|  | #include <linux/delay.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/wait.h> | 
|  |  | 
|  | #include "pci.h" | 
|  |  | 
|  | /* | 
|  | * This interrupt-safe spinlock protects all accesses to PCI | 
|  | * configuration space. | 
|  | */ | 
|  |  | 
|  | static DEFINE_RAW_SPINLOCK(pci_lock); | 
|  |  | 
|  | /* | 
|  | *  Wrappers for all PCI configuration access functions.  They just check | 
|  | *  alignment, do locking and call the low-level functions pointed to | 
|  | *  by pci_dev->ops. | 
|  | */ | 
|  |  | 
|  | #define PCI_byte_BAD 0 | 
|  | #define PCI_word_BAD (pos & 1) | 
|  | #define PCI_dword_BAD (pos & 3) | 
|  |  | 
|  | #define PCI_OP_READ(size,type,len) \ | 
|  | int pci_bus_read_config_##size \ | 
|  | (struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\ | 
|  | {									\ | 
|  | int res;							\ | 
|  | unsigned long flags;						\ | 
|  | u32 data = 0;							\ | 
|  | if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\ | 
|  | raw_spin_lock_irqsave(&pci_lock, flags);			\ | 
|  | res = bus->ops->read(bus, devfn, pos, len, &data);		\ | 
|  | *value = (type)data;						\ | 
|  | raw_spin_unlock_irqrestore(&pci_lock, flags);		\ | 
|  | return res;							\ | 
|  | } | 
|  |  | 
|  | #define PCI_OP_WRITE(size,type,len) \ | 
|  | int pci_bus_write_config_##size \ | 
|  | (struct pci_bus *bus, unsigned int devfn, int pos, type value)	\ | 
|  | {									\ | 
|  | int res;							\ | 
|  | unsigned long flags;						\ | 
|  | if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\ | 
|  | raw_spin_lock_irqsave(&pci_lock, flags);			\ | 
|  | res = bus->ops->write(bus, devfn, pos, len, value);		\ | 
|  | raw_spin_unlock_irqrestore(&pci_lock, flags);		\ | 
|  | return res;							\ | 
|  | } | 
|  |  | 
|  | PCI_OP_READ(byte, u8, 1) | 
|  | PCI_OP_READ(word, u16, 2) | 
|  | PCI_OP_READ(dword, u32, 4) | 
|  | PCI_OP_WRITE(byte, u8, 1) | 
|  | PCI_OP_WRITE(word, u16, 2) | 
|  | PCI_OP_WRITE(dword, u32, 4) | 
|  |  | 
|  | EXPORT_SYMBOL(pci_bus_read_config_byte); | 
|  | EXPORT_SYMBOL(pci_bus_read_config_word); | 
|  | EXPORT_SYMBOL(pci_bus_read_config_dword); | 
|  | EXPORT_SYMBOL(pci_bus_write_config_byte); | 
|  | EXPORT_SYMBOL(pci_bus_write_config_word); | 
|  | EXPORT_SYMBOL(pci_bus_write_config_dword); | 
|  |  | 
|  | /** | 
|  | * pci_bus_set_ops - Set raw operations of pci bus | 
|  | * @bus:	pci bus struct | 
|  | * @ops:	new raw operations | 
|  | * | 
|  | * Return previous raw operations | 
|  | */ | 
|  | struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops) | 
|  | { | 
|  | struct pci_ops *old_ops; | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&pci_lock, flags); | 
|  | old_ops = bus->ops; | 
|  | bus->ops = ops; | 
|  | raw_spin_unlock_irqrestore(&pci_lock, flags); | 
|  | return old_ops; | 
|  | } | 
|  | EXPORT_SYMBOL(pci_bus_set_ops); | 
|  |  | 
|  | /** | 
|  | * pci_read_vpd - Read one entry from Vital Product Data | 
|  | * @dev:	pci device struct | 
|  | * @pos:	offset in vpd space | 
|  | * @count:	number of bytes to read | 
|  | * @buf:	pointer to where to store result | 
|  | * | 
|  | */ | 
|  | ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf) | 
|  | { | 
|  | if (!dev->vpd || !dev->vpd->ops) | 
|  | return -ENODEV; | 
|  | return dev->vpd->ops->read(dev, pos, count, buf); | 
|  | } | 
|  | EXPORT_SYMBOL(pci_read_vpd); | 
|  |  | 
|  | /** | 
|  | * pci_write_vpd - Write entry to Vital Product Data | 
|  | * @dev:	pci device struct | 
|  | * @pos:	offset in vpd space | 
|  | * @count:	number of bytes to write | 
|  | * @buf:	buffer containing write data | 
|  | * | 
|  | */ | 
|  | ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf) | 
|  | { | 
|  | if (!dev->vpd || !dev->vpd->ops) | 
|  | return -ENODEV; | 
|  | return dev->vpd->ops->write(dev, pos, count, buf); | 
|  | } | 
|  | EXPORT_SYMBOL(pci_write_vpd); | 
|  |  | 
|  | /* | 
|  | * The following routines are to prevent the user from accessing PCI config | 
|  | * space when it's unsafe to do so.  Some devices require this during BIST and | 
|  | * we're required to prevent it during D-state transitions. | 
|  | * | 
|  | * We have a bit per device to indicate it's blocked and a global wait queue | 
|  | * for callers to sleep on until devices are unblocked. | 
|  | */ | 
|  | static DECLARE_WAIT_QUEUE_HEAD(pci_ucfg_wait); | 
|  |  | 
|  | static noinline void pci_wait_ucfg(struct pci_dev *dev) | 
|  | { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | __add_wait_queue(&pci_ucfg_wait, &wait); | 
|  | do { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | raw_spin_unlock_irq(&pci_lock); | 
|  | schedule(); | 
|  | raw_spin_lock_irq(&pci_lock); | 
|  | } while (dev->block_ucfg_access); | 
|  | __remove_wait_queue(&pci_ucfg_wait, &wait); | 
|  | } | 
|  |  | 
|  | #define PCI_USER_READ_CONFIG(size,type)					\ | 
|  | int pci_user_read_config_##size						\ | 
|  | (struct pci_dev *dev, int pos, type *val)			\ | 
|  | {									\ | 
|  | int ret = 0;							\ | 
|  | u32 data = -1;							\ | 
|  | if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\ | 
|  | raw_spin_lock_irq(&pci_lock);				\ | 
|  | if (unlikely(dev->block_ucfg_access)) pci_wait_ucfg(dev);	\ | 
|  | ret = dev->bus->ops->read(dev->bus, dev->devfn,			\ | 
|  | pos, sizeof(type), &data);	\ | 
|  | raw_spin_unlock_irq(&pci_lock);				\ | 
|  | *val = (type)data;						\ | 
|  | return ret;							\ | 
|  | } | 
|  |  | 
|  | #define PCI_USER_WRITE_CONFIG(size,type)				\ | 
|  | int pci_user_write_config_##size					\ | 
|  | (struct pci_dev *dev, int pos, type val)			\ | 
|  | {									\ | 
|  | int ret = -EIO;							\ | 
|  | if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\ | 
|  | raw_spin_lock_irq(&pci_lock);				\ | 
|  | if (unlikely(dev->block_ucfg_access)) pci_wait_ucfg(dev);	\ | 
|  | ret = dev->bus->ops->write(dev->bus, dev->devfn,		\ | 
|  | pos, sizeof(type), val);	\ | 
|  | raw_spin_unlock_irq(&pci_lock);				\ | 
|  | return ret;							\ | 
|  | } | 
|  |  | 
|  | PCI_USER_READ_CONFIG(byte, u8) | 
|  | PCI_USER_READ_CONFIG(word, u16) | 
|  | PCI_USER_READ_CONFIG(dword, u32) | 
|  | PCI_USER_WRITE_CONFIG(byte, u8) | 
|  | PCI_USER_WRITE_CONFIG(word, u16) | 
|  | PCI_USER_WRITE_CONFIG(dword, u32) | 
|  |  | 
|  | /* VPD access through PCI 2.2+ VPD capability */ | 
|  |  | 
|  | #define PCI_VPD_PCI22_SIZE (PCI_VPD_ADDR_MASK + 1) | 
|  |  | 
|  | struct pci_vpd_pci22 { | 
|  | struct pci_vpd base; | 
|  | struct mutex lock; | 
|  | u16	flag; | 
|  | bool	busy; | 
|  | u8	cap; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Wait for last operation to complete. | 
|  | * This code has to spin since there is no other notification from the PCI | 
|  | * hardware. Since the VPD is often implemented by serial attachment to an | 
|  | * EEPROM, it may take many milliseconds to complete. | 
|  | */ | 
|  | static int pci_vpd_pci22_wait(struct pci_dev *dev) | 
|  | { | 
|  | struct pci_vpd_pci22 *vpd = | 
|  | container_of(dev->vpd, struct pci_vpd_pci22, base); | 
|  | unsigned long timeout = jiffies + HZ/20 + 2; | 
|  | u16 status; | 
|  | int ret; | 
|  |  | 
|  | if (!vpd->busy) | 
|  | return 0; | 
|  |  | 
|  | for (;;) { | 
|  | ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR, | 
|  | &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if ((status & PCI_VPD_ADDR_F) == vpd->flag) { | 
|  | vpd->busy = false; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (time_after(jiffies, timeout)) { | 
|  | dev_printk(KERN_DEBUG, &dev->dev, | 
|  | "vpd r/w failed.  This is likely a firmware " | 
|  | "bug on this device.  Contact the card " | 
|  | "vendor for a firmware update."); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  | if (fatal_signal_pending(current)) | 
|  | return -EINTR; | 
|  | if (!cond_resched()) | 
|  | udelay(10); | 
|  | } | 
|  | } | 
|  |  | 
|  | static ssize_t pci_vpd_pci22_read(struct pci_dev *dev, loff_t pos, size_t count, | 
|  | void *arg) | 
|  | { | 
|  | struct pci_vpd_pci22 *vpd = | 
|  | container_of(dev->vpd, struct pci_vpd_pci22, base); | 
|  | int ret; | 
|  | loff_t end = pos + count; | 
|  | u8 *buf = arg; | 
|  |  | 
|  | if (pos < 0 || pos > vpd->base.len || end > vpd->base.len) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (mutex_lock_killable(&vpd->lock)) | 
|  | return -EINTR; | 
|  |  | 
|  | ret = pci_vpd_pci22_wait(dev); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | while (pos < end) { | 
|  | u32 val; | 
|  | unsigned int i, skip; | 
|  |  | 
|  | ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, | 
|  | pos & ~3); | 
|  | if (ret < 0) | 
|  | break; | 
|  | vpd->busy = true; | 
|  | vpd->flag = PCI_VPD_ADDR_F; | 
|  | ret = pci_vpd_pci22_wait(dev); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | skip = pos & 3; | 
|  | for (i = 0;  i < sizeof(u32); i++) { | 
|  | if (i >= skip) { | 
|  | *buf++ = val; | 
|  | if (++pos == end) | 
|  | break; | 
|  | } | 
|  | val >>= 8; | 
|  | } | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&vpd->lock); | 
|  | return ret ? ret : count; | 
|  | } | 
|  |  | 
|  | static ssize_t pci_vpd_pci22_write(struct pci_dev *dev, loff_t pos, size_t count, | 
|  | const void *arg) | 
|  | { | 
|  | struct pci_vpd_pci22 *vpd = | 
|  | container_of(dev->vpd, struct pci_vpd_pci22, base); | 
|  | const u8 *buf = arg; | 
|  | loff_t end = pos + count; | 
|  | int ret = 0; | 
|  |  | 
|  | if (pos < 0 || (pos & 3) || (count & 3) || end > vpd->base.len) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (mutex_lock_killable(&vpd->lock)) | 
|  | return -EINTR; | 
|  |  | 
|  | ret = pci_vpd_pci22_wait(dev); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | while (pos < end) { | 
|  | u32 val; | 
|  |  | 
|  | val = *buf++; | 
|  | val |= *buf++ << 8; | 
|  | val |= *buf++ << 16; | 
|  | val |= *buf++ << 24; | 
|  |  | 
|  | ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val); | 
|  | if (ret < 0) | 
|  | break; | 
|  | ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, | 
|  | pos | PCI_VPD_ADDR_F); | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | vpd->busy = true; | 
|  | vpd->flag = 0; | 
|  | ret = pci_vpd_pci22_wait(dev); | 
|  |  | 
|  | pos += sizeof(u32); | 
|  | } | 
|  | out: | 
|  | mutex_unlock(&vpd->lock); | 
|  | return ret ? ret : count; | 
|  | } | 
|  |  | 
|  | static void pci_vpd_pci22_release(struct pci_dev *dev) | 
|  | { | 
|  | kfree(container_of(dev->vpd, struct pci_vpd_pci22, base)); | 
|  | } | 
|  |  | 
|  | static const struct pci_vpd_ops pci_vpd_pci22_ops = { | 
|  | .read = pci_vpd_pci22_read, | 
|  | .write = pci_vpd_pci22_write, | 
|  | .release = pci_vpd_pci22_release, | 
|  | }; | 
|  |  | 
|  | int pci_vpd_pci22_init(struct pci_dev *dev) | 
|  | { | 
|  | struct pci_vpd_pci22 *vpd; | 
|  | u8 cap; | 
|  |  | 
|  | cap = pci_find_capability(dev, PCI_CAP_ID_VPD); | 
|  | if (!cap) | 
|  | return -ENODEV; | 
|  | vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC); | 
|  | if (!vpd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vpd->base.len = PCI_VPD_PCI22_SIZE; | 
|  | vpd->base.ops = &pci_vpd_pci22_ops; | 
|  | mutex_init(&vpd->lock); | 
|  | vpd->cap = cap; | 
|  | vpd->busy = false; | 
|  | dev->vpd = &vpd->base; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pci_vpd_truncate - Set available Vital Product Data size | 
|  | * @dev:	pci device struct | 
|  | * @size:	available memory in bytes | 
|  | * | 
|  | * Adjust size of available VPD area. | 
|  | */ | 
|  | int pci_vpd_truncate(struct pci_dev *dev, size_t size) | 
|  | { | 
|  | if (!dev->vpd) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* limited by the access method */ | 
|  | if (size > dev->vpd->len) | 
|  | return -EINVAL; | 
|  |  | 
|  | dev->vpd->len = size; | 
|  | if (dev->vpd->attr) | 
|  | dev->vpd->attr->size = size; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(pci_vpd_truncate); | 
|  |  | 
|  | /** | 
|  | * pci_block_user_cfg_access - Block userspace PCI config reads/writes | 
|  | * @dev:	pci device struct | 
|  | * | 
|  | * When user access is blocked, any reads or writes to config space will | 
|  | * sleep until access is unblocked again.  We don't allow nesting of | 
|  | * block/unblock calls. | 
|  | */ | 
|  | void pci_block_user_cfg_access(struct pci_dev *dev) | 
|  | { | 
|  | unsigned long flags; | 
|  | int was_blocked; | 
|  |  | 
|  | raw_spin_lock_irqsave(&pci_lock, flags); | 
|  | was_blocked = dev->block_ucfg_access; | 
|  | dev->block_ucfg_access = 1; | 
|  | raw_spin_unlock_irqrestore(&pci_lock, flags); | 
|  |  | 
|  | /* If we BUG() inside the pci_lock, we're guaranteed to hose | 
|  | * the machine */ | 
|  | BUG_ON(was_blocked); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pci_block_user_cfg_access); | 
|  |  | 
|  | /** | 
|  | * pci_unblock_user_cfg_access - Unblock userspace PCI config reads/writes | 
|  | * @dev:	pci device struct | 
|  | * | 
|  | * This function allows userspace PCI config accesses to resume. | 
|  | */ | 
|  | void pci_unblock_user_cfg_access(struct pci_dev *dev) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | raw_spin_lock_irqsave(&pci_lock, flags); | 
|  |  | 
|  | /* This indicates a problem in the caller, but we don't need | 
|  | * to kill them, unlike a double-block above. */ | 
|  | WARN_ON(!dev->block_ucfg_access); | 
|  |  | 
|  | dev->block_ucfg_access = 0; | 
|  | wake_up_all(&pci_ucfg_wait); | 
|  | raw_spin_unlock_irqrestore(&pci_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pci_unblock_user_cfg_access); |