_error(sb, "ntfs_read_inode() of $MFT " | 
|  | "failed. BUG or corrupt $MFT. " | 
|  | "Run chkdsk and if no errors " | 
|  | "are found, please report you " | 
|  | "saw this message to " | 
|  | "linux-ntfs-dev@lists." | 
|  | "sourceforge.net"); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | /* Revert to the safe super operations. */ | 
|  | ntfs_free(m); | 
|  | return -1; | 
|  | } | 
|  | /* | 
|  | * Re-initialize some specifics about $MFT's inode as | 
|  | * ntfs_read_inode() will have set up the default ones. | 
|  | */ | 
|  | /* Set uid and gid to root. */ | 
|  | vi->i_uid = GLOBAL_ROOT_UID; | 
|  | vi->i_gid = GLOBAL_ROOT_GID; | 
|  | /* Regular file. No access for anyone. */ | 
|  | vi->i_mode = S_IFREG; | 
|  | /* No VFS initiated operations allowed for $MFT. */ | 
|  | vi->i_op = &ntfs_empty_inode_ops; | 
|  | vi->i_fop = &ntfs_empty_file_ops; | 
|  | } | 
|  |  | 
|  | /* Get the lowest vcn for the next extent. */ | 
|  | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); | 
|  | next_vcn = highest_vcn + 1; | 
|  |  | 
|  | /* Only one extent or error, which we catch below. */ | 
|  | if (next_vcn <= 0) | 
|  | break; | 
|  |  | 
|  | /* Avoid endless loops due to corruption. */ | 
|  | if (next_vcn < sle64_to_cpu( | 
|  | a->data.non_resident.lowest_vcn)) { | 
|  | ntfs_error(sb, "$MFT has corrupt attribute list " | 
|  | "attribute. Run chkdsk."); | 
|  | goto put_err_out; | 
|  | } | 
|  | } | 
|  | if (err != -ENOENT) { | 
|  | ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. " | 
|  | "$MFT is corrupt. Run chkdsk."); | 
|  | goto put_err_out; | 
|  | } | 
|  | if (!a) { | 
|  | ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is " | 
|  | "corrupt. Run chkdsk."); | 
|  | goto put_err_out; | 
|  | } | 
|  | if (highest_vcn && highest_vcn != last_vcn - 1) { | 
|  | ntfs_error(sb, "Failed to load the complete runlist for " | 
|  | "$MFT/$DATA. Driver bug or corrupt $MFT. " | 
|  | "Run chkdsk."); | 
|  | ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx", | 
|  | (unsigned long long)highest_vcn, | 
|  | (unsigned long long)last_vcn - 1); | 
|  | goto put_err_out; | 
|  | } | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | ntfs_debug("Done."); | 
|  | ntfs_free(m); | 
|  |  | 
|  | /* | 
|  | * Split the locking rules of the MFT inode from the | 
|  | * locking rules of other inodes: | 
|  | */ | 
|  | lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key); | 
|  | lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | em_put_err_out: | 
|  | ntfs_error(sb, "Couldn't find first extent of $DATA attribute in " | 
|  | "attribute list. $MFT is corrupt. Run chkdsk."); | 
|  | put_err_out: | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | err_out: | 
|  | ntfs_error(sb, "Failed. Marking inode as bad."); | 
|  | make_bad_inode(vi); | 
|  | ntfs_free(m); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void __ntfs_clear_inode(ntfs_inode *ni) | 
|  | { | 
|  | /* Free all alocated memory. */ | 
|  | down_write(&ni->runlist.lock); | 
|  | if (ni->runlist.rl) { | 
|  | ntfs_free(ni->runlist.rl); | 
|  | ni->runlist.rl = NULL; | 
|  | } | 
|  | up_write(&ni->runlist.lock); | 
|  |  | 
|  | if (ni->attr_list) { | 
|  | ntfs_free(ni->attr_list); | 
|  | ni->attr_list = NULL; | 
|  | } | 
|  |  | 
|  | down_write(&ni->attr_list_rl.lock); | 
|  | if (ni->attr_list_rl.rl) { | 
|  | ntfs_free(ni->attr_list_rl.rl); | 
|  | ni->attr_list_rl.rl = NULL; | 
|  | } | 
|  | up_write(&ni->attr_list_rl.lock); | 
|  |  | 
|  | if (ni->name_len && ni->name != I30) { | 
|  | /* Catch bugs... */ | 
|  | BUG_ON(!ni->name); | 
|  | kfree(ni->name); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ntfs_clear_extent_inode(ntfs_inode *ni) | 
|  | { | 
|  | ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); | 
|  |  | 
|  | BUG_ON(NInoAttr(ni)); | 
|  | BUG_ON(ni->nr_extents != -1); | 
|  |  | 
|  | #ifdef NTFS_RW | 
|  | if (NInoDirty(ni)) { | 
|  | if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino))) | 
|  | ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  " | 
|  | "Losing data!  This is a BUG!!!"); | 
|  | // FIXME:  Do something!!! | 
|  | } | 
|  | #endif /* NTFS_RW */ | 
|  |  | 
|  | __ntfs_clear_inode(ni); | 
|  |  | 
|  | /* Bye, bye... */ | 
|  | ntfs_destroy_extent_inode(ni); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_evict_big_inode - clean up the ntfs specific part of an inode | 
|  | * @vi:		vfs inode pending annihilation | 
|  | * | 
|  | * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode() | 
|  | * is called, which deallocates all memory belonging to the NTFS specific part | 
|  | * of the inode and returns. | 
|  | * | 
|  | * If the MFT record is dirty, we commit it before doing anything else. | 
|  | */ | 
|  | void ntfs_evict_big_inode(struct inode *vi) | 
|  | { | 
|  | ntfs_inode *ni = NTFS_I(vi); | 
|  |  | 
|  | truncate_inode_pages_final(&vi->i_data); | 
|  | clear_inode(vi); | 
|  |  | 
|  | #ifdef NTFS_RW | 
|  | if (NInoDirty(ni)) { | 
|  | bool was_bad = (is_bad_inode(vi)); | 
|  |  | 
|  | /* Committing the inode also commits all extent inodes. */ | 
|  | ntfs_commit_inode(vi); | 
|  |  | 
|  | if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) { | 
|  | ntfs_error(vi->i_sb, "Failed to commit dirty inode " | 
|  | "0x%lx.  Losing data!", vi->i_ino); | 
|  | // FIXME:  Do something!!! | 
|  | } | 
|  | } | 
|  | #endif /* NTFS_RW */ | 
|  |  | 
|  | /* No need to lock at this stage as no one else has a reference. */ | 
|  | if (ni->nr_extents > 0) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ni->nr_extents; i++) | 
|  | ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]); | 
|  | kfree(ni->ext.extent_ntfs_inos); | 
|  | } | 
|  |  | 
|  | __ntfs_clear_inode(ni); | 
|  |  | 
|  | if (NInoAttr(ni)) { | 
|  | /* Release the base inode if we are holding it. */ | 
|  | if (ni->nr_extents == -1) { | 
|  | iput(VFS_I(ni->ext.base_ntfs_ino)); | 
|  | ni->nr_extents = 0; | 
|  | ni->ext.base_ntfs_ino = NULL; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_show_options - show mount options in /proc/mounts | 
|  | * @sf:		seq_file in which to write our mount options | 
|  | * @root:	root of the mounted tree whose mount options to display | 
|  | * | 
|  | * Called by the VFS once for each mounted ntfs volume when someone reads | 
|  | * /proc/mounts in order to display the NTFS specific mount options of each | 
|  | * mount. The mount options of fs specified by @root are written to the seq file | 
|  | * @sf and success is returned. | 
|  | */ | 
|  | int ntfs_show_options(struct seq_file *sf, struct dentry *root) | 
|  | { | 
|  | ntfs_volume *vol = NTFS_SB(root->d_sb); | 
|  | int i; | 
|  |  | 
|  | seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid)); | 
|  | seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid)); | 
|  | if (vol->fmask == vol->dmask) | 
|  | seq_printf(sf, ",umask=0%o", vol->fmask); | 
|  | else { | 
|  | seq_printf(sf, ",fmask=0%o", vol->fmask); | 
|  | seq_printf(sf, ",dmask=0%o", vol->dmask); | 
|  | } | 
|  | seq_printf(sf, ",nls=%s", vol->nls_map->charset); | 
|  | if (NVolCaseSensitive(vol)) | 
|  | seq_printf(sf, ",case_sensitive"); | 
|  | if (NVolShowSystemFiles(vol)) | 
|  | seq_printf(sf, ",show_sys_files"); | 
|  | if (!NVolSparseEnabled(vol)) | 
|  | seq_printf(sf, ",disable_sparse"); | 
|  | for (i = 0; on_errors_arr[i].val; i++) { | 
|  | if (on_errors_arr[i].val & vol->on_errors) | 
|  | seq_printf(sf, ",errors=%s", on_errors_arr[i].str); | 
|  | } | 
|  | seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef NTFS_RW | 
|  |  | 
|  | static const char *es = "  Leaving inconsistent metadata.  Unmount and run " | 
|  | "chkdsk."; | 
|  |  | 
|  | /** | 
|  | * ntfs_truncate - called when the i_size of an ntfs inode is changed | 
|  | * @vi:		inode for which the i_size was changed | 
|  | * | 
|  | * We only support i_size changes for normal files at present, i.e. not | 
|  | * compressed and not encrypted.  This is enforced in ntfs_setattr(), see | 
|  | * below. | 
|  | * | 
|  | * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and | 
|  | * that the change is allowed. | 
|  | * | 
|  | * This implies for us that @vi is a file inode rather than a directory, index, | 
|  | * or attribute inode as well as that @vi is a base inode. | 
|  | * | 
|  | * Returns 0 on success or -errno on error. | 
|  | * | 
|  | * Called with ->i_mutex held. | 
|  | */ | 
|  | int ntfs_truncate(struct inode *vi) | 
|  | { | 
|  | s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size; | 
|  | VCN highest_vcn; | 
|  | unsigned long flags; | 
|  | ntfs_inode *base_ni, *ni = NTFS_I(vi); | 
|  | ntfs_volume *vol = ni->vol; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | MFT_RECORD *m; | 
|  | ATTR_RECORD *a; | 
|  | const char *te = "  Leaving file length out of sync with i_size."; | 
|  | int err, mp_size, size_change, alloc_change; | 
|  | u32 attr_len; | 
|  |  | 
|  | ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); | 
|  | BUG_ON(NInoAttr(ni)); | 
|  | BUG_ON(S_ISDIR(vi->i_mode)); | 
|  | BUG_ON(NInoMstProtected(ni)); | 
|  | BUG_ON(ni->nr_extents < 0); | 
|  | retry_truncate: | 
|  | /* | 
|  | * Lock the runlist for writing and map the mft record to ensure it is | 
|  | * safe to mess with the attribute runlist and sizes. | 
|  | */ | 
|  | down_write(&ni->runlist.lock); | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx " | 
|  | "(error code %d).%s", vi->i_ino, err, te); | 
|  | ctx = NULL; | 
|  | m = NULL; | 
|  | goto old_bad_out; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | ntfs_error(vi->i_sb, "Failed to allocate a search context for " | 
|  | "inode 0x%lx (not enough memory).%s", | 
|  | vi->i_ino, te); | 
|  | err = -ENOMEM; | 
|  | goto old_bad_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) { | 
|  | ntfs_error(vi->i_sb, "Open attribute is missing from " | 
|  | "mft record.  Inode 0x%lx is corrupt.  " | 
|  | "Run chkdsk.%s", vi->i_ino, te); | 
|  | err = -EIO; | 
|  | } else | 
|  | ntfs_error(vi->i_sb, "Failed to lookup attribute in " | 
|  | "inode 0x%lx (error code %d).%s", | 
|  | vi->i_ino, err, te); | 
|  | goto old_bad_out; | 
|  | } | 
|  | m = ctx->mrec; | 
|  | a = ctx->attr; | 
|  | /* | 
|  | * The i_size of the vfs inode is the new size for the attribute value. | 
|  | */ | 
|  | new_size = i_size_read(vi); | 
|  | /* The current size of the attribute value is the old size. */ | 
|  | old_size = ntfs_attr_size(a); | 
|  | /* Calculate the new allocated size. */ | 
|  | if (NInoNonResident(ni)) | 
|  | new_alloc_size = (new_size + vol->cluster_size - 1) & | 
|  | ~(s64)vol->cluster_size_mask; | 
|  | else | 
|  | new_alloc_size = (new_size + 7) & ~7; | 
|  | /* The current allocated size is the old allocated size. */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | old_alloc_size = ni->allocated_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | /* | 
|  | * The change in the file size.  This will be 0 if no change, >0 if the | 
|  | * size is growing, and <0 if the size is shrinking. | 
|  | */ | 
|  | size_change = -1; | 
|  | if (new_size - old_size >= 0) { | 
|  | size_change = 1; | 
|  | if (new_size == old_size) | 
|  | size_change = 0; | 
|  | } | 
|  | /* As above for the allocated size. */ | 
|  | alloc_change = -1; | 
|  | if (new_alloc_size - old_alloc_size >= 0) { | 
|  | alloc_change = 1; | 
|  | if (new_alloc_size == old_alloc_size) | 
|  | alloc_change = 0; | 
|  | } | 
|  | /* | 
|  | * If neither the size nor the allocation are being changed there is | 
|  | * nothing to do. | 
|  | */ | 
|  | if (!size_change && !alloc_change) | 
|  | goto unm_done; | 
|  | /* If the size is changing, check if new size is allowed in $AttrDef. */ | 
|  | if (size_change) { | 
|  | err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ERANGE) { | 
|  | ntfs_error(vol->sb, "Truncate would cause the " | 
|  | "inode 0x%lx to %simum size " | 
|  | "for its attribute type " | 
|  | "(0x%x).  Aborting truncate.", | 
|  | vi->i_ino, | 
|  | new_size > old_size ? "exceed " | 
|  | "the max" : "go under the min", | 
|  | le32_to_cpu(ni->type)); | 
|  | err = -EFBIG; | 
|  | } else { | 
|  | ntfs_error(vol->sb, "Inode 0x%lx has unknown " | 
|  | "attribute type 0x%x.  " | 
|  | "Aborting truncate.", | 
|  | vi->i_ino, | 
|  | le32_to_cpu(ni->type)); | 
|  | err = -EIO; | 
|  | } | 
|  | /* Reset the vfs inode size to the old size. */ | 
|  | i_size_write(vi, old_size); | 
|  | goto err_out; | 
|  | } | 
|  | } | 
|  | if (NInoCompressed(ni) || NInoEncrypted(ni)) { | 
|  | ntfs_warning(vi->i_sb, "Changes in inode size are not " | 
|  | "supported yet for %s files, ignoring.", | 
|  | NInoCompressed(ni) ? "compressed" : | 
|  | "encrypted"); | 
|  | err = -EOPNOTSUPP; | 
|  | goto bad_out; | 
|  | } | 
|  | if (a->non_resident) | 
|  | goto do_non_resident_truncate; | 
|  | BUG_ON(NInoNonResident(ni)); | 
|  | /* Resize the attribute record to best fit the new attribute size. */ | 
|  | if (new_size < vol->mft_record_size && | 
|  | !ntfs_resident_attr_value_resize(m, a, new_size)) { | 
|  | /* The resize succeeded! */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | /* Update the sizes in the ntfs inode and all is done. */ | 
|  | ni->allocated_size = le32_to_cpu(a->length) - | 
|  | le16_to_cpu(a->data.resident.value_offset); | 
|  | /* | 
|  | * Note ntfs_resident_attr_value_resize() has already done any | 
|  | * necessary data clearing in the attribute record.  When the | 
|  | * file is being shrunk vmtruncate() will already have cleared | 
|  | * the top part of the last partial page, i.e. since this is | 
|  | * the resident case this is the page with index 0.  However, | 
|  | * when the file is being expanded, the page cache page data | 
|  | * between the old data_size, i.e. old_size, and the new_size | 
|  | * has not been zeroed.  Fortunately, we do not need to zero it | 
|  | * either since on one hand it will either already be zero due | 
|  | * to both readpage and writepage clearing partial page data | 
|  | * beyond i_size in which case there is nothing to do or in the | 
|  | * case of the file being mmap()ped at the same time, POSIX | 
|  | * specifies that the behaviour is unspecified thus we do not | 
|  | * have to do anything.  This means that in our implementation | 
|  | * in the rare case that the file is mmap()ped and a write | 
|  | * occurred into the mmap()ped region just beyond the file size | 
|  | * and writepage has not yet been called to write out the page | 
|  | * (which would clear the area beyond the file size) and we now | 
|  | * extend the file size to incorporate this dirty region | 
|  | * outside the file size, a write of the page would result in | 
|  | * this data being written to disk instead of being cleared. | 
|  | * Given both POSIX and the Linux mmap(2) man page specify that | 
|  | * this corner case is undefined, we choose to leave it like | 
|  | * that as this is much simpler for us as we cannot lock the | 
|  | * relevant page now since we are holding too many ntfs locks | 
|  | * which would result in a lock reversal deadlock. | 
|  | */ | 
|  | ni->initialized_size = new_size; | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | goto unm_done; | 
|  | } | 
|  | /* If the above resize failed, this must be an attribute extension. */ | 
|  | BUG_ON(size_change < 0); | 
|  | /* | 
|  | * We have to drop all the locks so we can call | 
|  | * ntfs_attr_make_non_resident().  This could be optimised by try- | 
|  | * locking the first page cache page and only if that fails dropping | 
|  | * the locks, locking the page, and redoing all the locking and | 
|  | * lookups.  While this would be a huge optimisation, it is not worth | 
|  | * it as this is definitely a slow code path as it only ever can happen | 
|  | * once for any given file. | 
|  | */ | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | up_write(&ni->runlist.lock); | 
|  | /* | 
|  | * Not enough space in the mft record, try to make the attribute | 
|  | * non-resident and if successful restart the truncation process. | 
|  | */ | 
|  | err = ntfs_attr_make_non_resident(ni, old_size); | 
|  | if (likely(!err)) | 
|  | goto retry_truncate; | 
|  | /* | 
|  | * Could not make non-resident.  If this is due to this not being | 
|  | * permitted for this attribute type or there not being enough space, | 
|  | * try to make other attributes non-resident.  Otherwise fail. | 
|  | */ | 
|  | if (unlikely(err != -EPERM && err != -ENOSPC)) { | 
|  | ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute " | 
|  | "type 0x%x, because the conversion from " | 
|  | "resident to non-resident attribute failed " | 
|  | "with error code %i.", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), err); | 
|  | if (err != -ENOMEM) | 
|  | err = -EIO; | 
|  | goto conv_err_out; | 
|  | } | 
|  | /* TODO: Not implemented from here, abort. */ | 
|  | if (err == -ENOSPC) | 
|  | ntfs_error(vol->sb, "Not enough space in the mft record/on " | 
|  | "disk for the non-resident attribute value.  " | 
|  | "This case is not implemented yet."); | 
|  | else /* if (err == -EPERM) */ | 
|  | ntfs_error(vol->sb, "This attribute type may not be " | 
|  | "non-resident.  This case is not implemented " | 
|  | "yet."); | 
|  | err = -EOPNOTSUPP; | 
|  | goto conv_err_out; | 
|  | #if 0 | 
|  | // TODO: Attempt to make other attributes non-resident. | 
|  | if (!err) | 
|  | goto do_resident_extend; | 
|  | /* | 
|  | * Both the attribute list attribute and the standard information | 
|  | * attribute must remain in the base inode.  Thus, if this is one of | 
|  | * these attributes, we have to try to move other attributes out into | 
|  | * extent mft records instead. | 
|  | */ | 
|  | if (ni->type == AT_ATTRIBUTE_LIST || | 
|  | ni->type == AT_STANDARD_INFORMATION) { | 
|  | // TODO: Attempt to move other attributes into extent mft | 
|  | // records. | 
|  | err = -EOPNOTSUPP; | 
|  | if (!err) | 
|  | goto do_resident_extend; | 
|  | goto err_out; | 
|  | } | 
|  | // TODO: Attempt to move this attribute to an extent mft record, but | 
|  | // only if it is not already the only attribute in an mft record in | 
|  | // which case there would be nothing to gain. | 
|  | err = -EOPNOTSUPP; | 
|  | if (!err) | 
|  | goto do_resident_extend; | 
|  | /* There is nothing we can do to make enough space. )-: */ | 
|  | goto err_out; | 
|  | #endif | 
|  | do_non_resident_truncate: | 
|  | BUG_ON(!NInoNonResident(ni)); | 
|  | if (alloc_change < 0) { | 
|  | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); | 
|  | if (highest_vcn > 0 && | 
|  | old_alloc_size >> vol->cluster_size_bits > | 
|  | highest_vcn + 1) { | 
|  | /* | 
|  | * This attribute has multiple extents.  Not yet | 
|  | * supported. | 
|  | */ | 
|  | ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, " | 
|  | "attribute type 0x%x, because the " | 
|  | "attribute is highly fragmented (it " | 
|  | "consists of multiple extents) and " | 
|  | "this case is not implemented yet.", | 
|  | vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type)); | 
|  | err = -EOPNOTSUPP; | 
|  | goto bad_out; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If the size is shrinking, need to reduce the initialized_size and | 
|  | * the data_size before reducing the allocation. | 
|  | */ | 
|  | if (size_change < 0) { | 
|  | /* | 
|  | * Make the valid size smaller (i_size is already up-to-date). | 
|  | */ | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | if (new_size < ni->initialized_size) { | 
|  | ni->initialized_size = new_size; | 
|  | a->data.non_resident.initialized_size = | 
|  | cpu_to_sle64(new_size); | 
|  | } | 
|  | a->data.non_resident.data_size = cpu_to_sle64(new_size); | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | /* If the allocated size is not changing, we are done. */ | 
|  | if (!alloc_change) | 
|  | goto unm_done; | 
|  | /* | 
|  | * If the size is shrinking it makes no sense for the | 
|  | * allocation to be growing. | 
|  | */ | 
|  | BUG_ON(alloc_change > 0); | 
|  | } else /* if (size_change >= 0) */ { | 
|  | /* | 
|  | * The file size is growing or staying the same but the | 
|  | * allocation can be shrinking, growing or staying the same. | 
|  | */ | 
|  | if (alloc_change > 0) { | 
|  | /* | 
|  | * We need to extend the allocation and possibly update | 
|  | * the data size.  If we are updating the data size, | 
|  | * since we are not touching the initialized_size we do | 
|  | * not need to worry about the actual data on disk. | 
|  | * And as far as the page cache is concerned, there | 
|  | * will be no pages beyond the old data size and any | 
|  | * partial region in the last page between the old and | 
|  | * new data size (or the end of the page if the new | 
|  | * data size is outside the page) does not need to be | 
|  | * modified as explained above for the resident | 
|  | * attribute truncate case.  To do this, we simply drop | 
|  | * the locks we hold and leave all the work to our | 
|  | * friendly helper ntfs_attr_extend_allocation(). | 
|  | */ | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | up_write(&ni->runlist.lock); | 
|  | err = ntfs_attr_extend_allocation(ni, new_size, | 
|  | size_change > 0 ? new_size : -1, -1); | 
|  | /* | 
|  | * ntfs_attr_extend_allocation() will have done error | 
|  | * output already. | 
|  | */ | 
|  | goto done; | 
|  | } | 
|  | if (!alloc_change) | 
|  | goto alloc_done; | 
|  | } | 
|  | /* alloc_change < 0 */ | 
|  | /* Free the clusters. */ | 
|  | nr_freed = ntfs_cluster_free(ni, new_alloc_size >> | 
|  | vol->cluster_size_bits, -1, ctx); | 
|  | m = ctx->mrec; | 
|  | a = ctx->attr; | 
|  | if (unlikely(nr_freed < 0)) { | 
|  | ntfs_error(vol->sb, "Failed to release cluster(s) (error code " | 
|  | "%lli).  Unmount and run chkdsk to recover " | 
|  | "the lost cluster(s).", (long long)nr_freed); | 
|  | NVolSetErrors(vol); | 
|  | nr_freed = 0; | 
|  | } | 
|  | /* Truncate the runlist. */ | 
|  | err = ntfs_rl_truncate_nolock(vol, &ni->runlist, | 
|  | new_alloc_size >> vol->cluster_size_bits); | 
|  | /* | 
|  | * If the runlist truncation failed and/or the search context is no | 
|  | * longer valid, we cannot resize the attribute record or build the | 
|  | * mapping pairs array thus we mark the inode bad so that no access to | 
|  | * the freed clusters can happen. | 
|  | */ | 
|  | if (unlikely(err || IS_ERR(m))) { | 
|  | ntfs_error(vol->sb, "Failed to %s (error code %li).%s", | 
|  | IS_ERR(m) ? | 
|  | "restore attribute search context" : | 
|  | "truncate attribute runlist", | 
|  | IS_ERR(m) ? PTR_ERR(m) : err, es); | 
|  | err = -EIO; | 
|  | goto bad_out; | 
|  | } | 
|  | /* Get the size for the shrunk mapping pairs array for the runlist. */ | 
|  | mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1); | 
|  | if (unlikely(mp_size <= 0)) { | 
|  | ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " | 
|  | "attribute type 0x%x, because determining the " | 
|  | "size for the mapping pairs failed with error " | 
|  | "code %i.%s", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), mp_size, es); | 
|  | err = -EIO; | 
|  | goto bad_out; | 
|  | } | 
|  | /* | 
|  | * Shrink the attribute record for the new mapping pairs array.  Note, | 
|  | * this cannot fail since we are making the attribute smaller thus by | 
|  | * definition there is enough space to do so. | 
|  | */ | 
|  | attr_len = le32_to_cpu(a->length); | 
|  | err = ntfs_attr_record_resize(m, a, mp_size + | 
|  | le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); | 
|  | BUG_ON(err); | 
|  | /* | 
|  | * Generate the mapping pairs array directly into the attribute record. | 
|  | */ | 
|  | err = ntfs_mapping_pairs_build(vol, (u8*)a + | 
|  | le16_to_cpu(a->data.non_resident.mapping_pairs_offset), | 
|  | mp_size, ni->runlist.rl, 0, -1, NULL); | 
|  | if (unlikely(err)) { | 
|  | ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, " | 
|  | "attribute type 0x%x, because building the " | 
|  | "mapping pairs failed with error code %i.%s", | 
|  | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | 
|  | err, es); | 
|  | err = -EIO; | 
|  | goto bad_out; | 
|  | } | 
|  | /* Update the allocated/compressed size as well as the highest vcn. */ | 
|  | a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >> | 
|  | vol->cluster_size_bits) - 1); | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->allocated_size = new_alloc_size; | 
|  | a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size); | 
|  | if (NInoSparse(ni) || NInoCompressed(ni)) { | 
|  | if (nr_freed) { | 
|  | ni->itype.compressed.size -= nr_freed << | 
|  | vol->cluster_size_bits; | 
|  | BUG_ON(ni->itype.compressed.size < 0); | 
|  | a->data.non_resident.compressed_size = cpu_to_sle64( | 
|  | ni->itype.compressed.size); | 
|  | vi->i_blocks = ni->itype.compressed.size >> 9; | 
|  | } | 
|  | } else | 
|  | vi->i_blocks = new_alloc_size >> 9; | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | /* | 
|  | * We have shrunk the allocation.  If this is a shrinking truncate we | 
|  | * have already dealt with the initialized_size and the data_size above | 
|  | * and we are done.  If the truncate is only changing the allocation | 
|  | * and not the data_size, we are also done.  If this is an extending | 
|  | * truncate, need to extend the data_size now which is ensured by the | 
|  | * fact that @size_change is positive. | 
|  | */ | 
|  | alloc_done: | 
|  | /* | 
|  | * If the size is growing, need to update it now.  If it is shrinking, | 
|  | * we have already updated it above (before the allocation change). | 
|  | */ | 
|  | if (size_change > 0) | 
|  | a->data.non_resident.data_size = cpu_to_sle64(new_size); | 
|  | /* Ensure the modified mft record is written out. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | unm_done: | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | up_write(&ni->runlist.lock); | 
|  | done: | 
|  | /* Update the mtime and ctime on the base inode. */ | 
|  | /* normally ->truncate shouldn't update ctime or mtime, | 
|  | * but ntfs did before so it got a copy & paste version | 
|  | * of file_update_time.  one day someone should fix this | 
|  | * for real. | 
|  | */ | 
|  | if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) { | 
|  | struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb); | 
|  | int sync_it = 0; | 
|  |  | 
|  | if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) || | 
|  | !timespec_equal(&VFS_I(base_ni)->i_ctime, &now)) | 
|  | sync_it = 1; | 
|  | VFS_I(base_ni)->i_mtime = now; | 
|  | VFS_I(base_ni)->i_ctime = now; | 
|  |  | 
|  | if (sync_it) | 
|  | mark_inode_dirty_sync(VFS_I(base_ni)); | 
|  | } | 
|  |  | 
|  | if (likely(!err)) { | 
|  | NInoClearTruncateFailed(ni); | 
|  | ntfs_debug("Done."); | 
|  | } | 
|  | return err; | 
|  | old_bad_out: | 
|  | old_size = -1; | 
|  | bad_out: | 
|  | if (err != -ENOMEM && err != -EOPNOTSUPP) | 
|  | NVolSetErrors(vol); | 
|  | if (err != -EOPNOTSUPP) | 
|  | NInoSetTruncateFailed(ni); | 
|  | else if (old_size >= 0) | 
|  | i_size_write(vi, old_size); | 
|  | err_out: | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (m) | 
|  | unmap_mft_record(base_ni); | 
|  | up_write(&ni->runlist.lock); | 
|  | out: | 
|  | ntfs_debug("Failed.  Returning error code %i.", err); | 
|  | return err; | 
|  | conv_err_out: | 
|  | if (err != -ENOMEM && err != -EOPNOTSUPP) | 
|  | NVolSetErrors(vol); | 
|  | if (err != -EOPNOTSUPP) | 
|  | NInoSetTruncateFailed(ni); | 
|  | else | 
|  | i_size_write(vi, old_size); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value | 
|  | * @vi:		inode for which the i_size was changed | 
|  | * | 
|  | * Wrapper for ntfs_truncate() that has no return value. | 
|  | * | 
|  | * See ntfs_truncate() description above for details. | 
|  | */ | 
|  | #ifdef NTFS_RW | 
|  | void ntfs_truncate_vfs(struct inode *vi) { | 
|  | ntfs_truncate(vi); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * ntfs_setattr - called from notify_change() when an attribute is being changed | 
|  | * @dentry:	dentry whose attributes to change | 
|  | * @attr:	structure describing the attributes and the changes | 
|  | * | 
|  | * We have to trap VFS attempts to truncate the file described by @dentry as | 
|  | * soon as possible, because we do not implement changes in i_size yet.  So we | 
|  | * abort all i_size changes here. | 
|  | * | 
|  | * We also abort all changes of user, group, and mode as we do not implement | 
|  | * the NTFS ACLs yet. | 
|  | * | 
|  | * Called with ->i_mutex held. | 
|  | */ | 
|  | int ntfs_setattr(struct dentry *dentry, struct iattr *attr) | 
|  | { | 
|  | struct inode *vi = dentry->d_inode; | 
|  | int err; | 
|  | unsigned int ia_valid = attr->ia_valid; | 
|  |  | 
|  | err = inode_change_ok(vi, attr); | 
|  | if (err) | 
|  | goto out; | 
|  | /* We do not support NTFS ACLs yet. */ | 
|  | if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) { | 
|  | ntfs_warning(vi->i_sb, "Changes in user/group/mode are not " | 
|  | "supported yet, ignoring."); | 
|  | err = -EOPNOTSUPP; | 
|  | goto out; | 
|  | } | 
|  | if (ia_valid & ATTR_SIZE) { | 
|  | if (attr->ia_size != i_size_read(vi)) { | 
|  | ntfs_inode *ni = NTFS_I(vi); | 
|  | /* | 
|  | * FIXME: For now we do not support resizing of | 
|  | * compressed or encrypted files yet. | 
|  | */ | 
|  | if (NInoCompressed(ni) || NInoEncrypted(ni)) { | 
|  | ntfs_warning(vi->i_sb, "Changes in inode size " | 
|  | "are not supported yet for " | 
|  | "%s files, ignoring.", | 
|  | NInoCompressed(ni) ? | 
|  | "compressed" : "encrypted"); | 
|  | err = -EOPNOTSUPP; | 
|  | } else { | 
|  | truncate_setsize(vi, attr->ia_size); | 
|  | ntfs_truncate_vfs(vi); | 
|  | } | 
|  | if (err || ia_valid == ATTR_SIZE) | 
|  | goto out; | 
|  | } else { | 
|  | /* | 
|  | * We skipped the truncate but must still update | 
|  | * timestamps. | 
|  | */ | 
|  | ia_valid |= ATTR_MTIME | ATTR_CTIME; | 
|  | } | 
|  | } | 
|  | if (ia_valid & ATTR_ATIME) | 
|  | vi->i_atime = timespec_trunc(attr->ia_atime, | 
|  | vi->i_sb->s_time_gran); | 
|  | if (ia_valid & ATTR_MTIME) | 
|  | vi->i_mtime = timespec_trunc(attr->ia_mtime, | 
|  | vi->i_sb->s_time_gran); | 
|  | if (ia_valid & ATTR_CTIME) | 
|  | vi->i_ctime = timespec_trunc(attr->ia_ctime, | 
|  | vi->i_sb->s_time_gran); | 
|  | mark_inode_dirty(vi); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_write_inode - write out a dirty inode | 
|  | * @vi:		inode to write out | 
|  | * @sync:	if true, write out synchronously | 
|  | * | 
|  | * Write out a dirty inode to disk including any extent inodes if present. | 
|  | * | 
|  | * If @sync is true, commit the inode to disk and wait for io completion.  This | 
|  | * is done using write_mft_record(). | 
|  | * | 
|  | * If @sync is false, just schedule the write to happen but do not wait for i/o | 
|  | * completion.  In 2.6 kernels, scheduling usually happens just by virtue of | 
|  | * marking the page (and in this case mft record) dirty but we do not implement | 
|  | * this yet as write_mft_record() largely ignores the @sync parameter and | 
|  | * always performs synchronous writes. | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | */ | 
|  | int __ntfs_write_inode(struct inode *vi, int sync) | 
|  | { | 
|  | sle64 nt; | 
|  | ntfs_inode *ni = NTFS_I(vi); | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | MFT_RECORD *m; | 
|  | STANDARD_INFORMATION *si; | 
|  | int err = 0; | 
|  | bool modified = false; | 
|  |  | 
|  | ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "", | 
|  | vi->i_ino); | 
|  | /* | 
|  | * Dirty attribute inodes are written via their real inodes so just | 
|  | * clean them here.  Access time updates are taken care off when the | 
|  | * real inode is written. | 
|  | */ | 
|  | if (NInoAttr(ni)) { | 
|  | NInoClearDirty(ni); | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | } | 
|  | /* Map, pin, and lock the mft record belonging to the inode. */ | 
|  | m = map_mft_record(ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | goto err_out; | 
|  | } | 
|  | /* Update the access times in the standard information attribute. */ | 
|  | ctx = ntfs_attr_get_search_ctx(ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto unm_err_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | goto unm_err_out; | 
|  | } | 
|  | si = (STANDARD_INFORMATION*)((u8*)ctx->attr + | 
|  | le16_to_cpu(ctx->attr->data.resident.value_offset)); | 
|  | /* Update the access times if they have changed. */ | 
|  | nt = utc2ntfs(vi->i_mtime); | 
|  | if (si->last_data_change_time != nt) { | 
|  | ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, " | 
|  | "new = 0x%llx", vi->i_ino, (long long) | 
|  | sle64_to_cpu(si->last_data_change_time), | 
|  | (long long)sle64_to_cpu(nt)); | 
|  | si->last_data_change_time = nt; | 
|  | modified = true; | 
|  | } | 
|  | nt = utc2ntfs(vi->i_ctime); | 
|  | if (si->last_mft_change_time != nt) { | 
|  | ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, " | 
|  | "new = 0x%llx", vi->i_ino, (long long) | 
|  | sle64_to_cpu(si->last_mft_change_time), | 
|  | (long long)sle64_to_cpu(nt)); | 
|  | si->last_mft_change_time = nt; | 
|  | modified = true; | 
|  | } | 
|  | nt = utc2ntfs(vi->i_atime); | 
|  | if (si->last_access_time != nt) { | 
|  | ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, " | 
|  | "new = 0x%llx", vi->i_ino, | 
|  | (long long)sle64_to_cpu(si->last_access_time), | 
|  | (long long)sle64_to_cpu(nt)); | 
|  | si->last_access_time = nt; | 
|  | modified = true; | 
|  | } | 
|  | /* | 
|  | * If we just modified the standard information attribute we need to | 
|  | * mark the mft record it is in dirty.  We do this manually so that | 
|  | * mark_inode_dirty() is not called which would redirty the inode and | 
|  | * hence result in an infinite loop of trying to write the inode. | 
|  | * There is no need to mark the base inode nor the base mft record | 
|  | * dirty, since we are going to write this mft record below in any case | 
|  | * and the base mft record may actually not have been modified so it | 
|  | * might not need to be written out. | 
|  | * NOTE: It is not a problem when the inode for $MFT itself is being | 
|  | * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES | 
|  | * on the $MFT inode and hence ntfs_write_inode() will not be | 
|  | * re-invoked because of it which in turn is ok since the dirtied mft | 
|  | * record will be cleaned and written out to disk below, i.e. before | 
|  | * this function returns. | 
|  | */ | 
|  | if (modified) { | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | if (!NInoTestSetDirty(ctx->ntfs_ino)) | 
|  | mark_ntfs_record_dirty(ctx->ntfs_ino->page, | 
|  | ctx->ntfs_ino->page_ofs); | 
|  | } | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | /* Now the access times are updated, write the base mft record. */ | 
|  | if (NInoDirty(ni)) | 
|  | err = write_mft_record(ni, m, sync); | 
|  | /* Write all attached extent mft records. */ | 
|  | mutex_lock(&ni->extent_lock); | 
|  | if (ni->nr_extents > 0) { | 
|  | ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos; | 
|  | int i; | 
|  |  | 
|  | ntfs_debug("Writing %i extent inodes.", ni->nr_extents); | 
|  | for (i = 0; i < ni->nr_extents; i++) { | 
|  | ntfs_inode *tni = extent_nis[i]; | 
|  |  | 
|  | if (NInoDirty(tni)) { | 
|  | MFT_RECORD *tm = map_mft_record(tni); | 
|  | int ret; | 
|  |  | 
|  | if (IS_ERR(tm)) { | 
|  | if (!err || err == -ENOMEM) | 
|  | err = PTR_ERR(tm); | 
|  | continue; | 
|  | } | 
|  | ret = write_mft_record(tni, tm, sync); | 
|  | unmap_mft_record(tni); | 
|  | if (unlikely(ret)) { | 
|  | if (!err || err == -ENOMEM) | 
|  | err = ret; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | mutex_unlock(&ni->extent_lock); | 
|  | unmap_mft_record(ni); | 
|  | if (unlikely(err)) | 
|  | goto err_out; | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | unm_err_out: | 
|  | unmap_mft_record(ni); | 
|  | err_out: | 
|  | if (err == -ENOMEM) { | 
|  | ntfs_warning(vi->i_sb, "Not enough memory to write inode.  " | 
|  | "Marking the inode dirty again, so the VFS " | 
|  | "retries later."); | 
|  | mark_inode_dirty(vi); | 
|  | } else { | 
|  | ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err); | 
|  | NVolSetErrors(ni->vol); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #endif /* NTFS_RW */ |