| /* |
| * Microchip / Atmel ECC (I2C) driver. |
| * |
| * Copyright (c) 2017, Microchip Technology Inc. |
| * Author: Tudor Ambarus <tudor.ambarus@microchip.com> |
| * |
| * This software is licensed under the terms of the GNU General Public |
| * License version 2, as published by the Free Software Foundation, and |
| * may be copied, distributed, and modified under those terms. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #include <linux/bitrev.h> |
| #include <linux/crc16.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/i2c.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of_device.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| #include <crypto/internal/kpp.h> |
| #include <crypto/ecdh.h> |
| #include <crypto/kpp.h> |
| #include "atmel-ecc.h" |
| |
| /* Used for binding tfm objects to i2c clients. */ |
| struct atmel_ecc_driver_data { |
| struct list_head i2c_client_list; |
| spinlock_t i2c_list_lock; |
| } ____cacheline_aligned; |
| |
| static struct atmel_ecc_driver_data driver_data; |
| |
| /** |
| * atmel_ecc_i2c_client_priv - i2c_client private data |
| * @client : pointer to i2c client device |
| * @i2c_client_list_node: part of i2c_client_list |
| * @lock : lock for sending i2c commands |
| * @wake_token : wake token array of zeros |
| * @wake_token_sz : size in bytes of the wake_token |
| * @tfm_count : number of active crypto transformations on i2c client |
| * |
| * Reads and writes from/to the i2c client are sequential. The first byte |
| * transmitted to the device is treated as the byte size. Any attempt to send |
| * more than this number of bytes will cause the device to not ACK those bytes. |
| * After the host writes a single command byte to the input buffer, reads are |
| * prohibited until after the device completes command execution. Use a mutex |
| * when sending i2c commands. |
| */ |
| struct atmel_ecc_i2c_client_priv { |
| struct i2c_client *client; |
| struct list_head i2c_client_list_node; |
| struct mutex lock; |
| u8 wake_token[WAKE_TOKEN_MAX_SIZE]; |
| size_t wake_token_sz; |
| atomic_t tfm_count ____cacheline_aligned; |
| }; |
| |
| /** |
| * atmel_ecdh_ctx - transformation context |
| * @client : pointer to i2c client device |
| * @fallback : used for unsupported curves or when user wants to use its own |
| * private key. |
| * @public_key : generated when calling set_secret(). It's the responsibility |
| * of the user to not call set_secret() while |
| * generate_public_key() or compute_shared_secret() are in flight. |
| * @curve_id : elliptic curve id |
| * @n_sz : size in bytes of the n prime |
| * @do_fallback: true when the device doesn't support the curve or when the user |
| * wants to use its own private key. |
| */ |
| struct atmel_ecdh_ctx { |
| struct i2c_client *client; |
| struct crypto_kpp *fallback; |
| const u8 *public_key; |
| unsigned int curve_id; |
| size_t n_sz; |
| bool do_fallback; |
| }; |
| |
| /** |
| * atmel_ecc_work_data - data structure representing the work |
| * @ctx : transformation context. |
| * @cbk : pointer to a callback function to be invoked upon completion of this |
| * request. This has the form: |
| * callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status) |
| * where: |
| * @work_data: data structure representing the work |
| * @areq : optional pointer to an argument passed with the original |
| * request. |
| * @status : status returned from the i2c client device or i2c error. |
| * @areq: optional pointer to a user argument for use at callback time. |
| * @work: describes the task to be executed. |
| * @cmd : structure used for communicating with the device. |
| */ |
| struct atmel_ecc_work_data { |
| struct atmel_ecdh_ctx *ctx; |
| void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq, |
| int status); |
| void *areq; |
| struct work_struct work; |
| struct atmel_ecc_cmd cmd; |
| }; |
| |
| static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len) |
| { |
| return cpu_to_le16(bitrev16(crc16(crc, buffer, len))); |
| } |
| |
| /** |
| * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC. |
| * CRC16 verification of the count, opcode, param1, param2 and data bytes. |
| * The checksum is saved in little-endian format in the least significant |
| * two bytes of the command. CRC polynomial is 0x8005 and the initial register |
| * value should be zero. |
| * |
| * @cmd : structure used for communicating with the device. |
| */ |
| static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd) |
| { |
| u8 *data = &cmd->count; |
| size_t len = cmd->count - CRC_SIZE; |
| u16 *crc16 = (u16 *)(data + len); |
| |
| *crc16 = atmel_ecc_crc16(0, data, len); |
| } |
| |
| static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd) |
| { |
| cmd->word_addr = COMMAND; |
| cmd->opcode = OPCODE_READ; |
| /* |
| * Read the word from Configuration zone that contains the lock bytes |
| * (UserExtra, Selector, LockValue, LockConfig). |
| */ |
| cmd->param1 = CONFIG_ZONE; |
| cmd->param2 = DEVICE_LOCK_ADDR; |
| cmd->count = READ_COUNT; |
| |
| atmel_ecc_checksum(cmd); |
| |
| cmd->msecs = MAX_EXEC_TIME_READ; |
| cmd->rxsize = READ_RSP_SIZE; |
| } |
| |
| static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid) |
| { |
| cmd->word_addr = COMMAND; |
| cmd->count = GENKEY_COUNT; |
| cmd->opcode = OPCODE_GENKEY; |
| cmd->param1 = GENKEY_MODE_PRIVATE; |
| /* a random private key will be generated and stored in slot keyID */ |
| cmd->param2 = cpu_to_le16(keyid); |
| |
| atmel_ecc_checksum(cmd); |
| |
| cmd->msecs = MAX_EXEC_TIME_GENKEY; |
| cmd->rxsize = GENKEY_RSP_SIZE; |
| } |
| |
| static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd, |
| struct scatterlist *pubkey) |
| { |
| size_t copied; |
| |
| cmd->word_addr = COMMAND; |
| cmd->count = ECDH_COUNT; |
| cmd->opcode = OPCODE_ECDH; |
| cmd->param1 = ECDH_PREFIX_MODE; |
| /* private key slot */ |
| cmd->param2 = cpu_to_le16(DATA_SLOT_2); |
| |
| /* |
| * The device only supports NIST P256 ECC keys. The public key size will |
| * always be the same. Use a macro for the key size to avoid unnecessary |
| * computations. |
| */ |
| copied = sg_copy_to_buffer(pubkey, |
| sg_nents_for_len(pubkey, |
| ATMEL_ECC_PUBKEY_SIZE), |
| cmd->data, ATMEL_ECC_PUBKEY_SIZE); |
| if (copied != ATMEL_ECC_PUBKEY_SIZE) |
| return -EINVAL; |
| |
| atmel_ecc_checksum(cmd); |
| |
| cmd->msecs = MAX_EXEC_TIME_ECDH; |
| cmd->rxsize = ECDH_RSP_SIZE; |
| |
| return 0; |
| } |
| |
| /* |
| * After wake and after execution of a command, there will be error, status, or |
| * result bytes in the device's output register that can be retrieved by the |
| * system. When the length of that group is four bytes, the codes returned are |
| * detailed in error_list. |
| */ |
| static int atmel_ecc_status(struct device *dev, u8 *status) |
| { |
| size_t err_list_len = ARRAY_SIZE(error_list); |
| int i; |
| u8 err_id = status[1]; |
| |
| if (*status != STATUS_SIZE) |
| return 0; |
| |
| if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR) |
| return 0; |
| |
| for (i = 0; i < err_list_len; i++) |
| if (error_list[i].value == err_id) |
| break; |
| |
| /* if err_id is not in the error_list then ignore it */ |
| if (i != err_list_len) { |
| dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text); |
| return err_id; |
| } |
| |
| return 0; |
| } |
| |
| static int atmel_ecc_wakeup(struct i2c_client *client) |
| { |
| struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); |
| u8 status[STATUS_RSP_SIZE]; |
| int ret; |
| |
| /* |
| * The device ignores any levels or transitions on the SCL pin when the |
| * device is idle, asleep or during waking up. Don't check for error |
| * when waking up the device. |
| */ |
| i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz); |
| |
| /* |
| * Wait to wake the device. Typical execution times for ecdh and genkey |
| * are around tens of milliseconds. Delta is chosen to 50 microseconds. |
| */ |
| usleep_range(TWHI_MIN, TWHI_MAX); |
| |
| ret = i2c_master_recv(client, status, STATUS_SIZE); |
| if (ret < 0) |
| return ret; |
| |
| return atmel_ecc_status(&client->dev, status); |
| } |
| |
| static int atmel_ecc_sleep(struct i2c_client *client) |
| { |
| u8 sleep = SLEEP_TOKEN; |
| |
| return i2c_master_send(client, &sleep, 1); |
| } |
| |
| static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq, |
| int status) |
| { |
| struct kpp_request *req = areq; |
| struct atmel_ecdh_ctx *ctx = work_data->ctx; |
| struct atmel_ecc_cmd *cmd = &work_data->cmd; |
| size_t copied, n_sz; |
| |
| if (status) |
| goto free_work_data; |
| |
| /* might want less than we've got */ |
| n_sz = min_t(size_t, ctx->n_sz, req->dst_len); |
| |
| /* copy the shared secret */ |
| copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz), |
| &cmd->data[RSP_DATA_IDX], n_sz); |
| if (copied != n_sz) |
| status = -EINVAL; |
| |
| /* fall through */ |
| free_work_data: |
| kzfree(work_data); |
| kpp_request_complete(req, status); |
| } |
| |
| /* |
| * atmel_ecc_send_receive() - send a command to the device and receive its |
| * response. |
| * @client: i2c client device |
| * @cmd : structure used to communicate with the device |
| * |
| * After the device receives a Wake token, a watchdog counter starts within the |
| * device. After the watchdog timer expires, the device enters sleep mode |
| * regardless of whether some I/O transmission or command execution is in |
| * progress. If a command is attempted when insufficient time remains prior to |
| * watchdog timer execution, the device will return the watchdog timeout error |
| * code without attempting to execute the command. There is no way to reset the |
| * counter other than to put the device into sleep or idle mode and then |
| * wake it up again. |
| */ |
| static int atmel_ecc_send_receive(struct i2c_client *client, |
| struct atmel_ecc_cmd *cmd) |
| { |
| struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); |
| int ret; |
| |
| mutex_lock(&i2c_priv->lock); |
| |
| ret = atmel_ecc_wakeup(client); |
| if (ret) |
| goto err; |
| |
| /* send the command */ |
| ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE); |
| if (ret < 0) |
| goto err; |
| |
| /* delay the appropriate amount of time for command to execute */ |
| msleep(cmd->msecs); |
| |
| /* receive the response */ |
| ret = i2c_master_recv(client, cmd->data, cmd->rxsize); |
| if (ret < 0) |
| goto err; |
| |
| /* put the device into low-power mode */ |
| ret = atmel_ecc_sleep(client); |
| if (ret < 0) |
| goto err; |
| |
| mutex_unlock(&i2c_priv->lock); |
| return atmel_ecc_status(&client->dev, cmd->data); |
| err: |
| mutex_unlock(&i2c_priv->lock); |
| return ret; |
| } |
| |
| static void atmel_ecc_work_handler(struct work_struct *work) |
| { |
| struct atmel_ecc_work_data *work_data = |
| container_of(work, struct atmel_ecc_work_data, work); |
| struct atmel_ecc_cmd *cmd = &work_data->cmd; |
| struct i2c_client *client = work_data->ctx->client; |
| int status; |
| |
| status = atmel_ecc_send_receive(client, cmd); |
| work_data->cbk(work_data, work_data->areq, status); |
| } |
| |
| static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data, |
| void (*cbk)(struct atmel_ecc_work_data *work_data, |
| void *areq, int status), |
| void *areq) |
| { |
| work_data->cbk = (void *)cbk; |
| work_data->areq = areq; |
| |
| INIT_WORK(&work_data->work, atmel_ecc_work_handler); |
| schedule_work(&work_data->work); |
| } |
| |
| static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id) |
| { |
| if (curve_id == ECC_CURVE_NIST_P256) |
| return ATMEL_ECC_NIST_P256_N_SIZE; |
| |
| return 0; |
| } |
| |
| /* |
| * A random private key is generated and stored in the device. The device |
| * returns the pair public key. |
| */ |
| static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf, |
| unsigned int len) |
| { |
| struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); |
| struct atmel_ecc_cmd *cmd; |
| void *public_key; |
| struct ecdh params; |
| int ret = -ENOMEM; |
| |
| /* free the old public key, if any */ |
| kfree(ctx->public_key); |
| /* make sure you don't free the old public key twice */ |
| ctx->public_key = NULL; |
| |
| if (crypto_ecdh_decode_key(buf, len, ¶ms) < 0) { |
| dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n"); |
| return -EINVAL; |
| } |
| |
| ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id); |
| if (!ctx->n_sz || params.key_size) { |
| /* fallback to ecdh software implementation */ |
| ctx->do_fallback = true; |
| return crypto_kpp_set_secret(ctx->fallback, buf, len); |
| } |
| |
| cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); |
| if (!cmd) |
| return -ENOMEM; |
| |
| /* |
| * The device only supports NIST P256 ECC keys. The public key size will |
| * always be the same. Use a macro for the key size to avoid unnecessary |
| * computations. |
| */ |
| public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL); |
| if (!public_key) |
| goto free_cmd; |
| |
| ctx->do_fallback = false; |
| ctx->curve_id = params.curve_id; |
| |
| atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2); |
| |
| ret = atmel_ecc_send_receive(ctx->client, cmd); |
| if (ret) |
| goto free_public_key; |
| |
| /* save the public key */ |
| memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE); |
| ctx->public_key = public_key; |
| |
| kfree(cmd); |
| return 0; |
| |
| free_public_key: |
| kfree(public_key); |
| free_cmd: |
| kfree(cmd); |
| return ret; |
| } |
| |
| static int atmel_ecdh_generate_public_key(struct kpp_request *req) |
| { |
| struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); |
| struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); |
| size_t copied, nbytes; |
| int ret = 0; |
| |
| if (ctx->do_fallback) { |
| kpp_request_set_tfm(req, ctx->fallback); |
| return crypto_kpp_generate_public_key(req); |
| } |
| |
| /* might want less than we've got */ |
| nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len); |
| |
| /* public key was saved at private key generation */ |
| copied = sg_copy_from_buffer(req->dst, |
| sg_nents_for_len(req->dst, nbytes), |
| ctx->public_key, nbytes); |
| if (copied != nbytes) |
| ret = -EINVAL; |
| |
| return ret; |
| } |
| |
| static int atmel_ecdh_compute_shared_secret(struct kpp_request *req) |
| { |
| struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); |
| struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); |
| struct atmel_ecc_work_data *work_data; |
| gfp_t gfp; |
| int ret; |
| |
| if (ctx->do_fallback) { |
| kpp_request_set_tfm(req, ctx->fallback); |
| return crypto_kpp_compute_shared_secret(req); |
| } |
| |
| /* must have exactly two points to be on the curve */ |
| if (req->src_len != ATMEL_ECC_PUBKEY_SIZE) |
| return -EINVAL; |
| |
| gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : |
| GFP_ATOMIC; |
| |
| work_data = kmalloc(sizeof(*work_data), gfp); |
| if (!work_data) |
| return -ENOMEM; |
| |
| work_data->ctx = ctx; |
| |
| ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src); |
| if (ret) |
| goto free_work_data; |
| |
| atmel_ecc_enqueue(work_data, atmel_ecdh_done, req); |
| |
| return -EINPROGRESS; |
| |
| free_work_data: |
| kfree(work_data); |
| return ret; |
| } |
| |
| static struct i2c_client *atmel_ecc_i2c_client_alloc(void) |
| { |
| struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL; |
| struct i2c_client *client = ERR_PTR(-ENODEV); |
| int min_tfm_cnt = INT_MAX; |
| int tfm_cnt; |
| |
| spin_lock(&driver_data.i2c_list_lock); |
| |
| if (list_empty(&driver_data.i2c_client_list)) { |
| spin_unlock(&driver_data.i2c_list_lock); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| list_for_each_entry(i2c_priv, &driver_data.i2c_client_list, |
| i2c_client_list_node) { |
| tfm_cnt = atomic_read(&i2c_priv->tfm_count); |
| if (tfm_cnt < min_tfm_cnt) { |
| min_tfm_cnt = tfm_cnt; |
| min_i2c_priv = i2c_priv; |
| } |
| if (!min_tfm_cnt) |
| break; |
| } |
| |
| if (min_i2c_priv) { |
| atomic_inc(&min_i2c_priv->tfm_count); |
| client = min_i2c_priv->client; |
| } |
| |
| spin_unlock(&driver_data.i2c_list_lock); |
| |
| return client; |
| } |
| |
| static void atmel_ecc_i2c_client_free(struct i2c_client *client) |
| { |
| struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); |
| |
| atomic_dec(&i2c_priv->tfm_count); |
| } |
| |
| static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm) |
| { |
| const char *alg = kpp_alg_name(tfm); |
| struct crypto_kpp *fallback; |
| struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| ctx->client = atmel_ecc_i2c_client_alloc(); |
| if (IS_ERR(ctx->client)) { |
| pr_err("tfm - i2c_client binding failed\n"); |
| return PTR_ERR(ctx->client); |
| } |
| |
| fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(fallback)) { |
| dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n", |
| alg, PTR_ERR(fallback)); |
| return PTR_ERR(fallback); |
| } |
| |
| crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm)); |
| ctx->fallback = fallback; |
| |
| return 0; |
| } |
| |
| static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm) |
| { |
| struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| kfree(ctx->public_key); |
| crypto_free_kpp(ctx->fallback); |
| atmel_ecc_i2c_client_free(ctx->client); |
| } |
| |
| static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm) |
| { |
| struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); |
| |
| if (ctx->fallback) |
| return crypto_kpp_maxsize(ctx->fallback); |
| |
| /* |
| * The device only supports NIST P256 ECC keys. The public key size will |
| * always be the same. Use a macro for the key size to avoid unnecessary |
| * computations. |
| */ |
| return ATMEL_ECC_PUBKEY_SIZE; |
| } |
| |
| static struct kpp_alg atmel_ecdh = { |
| .set_secret = atmel_ecdh_set_secret, |
| .generate_public_key = atmel_ecdh_generate_public_key, |
| .compute_shared_secret = atmel_ecdh_compute_shared_secret, |
| .init = atmel_ecdh_init_tfm, |
| .exit = atmel_ecdh_exit_tfm, |
| .max_size = atmel_ecdh_max_size, |
| .base = { |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK, |
| .cra_name = "ecdh", |
| .cra_driver_name = "atmel-ecdh", |
| .cra_priority = ATMEL_ECC_PRIORITY, |
| .cra_module = THIS_MODULE, |
| .cra_ctxsize = sizeof(struct atmel_ecdh_ctx), |
| }, |
| }; |
| |
| static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate) |
| { |
| u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC); |
| |
| /* return the size of the wake_token in bytes */ |
| return DIV_ROUND_UP(no_of_bits, 8); |
| } |
| |
| static int device_sanity_check(struct i2c_client *client) |
| { |
| struct atmel_ecc_cmd *cmd; |
| int ret; |
| |
| cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); |
| if (!cmd) |
| return -ENOMEM; |
| |
| atmel_ecc_init_read_cmd(cmd); |
| |
| ret = atmel_ecc_send_receive(client, cmd); |
| if (ret) |
| goto free_cmd; |
| |
| /* |
| * It is vital that the Configuration, Data and OTP zones be locked |
| * prior to release into the field of the system containing the device. |
| * Failure to lock these zones may permit modification of any secret |
| * keys and may lead to other security problems. |
| */ |
| if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) { |
| dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n"); |
| ret = -ENOTSUPP; |
| } |
| |
| /* fall through */ |
| free_cmd: |
| kfree(cmd); |
| return ret; |
| } |
| |
| static int atmel_ecc_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct atmel_ecc_i2c_client_priv *i2c_priv; |
| struct device *dev = &client->dev; |
| int ret; |
| u32 bus_clk_rate; |
| |
| if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { |
| dev_err(dev, "I2C_FUNC_I2C not supported\n"); |
| return -ENODEV; |
| } |
| |
| ret = of_property_read_u32(client->adapter->dev.of_node, |
| "clock-frequency", &bus_clk_rate); |
| if (ret) { |
| dev_err(dev, "of: failed to read clock-frequency property\n"); |
| return ret; |
| } |
| |
| if (bus_clk_rate > 1000000L) { |
| dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n", |
| bus_clk_rate); |
| return -EINVAL; |
| } |
| |
| i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL); |
| if (!i2c_priv) |
| return -ENOMEM; |
| |
| i2c_priv->client = client; |
| mutex_init(&i2c_priv->lock); |
| |
| /* |
| * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate - |
| * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz |
| * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE. |
| */ |
| i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate); |
| |
| memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token)); |
| |
| atomic_set(&i2c_priv->tfm_count, 0); |
| |
| i2c_set_clientdata(client, i2c_priv); |
| |
| ret = device_sanity_check(client); |
| if (ret) |
| return ret; |
| |
| spin_lock(&driver_data.i2c_list_lock); |
| list_add_tail(&i2c_priv->i2c_client_list_node, |
| &driver_data.i2c_client_list); |
| spin_unlock(&driver_data.i2c_list_lock); |
| |
| ret = crypto_register_kpp(&atmel_ecdh); |
| if (ret) { |
| spin_lock(&driver_data.i2c_list_lock); |
| list_del(&i2c_priv->i2c_client_list_node); |
| spin_unlock(&driver_data.i2c_list_lock); |
| |
| dev_err(dev, "%s alg registration failed\n", |
| atmel_ecdh.base.cra_driver_name); |
| } else { |
| dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n"); |
| } |
| |
| return ret; |
| } |
| |
| static int atmel_ecc_remove(struct i2c_client *client) |
| { |
| struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); |
| |
| /* Return EBUSY if i2c client already allocated. */ |
| if (atomic_read(&i2c_priv->tfm_count)) { |
| dev_err(&client->dev, "Device is busy\n"); |
| return -EBUSY; |
| } |
| |
| crypto_unregister_kpp(&atmel_ecdh); |
| |
| spin_lock(&driver_data.i2c_list_lock); |
| list_del(&i2c_priv->i2c_client_list_node); |
| spin_unlock(&driver_data.i2c_list_lock); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id atmel_ecc_dt_ids[] = { |
| { |
| .compatible = "atmel,atecc508a", |
| }, { |
| /* sentinel */ |
| } |
| }; |
| MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids); |
| #endif |
| |
| static const struct i2c_device_id atmel_ecc_id[] = { |
| { "atecc508a", 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, atmel_ecc_id); |
| |
| static struct i2c_driver atmel_ecc_driver = { |
| .driver = { |
| .name = "atmel-ecc", |
| .of_match_table = of_match_ptr(atmel_ecc_dt_ids), |
| }, |
| .probe = atmel_ecc_probe, |
| .remove = atmel_ecc_remove, |
| .id_table = atmel_ecc_id, |
| }; |
| |
| static int __init atmel_ecc_init(void) |
| { |
| spin_lock_init(&driver_data.i2c_list_lock); |
| INIT_LIST_HEAD(&driver_data.i2c_client_list); |
| return i2c_add_driver(&atmel_ecc_driver); |
| } |
| |
| static void __exit atmel_ecc_exit(void) |
| { |
| flush_scheduled_work(); |
| i2c_del_driver(&atmel_ecc_driver); |
| } |
| |
| module_init(atmel_ecc_init); |
| module_exit(atmel_ecc_exit); |
| |
| MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>"); |
| MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver"); |
| MODULE_LICENSE("GPL v2"); |