| /* | 
 |  * QLogic Fibre Channel HBA Driver | 
 |  * Copyright (c)  2003-2013 QLogic Corporation | 
 |  * | 
 |  * See LICENSE.qla2xxx for copyright and licensing details. | 
 |  */ | 
 | #include "qla_def.h" | 
 |  | 
 | #include <linux/delay.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | /* | 
 |  * NVRAM support routines | 
 |  */ | 
 |  | 
 | /** | 
 |  * qla2x00_lock_nvram_access() - | 
 |  * @ha: HA context | 
 |  */ | 
 | static void | 
 | qla2x00_lock_nvram_access(struct qla_hw_data *ha) | 
 | { | 
 | 	uint16_t data; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) { | 
 | 		data = RD_REG_WORD(®->nvram); | 
 | 		while (data & NVR_BUSY) { | 
 | 			udelay(100); | 
 | 			data = RD_REG_WORD(®->nvram); | 
 | 		} | 
 |  | 
 | 		/* Lock resource */ | 
 | 		WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1); | 
 | 		RD_REG_WORD(®->u.isp2300.host_semaphore); | 
 | 		udelay(5); | 
 | 		data = RD_REG_WORD(®->u.isp2300.host_semaphore); | 
 | 		while ((data & BIT_0) == 0) { | 
 | 			/* Lock failed */ | 
 | 			udelay(100); | 
 | 			WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1); | 
 | 			RD_REG_WORD(®->u.isp2300.host_semaphore); | 
 | 			udelay(5); | 
 | 			data = RD_REG_WORD(®->u.isp2300.host_semaphore); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_unlock_nvram_access() - | 
 |  * @ha: HA context | 
 |  */ | 
 | static void | 
 | qla2x00_unlock_nvram_access(struct qla_hw_data *ha) | 
 | { | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) { | 
 | 		WRT_REG_WORD(®->u.isp2300.host_semaphore, 0); | 
 | 		RD_REG_WORD(®->u.isp2300.host_semaphore); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_nv_write() - Prepare for NVRAM read/write operation. | 
 |  * @ha: HA context | 
 |  * @data: Serial interface selector | 
 |  */ | 
 | static void | 
 | qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data) | 
 | { | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE); | 
 | 	RD_REG_WORD(®->nvram);		/* PCI Posting. */ | 
 | 	NVRAM_DELAY(); | 
 | 	WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_CLOCK | | 
 | 	    NVR_WRT_ENABLE); | 
 | 	RD_REG_WORD(®->nvram);		/* PCI Posting. */ | 
 | 	NVRAM_DELAY(); | 
 | 	WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE); | 
 | 	RD_REG_WORD(®->nvram);		/* PCI Posting. */ | 
 | 	NVRAM_DELAY(); | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from | 
 |  *	NVRAM. | 
 |  * @ha: HA context | 
 |  * @nv_cmd: NVRAM command | 
 |  * | 
 |  * Bit definitions for NVRAM command: | 
 |  * | 
 |  *	Bit 26     = start bit | 
 |  *	Bit 25, 24 = opcode | 
 |  *	Bit 23-16  = address | 
 |  *	Bit 15-0   = write data | 
 |  * | 
 |  * Returns the word read from nvram @addr. | 
 |  */ | 
 | static uint16_t | 
 | qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd) | 
 | { | 
 | 	uint8_t		cnt; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 | 	uint16_t	data = 0; | 
 | 	uint16_t	reg_data; | 
 |  | 
 | 	/* Send command to NVRAM. */ | 
 | 	nv_cmd <<= 5; | 
 | 	for (cnt = 0; cnt < 11; cnt++) { | 
 | 		if (nv_cmd & BIT_31) | 
 | 			qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 | 		else | 
 | 			qla2x00_nv_write(ha, 0); | 
 | 		nv_cmd <<= 1; | 
 | 	} | 
 |  | 
 | 	/* Read data from NVRAM. */ | 
 | 	for (cnt = 0; cnt < 16; cnt++) { | 
 | 		WRT_REG_WORD(®->nvram, NVR_SELECT | NVR_CLOCK); | 
 | 		RD_REG_WORD(®->nvram);	/* PCI Posting. */ | 
 | 		NVRAM_DELAY(); | 
 | 		data <<= 1; | 
 | 		reg_data = RD_REG_WORD(®->nvram); | 
 | 		if (reg_data & NVR_DATA_IN) | 
 | 			data |= BIT_0; | 
 | 		WRT_REG_WORD(®->nvram, NVR_SELECT); | 
 | 		RD_REG_WORD(®->nvram);	/* PCI Posting. */ | 
 | 		NVRAM_DELAY(); | 
 | 	} | 
 |  | 
 | 	/* Deselect chip. */ | 
 | 	WRT_REG_WORD(®->nvram, NVR_DESELECT); | 
 | 	RD_REG_WORD(®->nvram);		/* PCI Posting. */ | 
 | 	NVRAM_DELAY(); | 
 |  | 
 | 	return data; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the | 
 |  *	request routine to get the word from NVRAM. | 
 |  * @ha: HA context | 
 |  * @addr: Address in NVRAM to read | 
 |  * | 
 |  * Returns the word read from nvram @addr. | 
 |  */ | 
 | static uint16_t | 
 | qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr) | 
 | { | 
 | 	uint16_t	data; | 
 | 	uint32_t	nv_cmd; | 
 |  | 
 | 	nv_cmd = addr << 16; | 
 | 	nv_cmd |= NV_READ_OP; | 
 | 	data = qla2x00_nvram_request(ha, nv_cmd); | 
 |  | 
 | 	return (data); | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_nv_deselect() - Deselect NVRAM operations. | 
 |  * @ha: HA context | 
 |  */ | 
 | static void | 
 | qla2x00_nv_deselect(struct qla_hw_data *ha) | 
 | { | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	WRT_REG_WORD(®->nvram, NVR_DESELECT); | 
 | 	RD_REG_WORD(®->nvram);		/* PCI Posting. */ | 
 | 	NVRAM_DELAY(); | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_write_nvram_word() - Write NVRAM data. | 
 |  * @ha: HA context | 
 |  * @addr: Address in NVRAM to write | 
 |  * @data: word to program | 
 |  */ | 
 | static void | 
 | qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data) | 
 | { | 
 | 	int count; | 
 | 	uint16_t word; | 
 | 	uint32_t nv_cmd, wait_cnt; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 | 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev); | 
 |  | 
 | 	qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 | 	qla2x00_nv_write(ha, 0); | 
 | 	qla2x00_nv_write(ha, 0); | 
 |  | 
 | 	for (word = 0; word < 8; word++) | 
 | 		qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 |  | 
 | 	/* Write data */ | 
 | 	nv_cmd = (addr << 16) | NV_WRITE_OP; | 
 | 	nv_cmd |= data; | 
 | 	nv_cmd <<= 5; | 
 | 	for (count = 0; count < 27; count++) { | 
 | 		if (nv_cmd & BIT_31) | 
 | 			qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 | 		else | 
 | 			qla2x00_nv_write(ha, 0); | 
 |  | 
 | 		nv_cmd <<= 1; | 
 | 	} | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 |  | 
 | 	/* Wait for NVRAM to become ready */ | 
 | 	WRT_REG_WORD(®->nvram, NVR_SELECT); | 
 | 	RD_REG_WORD(®->nvram);		/* PCI Posting. */ | 
 | 	wait_cnt = NVR_WAIT_CNT; | 
 | 	do { | 
 | 		if (!--wait_cnt) { | 
 | 			ql_dbg(ql_dbg_user, vha, 0x708d, | 
 | 			    "NVRAM didn't go ready...\n"); | 
 | 			break; | 
 | 		} | 
 | 		NVRAM_DELAY(); | 
 | 		word = RD_REG_WORD(®->nvram); | 
 | 	} while ((word & NVR_DATA_IN) == 0); | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 |  | 
 | 	/* Disable writes */ | 
 | 	qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 | 	for (count = 0; count < 10; count++) | 
 | 		qla2x00_nv_write(ha, 0); | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 | } | 
 |  | 
 | static int | 
 | qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr, | 
 | 	uint16_t data, uint32_t tmo) | 
 | { | 
 | 	int ret, count; | 
 | 	uint16_t word; | 
 | 	uint32_t nv_cmd; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	ret = QLA_SUCCESS; | 
 |  | 
 | 	qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 | 	qla2x00_nv_write(ha, 0); | 
 | 	qla2x00_nv_write(ha, 0); | 
 |  | 
 | 	for (word = 0; word < 8; word++) | 
 | 		qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 |  | 
 | 	/* Write data */ | 
 | 	nv_cmd = (addr << 16) | NV_WRITE_OP; | 
 | 	nv_cmd |= data; | 
 | 	nv_cmd <<= 5; | 
 | 	for (count = 0; count < 27; count++) { | 
 | 		if (nv_cmd & BIT_31) | 
 | 			qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 | 		else | 
 | 			qla2x00_nv_write(ha, 0); | 
 |  | 
 | 		nv_cmd <<= 1; | 
 | 	} | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 |  | 
 | 	/* Wait for NVRAM to become ready */ | 
 | 	WRT_REG_WORD(®->nvram, NVR_SELECT); | 
 | 	RD_REG_WORD(®->nvram);		/* PCI Posting. */ | 
 | 	do { | 
 | 		NVRAM_DELAY(); | 
 | 		word = RD_REG_WORD(®->nvram); | 
 | 		if (!--tmo) { | 
 | 			ret = QLA_FUNCTION_FAILED; | 
 | 			break; | 
 | 		} | 
 | 	} while ((word & NVR_DATA_IN) == 0); | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 |  | 
 | 	/* Disable writes */ | 
 | 	qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 | 	for (count = 0; count < 10; count++) | 
 | 		qla2x00_nv_write(ha, 0); | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_clear_nvram_protection() - | 
 |  * @ha: HA context | 
 |  */ | 
 | static int | 
 | qla2x00_clear_nvram_protection(struct qla_hw_data *ha) | 
 | { | 
 | 	int ret, stat; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 | 	uint32_t word, wait_cnt; | 
 | 	uint16_t wprot, wprot_old; | 
 | 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev); | 
 |  | 
 | 	/* Clear NVRAM write protection. */ | 
 | 	ret = QLA_FUNCTION_FAILED; | 
 |  | 
 | 	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base)); | 
 | 	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base, | 
 | 	    __constant_cpu_to_le16(0x1234), 100000); | 
 | 	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base)); | 
 | 	if (stat != QLA_SUCCESS || wprot != 0x1234) { | 
 | 		/* Write enable. */ | 
 | 		qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 | 		qla2x00_nv_write(ha, 0); | 
 | 		qla2x00_nv_write(ha, 0); | 
 | 		for (word = 0; word < 8; word++) | 
 | 			qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 |  | 
 | 		qla2x00_nv_deselect(ha); | 
 |  | 
 | 		/* Enable protection register. */ | 
 | 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); | 
 | 		qla2x00_nv_write(ha, NVR_PR_ENABLE); | 
 | 		qla2x00_nv_write(ha, NVR_PR_ENABLE); | 
 | 		for (word = 0; word < 8; word++) | 
 | 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); | 
 |  | 
 | 		qla2x00_nv_deselect(ha); | 
 |  | 
 | 		/* Clear protection register (ffff is cleared). */ | 
 | 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); | 
 | 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); | 
 | 		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); | 
 | 		for (word = 0; word < 8; word++) | 
 | 			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); | 
 |  | 
 | 		qla2x00_nv_deselect(ha); | 
 |  | 
 | 		/* Wait for NVRAM to become ready. */ | 
 | 		WRT_REG_WORD(®->nvram, NVR_SELECT); | 
 | 		RD_REG_WORD(®->nvram);	/* PCI Posting. */ | 
 | 		wait_cnt = NVR_WAIT_CNT; | 
 | 		do { | 
 | 			if (!--wait_cnt) { | 
 | 				ql_dbg(ql_dbg_user, vha, 0x708e, | 
 | 				    "NVRAM didn't go ready...\n"); | 
 | 				break; | 
 | 			} | 
 | 			NVRAM_DELAY(); | 
 | 			word = RD_REG_WORD(®->nvram); | 
 | 		} while ((word & NVR_DATA_IN) == 0); | 
 |  | 
 | 		if (wait_cnt) | 
 | 			ret = QLA_SUCCESS; | 
 | 	} else | 
 | 		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat) | 
 | { | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 | 	uint32_t word, wait_cnt; | 
 | 	scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev); | 
 |  | 
 | 	if (stat != QLA_SUCCESS) | 
 | 		return; | 
 |  | 
 | 	/* Set NVRAM write protection. */ | 
 | 	/* Write enable. */ | 
 | 	qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 | 	qla2x00_nv_write(ha, 0); | 
 | 	qla2x00_nv_write(ha, 0); | 
 | 	for (word = 0; word < 8; word++) | 
 | 		qla2x00_nv_write(ha, NVR_DATA_OUT); | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 |  | 
 | 	/* Enable protection register. */ | 
 | 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); | 
 | 	qla2x00_nv_write(ha, NVR_PR_ENABLE); | 
 | 	qla2x00_nv_write(ha, NVR_PR_ENABLE); | 
 | 	for (word = 0; word < 8; word++) | 
 | 		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE); | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 |  | 
 | 	/* Enable protection register. */ | 
 | 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); | 
 | 	qla2x00_nv_write(ha, NVR_PR_ENABLE); | 
 | 	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT); | 
 | 	for (word = 0; word < 8; word++) | 
 | 		qla2x00_nv_write(ha, NVR_PR_ENABLE); | 
 |  | 
 | 	qla2x00_nv_deselect(ha); | 
 |  | 
 | 	/* Wait for NVRAM to become ready. */ | 
 | 	WRT_REG_WORD(®->nvram, NVR_SELECT); | 
 | 	RD_REG_WORD(®->nvram);		/* PCI Posting. */ | 
 | 	wait_cnt = NVR_WAIT_CNT; | 
 | 	do { | 
 | 		if (!--wait_cnt) { | 
 | 			ql_dbg(ql_dbg_user, vha, 0x708f, | 
 | 			    "NVRAM didn't go ready...\n"); | 
 | 			break; | 
 | 		} | 
 | 		NVRAM_DELAY(); | 
 | 		word = RD_REG_WORD(®->nvram); | 
 | 	} while ((word & NVR_DATA_IN) == 0); | 
 | } | 
 |  | 
 |  | 
 | /*****************************************************************************/ | 
 | /* Flash Manipulation Routines                                               */ | 
 | /*****************************************************************************/ | 
 |  | 
 | static inline uint32_t | 
 | flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr) | 
 | { | 
 | 	return ha->flash_conf_off | faddr; | 
 | } | 
 |  | 
 | static inline uint32_t | 
 | flash_data_addr(struct qla_hw_data *ha, uint32_t faddr) | 
 | { | 
 | 	return ha->flash_data_off | faddr; | 
 | } | 
 |  | 
 | static inline uint32_t | 
 | nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr) | 
 | { | 
 | 	return ha->nvram_conf_off | naddr; | 
 | } | 
 |  | 
 | static inline uint32_t | 
 | nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr) | 
 | { | 
 | 	return ha->nvram_data_off | naddr; | 
 | } | 
 |  | 
 | static uint32_t | 
 | qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr) | 
 | { | 
 | 	int rval; | 
 | 	uint32_t cnt, data; | 
 | 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; | 
 |  | 
 | 	WRT_REG_DWORD(®->flash_addr, addr & ~FARX_DATA_FLAG); | 
 | 	/* Wait for READ cycle to complete. */ | 
 | 	rval = QLA_SUCCESS; | 
 | 	for (cnt = 3000; | 
 | 	    (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) == 0 && | 
 | 	    rval == QLA_SUCCESS; cnt--) { | 
 | 		if (cnt) | 
 | 			udelay(10); | 
 | 		else | 
 | 			rval = QLA_FUNCTION_TIMEOUT; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* TODO: What happens if we time out? */ | 
 | 	data = 0xDEADDEAD; | 
 | 	if (rval == QLA_SUCCESS) | 
 | 		data = RD_REG_DWORD(®->flash_data); | 
 |  | 
 | 	return data; | 
 | } | 
 |  | 
 | uint32_t * | 
 | qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr, | 
 |     uint32_t dwords) | 
 | { | 
 | 	uint32_t i; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	/* Dword reads to flash. */ | 
 | 	for (i = 0; i < dwords; i++, faddr++) | 
 | 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, | 
 | 		    flash_data_addr(ha, faddr))); | 
 |  | 
 | 	return dwptr; | 
 | } | 
 |  | 
 | static int | 
 | qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data) | 
 | { | 
 | 	int rval; | 
 | 	uint32_t cnt; | 
 | 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; | 
 |  | 
 | 	WRT_REG_DWORD(®->flash_data, data); | 
 | 	RD_REG_DWORD(®->flash_data);		/* PCI Posting. */ | 
 | 	WRT_REG_DWORD(®->flash_addr, addr | FARX_DATA_FLAG); | 
 | 	/* Wait for Write cycle to complete. */ | 
 | 	rval = QLA_SUCCESS; | 
 | 	for (cnt = 500000; (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) && | 
 | 	    rval == QLA_SUCCESS; cnt--) { | 
 | 		if (cnt) | 
 | 			udelay(10); | 
 | 		else | 
 | 			rval = QLA_FUNCTION_TIMEOUT; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return rval; | 
 | } | 
 |  | 
 | static void | 
 | qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id, | 
 |     uint8_t *flash_id) | 
 | { | 
 | 	uint32_t ids; | 
 |  | 
 | 	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab)); | 
 | 	*man_id = LSB(ids); | 
 | 	*flash_id = MSB(ids); | 
 |  | 
 | 	/* Check if man_id and flash_id are valid. */ | 
 | 	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) { | 
 | 		/* Read information using 0x9f opcode | 
 | 		 * Device ID, Mfg ID would be read in the format: | 
 | 		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID> | 
 | 		 * Example: ATMEL 0x00 01 45 1F | 
 | 		 * Extract MFG and Dev ID from last two bytes. | 
 | 		 */ | 
 | 		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f)); | 
 | 		*man_id = LSB(ids); | 
 | 		*flash_id = MSB(ids); | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start) | 
 | { | 
 | 	const char *loc, *locations[] = { "DEF", "PCI" }; | 
 | 	uint32_t pcihdr, pcids; | 
 | 	uint32_t *dcode; | 
 | 	uint8_t *buf, *bcode, last_image; | 
 | 	uint16_t cnt, chksum, *wptr; | 
 | 	struct qla_flt_location *fltl; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct req_que *req = ha->req_q_map[0]; | 
 |  | 
 | 	/* | 
 | 	 * FLT-location structure resides after the last PCI region. | 
 | 	 */ | 
 |  | 
 | 	/* Begin with sane defaults. */ | 
 | 	loc = locations[0]; | 
 | 	*start = 0; | 
 | 	if (IS_QLA24XX_TYPE(ha)) | 
 | 		*start = FA_FLASH_LAYOUT_ADDR_24; | 
 | 	else if (IS_QLA25XX(ha)) | 
 | 		*start = FA_FLASH_LAYOUT_ADDR; | 
 | 	else if (IS_QLA81XX(ha)) | 
 | 		*start = FA_FLASH_LAYOUT_ADDR_81; | 
 | 	else if (IS_QLA82XX(ha)) { | 
 | 		*start = FA_FLASH_LAYOUT_ADDR_82; | 
 | 		goto end; | 
 | 	} else if (IS_QLA83XX(ha)) { | 
 | 		*start = FA_FLASH_LAYOUT_ADDR_83; | 
 | 		goto end; | 
 | 	} | 
 | 	/* Begin with first PCI expansion ROM header. */ | 
 | 	buf = (uint8_t *)req->ring; | 
 | 	dcode = (uint32_t *)req->ring; | 
 | 	pcihdr = 0; | 
 | 	last_image = 1; | 
 | 	do { | 
 | 		/* Verify PCI expansion ROM header. */ | 
 | 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20); | 
 | 		bcode = buf + (pcihdr % 4); | 
 | 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) | 
 | 			goto end; | 
 |  | 
 | 		/* Locate PCI data structure. */ | 
 | 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]); | 
 | 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20); | 
 | 		bcode = buf + (pcihdr % 4); | 
 |  | 
 | 		/* Validate signature of PCI data structure. */ | 
 | 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' || | 
 | 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') | 
 | 			goto end; | 
 |  | 
 | 		last_image = bcode[0x15] & BIT_7; | 
 |  | 
 | 		/* Locate next PCI expansion ROM. */ | 
 | 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512; | 
 | 	} while (!last_image); | 
 |  | 
 | 	/* Now verify FLT-location structure. */ | 
 | 	fltl = (struct qla_flt_location *)req->ring; | 
 | 	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, | 
 | 	    sizeof(struct qla_flt_location) >> 2); | 
 | 	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' || | 
 | 	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T') | 
 | 		goto end; | 
 |  | 
 | 	wptr = (uint16_t *)req->ring; | 
 | 	cnt = sizeof(struct qla_flt_location) >> 1; | 
 | 	for (chksum = 0; cnt; cnt--) | 
 | 		chksum += le16_to_cpu(*wptr++); | 
 | 	if (chksum) { | 
 | 		ql_log(ql_log_fatal, vha, 0x0045, | 
 | 		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum); | 
 | 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e, | 
 | 		    buf, sizeof(struct qla_flt_location)); | 
 | 		return QLA_FUNCTION_FAILED; | 
 | 	} | 
 |  | 
 | 	/* Good data.  Use specified location. */ | 
 | 	loc = locations[1]; | 
 | 	*start = (le16_to_cpu(fltl->start_hi) << 16 | | 
 | 	    le16_to_cpu(fltl->start_lo)) >> 2; | 
 | end: | 
 | 	ql_dbg(ql_dbg_init, vha, 0x0046, | 
 | 	    "FLTL[%s] = 0x%x.\n", | 
 | 	    loc, *start); | 
 | 	return QLA_SUCCESS; | 
 | } | 
 |  | 
 | static void | 
 | qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr) | 
 | { | 
 | 	const char *loc, *locations[] = { "DEF", "FLT" }; | 
 | 	const uint32_t def_fw[] = | 
 | 		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 }; | 
 | 	const uint32_t def_boot[] = | 
 | 		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 }; | 
 | 	const uint32_t def_vpd_nvram[] = | 
 | 		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 }; | 
 | 	const uint32_t def_vpd0[] = | 
 | 		{ 0, 0, FA_VPD0_ADDR_81 }; | 
 | 	const uint32_t def_vpd1[] = | 
 | 		{ 0, 0, FA_VPD1_ADDR_81 }; | 
 | 	const uint32_t def_nvram0[] = | 
 | 		{ 0, 0, FA_NVRAM0_ADDR_81 }; | 
 | 	const uint32_t def_nvram1[] = | 
 | 		{ 0, 0, FA_NVRAM1_ADDR_81 }; | 
 | 	const uint32_t def_fdt[] = | 
 | 		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR, | 
 | 			FA_FLASH_DESCR_ADDR_81 }; | 
 | 	const uint32_t def_npiv_conf0[] = | 
 | 		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR, | 
 | 			FA_NPIV_CONF0_ADDR_81 }; | 
 | 	const uint32_t def_npiv_conf1[] = | 
 | 		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR, | 
 | 			FA_NPIV_CONF1_ADDR_81 }; | 
 | 	const uint32_t fcp_prio_cfg0[] = | 
 | 		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25, | 
 | 			0 }; | 
 | 	const uint32_t fcp_prio_cfg1[] = | 
 | 		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25, | 
 | 			0 }; | 
 | 	uint32_t def; | 
 | 	uint16_t *wptr; | 
 | 	uint16_t cnt, chksum; | 
 | 	uint32_t start; | 
 | 	struct qla_flt_header *flt; | 
 | 	struct qla_flt_region *region; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct req_que *req = ha->req_q_map[0]; | 
 |  | 
 | 	def = 0; | 
 | 	if (IS_QLA25XX(ha)) | 
 | 		def = 1; | 
 | 	else if (IS_QLA81XX(ha)) | 
 | 		def = 2; | 
 |  | 
 | 	/* Assign FCP prio region since older adapters may not have FLT, or | 
 | 	   FCP prio region in it's FLT. | 
 | 	 */ | 
 | 	ha->flt_region_fcp_prio = ha->flags.port0 ? | 
 | 	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def]; | 
 |  | 
 | 	ha->flt_region_flt = flt_addr; | 
 | 	wptr = (uint16_t *)req->ring; | 
 | 	flt = (struct qla_flt_header *)req->ring; | 
 | 	region = (struct qla_flt_region *)&flt[1]; | 
 | 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring, | 
 | 	    flt_addr << 2, OPTROM_BURST_SIZE); | 
 | 	if (*wptr == __constant_cpu_to_le16(0xffff)) | 
 | 		goto no_flash_data; | 
 | 	if (flt->version != __constant_cpu_to_le16(1)) { | 
 | 		ql_log(ql_log_warn, vha, 0x0047, | 
 | 		    "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n", | 
 | 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length), | 
 | 		    le16_to_cpu(flt->checksum)); | 
 | 		goto no_flash_data; | 
 | 	} | 
 |  | 
 | 	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1; | 
 | 	for (chksum = 0; cnt; cnt--) | 
 | 		chksum += le16_to_cpu(*wptr++); | 
 | 	if (chksum) { | 
 | 		ql_log(ql_log_fatal, vha, 0x0048, | 
 | 		    "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n", | 
 | 		    le16_to_cpu(flt->version), le16_to_cpu(flt->length), | 
 | 		    le16_to_cpu(flt->checksum)); | 
 | 		goto no_flash_data; | 
 | 	} | 
 |  | 
 | 	loc = locations[1]; | 
 | 	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region); | 
 | 	for ( ; cnt; cnt--, region++) { | 
 | 		/* Store addresses as DWORD offsets. */ | 
 | 		start = le32_to_cpu(region->start) >> 2; | 
 | 		ql_dbg(ql_dbg_init, vha, 0x0049, | 
 | 		    "FLT[%02x]: start=0x%x " | 
 | 		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), | 
 | 		    start, le32_to_cpu(region->end) >> 2, | 
 | 		    le32_to_cpu(region->size)); | 
 |  | 
 | 		switch (le32_to_cpu(region->code) & 0xff) { | 
 | 		case FLT_REG_FCOE_FW: | 
 | 			if (!IS_QLA8031(ha)) | 
 | 				break; | 
 | 			ha->flt_region_fw = start; | 
 | 			break; | 
 | 		case FLT_REG_FW: | 
 | 			if (IS_QLA8031(ha)) | 
 | 				break; | 
 | 			ha->flt_region_fw = start; | 
 | 			break; | 
 | 		case FLT_REG_BOOT_CODE: | 
 | 			ha->flt_region_boot = start; | 
 | 			break; | 
 | 		case FLT_REG_VPD_0: | 
 | 			if (IS_QLA8031(ha)) | 
 | 				break; | 
 | 			ha->flt_region_vpd_nvram = start; | 
 | 			if (IS_QLA82XX(ha)) | 
 | 				break; | 
 | 			if (ha->flags.port0) | 
 | 				ha->flt_region_vpd = start; | 
 | 			break; | 
 | 		case FLT_REG_VPD_1: | 
 | 			if (IS_QLA82XX(ha) || IS_QLA8031(ha)) | 
 | 				break; | 
 | 			if (!ha->flags.port0) | 
 | 				ha->flt_region_vpd = start; | 
 | 			break; | 
 | 		case FLT_REG_NVRAM_0: | 
 | 			if (IS_QLA8031(ha)) | 
 | 				break; | 
 | 			if (ha->flags.port0) | 
 | 				ha->flt_region_nvram = start; | 
 | 			break; | 
 | 		case FLT_REG_NVRAM_1: | 
 | 			if (IS_QLA8031(ha)) | 
 | 				break; | 
 | 			if (!ha->flags.port0) | 
 | 				ha->flt_region_nvram = start; | 
 | 			break; | 
 | 		case FLT_REG_FDT: | 
 | 			ha->flt_region_fdt = start; | 
 | 			break; | 
 | 		case FLT_REG_NPIV_CONF_0: | 
 | 			if (ha->flags.port0) | 
 | 				ha->flt_region_npiv_conf = start; | 
 | 			break; | 
 | 		case FLT_REG_NPIV_CONF_1: | 
 | 			if (!ha->flags.port0) | 
 | 				ha->flt_region_npiv_conf = start; | 
 | 			break; | 
 | 		case FLT_REG_GOLD_FW: | 
 | 			ha->flt_region_gold_fw = start; | 
 | 			break; | 
 | 		case FLT_REG_FCP_PRIO_0: | 
 | 			if (ha->flags.port0) | 
 | 				ha->flt_region_fcp_prio = start; | 
 | 			break; | 
 | 		case FLT_REG_FCP_PRIO_1: | 
 | 			if (!ha->flags.port0) | 
 | 				ha->flt_region_fcp_prio = start; | 
 | 			break; | 
 | 		case FLT_REG_BOOT_CODE_82XX: | 
 | 			ha->flt_region_boot = start; | 
 | 			break; | 
 | 		case FLT_REG_FW_82XX: | 
 | 			ha->flt_region_fw = start; | 
 | 			break; | 
 | 		case FLT_REG_GOLD_FW_82XX: | 
 | 			ha->flt_region_gold_fw = start; | 
 | 			break; | 
 | 		case FLT_REG_BOOTLOAD_82XX: | 
 | 			ha->flt_region_bootload = start; | 
 | 			break; | 
 | 		case FLT_REG_VPD_8XXX: | 
 | 			if (IS_CNA_CAPABLE(ha)) | 
 | 				ha->flt_region_vpd = start; | 
 | 			break; | 
 | 		case FLT_REG_FCOE_NVRAM_0: | 
 | 			if (!IS_QLA8031(ha)) | 
 | 				break; | 
 | 			if (ha->flags.port0) | 
 | 				ha->flt_region_nvram = start; | 
 | 			break; | 
 | 		case FLT_REG_FCOE_NVRAM_1: | 
 | 			if (!IS_QLA8031(ha)) | 
 | 				break; | 
 | 			if (!ha->flags.port0) | 
 | 				ha->flt_region_nvram = start; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	goto done; | 
 |  | 
 | no_flash_data: | 
 | 	/* Use hardcoded defaults. */ | 
 | 	loc = locations[0]; | 
 | 	ha->flt_region_fw = def_fw[def]; | 
 | 	ha->flt_region_boot = def_boot[def]; | 
 | 	ha->flt_region_vpd_nvram = def_vpd_nvram[def]; | 
 | 	ha->flt_region_vpd = ha->flags.port0 ? | 
 | 	    def_vpd0[def] : def_vpd1[def]; | 
 | 	ha->flt_region_nvram = ha->flags.port0 ? | 
 | 	    def_nvram0[def] : def_nvram1[def]; | 
 | 	ha->flt_region_fdt = def_fdt[def]; | 
 | 	ha->flt_region_npiv_conf = ha->flags.port0 ? | 
 | 	    def_npiv_conf0[def] : def_npiv_conf1[def]; | 
 | done: | 
 | 	ql_dbg(ql_dbg_init, vha, 0x004a, | 
 | 	    "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x " | 
 | 	    "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n", | 
 | 	    loc, ha->flt_region_boot, ha->flt_region_fw, | 
 | 	    ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram, | 
 | 	    ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf, | 
 | 	    ha->flt_region_fcp_prio); | 
 | } | 
 |  | 
 | static void | 
 | qla2xxx_get_fdt_info(scsi_qla_host_t *vha) | 
 | { | 
 | #define FLASH_BLK_SIZE_4K	0x1000 | 
 | #define FLASH_BLK_SIZE_32K	0x8000 | 
 | #define FLASH_BLK_SIZE_64K	0x10000 | 
 | 	const char *loc, *locations[] = { "MID", "FDT" }; | 
 | 	uint16_t cnt, chksum; | 
 | 	uint16_t *wptr; | 
 | 	struct qla_fdt_layout *fdt; | 
 | 	uint8_t	man_id, flash_id; | 
 | 	uint16_t mid = 0, fid = 0; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct req_que *req = ha->req_q_map[0]; | 
 |  | 
 | 	wptr = (uint16_t *)req->ring; | 
 | 	fdt = (struct qla_fdt_layout *)req->ring; | 
 | 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring, | 
 | 	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE); | 
 | 	if (*wptr == __constant_cpu_to_le16(0xffff)) | 
 | 		goto no_flash_data; | 
 | 	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' || | 
 | 	    fdt->sig[3] != 'D') | 
 | 		goto no_flash_data; | 
 |  | 
 | 	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1; | 
 | 	    cnt++) | 
 | 		chksum += le16_to_cpu(*wptr++); | 
 | 	if (chksum) { | 
 | 		ql_dbg(ql_dbg_init, vha, 0x004c, | 
 | 		    "Inconsistent FDT detected:" | 
 | 		    " checksum=0x%x id=%c version0x%x.\n", chksum, | 
 | 		    fdt->sig[0], le16_to_cpu(fdt->version)); | 
 | 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113, | 
 | 		    (uint8_t *)fdt, sizeof(*fdt)); | 
 | 		goto no_flash_data; | 
 | 	} | 
 |  | 
 | 	loc = locations[1]; | 
 | 	mid = le16_to_cpu(fdt->man_id); | 
 | 	fid = le16_to_cpu(fdt->id); | 
 | 	ha->fdt_wrt_disable = fdt->wrt_disable_bits; | 
 | 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd); | 
 | 	ha->fdt_block_size = le32_to_cpu(fdt->block_size); | 
 | 	if (fdt->unprotect_sec_cmd) { | 
 | 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 | | 
 | 		    fdt->unprotect_sec_cmd); | 
 | 		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ? | 
 | 		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd): | 
 | 		    flash_conf_addr(ha, 0x0336); | 
 | 	} | 
 | 	goto done; | 
 | no_flash_data: | 
 | 	loc = locations[0]; | 
 | 	if (IS_QLA82XX(ha)) { | 
 | 		ha->fdt_block_size = FLASH_BLK_SIZE_64K; | 
 | 		goto done; | 
 | 	} | 
 | 	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id); | 
 | 	mid = man_id; | 
 | 	fid = flash_id; | 
 | 	ha->fdt_wrt_disable = 0x9c; | 
 | 	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8); | 
 | 	switch (man_id) { | 
 | 	case 0xbf: /* STT flash. */ | 
 | 		if (flash_id == 0x8e) | 
 | 			ha->fdt_block_size = FLASH_BLK_SIZE_64K; | 
 | 		else | 
 | 			ha->fdt_block_size = FLASH_BLK_SIZE_32K; | 
 |  | 
 | 		if (flash_id == 0x80) | 
 | 			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352); | 
 | 		break; | 
 | 	case 0x13: /* ST M25P80. */ | 
 | 		ha->fdt_block_size = FLASH_BLK_SIZE_64K; | 
 | 		break; | 
 | 	case 0x1f: /* Atmel 26DF081A. */ | 
 | 		ha->fdt_block_size = FLASH_BLK_SIZE_4K; | 
 | 		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320); | 
 | 		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339); | 
 | 		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336); | 
 | 		break; | 
 | 	default: | 
 | 		/* Default to 64 kb sector size. */ | 
 | 		ha->fdt_block_size = FLASH_BLK_SIZE_64K; | 
 | 		break; | 
 | 	} | 
 | done: | 
 | 	ql_dbg(ql_dbg_init, vha, 0x004d, | 
 | 	    "FDT[%s]: (0x%x/0x%x) erase=0x%x " | 
 | 	    "pr=%x wrtd=0x%x blk=0x%x.\n", | 
 | 	    loc, mid, fid, | 
 | 	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd, | 
 | 	    ha->fdt_wrt_disable, ha->fdt_block_size); | 
 |  | 
 | } | 
 |  | 
 | static void | 
 | qla2xxx_get_idc_param(scsi_qla_host_t *vha) | 
 | { | 
 | #define QLA82XX_IDC_PARAM_ADDR       0x003e885c | 
 | 	uint32_t *wptr; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct req_que *req = ha->req_q_map[0]; | 
 |  | 
 | 	if (!IS_QLA82XX(ha)) | 
 | 		return; | 
 |  | 
 | 	wptr = (uint32_t *)req->ring; | 
 | 	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring, | 
 | 		QLA82XX_IDC_PARAM_ADDR , 8); | 
 |  | 
 | 	if (*wptr == __constant_cpu_to_le32(0xffffffff)) { | 
 | 		ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT; | 
 | 		ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT; | 
 | 	} else { | 
 | 		ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr++); | 
 | 		ha->fcoe_reset_timeout = le32_to_cpu(*wptr); | 
 | 	} | 
 | 	ql_dbg(ql_dbg_init, vha, 0x004e, | 
 | 	    "fcoe_dev_init_timeout=%d " | 
 | 	    "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout, | 
 | 	    ha->fcoe_reset_timeout); | 
 | 	return; | 
 | } | 
 |  | 
 | int | 
 | qla2xxx_get_flash_info(scsi_qla_host_t *vha) | 
 | { | 
 | 	int ret; | 
 | 	uint32_t flt_addr; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && | 
 | 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha)) | 
 | 		return QLA_SUCCESS; | 
 |  | 
 | 	ret = qla2xxx_find_flt_start(vha, &flt_addr); | 
 | 	if (ret != QLA_SUCCESS) | 
 | 		return ret; | 
 |  | 
 | 	qla2xxx_get_flt_info(vha, flt_addr); | 
 | 	qla2xxx_get_fdt_info(vha); | 
 | 	qla2xxx_get_idc_param(vha); | 
 |  | 
 | 	return QLA_SUCCESS; | 
 | } | 
 |  | 
 | void | 
 | qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha) | 
 | { | 
 | #define NPIV_CONFIG_SIZE	(16*1024) | 
 | 	void *data; | 
 | 	uint16_t *wptr; | 
 | 	uint16_t cnt, chksum; | 
 | 	int i; | 
 | 	struct qla_npiv_header hdr; | 
 | 	struct qla_npiv_entry *entry; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && | 
 | 	    !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha)) | 
 | 		return; | 
 |  | 
 | 	if (ha->flags.nic_core_reset_hdlr_active) | 
 | 		return; | 
 |  | 
 | 	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr, | 
 | 	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header)); | 
 | 	if (hdr.version == __constant_cpu_to_le16(0xffff)) | 
 | 		return; | 
 | 	if (hdr.version != __constant_cpu_to_le16(1)) { | 
 | 		ql_dbg(ql_dbg_user, vha, 0x7090, | 
 | 		    "Unsupported NPIV-Config " | 
 | 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n", | 
 | 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries), | 
 | 		    le16_to_cpu(hdr.checksum)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL); | 
 | 	if (!data) { | 
 | 		ql_log(ql_log_warn, vha, 0x7091, | 
 | 		    "Unable to allocate memory for data.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ha->isp_ops->read_optrom(vha, (uint8_t *)data, | 
 | 	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE); | 
 |  | 
 | 	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) * | 
 | 	    sizeof(struct qla_npiv_entry)) >> 1; | 
 | 	for (wptr = data, chksum = 0; cnt; cnt--) | 
 | 		chksum += le16_to_cpu(*wptr++); | 
 | 	if (chksum) { | 
 | 		ql_dbg(ql_dbg_user, vha, 0x7092, | 
 | 		    "Inconsistent NPIV-Config " | 
 | 		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n", | 
 | 		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries), | 
 | 		    le16_to_cpu(hdr.checksum)); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	entry = data + sizeof(struct qla_npiv_header); | 
 | 	cnt = le16_to_cpu(hdr.entries); | 
 | 	for (i = 0; cnt; cnt--, entry++, i++) { | 
 | 		uint16_t flags; | 
 | 		struct fc_vport_identifiers vid; | 
 | 		struct fc_vport *vport; | 
 |  | 
 | 		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry)); | 
 |  | 
 | 		flags = le16_to_cpu(entry->flags); | 
 | 		if (flags == 0xffff) | 
 | 			continue; | 
 | 		if ((flags & BIT_0) == 0) | 
 | 			continue; | 
 |  | 
 | 		memset(&vid, 0, sizeof(vid)); | 
 | 		vid.roles = FC_PORT_ROLE_FCP_INITIATOR; | 
 | 		vid.vport_type = FC_PORTTYPE_NPIV; | 
 | 		vid.disable = false; | 
 | 		vid.port_name = wwn_to_u64(entry->port_name); | 
 | 		vid.node_name = wwn_to_u64(entry->node_name); | 
 |  | 
 | 		ql_dbg(ql_dbg_user, vha, 0x7093, | 
 | 		    "NPIV[%02x]: wwpn=%llx " | 
 | 		    "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt, | 
 | 		    (unsigned long long)vid.port_name, | 
 | 		    (unsigned long long)vid.node_name, | 
 | 		    le16_to_cpu(entry->vf_id), | 
 | 		    entry->q_qos, entry->f_qos); | 
 |  | 
 | 		if (i < QLA_PRECONFIG_VPORTS) { | 
 | 			vport = fc_vport_create(vha->host, 0, &vid); | 
 | 			if (!vport) | 
 | 				ql_log(ql_log_warn, vha, 0x7094, | 
 | 				    "NPIV-Config Failed to create vport [%02x]: " | 
 | 				    "wwpn=%llx wwnn=%llx.\n", cnt, | 
 | 				    (unsigned long long)vid.port_name, | 
 | 				    (unsigned long long)vid.node_name); | 
 | 		} | 
 | 	} | 
 | done: | 
 | 	kfree(data); | 
 | } | 
 |  | 
 | static int | 
 | qla24xx_unprotect_flash(scsi_qla_host_t *vha) | 
 | { | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; | 
 |  | 
 | 	if (ha->flags.fac_supported) | 
 | 		return qla81xx_fac_do_write_enable(vha, 1); | 
 |  | 
 | 	/* Enable flash write. */ | 
 | 	WRT_REG_DWORD(®->ctrl_status, | 
 | 	    RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE); | 
 | 	RD_REG_DWORD(®->ctrl_status);	/* PCI Posting. */ | 
 |  | 
 | 	if (!ha->fdt_wrt_disable) | 
 | 		goto done; | 
 |  | 
 | 	/* Disable flash write-protection, first clear SR protection bit */ | 
 | 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0); | 
 | 	/* Then write zero again to clear remaining SR bits.*/ | 
 | 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0); | 
 | done: | 
 | 	return QLA_SUCCESS; | 
 | } | 
 |  | 
 | static int | 
 | qla24xx_protect_flash(scsi_qla_host_t *vha) | 
 | { | 
 | 	uint32_t cnt; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; | 
 |  | 
 | 	if (ha->flags.fac_supported) | 
 | 		return qla81xx_fac_do_write_enable(vha, 0); | 
 |  | 
 | 	if (!ha->fdt_wrt_disable) | 
 | 		goto skip_wrt_protect; | 
 |  | 
 | 	/* Enable flash write-protection and wait for completion. */ | 
 | 	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), | 
 | 	    ha->fdt_wrt_disable); | 
 | 	for (cnt = 300; cnt && | 
 | 	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0; | 
 | 	    cnt--) { | 
 | 		udelay(10); | 
 | 	} | 
 |  | 
 | skip_wrt_protect: | 
 | 	/* Disable flash write. */ | 
 | 	WRT_REG_DWORD(®->ctrl_status, | 
 | 	    RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE); | 
 | 	RD_REG_DWORD(®->ctrl_status);	/* PCI Posting. */ | 
 |  | 
 | 	return QLA_SUCCESS; | 
 | } | 
 |  | 
 | static int | 
 | qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata) | 
 | { | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	uint32_t start, finish; | 
 |  | 
 | 	if (ha->flags.fac_supported) { | 
 | 		start = fdata >> 2; | 
 | 		finish = start + (ha->fdt_block_size >> 2) - 1; | 
 | 		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha, | 
 | 		    start), flash_data_addr(ha, finish)); | 
 | 	} | 
 |  | 
 | 	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd, | 
 | 	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) | | 
 | 	    ((fdata >> 16) & 0xff)); | 
 | } | 
 |  | 
 | static int | 
 | qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr, | 
 |     uint32_t dwords) | 
 | { | 
 | 	int ret; | 
 | 	uint32_t liter; | 
 | 	uint32_t sec_mask, rest_addr; | 
 | 	uint32_t fdata; | 
 | 	dma_addr_t optrom_dma; | 
 | 	void *optrom = NULL; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	/* Prepare burst-capable write on supported ISPs. */ | 
 | 	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha)) && | 
 | 	    !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) { | 
 | 		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, | 
 | 		    &optrom_dma, GFP_KERNEL); | 
 | 		if (!optrom) { | 
 | 			ql_log(ql_log_warn, vha, 0x7095, | 
 | 			    "Unable to allocate " | 
 | 			    "memory for optrom burst write (%x KB).\n", | 
 | 			    OPTROM_BURST_SIZE / 1024); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rest_addr = (ha->fdt_block_size >> 2) - 1; | 
 | 	sec_mask = ~rest_addr; | 
 |  | 
 | 	ret = qla24xx_unprotect_flash(vha); | 
 | 	if (ret != QLA_SUCCESS) { | 
 | 		ql_log(ql_log_warn, vha, 0x7096, | 
 | 		    "Unable to unprotect flash for update.\n"); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) { | 
 | 		fdata = (faddr & sec_mask) << 2; | 
 |  | 
 | 		/* Are we at the beginning of a sector? */ | 
 | 		if ((faddr & rest_addr) == 0) { | 
 | 			/* Do sector unprotect. */ | 
 | 			if (ha->fdt_unprotect_sec_cmd) | 
 | 				qla24xx_write_flash_dword(ha, | 
 | 				    ha->fdt_unprotect_sec_cmd, | 
 | 				    (fdata & 0xff00) | ((fdata << 16) & | 
 | 				    0xff0000) | ((fdata >> 16) & 0xff)); | 
 | 			ret = qla24xx_erase_sector(vha, fdata); | 
 | 			if (ret != QLA_SUCCESS) { | 
 | 				ql_dbg(ql_dbg_user, vha, 0x7007, | 
 | 				    "Unable to erase erase sector: address=%x.\n", | 
 | 				    faddr); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Go with burst-write. */ | 
 | 		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) { | 
 | 			/* Copy data to DMA'ble buffer. */ | 
 | 			memcpy(optrom, dwptr, OPTROM_BURST_SIZE); | 
 |  | 
 | 			ret = qla2x00_load_ram(vha, optrom_dma, | 
 | 			    flash_data_addr(ha, faddr), | 
 | 			    OPTROM_BURST_DWORDS); | 
 | 			if (ret != QLA_SUCCESS) { | 
 | 				ql_log(ql_log_warn, vha, 0x7097, | 
 | 				    "Unable to burst-write optrom segment " | 
 | 				    "(%x/%x/%llx).\n", ret, | 
 | 				    flash_data_addr(ha, faddr), | 
 | 				    (unsigned long long)optrom_dma); | 
 | 				ql_log(ql_log_warn, vha, 0x7098, | 
 | 				    "Reverting to slow-write.\n"); | 
 |  | 
 | 				dma_free_coherent(&ha->pdev->dev, | 
 | 				    OPTROM_BURST_SIZE, optrom, optrom_dma); | 
 | 				optrom = NULL; | 
 | 			} else { | 
 | 				liter += OPTROM_BURST_DWORDS - 1; | 
 | 				faddr += OPTROM_BURST_DWORDS - 1; | 
 | 				dwptr += OPTROM_BURST_DWORDS - 1; | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ret = qla24xx_write_flash_dword(ha, | 
 | 		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr)); | 
 | 		if (ret != QLA_SUCCESS) { | 
 | 			ql_dbg(ql_dbg_user, vha, 0x7006, | 
 | 			    "Unable to program flash address=%x data=%x.\n", | 
 | 			    faddr, *dwptr); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Do sector protect. */ | 
 | 		if (ha->fdt_unprotect_sec_cmd && | 
 | 		    ((faddr & rest_addr) == rest_addr)) | 
 | 			qla24xx_write_flash_dword(ha, | 
 | 			    ha->fdt_protect_sec_cmd, | 
 | 			    (fdata & 0xff00) | ((fdata << 16) & | 
 | 			    0xff0000) | ((fdata >> 16) & 0xff)); | 
 | 	} | 
 |  | 
 | 	ret = qla24xx_protect_flash(vha); | 
 | 	if (ret != QLA_SUCCESS) | 
 | 		ql_log(ql_log_warn, vha, 0x7099, | 
 | 		    "Unable to protect flash after update.\n"); | 
 | done: | 
 | 	if (optrom) | 
 | 		dma_free_coherent(&ha->pdev->dev, | 
 | 		    OPTROM_BURST_SIZE, optrom, optrom_dma); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | uint8_t * | 
 | qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, | 
 |     uint32_t bytes) | 
 | { | 
 | 	uint32_t i; | 
 | 	uint16_t *wptr; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	/* Word reads to NVRAM via registers. */ | 
 | 	wptr = (uint16_t *)buf; | 
 | 	qla2x00_lock_nvram_access(ha); | 
 | 	for (i = 0; i < bytes >> 1; i++, naddr++) | 
 | 		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha, | 
 | 		    naddr)); | 
 | 	qla2x00_unlock_nvram_access(ha); | 
 |  | 
 | 	return buf; | 
 | } | 
 |  | 
 | uint8_t * | 
 | qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, | 
 |     uint32_t bytes) | 
 | { | 
 | 	uint32_t i; | 
 | 	uint32_t *dwptr; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	if (IS_QLA82XX(ha)) | 
 | 		return  buf; | 
 |  | 
 | 	/* Dword reads to flash. */ | 
 | 	dwptr = (uint32_t *)buf; | 
 | 	for (i = 0; i < bytes >> 2; i++, naddr++) | 
 | 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, | 
 | 		    nvram_data_addr(ha, naddr))); | 
 |  | 
 | 	return buf; | 
 | } | 
 |  | 
 | int | 
 | qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, | 
 |     uint32_t bytes) | 
 | { | 
 | 	int ret, stat; | 
 | 	uint32_t i; | 
 | 	uint16_t *wptr; | 
 | 	unsigned long flags; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	ret = QLA_SUCCESS; | 
 |  | 
 | 	spin_lock_irqsave(&ha->hardware_lock, flags); | 
 | 	qla2x00_lock_nvram_access(ha); | 
 |  | 
 | 	/* Disable NVRAM write-protection. */ | 
 | 	stat = qla2x00_clear_nvram_protection(ha); | 
 |  | 
 | 	wptr = (uint16_t *)buf; | 
 | 	for (i = 0; i < bytes >> 1; i++, naddr++) { | 
 | 		qla2x00_write_nvram_word(ha, naddr, | 
 | 		    cpu_to_le16(*wptr)); | 
 | 		wptr++; | 
 | 	} | 
 |  | 
 | 	/* Enable NVRAM write-protection. */ | 
 | 	qla2x00_set_nvram_protection(ha, stat); | 
 |  | 
 | 	qla2x00_unlock_nvram_access(ha); | 
 | 	spin_unlock_irqrestore(&ha->hardware_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int | 
 | qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, | 
 |     uint32_t bytes) | 
 | { | 
 | 	int ret; | 
 | 	uint32_t i; | 
 | 	uint32_t *dwptr; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; | 
 |  | 
 | 	ret = QLA_SUCCESS; | 
 |  | 
 | 	if (IS_QLA82XX(ha)) | 
 | 		return ret; | 
 |  | 
 | 	/* Enable flash write. */ | 
 | 	WRT_REG_DWORD(®->ctrl_status, | 
 | 	    RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE); | 
 | 	RD_REG_DWORD(®->ctrl_status);	/* PCI Posting. */ | 
 |  | 
 | 	/* Disable NVRAM write-protection. */ | 
 | 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0); | 
 | 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0); | 
 |  | 
 | 	/* Dword writes to flash. */ | 
 | 	dwptr = (uint32_t *)buf; | 
 | 	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) { | 
 | 		ret = qla24xx_write_flash_dword(ha, | 
 | 		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr)); | 
 | 		if (ret != QLA_SUCCESS) { | 
 | 			ql_dbg(ql_dbg_user, vha, 0x709a, | 
 | 			    "Unable to program nvram address=%x data=%x.\n", | 
 | 			    naddr, *dwptr); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Enable NVRAM write-protection. */ | 
 | 	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c); | 
 |  | 
 | 	/* Disable flash write. */ | 
 | 	WRT_REG_DWORD(®->ctrl_status, | 
 | 	    RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE); | 
 | 	RD_REG_DWORD(®->ctrl_status);	/* PCI Posting. */ | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | uint8_t * | 
 | qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, | 
 |     uint32_t bytes) | 
 | { | 
 | 	uint32_t i; | 
 | 	uint32_t *dwptr; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	/* Dword reads to flash. */ | 
 | 	dwptr = (uint32_t *)buf; | 
 | 	for (i = 0; i < bytes >> 2; i++, naddr++) | 
 | 		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha, | 
 | 		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr))); | 
 |  | 
 | 	return buf; | 
 | } | 
 |  | 
 | int | 
 | qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr, | 
 |     uint32_t bytes) | 
 | { | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | #define RMW_BUFFER_SIZE	(64 * 1024) | 
 | 	uint8_t *dbuf; | 
 |  | 
 | 	dbuf = vmalloc(RMW_BUFFER_SIZE); | 
 | 	if (!dbuf) | 
 | 		return QLA_MEMORY_ALLOC_FAILED; | 
 | 	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2, | 
 | 	    RMW_BUFFER_SIZE); | 
 | 	memcpy(dbuf + (naddr << 2), buf, bytes); | 
 | 	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2, | 
 | 	    RMW_BUFFER_SIZE); | 
 | 	vfree(dbuf); | 
 |  | 
 | 	return QLA_SUCCESS; | 
 | } | 
 |  | 
 | static inline void | 
 | qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags) | 
 | { | 
 | 	if (IS_QLA2322(ha)) { | 
 | 		/* Flip all colors. */ | 
 | 		if (ha->beacon_color_state == QLA_LED_ALL_ON) { | 
 | 			/* Turn off. */ | 
 | 			ha->beacon_color_state = 0; | 
 | 			*pflags = GPIO_LED_ALL_OFF; | 
 | 		} else { | 
 | 			/* Turn on. */ | 
 | 			ha->beacon_color_state = QLA_LED_ALL_ON; | 
 | 			*pflags = GPIO_LED_RGA_ON; | 
 | 		} | 
 | 	} else { | 
 | 		/* Flip green led only. */ | 
 | 		if (ha->beacon_color_state == QLA_LED_GRN_ON) { | 
 | 			/* Turn off. */ | 
 | 			ha->beacon_color_state = 0; | 
 | 			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF; | 
 | 		} else { | 
 | 			/* Turn on. */ | 
 | 			ha->beacon_color_state = QLA_LED_GRN_ON; | 
 | 			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r)) | 
 |  | 
 | void | 
 | qla2x00_beacon_blink(struct scsi_qla_host *vha) | 
 | { | 
 | 	uint16_t gpio_enable; | 
 | 	uint16_t gpio_data; | 
 | 	uint16_t led_color = 0; | 
 | 	unsigned long flags; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	if (IS_QLA82XX(ha)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&ha->hardware_lock, flags); | 
 |  | 
 | 	/* Save the Original GPIOE. */ | 
 | 	if (ha->pio_address) { | 
 | 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe)); | 
 | 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod)); | 
 | 	} else { | 
 | 		gpio_enable = RD_REG_WORD(®->gpioe); | 
 | 		gpio_data = RD_REG_WORD(®->gpiod); | 
 | 	} | 
 |  | 
 | 	/* Set the modified gpio_enable values */ | 
 | 	gpio_enable |= GPIO_LED_MASK; | 
 |  | 
 | 	if (ha->pio_address) { | 
 | 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable); | 
 | 	} else { | 
 | 		WRT_REG_WORD(®->gpioe, gpio_enable); | 
 | 		RD_REG_WORD(®->gpioe); | 
 | 	} | 
 |  | 
 | 	qla2x00_flip_colors(ha, &led_color); | 
 |  | 
 | 	/* Clear out any previously set LED color. */ | 
 | 	gpio_data &= ~GPIO_LED_MASK; | 
 |  | 
 | 	/* Set the new input LED color to GPIOD. */ | 
 | 	gpio_data |= led_color; | 
 |  | 
 | 	/* Set the modified gpio_data values */ | 
 | 	if (ha->pio_address) { | 
 | 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data); | 
 | 	} else { | 
 | 		WRT_REG_WORD(®->gpiod, gpio_data); | 
 | 		RD_REG_WORD(®->gpiod); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&ha->hardware_lock, flags); | 
 | } | 
 |  | 
 | int | 
 | qla2x00_beacon_on(struct scsi_qla_host *vha) | 
 | { | 
 | 	uint16_t gpio_enable; | 
 | 	uint16_t gpio_data; | 
 | 	unsigned long flags; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; | 
 | 	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7; | 
 |  | 
 | 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { | 
 | 		ql_log(ql_log_warn, vha, 0x709b, | 
 | 		    "Unable to update fw options (beacon on).\n"); | 
 | 		return QLA_FUNCTION_FAILED; | 
 | 	} | 
 |  | 
 | 	/* Turn off LEDs. */ | 
 | 	spin_lock_irqsave(&ha->hardware_lock, flags); | 
 | 	if (ha->pio_address) { | 
 | 		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe)); | 
 | 		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod)); | 
 | 	} else { | 
 | 		gpio_enable = RD_REG_WORD(®->gpioe); | 
 | 		gpio_data = RD_REG_WORD(®->gpiod); | 
 | 	} | 
 | 	gpio_enable |= GPIO_LED_MASK; | 
 |  | 
 | 	/* Set the modified gpio_enable values. */ | 
 | 	if (ha->pio_address) { | 
 | 		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable); | 
 | 	} else { | 
 | 		WRT_REG_WORD(®->gpioe, gpio_enable); | 
 | 		RD_REG_WORD(®->gpioe); | 
 | 	} | 
 |  | 
 | 	/* Clear out previously set LED colour. */ | 
 | 	gpio_data &= ~GPIO_LED_MASK; | 
 | 	if (ha->pio_address) { | 
 | 		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data); | 
 | 	} else { | 
 | 		WRT_REG_WORD(®->gpiod, gpio_data); | 
 | 		RD_REG_WORD(®->gpiod); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&ha->hardware_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Let the per HBA timer kick off the blinking process based on | 
 | 	 * the following flags. No need to do anything else now. | 
 | 	 */ | 
 | 	ha->beacon_blink_led = 1; | 
 | 	ha->beacon_color_state = 0; | 
 |  | 
 | 	return QLA_SUCCESS; | 
 | } | 
 |  | 
 | int | 
 | qla2x00_beacon_off(struct scsi_qla_host *vha) | 
 | { | 
 | 	int rval = QLA_SUCCESS; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	ha->beacon_blink_led = 0; | 
 |  | 
 | 	/* Set the on flag so when it gets flipped it will be off. */ | 
 | 	if (IS_QLA2322(ha)) | 
 | 		ha->beacon_color_state = QLA_LED_ALL_ON; | 
 | 	else | 
 | 		ha->beacon_color_state = QLA_LED_GRN_ON; | 
 |  | 
 | 	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */ | 
 |  | 
 | 	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; | 
 | 	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7; | 
 |  | 
 | 	rval = qla2x00_set_fw_options(vha, ha->fw_options); | 
 | 	if (rval != QLA_SUCCESS) | 
 | 		ql_log(ql_log_warn, vha, 0x709c, | 
 | 		    "Unable to update fw options (beacon off).\n"); | 
 | 	return rval; | 
 | } | 
 |  | 
 |  | 
 | static inline void | 
 | qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags) | 
 | { | 
 | 	/* Flip all colors. */ | 
 | 	if (ha->beacon_color_state == QLA_LED_ALL_ON) { | 
 | 		/* Turn off. */ | 
 | 		ha->beacon_color_state = 0; | 
 | 		*pflags = 0; | 
 | 	} else { | 
 | 		/* Turn on. */ | 
 | 		ha->beacon_color_state = QLA_LED_ALL_ON; | 
 | 		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON; | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | qla24xx_beacon_blink(struct scsi_qla_host *vha) | 
 | { | 
 | 	uint16_t led_color = 0; | 
 | 	uint32_t gpio_data; | 
 | 	unsigned long flags; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; | 
 |  | 
 | 	/* Save the Original GPIOD. */ | 
 | 	spin_lock_irqsave(&ha->hardware_lock, flags); | 
 | 	gpio_data = RD_REG_DWORD(®->gpiod); | 
 |  | 
 | 	/* Enable the gpio_data reg for update. */ | 
 | 	gpio_data |= GPDX_LED_UPDATE_MASK; | 
 |  | 
 | 	WRT_REG_DWORD(®->gpiod, gpio_data); | 
 | 	gpio_data = RD_REG_DWORD(®->gpiod); | 
 |  | 
 | 	/* Set the color bits. */ | 
 | 	qla24xx_flip_colors(ha, &led_color); | 
 |  | 
 | 	/* Clear out any previously set LED color. */ | 
 | 	gpio_data &= ~GPDX_LED_COLOR_MASK; | 
 |  | 
 | 	/* Set the new input LED color to GPIOD. */ | 
 | 	gpio_data |= led_color; | 
 |  | 
 | 	/* Set the modified gpio_data values. */ | 
 | 	WRT_REG_DWORD(®->gpiod, gpio_data); | 
 | 	gpio_data = RD_REG_DWORD(®->gpiod); | 
 | 	spin_unlock_irqrestore(&ha->hardware_lock, flags); | 
 | } | 
 |  | 
 | static uint32_t | 
 | qla83xx_select_led_port(struct qla_hw_data *ha) | 
 | { | 
 | 	uint32_t led_select_value = 0; | 
 |  | 
 | 	if (!IS_QLA83XX(ha)) | 
 | 		goto out; | 
 |  | 
 | 	if (ha->flags.port0) | 
 | 		led_select_value = QLA83XX_LED_PORT0; | 
 | 	else | 
 | 		led_select_value = QLA83XX_LED_PORT1; | 
 |  | 
 | out: | 
 | 	return led_select_value; | 
 | } | 
 |  | 
 | void | 
 | qla83xx_beacon_blink(struct scsi_qla_host *vha) | 
 | { | 
 | 	uint32_t led_select_value; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	uint16_t led_cfg[6]; | 
 | 	uint16_t orig_led_cfg[6]; | 
 | 	uint32_t led_10_value, led_43_value; | 
 |  | 
 | 	if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha)) | 
 | 		return; | 
 |  | 
 | 	if (!ha->beacon_blink_led) | 
 | 		return; | 
 |  | 
 | 	if (IS_QLA2031(ha)) { | 
 | 		led_select_value = qla83xx_select_led_port(ha); | 
 |  | 
 | 		qla83xx_wr_reg(vha, led_select_value, 0x40002000); | 
 | 		qla83xx_wr_reg(vha, led_select_value + 4, 0x40002000); | 
 | 		msleep(1000); | 
 | 		qla83xx_wr_reg(vha, led_select_value, 0x40004000); | 
 | 		qla83xx_wr_reg(vha, led_select_value + 4, 0x40004000); | 
 | 	} else if (IS_QLA8031(ha)) { | 
 | 		led_select_value = qla83xx_select_led_port(ha); | 
 |  | 
 | 		qla83xx_rd_reg(vha, led_select_value, &led_10_value); | 
 | 		qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value); | 
 | 		qla83xx_wr_reg(vha, led_select_value, 0x01f44000); | 
 | 		msleep(500); | 
 | 		qla83xx_wr_reg(vha, led_select_value, 0x400001f4); | 
 | 		msleep(1000); | 
 | 		qla83xx_wr_reg(vha, led_select_value, led_10_value); | 
 | 		qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value); | 
 | 	} else if (IS_QLA81XX(ha)) { | 
 | 		int rval; | 
 |  | 
 | 		/* Save Current */ | 
 | 		rval = qla81xx_get_led_config(vha, orig_led_cfg); | 
 | 		/* Do the blink */ | 
 | 		if (rval == QLA_SUCCESS) { | 
 | 			if (IS_QLA81XX(ha)) { | 
 | 				led_cfg[0] = 0x4000; | 
 | 				led_cfg[1] = 0x2000; | 
 | 				led_cfg[2] = 0; | 
 | 				led_cfg[3] = 0; | 
 | 				led_cfg[4] = 0; | 
 | 				led_cfg[5] = 0; | 
 | 			} else { | 
 | 				led_cfg[0] = 0x4000; | 
 | 				led_cfg[1] = 0x4000; | 
 | 				led_cfg[2] = 0x4000; | 
 | 				led_cfg[3] = 0x2000; | 
 | 				led_cfg[4] = 0; | 
 | 				led_cfg[5] = 0x2000; | 
 | 			} | 
 | 			rval = qla81xx_set_led_config(vha, led_cfg); | 
 | 			msleep(1000); | 
 | 			if (IS_QLA81XX(ha)) { | 
 | 				led_cfg[0] = 0x4000; | 
 | 				led_cfg[1] = 0x2000; | 
 | 				led_cfg[2] = 0; | 
 | 			} else { | 
 | 				led_cfg[0] = 0x4000; | 
 | 				led_cfg[1] = 0x2000; | 
 | 				led_cfg[2] = 0x4000; | 
 | 				led_cfg[3] = 0x4000; | 
 | 				led_cfg[4] = 0; | 
 | 				led_cfg[5] = 0x2000; | 
 | 			} | 
 | 			rval = qla81xx_set_led_config(vha, led_cfg); | 
 | 		} | 
 | 		/* On exit, restore original (presumes no status change) */ | 
 | 		qla81xx_set_led_config(vha, orig_led_cfg); | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | qla24xx_beacon_on(struct scsi_qla_host *vha) | 
 | { | 
 | 	uint32_t gpio_data; | 
 | 	unsigned long flags; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; | 
 |  | 
 | 	if (IS_QLA82XX(ha)) | 
 | 		return QLA_SUCCESS; | 
 |  | 
 | 	if (IS_QLA8031(ha) || IS_QLA81XX(ha)) | 
 | 		goto skip_gpio; /* let blink handle it */ | 
 |  | 
 | 	if (ha->beacon_blink_led == 0) { | 
 | 		/* Enable firmware for update */ | 
 | 		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL; | 
 |  | 
 | 		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) | 
 | 			return QLA_FUNCTION_FAILED; | 
 |  | 
 | 		if (qla2x00_get_fw_options(vha, ha->fw_options) != | 
 | 		    QLA_SUCCESS) { | 
 | 			ql_log(ql_log_warn, vha, 0x7009, | 
 | 			    "Unable to update fw options (beacon on).\n"); | 
 | 			return QLA_FUNCTION_FAILED; | 
 | 		} | 
 |  | 
 | 		if (IS_QLA2031(ha)) | 
 | 			goto skip_gpio; | 
 |  | 
 | 		spin_lock_irqsave(&ha->hardware_lock, flags); | 
 | 		gpio_data = RD_REG_DWORD(®->gpiod); | 
 |  | 
 | 		/* Enable the gpio_data reg for update. */ | 
 | 		gpio_data |= GPDX_LED_UPDATE_MASK; | 
 | 		WRT_REG_DWORD(®->gpiod, gpio_data); | 
 | 		RD_REG_DWORD(®->gpiod); | 
 |  | 
 | 		spin_unlock_irqrestore(&ha->hardware_lock, flags); | 
 | 	} | 
 |  | 
 | 	/* So all colors blink together. */ | 
 | 	ha->beacon_color_state = 0; | 
 |  | 
 | skip_gpio: | 
 | 	/* Let the per HBA timer kick off the blinking process. */ | 
 | 	ha->beacon_blink_led = 1; | 
 |  | 
 | 	return QLA_SUCCESS; | 
 | } | 
 |  | 
 | int | 
 | qla24xx_beacon_off(struct scsi_qla_host *vha) | 
 | { | 
 | 	uint32_t gpio_data; | 
 | 	unsigned long flags; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; | 
 |  | 
 | 	if (IS_QLA82XX(ha)) | 
 | 		return QLA_SUCCESS; | 
 |  | 
 | 	ha->beacon_blink_led = 0; | 
 |  | 
 | 	if (IS_QLA2031(ha)) | 
 | 		goto set_fw_options; | 
 |  | 
 | 	if (IS_QLA8031(ha) || IS_QLA81XX(ha)) | 
 | 		return QLA_SUCCESS; | 
 |  | 
 | 	ha->beacon_color_state = QLA_LED_ALL_ON; | 
 |  | 
 | 	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */ | 
 |  | 
 | 	/* Give control back to firmware. */ | 
 | 	spin_lock_irqsave(&ha->hardware_lock, flags); | 
 | 	gpio_data = RD_REG_DWORD(®->gpiod); | 
 |  | 
 | 	/* Disable the gpio_data reg for update. */ | 
 | 	gpio_data &= ~GPDX_LED_UPDATE_MASK; | 
 | 	WRT_REG_DWORD(®->gpiod, gpio_data); | 
 | 	RD_REG_DWORD(®->gpiod); | 
 | 	spin_unlock_irqrestore(&ha->hardware_lock, flags); | 
 |  | 
 | set_fw_options: | 
 | 	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL; | 
 |  | 
 | 	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { | 
 | 		ql_log(ql_log_warn, vha, 0x704d, | 
 | 		    "Unable to update fw options (beacon on).\n"); | 
 | 		return QLA_FUNCTION_FAILED; | 
 | 	} | 
 |  | 
 | 	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) { | 
 | 		ql_log(ql_log_warn, vha, 0x704e, | 
 | 		    "Unable to update fw options (beacon on).\n"); | 
 | 		return QLA_FUNCTION_FAILED; | 
 | 	} | 
 |  | 
 | 	return QLA_SUCCESS; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Flash support routines | 
 |  */ | 
 |  | 
 | /** | 
 |  * qla2x00_flash_enable() - Setup flash for reading and writing. | 
 |  * @ha: HA context | 
 |  */ | 
 | static void | 
 | qla2x00_flash_enable(struct qla_hw_data *ha) | 
 | { | 
 | 	uint16_t data; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	data = RD_REG_WORD(®->ctrl_status); | 
 | 	data |= CSR_FLASH_ENABLE; | 
 | 	WRT_REG_WORD(®->ctrl_status, data); | 
 | 	RD_REG_WORD(®->ctrl_status);		/* PCI Posting. */ | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_flash_disable() - Disable flash and allow RISC to run. | 
 |  * @ha: HA context | 
 |  */ | 
 | static void | 
 | qla2x00_flash_disable(struct qla_hw_data *ha) | 
 | { | 
 | 	uint16_t data; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	data = RD_REG_WORD(®->ctrl_status); | 
 | 	data &= ~(CSR_FLASH_ENABLE); | 
 | 	WRT_REG_WORD(®->ctrl_status, data); | 
 | 	RD_REG_WORD(®->ctrl_status);		/* PCI Posting. */ | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_read_flash_byte() - Reads a byte from flash | 
 |  * @ha: HA context | 
 |  * @addr: Address in flash to read | 
 |  * | 
 |  * A word is read from the chip, but, only the lower byte is valid. | 
 |  * | 
 |  * Returns the byte read from flash @addr. | 
 |  */ | 
 | static uint8_t | 
 | qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr) | 
 | { | 
 | 	uint16_t data; | 
 | 	uint16_t bank_select; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	bank_select = RD_REG_WORD(®->ctrl_status); | 
 |  | 
 | 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) { | 
 | 		/* Specify 64K address range: */ | 
 | 		/*  clear out Module Select and Flash Address bits [19:16]. */ | 
 | 		bank_select &= ~0xf8; | 
 | 		bank_select |= addr >> 12 & 0xf0; | 
 | 		bank_select |= CSR_FLASH_64K_BANK; | 
 | 		WRT_REG_WORD(®->ctrl_status, bank_select); | 
 | 		RD_REG_WORD(®->ctrl_status);	/* PCI Posting. */ | 
 |  | 
 | 		WRT_REG_WORD(®->flash_address, (uint16_t)addr); | 
 | 		data = RD_REG_WORD(®->flash_data); | 
 |  | 
 | 		return (uint8_t)data; | 
 | 	} | 
 |  | 
 | 	/* Setup bit 16 of flash address. */ | 
 | 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) { | 
 | 		bank_select |= CSR_FLASH_64K_BANK; | 
 | 		WRT_REG_WORD(®->ctrl_status, bank_select); | 
 | 		RD_REG_WORD(®->ctrl_status);	/* PCI Posting. */ | 
 | 	} else if (((addr & BIT_16) == 0) && | 
 | 	    (bank_select & CSR_FLASH_64K_BANK)) { | 
 | 		bank_select &= ~(CSR_FLASH_64K_BANK); | 
 | 		WRT_REG_WORD(®->ctrl_status, bank_select); | 
 | 		RD_REG_WORD(®->ctrl_status);	/* PCI Posting. */ | 
 | 	} | 
 |  | 
 | 	/* Always perform IO mapped accesses to the FLASH registers. */ | 
 | 	if (ha->pio_address) { | 
 | 		uint16_t data2; | 
 |  | 
 | 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr); | 
 | 		do { | 
 | 			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data)); | 
 | 			barrier(); | 
 | 			cpu_relax(); | 
 | 			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data)); | 
 | 		} while (data != data2); | 
 | 	} else { | 
 | 		WRT_REG_WORD(®->flash_address, (uint16_t)addr); | 
 | 		data = qla2x00_debounce_register(®->flash_data); | 
 | 	} | 
 |  | 
 | 	return (uint8_t)data; | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_write_flash_byte() - Write a byte to flash | 
 |  * @ha: HA context | 
 |  * @addr: Address in flash to write | 
 |  * @data: Data to write | 
 |  */ | 
 | static void | 
 | qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data) | 
 | { | 
 | 	uint16_t bank_select; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	bank_select = RD_REG_WORD(®->ctrl_status); | 
 | 	if (IS_QLA2322(ha) || IS_QLA6322(ha)) { | 
 | 		/* Specify 64K address range: */ | 
 | 		/*  clear out Module Select and Flash Address bits [19:16]. */ | 
 | 		bank_select &= ~0xf8; | 
 | 		bank_select |= addr >> 12 & 0xf0; | 
 | 		bank_select |= CSR_FLASH_64K_BANK; | 
 | 		WRT_REG_WORD(®->ctrl_status, bank_select); | 
 | 		RD_REG_WORD(®->ctrl_status);	/* PCI Posting. */ | 
 |  | 
 | 		WRT_REG_WORD(®->flash_address, (uint16_t)addr); | 
 | 		RD_REG_WORD(®->ctrl_status);		/* PCI Posting. */ | 
 | 		WRT_REG_WORD(®->flash_data, (uint16_t)data); | 
 | 		RD_REG_WORD(®->ctrl_status);		/* PCI Posting. */ | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Setup bit 16 of flash address. */ | 
 | 	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) { | 
 | 		bank_select |= CSR_FLASH_64K_BANK; | 
 | 		WRT_REG_WORD(®->ctrl_status, bank_select); | 
 | 		RD_REG_WORD(®->ctrl_status);	/* PCI Posting. */ | 
 | 	} else if (((addr & BIT_16) == 0) && | 
 | 	    (bank_select & CSR_FLASH_64K_BANK)) { | 
 | 		bank_select &= ~(CSR_FLASH_64K_BANK); | 
 | 		WRT_REG_WORD(®->ctrl_status, bank_select); | 
 | 		RD_REG_WORD(®->ctrl_status);	/* PCI Posting. */ | 
 | 	} | 
 |  | 
 | 	/* Always perform IO mapped accesses to the FLASH registers. */ | 
 | 	if (ha->pio_address) { | 
 | 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr); | 
 | 		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data); | 
 | 	} else { | 
 | 		WRT_REG_WORD(®->flash_address, (uint16_t)addr); | 
 | 		RD_REG_WORD(®->ctrl_status);		/* PCI Posting. */ | 
 | 		WRT_REG_WORD(®->flash_data, (uint16_t)data); | 
 | 		RD_REG_WORD(®->ctrl_status);		/* PCI Posting. */ | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_poll_flash() - Polls flash for completion. | 
 |  * @ha: HA context | 
 |  * @addr: Address in flash to poll | 
 |  * @poll_data: Data to be polled | 
 |  * @man_id: Flash manufacturer ID | 
 |  * @flash_id: Flash ID | 
 |  * | 
 |  * This function polls the device until bit 7 of what is read matches data | 
 |  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed | 
 |  * out (a fatal error).  The flash book recommeds reading bit 7 again after | 
 |  * reading bit 5 as a 1. | 
 |  * | 
 |  * Returns 0 on success, else non-zero. | 
 |  */ | 
 | static int | 
 | qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data, | 
 |     uint8_t man_id, uint8_t flash_id) | 
 | { | 
 | 	int status; | 
 | 	uint8_t flash_data; | 
 | 	uint32_t cnt; | 
 |  | 
 | 	status = 1; | 
 |  | 
 | 	/* Wait for 30 seconds for command to finish. */ | 
 | 	poll_data &= BIT_7; | 
 | 	for (cnt = 3000000; cnt; cnt--) { | 
 | 		flash_data = qla2x00_read_flash_byte(ha, addr); | 
 | 		if ((flash_data & BIT_7) == poll_data) { | 
 | 			status = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (man_id != 0x40 && man_id != 0xda) { | 
 | 			if ((flash_data & BIT_5) && cnt > 2) | 
 | 				cnt = 2; | 
 | 		} | 
 | 		udelay(10); | 
 | 		barrier(); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return status; | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_program_flash_address() - Programs a flash address | 
 |  * @ha: HA context | 
 |  * @addr: Address in flash to program | 
 |  * @data: Data to be written in flash | 
 |  * @man_id: Flash manufacturer ID | 
 |  * @flash_id: Flash ID | 
 |  * | 
 |  * Returns 0 on success, else non-zero. | 
 |  */ | 
 | static int | 
 | qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr, | 
 |     uint8_t data, uint8_t man_id, uint8_t flash_id) | 
 | { | 
 | 	/* Write Program Command Sequence. */ | 
 | 	if (IS_OEM_001(ha)) { | 
 | 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); | 
 | 		qla2x00_write_flash_byte(ha, 0x555, 0x55); | 
 | 		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0); | 
 | 		qla2x00_write_flash_byte(ha, addr, data); | 
 | 	} else { | 
 | 		if (man_id == 0xda && flash_id == 0xc1) { | 
 | 			qla2x00_write_flash_byte(ha, addr, data); | 
 | 			if (addr & 0x7e) | 
 | 				return 0; | 
 | 		} else { | 
 | 			qla2x00_write_flash_byte(ha, 0x5555, 0xaa); | 
 | 			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); | 
 | 			qla2x00_write_flash_byte(ha, 0x5555, 0xa0); | 
 | 			qla2x00_write_flash_byte(ha, addr, data); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	udelay(150); | 
 |  | 
 | 	/* Wait for write to complete. */ | 
 | 	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id); | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_erase_flash() - Erase the flash. | 
 |  * @ha: HA context | 
 |  * @man_id: Flash manufacturer ID | 
 |  * @flash_id: Flash ID | 
 |  * | 
 |  * Returns 0 on success, else non-zero. | 
 |  */ | 
 | static int | 
 | qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id) | 
 | { | 
 | 	/* Individual Sector Erase Command Sequence */ | 
 | 	if (IS_OEM_001(ha)) { | 
 | 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); | 
 | 		qla2x00_write_flash_byte(ha, 0x555, 0x55); | 
 | 		qla2x00_write_flash_byte(ha, 0xaaa, 0x80); | 
 | 		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa); | 
 | 		qla2x00_write_flash_byte(ha, 0x555, 0x55); | 
 | 		qla2x00_write_flash_byte(ha, 0xaaa, 0x10); | 
 | 	} else { | 
 | 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa); | 
 | 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); | 
 | 		qla2x00_write_flash_byte(ha, 0x5555, 0x80); | 
 | 		qla2x00_write_flash_byte(ha, 0x5555, 0xaa); | 
 | 		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); | 
 | 		qla2x00_write_flash_byte(ha, 0x5555, 0x10); | 
 | 	} | 
 |  | 
 | 	udelay(150); | 
 |  | 
 | 	/* Wait for erase to complete. */ | 
 | 	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id); | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_erase_flash_sector() - Erase a flash sector. | 
 |  * @ha: HA context | 
 |  * @addr: Flash sector to erase | 
 |  * @sec_mask: Sector address mask | 
 |  * @man_id: Flash manufacturer ID | 
 |  * @flash_id: Flash ID | 
 |  * | 
 |  * Returns 0 on success, else non-zero. | 
 |  */ | 
 | static int | 
 | qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr, | 
 |     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id) | 
 | { | 
 | 	/* Individual Sector Erase Command Sequence */ | 
 | 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa); | 
 | 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); | 
 | 	qla2x00_write_flash_byte(ha, 0x5555, 0x80); | 
 | 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa); | 
 | 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); | 
 | 	if (man_id == 0x1f && flash_id == 0x13) | 
 | 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10); | 
 | 	else | 
 | 		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30); | 
 |  | 
 | 	udelay(150); | 
 |  | 
 | 	/* Wait for erase to complete. */ | 
 | 	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id); | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip. | 
 |  * @man_id: Flash manufacturer ID | 
 |  * @flash_id: Flash ID | 
 |  */ | 
 | static void | 
 | qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id, | 
 |     uint8_t *flash_id) | 
 | { | 
 | 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa); | 
 | 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); | 
 | 	qla2x00_write_flash_byte(ha, 0x5555, 0x90); | 
 | 	*man_id = qla2x00_read_flash_byte(ha, 0x0000); | 
 | 	*flash_id = qla2x00_read_flash_byte(ha, 0x0001); | 
 | 	qla2x00_write_flash_byte(ha, 0x5555, 0xaa); | 
 | 	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55); | 
 | 	qla2x00_write_flash_byte(ha, 0x5555, 0xf0); | 
 | } | 
 |  | 
 | static void | 
 | qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf, | 
 | 	uint32_t saddr, uint32_t length) | 
 | { | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 | 	uint32_t midpoint, ilength; | 
 | 	uint8_t data; | 
 |  | 
 | 	midpoint = length / 2; | 
 |  | 
 | 	WRT_REG_WORD(®->nvram, 0); | 
 | 	RD_REG_WORD(®->nvram); | 
 | 	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) { | 
 | 		if (ilength == midpoint) { | 
 | 			WRT_REG_WORD(®->nvram, NVR_SELECT); | 
 | 			RD_REG_WORD(®->nvram); | 
 | 		} | 
 | 		data = qla2x00_read_flash_byte(ha, saddr); | 
 | 		if (saddr % 100) | 
 | 			udelay(10); | 
 | 		*tmp_buf = data; | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void | 
 | qla2x00_suspend_hba(struct scsi_qla_host *vha) | 
 | { | 
 | 	int cnt; | 
 | 	unsigned long flags; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	/* Suspend HBA. */ | 
 | 	scsi_block_requests(vha->host); | 
 | 	ha->isp_ops->disable_intrs(ha); | 
 | 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); | 
 |  | 
 | 	/* Pause RISC. */ | 
 | 	spin_lock_irqsave(&ha->hardware_lock, flags); | 
 | 	WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); | 
 | 	RD_REG_WORD(®->hccr); | 
 | 	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) { | 
 | 		for (cnt = 0; cnt < 30000; cnt++) { | 
 | 			if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0) | 
 | 				break; | 
 | 			udelay(100); | 
 | 		} | 
 | 	} else { | 
 | 		udelay(10); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&ha->hardware_lock, flags); | 
 | } | 
 |  | 
 | static inline void | 
 | qla2x00_resume_hba(struct scsi_qla_host *vha) | 
 | { | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	/* Resume HBA. */ | 
 | 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); | 
 | 	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags); | 
 | 	qla2xxx_wake_dpc(vha); | 
 | 	qla2x00_wait_for_chip_reset(vha); | 
 | 	scsi_unblock_requests(vha->host); | 
 | } | 
 |  | 
 | uint8_t * | 
 | qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, | 
 |     uint32_t offset, uint32_t length) | 
 | { | 
 | 	uint32_t addr, midpoint; | 
 | 	uint8_t *data; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	/* Suspend HBA. */ | 
 | 	qla2x00_suspend_hba(vha); | 
 |  | 
 | 	/* Go with read. */ | 
 | 	midpoint = ha->optrom_size / 2; | 
 |  | 
 | 	qla2x00_flash_enable(ha); | 
 | 	WRT_REG_WORD(®->nvram, 0); | 
 | 	RD_REG_WORD(®->nvram);		/* PCI Posting. */ | 
 | 	for (addr = offset, data = buf; addr < length; addr++, data++) { | 
 | 		if (addr == midpoint) { | 
 | 			WRT_REG_WORD(®->nvram, NVR_SELECT); | 
 | 			RD_REG_WORD(®->nvram);	/* PCI Posting. */ | 
 | 		} | 
 |  | 
 | 		*data = qla2x00_read_flash_byte(ha, addr); | 
 | 	} | 
 | 	qla2x00_flash_disable(ha); | 
 |  | 
 | 	/* Resume HBA. */ | 
 | 	qla2x00_resume_hba(vha); | 
 |  | 
 | 	return buf; | 
 | } | 
 |  | 
 | int | 
 | qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, | 
 |     uint32_t offset, uint32_t length) | 
 | { | 
 |  | 
 | 	int rval; | 
 | 	uint8_t man_id, flash_id, sec_number, data; | 
 | 	uint16_t wd; | 
 | 	uint32_t addr, liter, sec_mask, rest_addr; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; | 
 |  | 
 | 	/* Suspend HBA. */ | 
 | 	qla2x00_suspend_hba(vha); | 
 |  | 
 | 	rval = QLA_SUCCESS; | 
 | 	sec_number = 0; | 
 |  | 
 | 	/* Reset ISP chip. */ | 
 | 	WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); | 
 | 	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd); | 
 |  | 
 | 	/* Go with write. */ | 
 | 	qla2x00_flash_enable(ha); | 
 | 	do {	/* Loop once to provide quick error exit */ | 
 | 		/* Structure of flash memory based on manufacturer */ | 
 | 		if (IS_OEM_001(ha)) { | 
 | 			/* OEM variant with special flash part. */ | 
 | 			man_id = flash_id = 0; | 
 | 			rest_addr = 0xffff; | 
 | 			sec_mask   = 0x10000; | 
 | 			goto update_flash; | 
 | 		} | 
 | 		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id); | 
 | 		switch (man_id) { | 
 | 		case 0x20: /* ST flash. */ | 
 | 			if (flash_id == 0xd2 || flash_id == 0xe3) { | 
 | 				/* | 
 | 				 * ST m29w008at part - 64kb sector size with | 
 | 				 * 32kb,8kb,8kb,16kb sectors at memory address | 
 | 				 * 0xf0000. | 
 | 				 */ | 
 | 				rest_addr = 0xffff; | 
 | 				sec_mask = 0x10000; | 
 | 				break;    | 
 | 			} | 
 | 			/* | 
 | 			 * ST m29w010b part - 16kb sector size | 
 | 			 * Default to 16kb sectors | 
 | 			 */ | 
 | 			rest_addr = 0x3fff; | 
 | 			sec_mask = 0x1c000; | 
 | 			break; | 
 | 		case 0x40: /* Mostel flash. */ | 
 | 			/* Mostel v29c51001 part - 512 byte sector size. */ | 
 | 			rest_addr = 0x1ff; | 
 | 			sec_mask = 0x1fe00; | 
 | 			break; | 
 | 		case 0xbf: /* SST flash. */ | 
 | 			/* SST39sf10 part - 4kb sector size. */ | 
 | 			rest_addr = 0xfff; | 
 | 			sec_mask = 0x1f000; | 
 | 			break; | 
 | 		case 0xda: /* Winbond flash. */ | 
 | 			/* Winbond W29EE011 part - 256 byte sector size. */ | 
 | 			rest_addr = 0x7f; | 
 | 			sec_mask = 0x1ff80; | 
 | 			break; | 
 | 		case 0xc2: /* Macronix flash. */ | 
 | 			/* 64k sector size. */ | 
 | 			if (flash_id == 0x38 || flash_id == 0x4f) { | 
 | 				rest_addr = 0xffff; | 
 | 				sec_mask = 0x10000; | 
 | 				break; | 
 | 			} | 
 | 			/* Fall through... */ | 
 |  | 
 | 		case 0x1f: /* Atmel flash. */ | 
 | 			/* 512k sector size. */ | 
 | 			if (flash_id == 0x13) { | 
 | 				rest_addr = 0x7fffffff; | 
 | 				sec_mask =   0x80000000; | 
 | 				break; | 
 | 			} | 
 | 			/* Fall through... */ | 
 |  | 
 | 		case 0x01: /* AMD flash. */ | 
 | 			if (flash_id == 0x38 || flash_id == 0x40 || | 
 | 			    flash_id == 0x4f) { | 
 | 				/* Am29LV081 part - 64kb sector size. */ | 
 | 				/* Am29LV002BT part - 64kb sector size. */ | 
 | 				rest_addr = 0xffff; | 
 | 				sec_mask = 0x10000; | 
 | 				break; | 
 | 			} else if (flash_id == 0x3e) { | 
 | 				/* | 
 | 				 * Am29LV008b part - 64kb sector size with | 
 | 				 * 32kb,8kb,8kb,16kb sector at memory address | 
 | 				 * h0xf0000. | 
 | 				 */ | 
 | 				rest_addr = 0xffff; | 
 | 				sec_mask = 0x10000; | 
 | 				break; | 
 | 			} else if (flash_id == 0x20 || flash_id == 0x6e) { | 
 | 				/* | 
 | 				 * Am29LV010 part or AM29f010 - 16kb sector | 
 | 				 * size. | 
 | 				 */ | 
 | 				rest_addr = 0x3fff; | 
 | 				sec_mask = 0x1c000; | 
 | 				break; | 
 | 			} else if (flash_id == 0x6d) { | 
 | 				/* Am29LV001 part - 8kb sector size. */ | 
 | 				rest_addr = 0x1fff; | 
 | 				sec_mask = 0x1e000; | 
 | 				break; | 
 | 			} | 
 | 		default: | 
 | 			/* Default to 16 kb sector size. */ | 
 | 			rest_addr = 0x3fff; | 
 | 			sec_mask = 0x1c000; | 
 | 			break; | 
 | 		} | 
 |  | 
 | update_flash: | 
 | 		if (IS_QLA2322(ha) || IS_QLA6322(ha)) { | 
 | 			if (qla2x00_erase_flash(ha, man_id, flash_id)) { | 
 | 				rval = QLA_FUNCTION_FAILED; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		for (addr = offset, liter = 0; liter < length; liter++, | 
 | 		    addr++) { | 
 | 			data = buf[liter]; | 
 | 			/* Are we at the beginning of a sector? */ | 
 | 			if ((addr & rest_addr) == 0) { | 
 | 				if (IS_QLA2322(ha) || IS_QLA6322(ha)) { | 
 | 					if (addr >= 0x10000UL) { | 
 | 						if (((addr >> 12) & 0xf0) && | 
 | 						    ((man_id == 0x01 && | 
 | 							flash_id == 0x3e) || | 
 | 						     (man_id == 0x20 && | 
 | 							 flash_id == 0xd2))) { | 
 | 							sec_number++; | 
 | 							if (sec_number == 1) { | 
 | 								rest_addr = | 
 | 								    0x7fff; | 
 | 								sec_mask = | 
 | 								    0x18000; | 
 | 							} else if ( | 
 | 							    sec_number == 2 || | 
 | 							    sec_number == 3) { | 
 | 								rest_addr = | 
 | 								    0x1fff; | 
 | 								sec_mask = | 
 | 								    0x1e000; | 
 | 							} else if ( | 
 | 							    sec_number == 4) { | 
 | 								rest_addr = | 
 | 								    0x3fff; | 
 | 								sec_mask = | 
 | 								    0x1c000; | 
 | 							} | 
 | 						} | 
 | 					} | 
 | 				} else if (addr == ha->optrom_size / 2) { | 
 | 					WRT_REG_WORD(®->nvram, NVR_SELECT); | 
 | 					RD_REG_WORD(®->nvram); | 
 | 				} | 
 |  | 
 | 				if (flash_id == 0xda && man_id == 0xc1) { | 
 | 					qla2x00_write_flash_byte(ha, 0x5555, | 
 | 					    0xaa); | 
 | 					qla2x00_write_flash_byte(ha, 0x2aaa, | 
 | 					    0x55); | 
 | 					qla2x00_write_flash_byte(ha, 0x5555, | 
 | 					    0xa0); | 
 | 				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) { | 
 | 					/* Then erase it */ | 
 | 					if (qla2x00_erase_flash_sector(ha, | 
 | 					    addr, sec_mask, man_id, | 
 | 					    flash_id)) { | 
 | 						rval = QLA_FUNCTION_FAILED; | 
 | 						break; | 
 | 					} | 
 | 					if (man_id == 0x01 && flash_id == 0x6d) | 
 | 						sec_number++; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (man_id == 0x01 && flash_id == 0x6d) { | 
 | 				if (sec_number == 1 && | 
 | 				    addr == (rest_addr - 1)) { | 
 | 					rest_addr = 0x0fff; | 
 | 					sec_mask   = 0x1f000; | 
 | 				} else if (sec_number == 3 && (addr & 0x7ffe)) { | 
 | 					rest_addr = 0x3fff; | 
 | 					sec_mask   = 0x1c000; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (qla2x00_program_flash_address(ha, addr, data, | 
 | 			    man_id, flash_id)) { | 
 | 				rval = QLA_FUNCTION_FAILED; | 
 | 				break; | 
 | 			} | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} while (0); | 
 | 	qla2x00_flash_disable(ha); | 
 |  | 
 | 	/* Resume HBA. */ | 
 | 	qla2x00_resume_hba(vha); | 
 |  | 
 | 	return rval; | 
 | } | 
 |  | 
 | uint8_t * | 
 | qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, | 
 |     uint32_t offset, uint32_t length) | 
 | { | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	/* Suspend HBA. */ | 
 | 	scsi_block_requests(vha->host); | 
 | 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); | 
 |  | 
 | 	/* Go with read. */ | 
 | 	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2); | 
 |  | 
 | 	/* Resume HBA. */ | 
 | 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); | 
 | 	scsi_unblock_requests(vha->host); | 
 |  | 
 | 	return buf; | 
 | } | 
 |  | 
 | int | 
 | qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, | 
 |     uint32_t offset, uint32_t length) | 
 | { | 
 | 	int rval; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	/* Suspend HBA. */ | 
 | 	scsi_block_requests(vha->host); | 
 | 	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); | 
 |  | 
 | 	/* Go with write. */ | 
 | 	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2, | 
 | 	    length >> 2); | 
 |  | 
 | 	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags); | 
 | 	scsi_unblock_requests(vha->host); | 
 |  | 
 | 	return rval; | 
 | } | 
 |  | 
 | uint8_t * | 
 | qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf, | 
 |     uint32_t offset, uint32_t length) | 
 | { | 
 | 	int rval; | 
 | 	dma_addr_t optrom_dma; | 
 | 	void *optrom; | 
 | 	uint8_t *pbuf; | 
 | 	uint32_t faddr, left, burst; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	if (IS_QLA25XX(ha) || IS_QLA81XX(ha)) | 
 | 		goto try_fast; | 
 | 	if (offset & 0xfff) | 
 | 		goto slow_read; | 
 | 	if (length < OPTROM_BURST_SIZE) | 
 | 		goto slow_read; | 
 |  | 
 | try_fast: | 
 | 	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, | 
 | 	    &optrom_dma, GFP_KERNEL); | 
 | 	if (!optrom) { | 
 | 		ql_log(ql_log_warn, vha, 0x00cc, | 
 | 		    "Unable to allocate memory for optrom burst read (%x KB).\n", | 
 | 		    OPTROM_BURST_SIZE / 1024); | 
 | 		goto slow_read; | 
 | 	} | 
 |  | 
 | 	pbuf = buf; | 
 | 	faddr = offset >> 2; | 
 | 	left = length >> 2; | 
 | 	burst = OPTROM_BURST_DWORDS; | 
 | 	while (left != 0) { | 
 | 		if (burst > left) | 
 | 			burst = left; | 
 |  | 
 | 		rval = qla2x00_dump_ram(vha, optrom_dma, | 
 | 		    flash_data_addr(ha, faddr), burst); | 
 | 		if (rval) { | 
 | 			ql_log(ql_log_warn, vha, 0x00f5, | 
 | 			    "Unable to burst-read optrom segment (%x/%x/%llx).\n", | 
 | 			    rval, flash_data_addr(ha, faddr), | 
 | 			    (unsigned long long)optrom_dma); | 
 | 			ql_log(ql_log_warn, vha, 0x00f6, | 
 | 			    "Reverting to slow-read.\n"); | 
 |  | 
 | 			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, | 
 | 			    optrom, optrom_dma); | 
 | 			goto slow_read; | 
 | 		} | 
 |  | 
 | 		memcpy(pbuf, optrom, burst * 4); | 
 |  | 
 | 		left -= burst; | 
 | 		faddr += burst; | 
 | 		pbuf += burst * 4; | 
 | 	} | 
 |  | 
 | 	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom, | 
 | 	    optrom_dma); | 
 |  | 
 | 	return buf; | 
 |  | 
 | slow_read: | 
 |     return qla24xx_read_optrom_data(vha, buf, offset, length); | 
 | } | 
 |  | 
 | /** | 
 |  * qla2x00_get_fcode_version() - Determine an FCODE image's version. | 
 |  * @ha: HA context | 
 |  * @pcids: Pointer to the FCODE PCI data structure | 
 |  * | 
 |  * The process of retrieving the FCODE version information is at best | 
 |  * described as interesting. | 
 |  * | 
 |  * Within the first 100h bytes of the image an ASCII string is present | 
 |  * which contains several pieces of information including the FCODE | 
 |  * version.  Unfortunately it seems the only reliable way to retrieve | 
 |  * the version is by scanning for another sentinel within the string, | 
 |  * the FCODE build date: | 
 |  * | 
 |  *	... 2.00.02 10/17/02 ... | 
 |  * | 
 |  * Returns QLA_SUCCESS on successful retrieval of version. | 
 |  */ | 
 | static void | 
 | qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids) | 
 | { | 
 | 	int ret = QLA_FUNCTION_FAILED; | 
 | 	uint32_t istart, iend, iter, vend; | 
 | 	uint8_t do_next, rbyte, *vbyte; | 
 |  | 
 | 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); | 
 |  | 
 | 	/* Skip the PCI data structure. */ | 
 | 	istart = pcids + | 
 | 	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) | | 
 | 		qla2x00_read_flash_byte(ha, pcids + 0x0A)); | 
 | 	iend = istart + 0x100; | 
 | 	do { | 
 | 		/* Scan for the sentinel date string...eeewww. */ | 
 | 		do_next = 0; | 
 | 		iter = istart; | 
 | 		while ((iter < iend) && !do_next) { | 
 | 			iter++; | 
 | 			if (qla2x00_read_flash_byte(ha, iter) == '/') { | 
 | 				if (qla2x00_read_flash_byte(ha, iter + 2) == | 
 | 				    '/') | 
 | 					do_next++; | 
 | 				else if (qla2x00_read_flash_byte(ha, | 
 | 				    iter + 3) == '/') | 
 | 					do_next++; | 
 | 			} | 
 | 		} | 
 | 		if (!do_next) | 
 | 			break; | 
 |  | 
 | 		/* Backtrack to previous ' ' (space). */ | 
 | 		do_next = 0; | 
 | 		while ((iter > istart) && !do_next) { | 
 | 			iter--; | 
 | 			if (qla2x00_read_flash_byte(ha, iter) == ' ') | 
 | 				do_next++; | 
 | 		} | 
 | 		if (!do_next) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Mark end of version tag, and find previous ' ' (space) or | 
 | 		 * string length (recent FCODE images -- major hack ahead!!!). | 
 | 		 */ | 
 | 		vend = iter - 1; | 
 | 		do_next = 0; | 
 | 		while ((iter > istart) && !do_next) { | 
 | 			iter--; | 
 | 			rbyte = qla2x00_read_flash_byte(ha, iter); | 
 | 			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10) | 
 | 				do_next++; | 
 | 		} | 
 | 		if (!do_next) | 
 | 			break; | 
 |  | 
 | 		/* Mark beginning of version tag, and copy data. */ | 
 | 		iter++; | 
 | 		if ((vend - iter) && | 
 | 		    ((vend - iter) < sizeof(ha->fcode_revision))) { | 
 | 			vbyte = ha->fcode_revision; | 
 | 			while (iter <= vend) { | 
 | 				*vbyte++ = qla2x00_read_flash_byte(ha, iter); | 
 | 				iter++; | 
 | 			} | 
 | 			ret = QLA_SUCCESS; | 
 | 		} | 
 | 	} while (0); | 
 |  | 
 | 	if (ret != QLA_SUCCESS) | 
 | 		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); | 
 | } | 
 |  | 
 | int | 
 | qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf) | 
 | { | 
 | 	int ret = QLA_SUCCESS; | 
 | 	uint8_t code_type, last_image; | 
 | 	uint32_t pcihdr, pcids; | 
 | 	uint8_t *dbyte; | 
 | 	uint16_t *dcode; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	if (!ha->pio_address || !mbuf) | 
 | 		return QLA_FUNCTION_FAILED; | 
 |  | 
 | 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision)); | 
 | 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision)); | 
 | 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); | 
 | 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); | 
 |  | 
 | 	qla2x00_flash_enable(ha); | 
 |  | 
 | 	/* Begin with first PCI expansion ROM header. */ | 
 | 	pcihdr = 0; | 
 | 	last_image = 1; | 
 | 	do { | 
 | 		/* Verify PCI expansion ROM header. */ | 
 | 		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 || | 
 | 		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) { | 
 | 			/* No signature */ | 
 | 			ql_log(ql_log_fatal, vha, 0x0050, | 
 | 			    "No matching ROM signature.\n"); | 
 | 			ret = QLA_FUNCTION_FAILED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Locate PCI data structure. */ | 
 | 		pcids = pcihdr + | 
 | 		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) | | 
 | 			qla2x00_read_flash_byte(ha, pcihdr + 0x18)); | 
 |  | 
 | 		/* Validate signature of PCI data structure. */ | 
 | 		if (qla2x00_read_flash_byte(ha, pcids) != 'P' || | 
 | 		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' || | 
 | 		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' || | 
 | 		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') { | 
 | 			/* Incorrect header. */ | 
 | 			ql_log(ql_log_fatal, vha, 0x0051, | 
 | 			    "PCI data struct not found pcir_adr=%x.\n", pcids); | 
 | 			ret = QLA_FUNCTION_FAILED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Read version */ | 
 | 		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14); | 
 | 		switch (code_type) { | 
 | 		case ROM_CODE_TYPE_BIOS: | 
 | 			/* Intel x86, PC-AT compatible. */ | 
 | 			ha->bios_revision[0] = | 
 | 			    qla2x00_read_flash_byte(ha, pcids + 0x12); | 
 | 			ha->bios_revision[1] = | 
 | 			    qla2x00_read_flash_byte(ha, pcids + 0x13); | 
 | 			ql_dbg(ql_dbg_init, vha, 0x0052, | 
 | 			    "Read BIOS %d.%d.\n", | 
 | 			    ha->bios_revision[1], ha->bios_revision[0]); | 
 | 			break; | 
 | 		case ROM_CODE_TYPE_FCODE: | 
 | 			/* Open Firmware standard for PCI (FCode). */ | 
 | 			/* Eeeewww... */ | 
 | 			qla2x00_get_fcode_version(ha, pcids); | 
 | 			break; | 
 | 		case ROM_CODE_TYPE_EFI: | 
 | 			/* Extensible Firmware Interface (EFI). */ | 
 | 			ha->efi_revision[0] = | 
 | 			    qla2x00_read_flash_byte(ha, pcids + 0x12); | 
 | 			ha->efi_revision[1] = | 
 | 			    qla2x00_read_flash_byte(ha, pcids + 0x13); | 
 | 			ql_dbg(ql_dbg_init, vha, 0x0053, | 
 | 			    "Read EFI %d.%d.\n", | 
 | 			    ha->efi_revision[1], ha->efi_revision[0]); | 
 | 			break; | 
 | 		default: | 
 | 			ql_log(ql_log_warn, vha, 0x0054, | 
 | 			    "Unrecognized code type %x at pcids %x.\n", | 
 | 			    code_type, pcids); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7; | 
 |  | 
 | 		/* Locate next PCI expansion ROM. */ | 
 | 		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) | | 
 | 		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512; | 
 | 	} while (!last_image); | 
 |  | 
 | 	if (IS_QLA2322(ha)) { | 
 | 		/* Read firmware image information. */ | 
 | 		memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); | 
 | 		dbyte = mbuf; | 
 | 		memset(dbyte, 0, 8); | 
 | 		dcode = (uint16_t *)dbyte; | 
 |  | 
 | 		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10, | 
 | 		    8); | 
 | 		ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a, | 
 | 		    "Dumping fw " | 
 | 		    "ver from flash:.\n"); | 
 | 		ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b, | 
 | 		    (uint8_t *)dbyte, 8); | 
 |  | 
 | 		if ((dcode[0] == 0xffff && dcode[1] == 0xffff && | 
 | 		    dcode[2] == 0xffff && dcode[3] == 0xffff) || | 
 | 		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && | 
 | 		    dcode[3] == 0)) { | 
 | 			ql_log(ql_log_warn, vha, 0x0057, | 
 | 			    "Unrecognized fw revision at %x.\n", | 
 | 			    ha->flt_region_fw * 4); | 
 | 		} else { | 
 | 			/* values are in big endian */ | 
 | 			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1]; | 
 | 			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3]; | 
 | 			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5]; | 
 | 			ql_dbg(ql_dbg_init, vha, 0x0058, | 
 | 			    "FW Version: " | 
 | 			    "%d.%d.%d.\n", ha->fw_revision[0], | 
 | 			    ha->fw_revision[1], ha->fw_revision[2]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	qla2x00_flash_disable(ha); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int | 
 | qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf) | 
 | { | 
 | 	int ret = QLA_SUCCESS; | 
 | 	uint32_t pcihdr, pcids; | 
 | 	uint32_t *dcode; | 
 | 	uint8_t *bcode; | 
 | 	uint8_t code_type, last_image; | 
 | 	int i; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	if (IS_QLA82XX(ha)) | 
 | 		return ret; | 
 |  | 
 | 	if (!mbuf) | 
 | 		return QLA_FUNCTION_FAILED; | 
 |  | 
 | 	memset(ha->bios_revision, 0, sizeof(ha->bios_revision)); | 
 | 	memset(ha->efi_revision, 0, sizeof(ha->efi_revision)); | 
 | 	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision)); | 
 | 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); | 
 |  | 
 | 	dcode = mbuf; | 
 |  | 
 | 	/* Begin with first PCI expansion ROM header. */ | 
 | 	pcihdr = ha->flt_region_boot << 2; | 
 | 	last_image = 1; | 
 | 	do { | 
 | 		/* Verify PCI expansion ROM header. */ | 
 | 		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20); | 
 | 		bcode = mbuf + (pcihdr % 4); | 
 | 		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) { | 
 | 			/* No signature */ | 
 | 			ql_log(ql_log_fatal, vha, 0x0059, | 
 | 			    "No matching ROM signature.\n"); | 
 | 			ret = QLA_FUNCTION_FAILED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Locate PCI data structure. */ | 
 | 		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]); | 
 |  | 
 | 		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20); | 
 | 		bcode = mbuf + (pcihdr % 4); | 
 |  | 
 | 		/* Validate signature of PCI data structure. */ | 
 | 		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' || | 
 | 		    bcode[0x2] != 'I' || bcode[0x3] != 'R') { | 
 | 			/* Incorrect header. */ | 
 | 			ql_log(ql_log_fatal, vha, 0x005a, | 
 | 			    "PCI data struct not found pcir_adr=%x.\n", pcids); | 
 | 			ret = QLA_FUNCTION_FAILED; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Read version */ | 
 | 		code_type = bcode[0x14]; | 
 | 		switch (code_type) { | 
 | 		case ROM_CODE_TYPE_BIOS: | 
 | 			/* Intel x86, PC-AT compatible. */ | 
 | 			ha->bios_revision[0] = bcode[0x12]; | 
 | 			ha->bios_revision[1] = bcode[0x13]; | 
 | 			ql_dbg(ql_dbg_init, vha, 0x005b, | 
 | 			    "Read BIOS %d.%d.\n", | 
 | 			    ha->bios_revision[1], ha->bios_revision[0]); | 
 | 			break; | 
 | 		case ROM_CODE_TYPE_FCODE: | 
 | 			/* Open Firmware standard for PCI (FCode). */ | 
 | 			ha->fcode_revision[0] = bcode[0x12]; | 
 | 			ha->fcode_revision[1] = bcode[0x13]; | 
 | 			ql_dbg(ql_dbg_init, vha, 0x005c, | 
 | 			    "Read FCODE %d.%d.\n", | 
 | 			    ha->fcode_revision[1], ha->fcode_revision[0]); | 
 | 			break; | 
 | 		case ROM_CODE_TYPE_EFI: | 
 | 			/* Extensible Firmware Interface (EFI). */ | 
 | 			ha->efi_revision[0] = bcode[0x12]; | 
 | 			ha->efi_revision[1] = bcode[0x13]; | 
 | 			ql_dbg(ql_dbg_init, vha, 0x005d, | 
 | 			    "Read EFI %d.%d.\n", | 
 | 			    ha->efi_revision[1], ha->efi_revision[0]); | 
 | 			break; | 
 | 		default: | 
 | 			ql_log(ql_log_warn, vha, 0x005e, | 
 | 			    "Unrecognized code type %x at pcids %x.\n", | 
 | 			    code_type, pcids); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		last_image = bcode[0x15] & BIT_7; | 
 |  | 
 | 		/* Locate next PCI expansion ROM. */ | 
 | 		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512; | 
 | 	} while (!last_image); | 
 |  | 
 | 	/* Read firmware image information. */ | 
 | 	memset(ha->fw_revision, 0, sizeof(ha->fw_revision)); | 
 | 	dcode = mbuf; | 
 |  | 
 | 	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4); | 
 | 	for (i = 0; i < 4; i++) | 
 | 		dcode[i] = be32_to_cpu(dcode[i]); | 
 |  | 
 | 	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff && | 
 | 	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) || | 
 | 	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && | 
 | 	    dcode[3] == 0)) { | 
 | 		ql_log(ql_log_warn, vha, 0x005f, | 
 | 		    "Unrecognized fw revision at %x.\n", | 
 | 		    ha->flt_region_fw * 4); | 
 | 	} else { | 
 | 		ha->fw_revision[0] = dcode[0]; | 
 | 		ha->fw_revision[1] = dcode[1]; | 
 | 		ha->fw_revision[2] = dcode[2]; | 
 | 		ha->fw_revision[3] = dcode[3]; | 
 | 		ql_dbg(ql_dbg_init, vha, 0x0060, | 
 | 		    "Firmware revision %d.%d.%d.%d.\n", | 
 | 		    ha->fw_revision[0], ha->fw_revision[1], | 
 | 		    ha->fw_revision[2], ha->fw_revision[3]); | 
 | 	} | 
 |  | 
 | 	/* Check for golden firmware and get version if available */ | 
 | 	if (!IS_QLA81XX(ha)) { | 
 | 		/* Golden firmware is not present in non 81XX adapters */ | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version)); | 
 | 	dcode = mbuf; | 
 | 	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, | 
 | 	    ha->flt_region_gold_fw << 2, 32); | 
 |  | 
 | 	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF && | 
 | 	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) { | 
 | 		ql_log(ql_log_warn, vha, 0x0056, | 
 | 		    "Unrecognized golden fw at 0x%x.\n", | 
 | 		    ha->flt_region_gold_fw * 4); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	for (i = 4; i < 8; i++) | 
 | 		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end) | 
 | { | 
 | 	if (pos >= end || *pos != 0x82) | 
 | 		return 0; | 
 |  | 
 | 	pos += 3 + pos[1]; | 
 | 	if (pos >= end || *pos != 0x90) | 
 | 		return 0; | 
 |  | 
 | 	pos += 3 + pos[1]; | 
 | 	if (pos >= end || *pos != 0x78) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | int | 
 | qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size) | 
 | { | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 | 	uint8_t *pos = ha->vpd; | 
 | 	uint8_t *end = pos + ha->vpd_size; | 
 | 	int len = 0; | 
 |  | 
 | 	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end)) | 
 | 		return 0; | 
 |  | 
 | 	while (pos < end && *pos != 0x78) { | 
 | 		len = (*pos == 0x82) ? pos[1] : pos[2]; | 
 |  | 
 | 		if (!strncmp(pos, key, strlen(key))) | 
 | 			break; | 
 |  | 
 | 		if (*pos != 0x90 && *pos != 0x91) | 
 | 			pos += len; | 
 |  | 
 | 		pos += 3; | 
 | 	} | 
 |  | 
 | 	if (pos < end - len && *pos != 0x78) | 
 | 		return snprintf(str, size, "%.*s", len, pos + 3); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha) | 
 | { | 
 | 	int len, max_len; | 
 | 	uint32_t fcp_prio_addr; | 
 | 	struct qla_hw_data *ha = vha->hw; | 
 |  | 
 | 	if (!ha->fcp_prio_cfg) { | 
 | 		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE); | 
 | 		if (!ha->fcp_prio_cfg) { | 
 | 			ql_log(ql_log_warn, vha, 0x00d5, | 
 | 			    "Unable to allocate memory for fcp priorty data (%x).\n", | 
 | 			    FCP_PRIO_CFG_SIZE); | 
 | 			return QLA_FUNCTION_FAILED; | 
 | 		} | 
 | 	} | 
 | 	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE); | 
 |  | 
 | 	fcp_prio_addr = ha->flt_region_fcp_prio; | 
 |  | 
 | 	/* first read the fcp priority data header from flash */ | 
 | 	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg, | 
 | 			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE); | 
 |  | 
 | 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0)) | 
 | 		goto fail; | 
 |  | 
 | 	/* read remaining FCP CMD config data from flash */ | 
 | 	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2); | 
 | 	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE; | 
 | 	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE; | 
 |  | 
 | 	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0], | 
 | 			fcp_prio_addr << 2, (len < max_len ? len : max_len)); | 
 |  | 
 | 	/* revalidate the entire FCP priority config data, including entries */ | 
 | 	if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1)) | 
 | 		goto fail; | 
 |  | 
 | 	ha->flags.fcp_prio_enabled = 1; | 
 | 	return QLA_SUCCESS; | 
 | fail: | 
 | 	vfree(ha->fcp_prio_cfg); | 
 | 	ha->fcp_prio_cfg = NULL; | 
 | 	return QLA_FUNCTION_FAILED; | 
 | } |