| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/bio.h> |
| #include <linux/slab.h> |
| #include <linux/buffer_head.h> |
| #include <linux/blkdev.h> |
| #include <linux/ratelimit.h> |
| #include <linux/kthread.h> |
| #include <linux/raid/pq.h> |
| #include <linux/semaphore.h> |
| #include <linux/uuid.h> |
| #include <linux/list_sort.h> |
| #include "ctree.h" |
| #include "extent_map.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "print-tree.h" |
| #include "volumes.h" |
| #include "raid56.h" |
| #include "async-thread.h" |
| #include "check-integrity.h" |
| #include "rcu-string.h" |
| #include "math.h" |
| #include "dev-replace.h" |
| #include "sysfs.h" |
| |
| const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { |
| [BTRFS_RAID_RAID10] = { |
| .sub_stripes = 2, |
| .dev_stripes = 1, |
| .devs_max = 0, /* 0 == as many as possible */ |
| .devs_min = 4, |
| .tolerated_failures = 1, |
| .devs_increment = 2, |
| .ncopies = 2, |
| .raid_name = "raid10", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID10, |
| .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_RAID1] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 2, |
| .devs_min = 2, |
| .tolerated_failures = 1, |
| .devs_increment = 2, |
| .ncopies = 2, |
| .raid_name = "raid1", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID1, |
| .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_DUP] = { |
| .sub_stripes = 1, |
| .dev_stripes = 2, |
| .devs_max = 1, |
| .devs_min = 1, |
| .tolerated_failures = 0, |
| .devs_increment = 1, |
| .ncopies = 2, |
| .raid_name = "dup", |
| .bg_flag = BTRFS_BLOCK_GROUP_DUP, |
| .mindev_error = 0, |
| }, |
| [BTRFS_RAID_RAID0] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 0, |
| .devs_min = 2, |
| .tolerated_failures = 0, |
| .devs_increment = 1, |
| .ncopies = 1, |
| .raid_name = "raid0", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID0, |
| .mindev_error = 0, |
| }, |
| [BTRFS_RAID_SINGLE] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 1, |
| .devs_min = 1, |
| .tolerated_failures = 0, |
| .devs_increment = 1, |
| .ncopies = 1, |
| .raid_name = "single", |
| .bg_flag = 0, |
| .mindev_error = 0, |
| }, |
| [BTRFS_RAID_RAID5] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 0, |
| .devs_min = 2, |
| .tolerated_failures = 1, |
| .devs_increment = 1, |
| .ncopies = 2, |
| .raid_name = "raid5", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID5, |
| .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_RAID6] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 0, |
| .devs_min = 3, |
| .tolerated_failures = 2, |
| .devs_increment = 1, |
| .ncopies = 3, |
| .raid_name = "raid6", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID6, |
| .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, |
| }, |
| }; |
| |
| const char *get_raid_name(enum btrfs_raid_types type) |
| { |
| if (type >= BTRFS_NR_RAID_TYPES) |
| return NULL; |
| |
| return btrfs_raid_array[type].raid_name; |
| } |
| |
| static int init_first_rw_device(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info); |
| static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); |
| static void __btrfs_reset_dev_stats(struct btrfs_device *dev); |
| static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); |
| static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); |
| static int __btrfs_map_block(struct btrfs_fs_info *fs_info, |
| enum btrfs_map_op op, |
| u64 logical, u64 *length, |
| struct btrfs_bio **bbio_ret, |
| int mirror_num, int need_raid_map); |
| |
| /* |
| * Device locking |
| * ============== |
| * |
| * There are several mutexes that protect manipulation of devices and low-level |
| * structures like chunks but not block groups, extents or files |
| * |
| * uuid_mutex (global lock) |
| * ------------------------ |
| * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from |
| * the SCAN_DEV ioctl registration or from mount either implicitly (the first |
| * device) or requested by the device= mount option |
| * |
| * the mutex can be very coarse and can cover long-running operations |
| * |
| * protects: updates to fs_devices counters like missing devices, rw devices, |
| * seeding, structure cloning, openning/closing devices at mount/umount time |
| * |
| * global::fs_devs - add, remove, updates to the global list |
| * |
| * does not protect: manipulation of the fs_devices::devices list! |
| * |
| * btrfs_device::name - renames (write side), read is RCU |
| * |
| * fs_devices::device_list_mutex (per-fs, with RCU) |
| * ------------------------------------------------ |
| * protects updates to fs_devices::devices, ie. adding and deleting |
| * |
| * simple list traversal with read-only actions can be done with RCU protection |
| * |
| * may be used to exclude some operations from running concurrently without any |
| * modifications to the list (see write_all_supers) |
| * |
| * balance_mutex |
| * ------------- |
| * protects balance structures (status, state) and context accessed from |
| * several places (internally, ioctl) |
| * |
| * chunk_mutex |
| * ----------- |
| * protects chunks, adding or removing during allocation, trim or when a new |
| * device is added/removed |
| * |
| * cleaner_mutex |
| * ------------- |
| * a big lock that is held by the cleaner thread and prevents running subvolume |
| * cleaning together with relocation or delayed iputs |
| * |
| * |
| * Lock nesting |
| * ============ |
| * |
| * uuid_mutex |
| * volume_mutex |
| * device_list_mutex |
| * chunk_mutex |
| * balance_mutex |
| * |
| * |
| * Exclusive operations, BTRFS_FS_EXCL_OP |
| * ====================================== |
| * |
| * Maintains the exclusivity of the following operations that apply to the |
| * whole filesystem and cannot run in parallel. |
| * |
| * - Balance (*) |
| * - Device add |
| * - Device remove |
| * - Device replace (*) |
| * - Resize |
| * |
| * The device operations (as above) can be in one of the following states: |
| * |
| * - Running state |
| * - Paused state |
| * - Completed state |
| * |
| * Only device operations marked with (*) can go into the Paused state for the |
| * following reasons: |
| * |
| * - ioctl (only Balance can be Paused through ioctl) |
| * - filesystem remounted as read-only |
| * - filesystem unmounted and mounted as read-only |
| * - system power-cycle and filesystem mounted as read-only |
| * - filesystem or device errors leading to forced read-only |
| * |
| * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. |
| * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. |
| * A device operation in Paused or Running state can be canceled or resumed |
| * either by ioctl (Balance only) or when remounted as read-write. |
| * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or |
| * completed. |
| */ |
| |
| DEFINE_MUTEX(uuid_mutex); |
| static LIST_HEAD(fs_uuids); |
| struct list_head *btrfs_get_fs_uuids(void) |
| { |
| return &fs_uuids; |
| } |
| |
| /* |
| * alloc_fs_devices - allocate struct btrfs_fs_devices |
| * @fsid: if not NULL, copy the uuid to fs_devices::fsid |
| * |
| * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). |
| * The returned struct is not linked onto any lists and can be destroyed with |
| * kfree() right away. |
| */ |
| static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) |
| { |
| struct btrfs_fs_devices *fs_devs; |
| |
| fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); |
| if (!fs_devs) |
| return ERR_PTR(-ENOMEM); |
| |
| mutex_init(&fs_devs->device_list_mutex); |
| |
| INIT_LIST_HEAD(&fs_devs->devices); |
| INIT_LIST_HEAD(&fs_devs->resized_devices); |
| INIT_LIST_HEAD(&fs_devs->alloc_list); |
| INIT_LIST_HEAD(&fs_devs->fs_list); |
| if (fsid) |
| memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); |
| |
| return fs_devs; |
| } |
| |
| void btrfs_free_device(struct btrfs_device *device) |
| { |
| rcu_string_free(device->name); |
| bio_put(device->flush_bio); |
| kfree(device); |
| } |
| |
| static void free_fs_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_device *device; |
| WARN_ON(fs_devices->opened); |
| while (!list_empty(&fs_devices->devices)) { |
| device = list_entry(fs_devices->devices.next, |
| struct btrfs_device, dev_list); |
| list_del(&device->dev_list); |
| btrfs_free_device(device); |
| } |
| kfree(fs_devices); |
| } |
| |
| static void btrfs_kobject_uevent(struct block_device *bdev, |
| enum kobject_action action) |
| { |
| int ret; |
| |
| ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); |
| if (ret) |
| pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", |
| action, |
| kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), |
| &disk_to_dev(bdev->bd_disk)->kobj); |
| } |
| |
| void __exit btrfs_cleanup_fs_uuids(void) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| while (!list_empty(&fs_uuids)) { |
| fs_devices = list_entry(fs_uuids.next, |
| struct btrfs_fs_devices, fs_list); |
| list_del(&fs_devices->fs_list); |
| free_fs_devices(fs_devices); |
| } |
| } |
| |
| /* |
| * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. |
| * Returned struct is not linked onto any lists and must be destroyed using |
| * btrfs_free_device. |
| */ |
| static struct btrfs_device *__alloc_device(void) |
| { |
| struct btrfs_device *dev; |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (!dev) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Preallocate a bio that's always going to be used for flushing device |
| * barriers and matches the device lifespan |
| */ |
| dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); |
| if (!dev->flush_bio) { |
| kfree(dev); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| INIT_LIST_HEAD(&dev->dev_list); |
| INIT_LIST_HEAD(&dev->dev_alloc_list); |
| INIT_LIST_HEAD(&dev->resized_list); |
| |
| spin_lock_init(&dev->io_lock); |
| |
| atomic_set(&dev->reada_in_flight, 0); |
| atomic_set(&dev->dev_stats_ccnt, 0); |
| btrfs_device_data_ordered_init(dev); |
| INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); |
| INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); |
| |
| return dev; |
| } |
| |
| /* |
| * Find a device specified by @devid or @uuid in the list of @fs_devices, or |
| * return NULL. |
| * |
| * If devid and uuid are both specified, the match must be exact, otherwise |
| * only devid is used. |
| */ |
| static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices, |
| u64 devid, const u8 *uuid) |
| { |
| struct btrfs_device *dev; |
| |
| list_for_each_entry(dev, &fs_devices->devices, dev_list) { |
| if (dev->devid == devid && |
| (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { |
| return dev; |
| } |
| } |
| return NULL; |
| } |
| |
| static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| list_for_each_entry(fs_devices, &fs_uuids, fs_list) { |
| if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) |
| return fs_devices; |
| } |
| return NULL; |
| } |
| |
| static int |
| btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, |
| int flush, struct block_device **bdev, |
| struct buffer_head **bh) |
| { |
| int ret; |
| |
| *bdev = blkdev_get_by_path(device_path, flags, holder); |
| |
| if (IS_ERR(*bdev)) { |
| ret = PTR_ERR(*bdev); |
| goto error; |
| } |
| |
| if (flush) |
| filemap_write_and_wait((*bdev)->bd_inode->i_mapping); |
| ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); |
| if (ret) { |
| blkdev_put(*bdev, flags); |
| goto error; |
| } |
| invalidate_bdev(*bdev); |
| *bh = btrfs_read_dev_super(*bdev); |
| if (IS_ERR(*bh)) { |
| ret = PTR_ERR(*bh); |
| blkdev_put(*bdev, flags); |
| goto error; |
| } |
| |
| return 0; |
| |
| error: |
| *bdev = NULL; |
| *bh = NULL; |
| return ret; |
| } |
| |
| static void requeue_list(struct btrfs_pending_bios *pending_bios, |
| struct bio *head, struct bio *tail) |
| { |
| |
| struct bio *old_head; |
| |
| old_head = pending_bios->head; |
| pending_bios->head = head; |
| if (pending_bios->tail) |
| tail->bi_next = old_head; |
| else |
| pending_bios->tail = tail; |
| } |
| |
| /* |
| * we try to collect pending bios for a device so we don't get a large |
| * number of procs sending bios down to the same device. This greatly |
| * improves the schedulers ability to collect and merge the bios. |
| * |
| * But, it also turns into a long list of bios to process and that is sure |
| * to eventually make the worker thread block. The solution here is to |
| * make some progress and then put this work struct back at the end of |
| * the list if the block device is congested. This way, multiple devices |
| * can make progress from a single worker thread. |
| */ |
| static noinline void run_scheduled_bios(struct btrfs_device *device) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct bio *pending; |
| struct backing_dev_info *bdi; |
| struct btrfs_pending_bios *pending_bios; |
| struct bio *tail; |
| struct bio *cur; |
| int again = 0; |
| unsigned long num_run; |
| unsigned long batch_run = 0; |
| unsigned long last_waited = 0; |
| int force_reg = 0; |
| int sync_pending = 0; |
| struct blk_plug plug; |
| |
| /* |
| * this function runs all the bios we've collected for |
| * a particular device. We don't want to wander off to |
| * another device without first sending all of these down. |
| * So, setup a plug here and finish it off before we return |
| */ |
| blk_start_plug(&plug); |
| |
| bdi = device->bdev->bd_bdi; |
| |
| loop: |
| spin_lock(&device->io_lock); |
| |
| loop_lock: |
| num_run = 0; |
| |
| /* take all the bios off the list at once and process them |
| * later on (without the lock held). But, remember the |
| * tail and other pointers so the bios can be properly reinserted |
| * into the list if we hit congestion |
| */ |
| if (!force_reg && device->pending_sync_bios.head) { |
| pending_bios = &device->pending_sync_bios; |
| force_reg = 1; |
| } else { |
| pending_bios = &device->pending_bios; |
| force_reg = 0; |
| } |
| |
| pending = pending_bios->head; |
| tail = pending_bios->tail; |
| WARN_ON(pending && !tail); |
| |
| /* |
| * if pending was null this time around, no bios need processing |
| * at all and we can stop. Otherwise it'll loop back up again |
| * and do an additional check so no bios are missed. |
| * |
| * device->running_pending is used to synchronize with the |
| * schedule_bio code. |
| */ |
| if (device->pending_sync_bios.head == NULL && |
| device->pending_bios.head == NULL) { |
| again = 0; |
| device->running_pending = 0; |
| } else { |
| again = 1; |
| device->running_pending = 1; |
| } |
| |
| pending_bios->head = NULL; |
| pending_bios->tail = NULL; |
| |
| spin_unlock(&device->io_lock); |
| |
| while (pending) { |
| |
| rmb(); |
| /* we want to work on both lists, but do more bios on the |
| * sync list than the regular list |
| */ |
| if ((num_run > 32 && |
| pending_bios != &device->pending_sync_bios && |
| device->pending_sync_bios.head) || |
| (num_run > 64 && pending_bios == &device->pending_sync_bios && |
| device->pending_bios.head)) { |
| spin_lock(&device->io_lock); |
| requeue_list(pending_bios, pending, tail); |
| goto loop_lock; |
| } |
| |
| cur = pending; |
| pending = pending->bi_next; |
| cur->bi_next = NULL; |
| |
| BUG_ON(atomic_read(&cur->__bi_cnt) == 0); |
| |
| /* |
| * if we're doing the sync list, record that our |
| * plug has some sync requests on it |
| * |
| * If we're doing the regular list and there are |
| * sync requests sitting around, unplug before |
| * we add more |
| */ |
| if (pending_bios == &device->pending_sync_bios) { |
| sync_pending = 1; |
| } else if (sync_pending) { |
| blk_finish_plug(&plug); |
| blk_start_plug(&plug); |
| sync_pending = 0; |
| } |
| |
| btrfsic_submit_bio(cur); |
| num_run++; |
| batch_run++; |
| |
| cond_resched(); |
| |
| /* |
| * we made progress, there is more work to do and the bdi |
| * is now congested. Back off and let other work structs |
| * run instead |
| */ |
| if (pending && bdi_write_congested(bdi) && batch_run > 8 && |
| fs_info->fs_devices->open_devices > 1) { |
| struct io_context *ioc; |
| |
| ioc = current->io_context; |
| |
| /* |
| * the main goal here is that we don't want to |
| * block if we're going to be able to submit |
| * more requests without blocking. |
| * |
| * This code does two great things, it pokes into |
| * the elevator code from a filesystem _and_ |
| * it makes assumptions about how batching works. |
| */ |
| if (ioc && ioc->nr_batch_requests > 0 && |
| time_before(jiffies, ioc->last_waited + HZ/50UL) && |
| (last_waited == 0 || |
| ioc->last_waited == last_waited)) { |
| /* |
| * we want to go through our batch of |
| * requests and stop. So, we copy out |
| * the ioc->last_waited time and test |
| * against it before looping |
| */ |
| last_waited = ioc->last_waited; |
| cond_resched(); |
| continue; |
| } |
| spin_lock(&device->io_lock); |
| requeue_list(pending_bios, pending, tail); |
| device->running_pending = 1; |
| |
| spin_unlock(&device->io_lock); |
| btrfs_queue_work(fs_info->submit_workers, |
| &device->work); |
| goto done; |
| } |
| } |
| |
| cond_resched(); |
| if (again) |
| goto loop; |
| |
| spin_lock(&device->io_lock); |
| if (device->pending_bios.head || device->pending_sync_bios.head) |
| goto loop_lock; |
| spin_unlock(&device->io_lock); |
| |
| done: |
| blk_finish_plug(&plug); |
| } |
| |
| static void pending_bios_fn(struct btrfs_work *work) |
| { |
| struct btrfs_device *device; |
| |
| device = container_of(work, struct btrfs_device, work); |
| run_scheduled_bios(device); |
| } |
| |
| /* |
| * Search and remove all stale (devices which are not mounted) devices. |
| * When both inputs are NULL, it will search and release all stale devices. |
| * path: Optional. When provided will it release all unmounted devices |
| * matching this path only. |
| * skip_dev: Optional. Will skip this device when searching for the stale |
| * devices. |
| */ |
| static void btrfs_free_stale_devices(const char *path, |
| struct btrfs_device *skip_device) |
| { |
| struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; |
| struct btrfs_device *device, *tmp_device; |
| |
| list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { |
| mutex_lock(&fs_devices->device_list_mutex); |
| if (fs_devices->opened) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| continue; |
| } |
| |
| list_for_each_entry_safe(device, tmp_device, |
| &fs_devices->devices, dev_list) { |
| int not_found = 0; |
| |
| if (skip_device && skip_device == device) |
| continue; |
| if (path && !device->name) |
| continue; |
| |
| rcu_read_lock(); |
| if (path) |
| not_found = strcmp(rcu_str_deref(device->name), |
| path); |
| rcu_read_unlock(); |
| if (not_found) |
| continue; |
| |
| /* delete the stale device */ |
| fs_devices->num_devices--; |
| list_del(&device->dev_list); |
| btrfs_free_device(device); |
| |
| if (fs_devices->num_devices == 0) |
| break; |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| if (fs_devices->num_devices == 0) { |
| btrfs_sysfs_remove_fsid(fs_devices); |
| list_del(&fs_devices->fs_list); |
| free_fs_devices(fs_devices); |
| } |
| } |
| } |
| |
| static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, |
| struct btrfs_device *device, fmode_t flags, |
| void *holder) |
| { |
| struct request_queue *q; |
| struct block_device *bdev; |
| struct buffer_head *bh; |
| struct btrfs_super_block *disk_super; |
| u64 devid; |
| int ret; |
| |
| if (device->bdev) |
| return -EINVAL; |
| if (!device->name) |
| return -EINVAL; |
| |
| ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, |
| &bdev, &bh); |
| if (ret) |
| return ret; |
| |
| disk_super = (struct btrfs_super_block *)bh->b_data; |
| devid = btrfs_stack_device_id(&disk_super->dev_item); |
| if (devid != device->devid) |
| goto error_brelse; |
| |
| if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) |
| goto error_brelse; |
| |
| device->generation = btrfs_super_generation(disk_super); |
| |
| if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { |
| clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| fs_devices->seeding = 1; |
| } else { |
| if (bdev_read_only(bdev)) |
| clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| else |
| set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| } |
| |
| q = bdev_get_queue(bdev); |
| if (!blk_queue_nonrot(q)) |
| fs_devices->rotating = 1; |
| |
| device->bdev = bdev; |
| clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| device->mode = flags; |
| |
| fs_devices->open_devices++; |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| device->devid != BTRFS_DEV_REPLACE_DEVID) { |
| fs_devices->rw_devices++; |
| list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); |
| } |
| brelse(bh); |
| |
| return 0; |
| |
| error_brelse: |
| brelse(bh); |
| blkdev_put(bdev, flags); |
| |
| return -EINVAL; |
| } |
| |
| /* |
| * Add new device to list of registered devices |
| * |
| * Returns: |
| * device pointer which was just added or updated when successful |
| * error pointer when failed |
| */ |
| static noinline struct btrfs_device *device_list_add(const char *path, |
| struct btrfs_super_block *disk_super, |
| bool *new_device_added) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *fs_devices; |
| struct rcu_string *name; |
| u64 found_transid = btrfs_super_generation(disk_super); |
| u64 devid = btrfs_stack_device_id(&disk_super->dev_item); |
| |
| fs_devices = find_fsid(disk_super->fsid); |
| if (!fs_devices) { |
| fs_devices = alloc_fs_devices(disk_super->fsid); |
| if (IS_ERR(fs_devices)) |
| return ERR_CAST(fs_devices); |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_add(&fs_devices->fs_list, &fs_uuids); |
| |
| device = NULL; |
| } else { |
| mutex_lock(&fs_devices->device_list_mutex); |
| device = find_device(fs_devices, devid, |
| disk_super->dev_item.uuid); |
| } |
| |
| if (!device) { |
| if (fs_devices->opened) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_PTR(-EBUSY); |
| } |
| |
| device = btrfs_alloc_device(NULL, &devid, |
| disk_super->dev_item.uuid); |
| if (IS_ERR(device)) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| /* we can safely leave the fs_devices entry around */ |
| return device; |
| } |
| |
| name = rcu_string_strdup(path, GFP_NOFS); |
| if (!name) { |
| btrfs_free_device(device); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_PTR(-ENOMEM); |
| } |
| rcu_assign_pointer(device->name, name); |
| |
| list_add_rcu(&device->dev_list, &fs_devices->devices); |
| fs_devices->num_devices++; |
| |
| device->fs_devices = fs_devices; |
| *new_device_added = true; |
| |
| if (disk_super->label[0]) |
| pr_info("BTRFS: device label %s devid %llu transid %llu %s\n", |
| disk_super->label, devid, found_transid, path); |
| else |
| pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n", |
| disk_super->fsid, devid, found_transid, path); |
| |
| } else if (!device->name || strcmp(device->name->str, path)) { |
| /* |
| * When FS is already mounted. |
| * 1. If you are here and if the device->name is NULL that |
| * means this device was missing at time of FS mount. |
| * 2. If you are here and if the device->name is different |
| * from 'path' that means either |
| * a. The same device disappeared and reappeared with |
| * different name. or |
| * b. The missing-disk-which-was-replaced, has |
| * reappeared now. |
| * |
| * We must allow 1 and 2a above. But 2b would be a spurious |
| * and unintentional. |
| * |
| * Further in case of 1 and 2a above, the disk at 'path' |
| * would have missed some transaction when it was away and |
| * in case of 2a the stale bdev has to be updated as well. |
| * 2b must not be allowed at all time. |
| */ |
| |
| /* |
| * For now, we do allow update to btrfs_fs_device through the |
| * btrfs dev scan cli after FS has been mounted. We're still |
| * tracking a problem where systems fail mount by subvolume id |
| * when we reject replacement on a mounted FS. |
| */ |
| if (!fs_devices->opened && found_transid < device->generation) { |
| /* |
| * That is if the FS is _not_ mounted and if you |
| * are here, that means there is more than one |
| * disk with same uuid and devid.We keep the one |
| * with larger generation number or the last-in if |
| * generation are equal. |
| */ |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_PTR(-EEXIST); |
| } |
| |
| name = rcu_string_strdup(path, GFP_NOFS); |
| if (!name) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_PTR(-ENOMEM); |
| } |
| rcu_string_free(device->name); |
| rcu_assign_pointer(device->name, name); |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { |
| fs_devices->missing_devices--; |
| clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); |
| } |
| } |
| |
| /* |
| * Unmount does not free the btrfs_device struct but would zero |
| * generation along with most of the other members. So just update |
| * it back. We need it to pick the disk with largest generation |
| * (as above). |
| */ |
| if (!fs_devices->opened) |
| device->generation = found_transid; |
| |
| fs_devices->total_devices = btrfs_super_num_devices(disk_super); |
| |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return device; |
| } |
| |
| static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| struct btrfs_device *device; |
| struct btrfs_device *orig_dev; |
| |
| fs_devices = alloc_fs_devices(orig->fsid); |
| if (IS_ERR(fs_devices)) |
| return fs_devices; |
| |
| mutex_lock(&orig->device_list_mutex); |
| fs_devices->total_devices = orig->total_devices; |
| |
| /* We have held the volume lock, it is safe to get the devices. */ |
| list_for_each_entry(orig_dev, &orig->devices, dev_list) { |
| struct rcu_string *name; |
| |
| device = btrfs_alloc_device(NULL, &orig_dev->devid, |
| orig_dev->uuid); |
| if (IS_ERR(device)) |
| goto error; |
| |
| /* |
| * This is ok to do without rcu read locked because we hold the |
| * uuid mutex so nothing we touch in here is going to disappear. |
| */ |
| if (orig_dev->name) { |
| name = rcu_string_strdup(orig_dev->name->str, |
| GFP_KERNEL); |
| if (!name) { |
| btrfs_free_device(device); |
| goto error; |
| } |
| rcu_assign_pointer(device->name, name); |
| } |
| |
| list_add(&device->dev_list, &fs_devices->devices); |
| device->fs_devices = fs_devices; |
| fs_devices->num_devices++; |
| } |
| mutex_unlock(&orig->device_list_mutex); |
| return fs_devices; |
| error: |
| mutex_unlock(&orig->device_list_mutex); |
| free_fs_devices(fs_devices); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * After we have read the system tree and know devids belonging to |
| * this filesystem, remove the device which does not belong there. |
| */ |
| void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) |
| { |
| struct btrfs_device *device, *next; |
| struct btrfs_device *latest_dev = NULL; |
| |
| mutex_lock(&uuid_mutex); |
| again: |
| /* This is the initialized path, it is safe to release the devices. */ |
| list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { |
| if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, |
| &device->dev_state)) { |
| if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, |
| &device->dev_state) && |
| (!latest_dev || |
| device->generation > latest_dev->generation)) { |
| latest_dev = device; |
| } |
| continue; |
| } |
| |
| if (device->devid == BTRFS_DEV_REPLACE_DEVID) { |
| /* |
| * In the first step, keep the device which has |
| * the correct fsid and the devid that is used |
| * for the dev_replace procedure. |
| * In the second step, the dev_replace state is |
| * read from the device tree and it is known |
| * whether the procedure is really active or |
| * not, which means whether this device is |
| * used or whether it should be removed. |
| */ |
| if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, |
| &device->dev_state)) { |
| continue; |
| } |
| } |
| if (device->bdev) { |
| blkdev_put(device->bdev, device->mode); |
| device->bdev = NULL; |
| fs_devices->open_devices--; |
| } |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| list_del_init(&device->dev_alloc_list); |
| clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, |
| &device->dev_state)) |
| fs_devices->rw_devices--; |
| } |
| list_del_init(&device->dev_list); |
| fs_devices->num_devices--; |
| btrfs_free_device(device); |
| } |
| |
| if (fs_devices->seed) { |
| fs_devices = fs_devices->seed; |
| goto again; |
| } |
| |
| fs_devices->latest_bdev = latest_dev->bdev; |
| |
| mutex_unlock(&uuid_mutex); |
| } |
| |
| static void free_device_rcu(struct rcu_head *head) |
| { |
| struct btrfs_device *device; |
| |
| device = container_of(head, struct btrfs_device, rcu); |
| btrfs_free_device(device); |
| } |
| |
| static void btrfs_close_bdev(struct btrfs_device *device) |
| { |
| if (!device->bdev) |
| return; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| sync_blockdev(device->bdev); |
| invalidate_bdev(device->bdev); |
| } |
| |
| blkdev_put(device->bdev, device->mode); |
| } |
| |
| static void btrfs_close_one_device(struct btrfs_device *device) |
| { |
| struct btrfs_fs_devices *fs_devices = device->fs_devices; |
| struct btrfs_device *new_device; |
| struct rcu_string *name; |
| |
| if (device->bdev) |
| fs_devices->open_devices--; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| device->devid != BTRFS_DEV_REPLACE_DEVID) { |
| list_del_init(&device->dev_alloc_list); |
| fs_devices->rw_devices--; |
| } |
| |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) |
| fs_devices->missing_devices--; |
| |
| btrfs_close_bdev(device); |
| |
| new_device = btrfs_alloc_device(NULL, &device->devid, |
| device->uuid); |
| BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ |
| |
| /* Safe because we are under uuid_mutex */ |
| if (device->name) { |
| name = rcu_string_strdup(device->name->str, GFP_NOFS); |
| BUG_ON(!name); /* -ENOMEM */ |
| rcu_assign_pointer(new_device->name, name); |
| } |
| |
| list_replace_rcu(&device->dev_list, &new_device->dev_list); |
| new_device->fs_devices = device->fs_devices; |
| |
| call_rcu(&device->rcu, free_device_rcu); |
| } |
| |
| static int close_fs_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_device *device, *tmp; |
| |
| if (--fs_devices->opened > 0) |
| return 0; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { |
| btrfs_close_one_device(device); |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| WARN_ON(fs_devices->open_devices); |
| WARN_ON(fs_devices->rw_devices); |
| fs_devices->opened = 0; |
| fs_devices->seeding = 0; |
| |
| return 0; |
| } |
| |
| int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_fs_devices *seed_devices = NULL; |
| int ret; |
| |
| mutex_lock(&uuid_mutex); |
| ret = close_fs_devices(fs_devices); |
| if (!fs_devices->opened) { |
| seed_devices = fs_devices->seed; |
| fs_devices->seed = NULL; |
| } |
| mutex_unlock(&uuid_mutex); |
| |
| while (seed_devices) { |
| fs_devices = seed_devices; |
| seed_devices = fs_devices->seed; |
| close_fs_devices(fs_devices); |
| free_fs_devices(fs_devices); |
| } |
| return ret; |
| } |
| |
| static int open_fs_devices(struct btrfs_fs_devices *fs_devices, |
| fmode_t flags, void *holder) |
| { |
| struct btrfs_device *device; |
| struct btrfs_device *latest_dev = NULL; |
| int ret = 0; |
| |
| flags |= FMODE_EXCL; |
| |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| /* Just open everything we can; ignore failures here */ |
| if (btrfs_open_one_device(fs_devices, device, flags, holder)) |
| continue; |
| |
| if (!latest_dev || |
| device->generation > latest_dev->generation) |
| latest_dev = device; |
| } |
| if (fs_devices->open_devices == 0) { |
| ret = -EINVAL; |
| goto out; |
| } |
| fs_devices->opened = 1; |
| fs_devices->latest_bdev = latest_dev->bdev; |
| fs_devices->total_rw_bytes = 0; |
| out: |
| return ret; |
| } |
| |
| static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct btrfs_device *dev1, *dev2; |
| |
| dev1 = list_entry(a, struct btrfs_device, dev_list); |
| dev2 = list_entry(b, struct btrfs_device, dev_list); |
| |
| if (dev1->devid < dev2->devid) |
| return -1; |
| else if (dev1->devid > dev2->devid) |
| return 1; |
| return 0; |
| } |
| |
| int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, |
| fmode_t flags, void *holder) |
| { |
| int ret; |
| |
| lockdep_assert_held(&uuid_mutex); |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| if (fs_devices->opened) { |
| fs_devices->opened++; |
| ret = 0; |
| } else { |
| list_sort(NULL, &fs_devices->devices, devid_cmp); |
| ret = open_fs_devices(fs_devices, flags, holder); |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| return ret; |
| } |
| |
| static void btrfs_release_disk_super(struct page *page) |
| { |
| kunmap(page); |
| put_page(page); |
| } |
| |
| static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, |
| struct page **page, |
| struct btrfs_super_block **disk_super) |
| { |
| void *p; |
| pgoff_t index; |
| |
| /* make sure our super fits in the device */ |
| if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) |
| return 1; |
| |
| /* make sure our super fits in the page */ |
| if (sizeof(**disk_super) > PAGE_SIZE) |
| return 1; |
| |
| /* make sure our super doesn't straddle pages on disk */ |
| index = bytenr >> PAGE_SHIFT; |
| if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) |
| return 1; |
| |
| /* pull in the page with our super */ |
| *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, |
| index, GFP_KERNEL); |
| |
| if (IS_ERR_OR_NULL(*page)) |
| return 1; |
| |
| p = kmap(*page); |
| |
| /* align our pointer to the offset of the super block */ |
| *disk_super = p + (bytenr & ~PAGE_MASK); |
| |
| if (btrfs_super_bytenr(*disk_super) != bytenr || |
| btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { |
| btrfs_release_disk_super(*page); |
| return 1; |
| } |
| |
| if ((*disk_super)->label[0] && |
| (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) |
| (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; |
| |
| return 0; |
| } |
| |
| /* |
| * Look for a btrfs signature on a device. This may be called out of the mount path |
| * and we are not allowed to call set_blocksize during the scan. The superblock |
| * is read via pagecache |
| */ |
| struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, |
| void *holder) |
| { |
| struct btrfs_super_block *disk_super; |
| bool new_device_added = false; |
| struct btrfs_device *device = NULL; |
| struct block_device *bdev; |
| struct page *page; |
| u64 bytenr; |
| |
| lockdep_assert_held(&uuid_mutex); |
| |
| /* |
| * we would like to check all the supers, but that would make |
| * a btrfs mount succeed after a mkfs from a different FS. |
| * So, we need to add a special mount option to scan for |
| * later supers, using BTRFS_SUPER_MIRROR_MAX instead |
| */ |
| bytenr = btrfs_sb_offset(0); |
| flags |= FMODE_EXCL; |
| |
| bdev = blkdev_get_by_path(path, flags, holder); |
| if (IS_ERR(bdev)) |
| return ERR_CAST(bdev); |
| |
| if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { |
| device = ERR_PTR(-EINVAL); |
| goto error_bdev_put; |
| } |
| |
| device = device_list_add(path, disk_super, &new_device_added); |
| if (!IS_ERR(device)) { |
| if (new_device_added) |
| btrfs_free_stale_devices(path, device); |
| } |
| |
| btrfs_release_disk_super(page); |
| |
| error_bdev_put: |
| blkdev_put(bdev, flags); |
| |
| return device; |
| } |
| |
| static int contains_pending_extent(struct btrfs_transaction *transaction, |
| struct btrfs_device *device, |
| u64 *start, u64 len) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct extent_map *em; |
| struct list_head *search_list = &fs_info->pinned_chunks; |
| int ret = 0; |
| u64 physical_start = *start; |
| |
| if (transaction) |
| search_list = &transaction->pending_chunks; |
| again: |
| list_for_each_entry(em, search_list, list) { |
| struct map_lookup *map; |
| int i; |
| |
| map = em->map_lookup; |
| for (i = 0; i < map->num_stripes; i++) { |
| u64 end; |
| |
| if (map->stripes[i].dev != device) |
| continue; |
| if (map->stripes[i].physical >= physical_start + len || |
| map->stripes[i].physical + em->orig_block_len <= |
| physical_start) |
| continue; |
| /* |
| * Make sure that while processing the pinned list we do |
| * not override our *start with a lower value, because |
| * we can have pinned chunks that fall within this |
| * device hole and that have lower physical addresses |
| * than the pending chunks we processed before. If we |
| * do not take this special care we can end up getting |
| * 2 pending chunks that start at the same physical |
| * device offsets because the end offset of a pinned |
| * chunk can be equal to the start offset of some |
| * pending chunk. |
| */ |
| end = map->stripes[i].physical + em->orig_block_len; |
| if (end > *start) { |
| *start = end; |
| ret = 1; |
| } |
| } |
| } |
| if (search_list != &fs_info->pinned_chunks) { |
| search_list = &fs_info->pinned_chunks; |
| goto again; |
| } |
| |
| return ret; |
| } |
| |
| |
| /* |
| * find_free_dev_extent_start - find free space in the specified device |
| * @device: the device which we search the free space in |
| * @num_bytes: the size of the free space that we need |
| * @search_start: the position from which to begin the search |
| * @start: store the start of the free space. |
| * @len: the size of the free space. that we find, or the size |
| * of the max free space if we don't find suitable free space |
| * |
| * this uses a pretty simple search, the expectation is that it is |
| * called very infrequently and that a given device has a small number |
| * of extents |
| * |
| * @start is used to store the start of the free space if we find. But if we |
| * don't find suitable free space, it will be used to store the start position |
| * of the max free space. |
| * |
| * @len is used to store the size of the free space that we find. |
| * But if we don't find suitable free space, it is used to store the size of |
| * the max free space. |
| */ |
| int find_free_dev_extent_start(struct btrfs_transaction *transaction, |
| struct btrfs_device *device, u64 num_bytes, |
| u64 search_start, u64 *start, u64 *len) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| struct btrfs_key key; |
| struct btrfs_dev_extent *dev_extent; |
| struct btrfs_path *path; |
| u64 hole_size; |
| u64 max_hole_start; |
| u64 max_hole_size; |
| u64 extent_end; |
| u64 search_end = device->total_bytes; |
| int ret; |
| int slot; |
| struct extent_buffer *l; |
| |
| /* |
| * We don't want to overwrite the superblock on the drive nor any area |
| * used by the boot loader (grub for example), so we make sure to start |
| * at an offset of at least 1MB. |
| */ |
| search_start = max_t(u64, search_start, SZ_1M); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| max_hole_start = search_start; |
| max_hole_size = 0; |
| |
| again: |
| if (search_start >= search_end || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| ret = -ENOSPC; |
| goto out; |
| } |
| |
| path->reada = READA_FORWARD; |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| |
| key.objectid = device->devid; |
| key.offset = search_start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = btrfs_previous_item(root, path, key.objectid, key.type); |
| if (ret < 0) |
| goto out; |
| } |
| |
| while (1) { |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(l)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| |
| break; |
| } |
| btrfs_item_key_to_cpu(l, &key, slot); |
| |
| if (key.objectid < device->devid) |
| goto next; |
| |
| if (key.objectid > device->devid) |
| break; |
| |
| if (key.type != BTRFS_DEV_EXTENT_KEY) |
| goto next; |
| |
| if (key.offset > search_start) { |
| hole_size = key.offset - search_start; |
| |
| /* |
| * Have to check before we set max_hole_start, otherwise |
| * we could end up sending back this offset anyway. |
| */ |
| if (contains_pending_extent(transaction, device, |
| &search_start, |
| hole_size)) { |
| if (key.offset >= search_start) { |
| hole_size = key.offset - search_start; |
| } else { |
| WARN_ON_ONCE(1); |
| hole_size = 0; |
| } |
| } |
| |
| if (hole_size > max_hole_size) { |
| max_hole_start = search_start; |
| max_hole_size = hole_size; |
| } |
| |
| /* |
| * If this free space is greater than which we need, |
| * it must be the max free space that we have found |
| * until now, so max_hole_start must point to the start |
| * of this free space and the length of this free space |
| * is stored in max_hole_size. Thus, we return |
| * max_hole_start and max_hole_size and go back to the |
| * caller. |
| */ |
| if (hole_size >= num_bytes) { |
| ret = 0; |
| goto out; |
| } |
| } |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| extent_end = key.offset + btrfs_dev_extent_length(l, |
| dev_extent); |
| if (extent_end > search_start) |
| search_start = extent_end; |
| next: |
| path->slots[0]++; |
| cond_resched(); |
| } |
| |
| /* |
| * At this point, search_start should be the end of |
| * allocated dev extents, and when shrinking the device, |
| * search_end may be smaller than search_start. |
| */ |
| if (search_end > search_start) { |
| hole_size = search_end - search_start; |
| |
| if (contains_pending_extent(transaction, device, &search_start, |
| hole_size)) { |
| btrfs_release_path(path); |
| goto again; |
| } |
| |
| if (hole_size > max_hole_size) { |
| max_hole_start = search_start; |
| max_hole_size = hole_size; |
| } |
| } |
| |
| /* See above. */ |
| if (max_hole_size < num_bytes) |
| ret = -ENOSPC; |
| else |
| ret = 0; |
| |
| out: |
| btrfs_free_path(path); |
| *start = max_hole_start; |
| if (len) |
| *len = max_hole_size; |
| return ret; |
| } |
| |
| int find_free_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, u64 num_bytes, |
| u64 *start, u64 *len) |
| { |
| /* FIXME use last free of some kind */ |
| return find_free_dev_extent_start(trans->transaction, device, |
| num_bytes, 0, start, len); |
| } |
| |
| static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, |
| u64 start, u64 *dev_extent_len) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf = NULL; |
| struct btrfs_dev_extent *extent = NULL; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = device->devid; |
| key.offset = start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| again: |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) { |
| ret = btrfs_previous_item(root, path, key.objectid, |
| BTRFS_DEV_EXTENT_KEY); |
| if (ret) |
| goto out; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| BUG_ON(found_key.offset > start || found_key.offset + |
| btrfs_dev_extent_length(leaf, extent) < start); |
| key = found_key; |
| btrfs_release_path(path); |
| goto again; |
| } else if (ret == 0) { |
| leaf = path->nodes[0]; |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| } else { |
| btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); |
| goto out; |
| } |
| |
| *dev_extent_len = btrfs_dev_extent_length(leaf, extent); |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret) { |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to remove dev extent item"); |
| } else { |
| set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); |
| } |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, |
| u64 chunk_offset, u64 start, u64 num_bytes) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| struct btrfs_dev_extent *extent; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); |
| WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = device->devid; |
| key.offset = start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| sizeof(*extent)); |
| if (ret) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| btrfs_set_dev_extent_chunk_tree(leaf, extent, |
| BTRFS_CHUNK_TREE_OBJECTID); |
| btrfs_set_dev_extent_chunk_objectid(leaf, extent, |
| BTRFS_FIRST_CHUNK_TREE_OBJECTID); |
| btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); |
| |
| btrfs_set_dev_extent_length(leaf, extent, num_bytes); |
| btrfs_mark_buffer_dirty(leaf); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static u64 find_next_chunk(struct btrfs_fs_info *fs_info) |
| { |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| struct rb_node *n; |
| u64 ret = 0; |
| |
| em_tree = &fs_info->mapping_tree.map_tree; |
| read_lock(&em_tree->lock); |
| n = rb_last(&em_tree->map); |
| if (n) { |
| em = rb_entry(n, struct extent_map, rb_node); |
| ret = em->start + em->len; |
| } |
| read_unlock(&em_tree->lock); |
| |
| return ret; |
| } |
| |
| static noinline int find_next_devid(struct btrfs_fs_info *fs_info, |
| u64 *devid_ret) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_path *path; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| |
| BUG_ON(ret == 0); /* Corruption */ |
| |
| ret = btrfs_previous_item(fs_info->chunk_root, path, |
| BTRFS_DEV_ITEMS_OBJECTID, |
| BTRFS_DEV_ITEM_KEY); |
| if (ret) { |
| *devid_ret = 1; |
| } else { |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| *devid_ret = found_key.offset + 1; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * the device information is stored in the chunk root |
| * the btrfs_device struct should be fully filled in |
| */ |
| static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_dev_item *dev_item; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| unsigned long ptr; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, |
| &key, sizeof(*dev_item)); |
| if (ret) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); |
| |
| btrfs_set_device_id(leaf, dev_item, device->devid); |
| btrfs_set_device_generation(leaf, dev_item, 0); |
| btrfs_set_device_type(leaf, dev_item, device->type); |
| btrfs_set_device_io_align(leaf, dev_item, device->io_align); |
| btrfs_set_device_io_width(leaf, dev_item, device->io_width); |
| btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); |
| btrfs_set_device_total_bytes(leaf, dev_item, |
| btrfs_device_get_disk_total_bytes(device)); |
| btrfs_set_device_bytes_used(leaf, dev_item, |
| btrfs_device_get_bytes_used(device)); |
| btrfs_set_device_group(leaf, dev_item, 0); |
| btrfs_set_device_seek_speed(leaf, dev_item, 0); |
| btrfs_set_device_bandwidth(leaf, dev_item, 0); |
| btrfs_set_device_start_offset(leaf, dev_item, 0); |
| |
| ptr = btrfs_device_uuid(dev_item); |
| write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
| ptr = btrfs_device_fsid(dev_item); |
| write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Function to update ctime/mtime for a given device path. |
| * Mainly used for ctime/mtime based probe like libblkid. |
| */ |
| static void update_dev_time(const char *path_name) |
| { |
| struct file *filp; |
| |
| filp = filp_open(path_name, O_RDWR, 0); |
| if (IS_ERR(filp)) |
| return; |
| file_update_time(filp); |
| filp_close(filp, NULL); |
| } |
| |
| static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info, |
| struct btrfs_device *device) |
| { |
| struct btrfs_root *root = fs_info->chunk_root; |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_trans_handle *trans; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| goto out; |
| } |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| if (!ret) |
| ret = btrfs_commit_transaction(trans); |
| return ret; |
| } |
| |
| /* |
| * Verify that @num_devices satisfies the RAID profile constraints in the whole |
| * filesystem. It's up to the caller to adjust that number regarding eg. device |
| * replace. |
| */ |
| static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, |
| u64 num_devices) |
| { |
| u64 all_avail; |
| unsigned seq; |
| int i; |
| |
| do { |
| seq = read_seqbegin(&fs_info->profiles_lock); |
| |
| all_avail = fs_info->avail_data_alloc_bits | |
| fs_info->avail_system_alloc_bits | |
| fs_info->avail_metadata_alloc_bits; |
| } while (read_seqretry(&fs_info->profiles_lock, seq)); |
| |
| for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { |
| if (!(all_avail & btrfs_raid_array[i].bg_flag)) |
| continue; |
| |
| if (num_devices < btrfs_raid_array[i].devs_min) { |
| int ret = btrfs_raid_array[i].mindev_error; |
| |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct btrfs_device * btrfs_find_next_active_device( |
| struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) |
| { |
| struct btrfs_device *next_device; |
| |
| list_for_each_entry(next_device, &fs_devs->devices, dev_list) { |
| if (next_device != device && |
| !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) |
| && next_device->bdev) |
| return next_device; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Helper function to check if the given device is part of s_bdev / latest_bdev |
| * and replace it with the provided or the next active device, in the context |
| * where this function called, there should be always be another device (or |
| * this_dev) which is active. |
| */ |
| void btrfs_assign_next_active_device(struct btrfs_device *device, |
| struct btrfs_device *this_dev) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_device *next_device; |
| |
| if (this_dev) |
| next_device = this_dev; |
| else |
| next_device = btrfs_find_next_active_device(fs_info->fs_devices, |
| device); |
| ASSERT(next_device); |
| |
| if (fs_info->sb->s_bdev && |
| (fs_info->sb->s_bdev == device->bdev)) |
| fs_info->sb->s_bdev = next_device->bdev; |
| |
| if (fs_info->fs_devices->latest_bdev == device->bdev) |
| fs_info->fs_devices->latest_bdev = next_device->bdev; |
| } |
| |
| int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, |
| u64 devid) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *cur_devices; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| u64 num_devices; |
| int ret = 0; |
| |
| mutex_lock(&uuid_mutex); |
| |
| num_devices = fs_devices->num_devices; |
| btrfs_dev_replace_read_lock(&fs_info->dev_replace); |
| if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { |
| WARN_ON(num_devices < 1); |
| num_devices--; |
| } |
| btrfs_dev_replace_read_unlock(&fs_info->dev_replace); |
| |
| ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_find_device_by_devspec(fs_info, devid, device_path, |
| &device); |
| if (ret) |
| goto out; |
| |
| if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| ret = BTRFS_ERROR_DEV_TGT_REPLACE; |
| goto out; |
| } |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| fs_info->fs_devices->rw_devices == 1) { |
| ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; |
| goto out; |
| } |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| mutex_lock(&fs_info->chunk_mutex); |
| list_del_init(&device->dev_alloc_list); |
| device->fs_devices->rw_devices--; |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| |
| mutex_unlock(&uuid_mutex); |
| ret = btrfs_shrink_device(device, 0); |
| mutex_lock(&uuid_mutex); |
| if (ret) |
| goto error_undo; |
| |
| /* |
| * TODO: the superblock still includes this device in its num_devices |
| * counter although write_all_supers() is not locked out. This |
| * could give a filesystem state which requires a degraded mount. |
| */ |
| ret = btrfs_rm_dev_item(fs_info, device); |
| if (ret) |
| goto error_undo; |
| |
| clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| btrfs_scrub_cancel_dev(fs_info, device); |
| |
| /* |
| * the device list mutex makes sure that we don't change |
| * the device list while someone else is writing out all |
| * the device supers. Whoever is writing all supers, should |
| * lock the device list mutex before getting the number of |
| * devices in the super block (super_copy). Conversely, |
| * whoever updates the number of devices in the super block |
| * (super_copy) should hold the device list mutex. |
| */ |
| |
| /* |
| * In normal cases the cur_devices == fs_devices. But in case |
| * of deleting a seed device, the cur_devices should point to |
| * its own fs_devices listed under the fs_devices->seed. |
| */ |
| cur_devices = device->fs_devices; |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_del_rcu(&device->dev_list); |
| |
| cur_devices->num_devices--; |
| cur_devices->total_devices--; |
| /* Update total_devices of the parent fs_devices if it's seed */ |
| if (cur_devices != fs_devices) |
| fs_devices->total_devices--; |
| |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) |
| cur_devices->missing_devices--; |
| |
| btrfs_assign_next_active_device(device, NULL); |
| |
| if (device->bdev) { |
| cur_devices->open_devices--; |
| /* remove sysfs entry */ |
| btrfs_sysfs_rm_device_link(fs_devices, device); |
| } |
| |
| num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; |
| btrfs_set_super_num_devices(fs_info->super_copy, num_devices); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| /* |
| * at this point, the device is zero sized and detached from |
| * the devices list. All that's left is to zero out the old |
| * supers and free the device. |
| */ |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| btrfs_scratch_superblocks(device->bdev, device->name->str); |
| |
| btrfs_close_bdev(device); |
| call_rcu(&device->rcu, free_device_rcu); |
| |
| if (cur_devices->open_devices == 0) { |
| while (fs_devices) { |
| if (fs_devices->seed == cur_devices) { |
| fs_devices->seed = cur_devices->seed; |
| break; |
| } |
| fs_devices = fs_devices->seed; |
| } |
| cur_devices->seed = NULL; |
| close_fs_devices(cur_devices); |
| free_fs_devices(cur_devices); |
| } |
| |
| out: |
| mutex_unlock(&uuid_mutex); |
| return ret; |
| |
| error_undo: |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| mutex_lock(&fs_info->chunk_mutex); |
| list_add(&device->dev_alloc_list, |
| &fs_devices->alloc_list); |
| device->fs_devices->rw_devices++; |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| goto out; |
| } |
| |
| void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); |
| |
| /* |
| * in case of fs with no seed, srcdev->fs_devices will point |
| * to fs_devices of fs_info. However when the dev being replaced is |
| * a seed dev it will point to the seed's local fs_devices. In short |
| * srcdev will have its correct fs_devices in both the cases. |
| */ |
| fs_devices = srcdev->fs_devices; |
| |
| list_del_rcu(&srcdev->dev_list); |
| list_del(&srcdev->dev_alloc_list); |
| fs_devices->num_devices--; |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) |
| fs_devices->missing_devices--; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) |
| fs_devices->rw_devices--; |
| |
| if (srcdev->bdev) |
| fs_devices->open_devices--; |
| } |
| |
| void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, |
| struct btrfs_device *srcdev) |
| { |
| struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { |
| /* zero out the old super if it is writable */ |
| btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); |
| } |
| |
| btrfs_close_bdev(srcdev); |
| call_rcu(&srcdev->rcu, free_device_rcu); |
| |
| /* if this is no devs we rather delete the fs_devices */ |
| if (!fs_devices->num_devices) { |
| struct btrfs_fs_devices *tmp_fs_devices; |
| |
| /* |
| * On a mounted FS, num_devices can't be zero unless it's a |
| * seed. In case of a seed device being replaced, the replace |
| * target added to the sprout FS, so there will be no more |
| * device left under the seed FS. |
| */ |
| ASSERT(fs_devices->seeding); |
| |
| tmp_fs_devices = fs_info->fs_devices; |
| while (tmp_fs_devices) { |
| if (tmp_fs_devices->seed == fs_devices) { |
| tmp_fs_devices->seed = fs_devices->seed; |
| break; |
| } |
| tmp_fs_devices = tmp_fs_devices->seed; |
| } |
| fs_devices->seed = NULL; |
| close_fs_devices(fs_devices); |
| free_fs_devices(fs_devices); |
| } |
| } |
| |
| void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) |
| { |
| struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; |
| |
| WARN_ON(!tgtdev); |
| mutex_lock(&fs_devices->device_list_mutex); |
| |
| btrfs_sysfs_rm_device_link(fs_devices, tgtdev); |
| |
| if (tgtdev->bdev) |
| fs_devices->open_devices--; |
| |
| fs_devices->num_devices--; |
| |
| btrfs_assign_next_active_device(tgtdev, NULL); |
| |
| list_del_rcu(&tgtdev->dev_list); |
| |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| /* |
| * The update_dev_time() with in btrfs_scratch_superblocks() |
| * may lead to a call to btrfs_show_devname() which will try |
| * to hold device_list_mutex. And here this device |
| * is already out of device list, so we don't have to hold |
| * the device_list_mutex lock. |
| */ |
| btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); |
| |
| btrfs_close_bdev(tgtdev); |
| call_rcu(&tgtdev->rcu, free_device_rcu); |
| } |
| |
| static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info, |
| const char *device_path, |
| struct btrfs_device **device) |
| { |
| int ret = 0; |
| struct btrfs_super_block *disk_super; |
| u64 devid; |
| u8 *dev_uuid; |
| struct block_device *bdev; |
| struct buffer_head *bh; |
| |
| *device = NULL; |
| ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, |
| fs_info->bdev_holder, 0, &bdev, &bh); |
| if (ret) |
| return ret; |
| disk_super = (struct btrfs_super_block *)bh->b_data; |
| devid = btrfs_stack_device_id(&disk_super->dev_item); |
| dev_uuid = disk_super->dev_item.uuid; |
| *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid); |
| brelse(bh); |
| if (!*device) |
| ret = -ENOENT; |
| blkdev_put(bdev, FMODE_READ); |
| return ret; |
| } |
| |
| int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, |
| const char *device_path, |
| struct btrfs_device **device) |
| { |
| *device = NULL; |
| if (strcmp(device_path, "missing") == 0) { |
| struct list_head *devices; |
| struct btrfs_device *tmp; |
| |
| devices = &fs_info->fs_devices->devices; |
| list_for_each_entry(tmp, devices, dev_list) { |
| if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, |
| &tmp->dev_state) && !tmp->bdev) { |
| *device = tmp; |
| break; |
| } |
| } |
| |
| if (!*device) |
| return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; |
| |
| return 0; |
| } else { |
| return btrfs_find_device_by_path(fs_info, device_path, device); |
| } |
| } |
| |
| /* |
| * Lookup a device given by device id, or the path if the id is 0. |
| */ |
| int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, |
| const char *devpath, |
| struct btrfs_device **device) |
| { |
| int ret; |
| |
| if (devid) { |
| ret = 0; |
| *device = btrfs_find_device(fs_info, devid, NULL, NULL); |
| if (!*device) |
| ret = -ENOENT; |
| } else { |
| if (!devpath || !devpath[0]) |
| return -EINVAL; |
| |
| ret = btrfs_find_device_missing_or_by_path(fs_info, devpath, |
| device); |
| } |
| return ret; |
| } |
| |
| /* |
| * does all the dirty work required for changing file system's UUID. |
| */ |
| static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_fs_devices *old_devices; |
| struct btrfs_fs_devices *seed_devices; |
| struct btrfs_super_block *disk_super = fs_info->super_copy; |
| struct btrfs_device *device; |
| u64 super_flags; |
| |
| lockdep_assert_held(&uuid_mutex); |
| if (!fs_devices->seeding) |
| return -EINVAL; |
| |
| seed_devices = alloc_fs_devices(NULL); |
| if (IS_ERR(seed_devices)) |
| return PTR_ERR(seed_devices); |
| |
| old_devices = clone_fs_devices(fs_devices); |
| if (IS_ERR(old_devices)) { |
| kfree(seed_devices); |
| return PTR_ERR(old_devices); |
| } |
| |
| list_add(&old_devices->fs_list, &fs_uuids); |
| |
| memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); |
| seed_devices->opened = 1; |
| INIT_LIST_HEAD(&seed_devices->devices); |
| INIT_LIST_HEAD(&seed_devices->alloc_list); |
| mutex_init(&seed_devices->device_list_mutex); |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, |
| synchronize_rcu); |
| list_for_each_entry(device, &seed_devices->devices, dev_list) |
| device->fs_devices = seed_devices; |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| fs_devices->seeding = 0; |
| fs_devices->num_devices = 0; |
| fs_devices->open_devices = 0; |
| fs_devices->missing_devices = 0; |
| fs_devices->rotating = 0; |
| fs_devices->seed = seed_devices; |
| |
| generate_random_uuid(fs_devices->fsid); |
| memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| super_flags = btrfs_super_flags(disk_super) & |
| ~BTRFS_SUPER_FLAG_SEEDING; |
| btrfs_set_super_flags(disk_super, super_flags); |
| |
| return 0; |
| } |
| |
| /* |
| * Store the expected generation for seed devices in device items. |
| */ |
| static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root = fs_info->chunk_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_dev_item *dev_item; |
| struct btrfs_device *device; |
| struct btrfs_key key; |
| u8 fs_uuid[BTRFS_FSID_SIZE]; |
| u8 dev_uuid[BTRFS_UUID_SIZE]; |
| u64 devid; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.offset = 0; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| |
| while (1) { |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) |
| goto error; |
| |
| leaf = path->nodes[0]; |
| next_slot: |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret > 0) |
| break; |
| if (ret < 0) |
| goto error; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| btrfs_release_path(path); |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || |
| key.type != BTRFS_DEV_ITEM_KEY) |
| break; |
| |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_item); |
| devid = btrfs_device_id(leaf, dev_item); |
| read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), |
| BTRFS_UUID_SIZE); |
| read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), |
| BTRFS_FSID_SIZE); |
| device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); |
| BUG_ON(!device); /* Logic error */ |
| |
| if (device->fs_devices->seeding) { |
| btrfs_set_device_generation(leaf, dev_item, |
| device->generation); |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| |
| path->slots[0]++; |
| goto next_slot; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) |
| { |
| struct btrfs_root *root = fs_info->dev_root; |
| struct request_queue *q; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_device *device; |
| struct block_device *bdev; |
| struct super_block *sb = fs_info->sb; |
| struct rcu_string *name; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| u64 orig_super_total_bytes; |
| u64 orig_super_num_devices; |
| int seeding_dev = 0; |
| int ret = 0; |
| bool unlocked = false; |
| |
| if (sb_rdonly(sb) && !fs_devices->seeding) |
| return -EROFS; |
| |
| bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, |
| fs_info->bdev_holder); |
| if (IS_ERR(bdev)) |
| return PTR_ERR(bdev); |
| |
| if (fs_devices->seeding) { |
| seeding_dev = 1; |
| down_write(&sb->s_umount); |
| mutex_lock(&uuid_mutex); |
| } |
| |
| filemap_write_and_wait(bdev->bd_inode->i_mapping); |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| if (device->bdev == bdev) { |
| ret = -EEXIST; |
| mutex_unlock( |
| &fs_devices->device_list_mutex); |
| goto error; |
| } |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| device = btrfs_alloc_device(fs_info, NULL, NULL); |
| if (IS_ERR(device)) { |
| /* we can safely leave the fs_devices entry around */ |
| ret = PTR_ERR(device); |
| goto error; |
| } |
| |
| name = rcu_string_strdup(device_path, GFP_KERNEL); |
| if (!name) { |
| ret = -ENOMEM; |
| goto error_free_device; |
| } |
| rcu_assign_pointer(device->name, name); |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto error_free_device; |
| } |
| |
| q = bdev_get_queue(bdev); |
| set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| device->generation = trans->transid; |
| device->io_width = fs_info->sectorsize; |
| device->io_align = fs_info->sectorsize; |
| device->sector_size = fs_info->sectorsize; |
| device->total_bytes = round_down(i_size_read(bdev->bd_inode), |
| fs_info->sectorsize); |
| device->disk_total_bytes = device->total_bytes; |
| device->commit_total_bytes = device->total_bytes; |
| device->fs_info = fs_info; |
| device->bdev = bdev; |
| set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); |
| device->mode = FMODE_EXCL; |
| device->dev_stats_valid = 1; |
| set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); |
| |
| if (seeding_dev) { |
| sb->s_flags &= ~SB_RDONLY; |
| ret = btrfs_prepare_sprout(fs_info); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_trans; |
| } |
| } |
| |
| device->fs_devices = fs_devices; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| mutex_lock(&fs_info->chunk_mutex); |
| list_add_rcu(&device->dev_list, &fs_devices->devices); |
| list_add(&device->dev_alloc_list, &fs_devices->alloc_list); |
| fs_devices->num_devices++; |
| fs_devices->open_devices++; |
| fs_devices->rw_devices++; |
| fs_devices->total_devices++; |
| fs_devices->total_rw_bytes += device->total_bytes; |
| |
| atomic64_add(device->total_bytes, &fs_info->free_chunk_space); |
| |
| if (!blk_queue_nonrot(q)) |
| fs_devices->rotating = 1; |
| |
| orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); |
| btrfs_set_super_total_bytes(fs_info->super_copy, |
| round_down(orig_super_total_bytes + device->total_bytes, |
| fs_info->sectorsize)); |
| |
| orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); |
| btrfs_set_super_num_devices(fs_info->super_copy, |
| orig_super_num_devices + 1); |
| |
| /* add sysfs device entry */ |
| btrfs_sysfs_add_device_link(fs_devices, device); |
| |
| /* |
| * we've got more storage, clear any full flags on the space |
| * infos |
| */ |
| btrfs_clear_space_info_full(fs_info); |
| |
| mutex_unlock(&fs_info->chunk_mutex); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| if (seeding_dev) { |
| mutex_lock(&fs_info->chunk_mutex); |
| ret = init_first_rw_device(trans, fs_info); |
| mutex_unlock(&fs_info->chunk_mutex); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_sysfs; |
| } |
| } |
| |
| ret = btrfs_add_dev_item(trans, device); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_sysfs; |
| } |
| |
| if (seeding_dev) { |
| char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; |
| |
| ret = btrfs_finish_sprout(trans, fs_info); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_sysfs; |
| } |
| |
| /* Sprouting would change fsid of the mounted root, |
| * so rename the fsid on the sysfs |
| */ |
| snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", |
| fs_info->fsid); |
| if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf)) |
| btrfs_warn(fs_info, |
| "sysfs: failed to create fsid for sprout"); |
| } |
| |
| ret = btrfs_commit_transaction(trans); |
| |
| if (seeding_dev) { |
| mutex_unlock(&uuid_mutex); |
| up_write(&sb->s_umount); |
| unlocked = true; |
| |
| if (ret) /* transaction commit */ |
| return ret; |
| |
| ret = btrfs_relocate_sys_chunks(fs_info); |
| if (ret < 0) |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); |
| trans = btrfs_attach_transaction(root); |
| if (IS_ERR(trans)) { |
| if (PTR_ERR(trans) == -ENOENT) |
| return 0; |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto error_sysfs; |
| } |
| ret = btrfs_commit_transaction(trans); |
| } |
| |
| /* Update ctime/mtime for libblkid */ |
| update_dev_time(device_path); |
| return ret; |
| |
| error_sysfs: |
| btrfs_sysfs_rm_device_link(fs_devices, device); |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| mutex_lock(&fs_info->chunk_mutex); |
| list_del_rcu(&device->dev_list); |
| list_del(&device->dev_alloc_list); |
| fs_info->fs_devices->num_devices--; |
| fs_info->fs_devices->open_devices--; |
| fs_info->fs_devices->rw_devices--; |
| fs_info->fs_devices->total_devices--; |
| fs_info->fs_devices->total_rw_bytes -= device->total_bytes; |
| atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); |
| btrfs_set_super_total_bytes(fs_info->super_copy, |
| orig_super_total_bytes); |
| btrfs_set_super_num_devices(fs_info->super_copy, |
| orig_super_num_devices); |
| mutex_unlock(&fs_info->chunk_mutex); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| error_trans: |
| if (seeding_dev) |
| sb->s_flags |= SB_RDONLY; |
| if (trans) |
| btrfs_end_transaction(trans); |
| error_free_device: |
| btrfs_free_device(device); |
| error: |
| blkdev_put(bdev, FMODE_EXCL); |
| if (seeding_dev && !unlocked) { |
| mutex_unlock(&uuid_mutex); |
| up_write(&sb->s_umount); |
| } |
| return ret; |
| } |
| |
| static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_root *root = device->fs_info->chunk_root; |
| struct btrfs_dev_item *dev_item; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) |
| goto out; |
| |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); |
| |
| btrfs_set_device_id(leaf, dev_item, device->devid); |
| btrfs_set_device_type(leaf, dev_item, device->type); |
| btrfs_set_device_io_align(leaf, dev_item, device->io_align); |
| btrfs_set_device_io_width(leaf, dev_item, device->io_width); |
| btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); |
| btrfs_set_device_total_bytes(leaf, dev_item, |
| btrfs_device_get_disk_total_bytes(device)); |
| btrfs_set_device_bytes_used(leaf, dev_item, |
| btrfs_device_get_bytes_used(device)); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_grow_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, u64 new_size) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| struct btrfs_fs_devices *fs_devices; |
| u64 old_total; |
| u64 diff; |
| |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| return -EACCES; |
| |
| new_size = round_down(new_size, fs_info->sectorsize); |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| old_total = btrfs_super_total_bytes(super_copy); |
| diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); |
| |
| if (new_size <= device->total_bytes || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| return -EINVAL; |
| } |
| |
| fs_devices = fs_info->fs_devices; |
| |
| btrfs_set_super_total_bytes(super_copy, |
| round_down(old_total + diff, fs_info->sectorsize)); |
| device->fs_devices->total_rw_bytes += diff; |
| |
| btrfs_device_set_total_bytes(device, new_size); |
| btrfs_device_set_disk_total_bytes(device, new_size); |
| btrfs_clear_space_info_full(device->fs_info); |
| if (list_empty(&device->resized_list)) |
| list_add_tail(&device->resized_list, |
| &fs_devices->resized_devices); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| return btrfs_update_device(trans, device); |
| } |
| |
| static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *root = fs_info->chunk_root; |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.offset = chunk_offset; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) { /* Logic error or corruption */ |
| btrfs_handle_fs_error(fs_info, -ENOENT, |
| "Failed lookup while freeing chunk."); |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret < 0) |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to delete chunk item."); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) |
| { |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| struct btrfs_disk_key *disk_key; |
| struct btrfs_chunk *chunk; |
| u8 *ptr; |
| int ret = 0; |
| u32 num_stripes; |
| u32 array_size; |
| u32 len = 0; |
| u32 cur; |
| struct btrfs_key key; |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| array_size = btrfs_super_sys_array_size(super_copy); |
| |
| ptr = super_copy->sys_chunk_array; |
| cur = 0; |
| |
| while (cur < array_size) { |
| disk_key = (struct btrfs_disk_key *)ptr; |
| btrfs_disk_key_to_cpu(&key, disk_key); |
| |
| len = sizeof(*disk_key); |
| |
| if (key.type == BTRFS_CHUNK_ITEM_KEY) { |
| chunk = (struct btrfs_chunk *)(ptr + len); |
| num_stripes = btrfs_stack_chunk_num_stripes(chunk); |
| len += btrfs_chunk_item_size(num_stripes); |
| } else { |
| ret = -EIO; |
| break; |
| } |
| if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && |
| key.offset == chunk_offset) { |
| memmove(ptr, ptr + len, array_size - (cur + len)); |
| array_size -= len; |
| btrfs_set_super_sys_array_size(super_copy, array_size); |
| } else { |
| ptr += len; |
| cur += len; |
| } |
| } |
| mutex_unlock(&fs_info->chunk_mutex); |
| return ret; |
| } |
| |
| static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 length) |
| { |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| |
| em_tree = &fs_info->mapping_tree.map_tree; |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, logical, length); |
| read_unlock(&em_tree->lock); |
| |
| if (!em) { |
| btrfs_crit(fs_info, "unable to find logical %llu length %llu", |
| logical, length); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (em->start > logical || em->start + em->len < logical) { |
| btrfs_crit(fs_info, |
| "found a bad mapping, wanted %llu-%llu, found %llu-%llu", |
| logical, length, em->start, em->start + em->len); |
| free_extent_map(em); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* callers are responsible for dropping em's ref. */ |
| return em; |
| } |
| |
| int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct extent_map *em; |
| struct map_lookup *map; |
| u64 dev_extent_len = 0; |
| int i, ret = 0; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| |
| em = get_chunk_map(fs_info, chunk_offset, 1); |
| if (IS_ERR(em)) { |
| /* |
| * This is a logic error, but we don't want to just rely on the |
| * user having built with ASSERT enabled, so if ASSERT doesn't |
| * do anything we still error out. |
| */ |
| ASSERT(0); |
| return PTR_ERR(em); |
| } |
| map = em->map_lookup; |
| mutex_lock(&fs_info->chunk_mutex); |
| check_system_chunk(trans, map->type); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| /* |
| * Take the device list mutex to prevent races with the final phase of |
| * a device replace operation that replaces the device object associated |
| * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). |
| */ |
| mutex_lock(&fs_devices->device_list_mutex); |
| for (i = 0; i < map->num_stripes; i++) { |
| struct btrfs_device *device = map->stripes[i].dev; |
| ret = btrfs_free_dev_extent(trans, device, |
| map->stripes[i].physical, |
| &dev_extent_len); |
| if (ret) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| if (device->bytes_used > 0) { |
| mutex_lock(&fs_info->chunk_mutex); |
| btrfs_device_set_bytes_used(device, |
| device->bytes_used - dev_extent_len); |
| atomic64_add(dev_extent_len, &fs_info->free_chunk_space); |
| btrfs_clear_space_info_full(fs_info); |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| |
| if (map->stripes[i].dev) { |
| ret = btrfs_update_device(trans, map->stripes[i].dev); |
| if (ret) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| ret = btrfs_free_chunk(trans, chunk_offset); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ret = btrfs_del_sys_chunk(fs_info, chunk_offset); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| |
| ret = btrfs_remove_block_group(trans, chunk_offset, em); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| out: |
| /* once for us */ |
| free_extent_map(em); |
| return ret; |
| } |
| |
| static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) |
| { |
| struct btrfs_root *root = fs_info->chunk_root; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| /* |
| * Prevent races with automatic removal of unused block groups. |
| * After we relocate and before we remove the chunk with offset |
| * chunk_offset, automatic removal of the block group can kick in, |
| * resulting in a failure when calling btrfs_remove_chunk() below. |
| * |
| * Make sure to acquire this mutex before doing a tree search (dev |
| * or chunk trees) to find chunks. Otherwise the cleaner kthread might |
| * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after |
| * we release the path used to search the chunk/dev tree and before |
| * the current task acquires this mutex and calls us. |
| */ |
| lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); |
| |
| ret = btrfs_can_relocate(fs_info, chunk_offset); |
| if (ret) |
| return -ENOSPC; |
| |
| /* step one, relocate all the extents inside this chunk */ |
| btrfs_scrub_pause(fs_info); |
| ret = btrfs_relocate_block_group(fs_info, chunk_offset); |
| btrfs_scrub_continue(fs_info); |
| if (ret) |
| return ret; |
| |
| /* |
| * We add the kobjects here (and after forcing data chunk creation) |
| * since relocation is the only place we'll create chunks of a new |
| * type at runtime. The only place where we'll remove the last |
| * chunk of a type is the call immediately below this one. Even |
| * so, we're protected against races with the cleaner thread since |
| * we're covered by the delete_unused_bgs_mutex. |
| */ |
| btrfs_add_raid_kobjects(fs_info); |
| |
| trans = btrfs_start_trans_remove_block_group(root->fs_info, |
| chunk_offset); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| btrfs_handle_fs_error(root->fs_info, ret, NULL); |
| return ret; |
| } |
| |
| /* |
| * step two, delete the device extents and the |
| * chunk tree entries |
| */ |
| ret = btrfs_remove_chunk(trans, chunk_offset); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *chunk_root = fs_info->chunk_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_chunk *chunk; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| u64 chunk_type; |
| bool retried = false; |
| int failed = 0; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| again: |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.offset = (u64)-1; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| while (1) { |
| mutex_lock(&fs_info->delete_unused_bgs_mutex); |
| ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| goto error; |
| } |
| BUG_ON(ret == 0); /* Corruption */ |
| |
| ret = btrfs_previous_item(chunk_root, path, key.objectid, |
| key.type); |
| if (ret) |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| if (ret < 0) |
| goto error; |
| if (ret > 0) |
| break; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| chunk = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_chunk); |
| chunk_type = btrfs_chunk_type(leaf, chunk); |
| btrfs_release_path(path); |
| |
| if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ret = btrfs_relocate_chunk(fs_info, found_key.offset); |
| if (ret == -ENOSPC) |
| failed++; |
| else |
| BUG_ON(ret); |
| } |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| |
| if (found_key.offset == 0) |
| break; |
| key.offset = found_key.offset - 1; |
| } |
| ret = 0; |
| if (failed && !retried) { |
| failed = 0; |
| retried = true; |
| goto again; |
| } else if (WARN_ON(failed && retried)) { |
| ret = -ENOSPC; |
| } |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * return 1 : allocate a data chunk successfully, |
| * return <0: errors during allocating a data chunk, |
| * return 0 : no need to allocate a data chunk. |
| */ |
| static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, |
| u64 chunk_offset) |
| { |
| struct btrfs_block_group_cache *cache; |
| u64 bytes_used; |
| u64 chunk_type; |
| |
| cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| ASSERT(cache); |
| chunk_type = cache->flags; |
| btrfs_put_block_group(cache); |
| |
| if (chunk_type & BTRFS_BLOCK_GROUP_DATA) { |
| spin_lock(&fs_info->data_sinfo->lock); |
| bytes_used = fs_info->data_sinfo->bytes_used; |
| spin_unlock(&fs_info->data_sinfo->lock); |
| |
| if (!bytes_used) { |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| trans = btrfs_join_transaction(fs_info->tree_root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_force_chunk_alloc(trans, |
| BTRFS_BLOCK_GROUP_DATA); |
| btrfs_end_transaction(trans); |
| if (ret < 0) |
| return ret; |
| |
| btrfs_add_raid_kobjects(fs_info); |
| |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static int insert_balance_item(struct btrfs_fs_info *fs_info, |
| struct btrfs_balance_control *bctl) |
| { |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_balance_item *item; |
| struct btrfs_disk_balance_args disk_bargs; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| int ret, err; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| |
| key.objectid = BTRFS_BALANCE_OBJECTID; |
| key.type = BTRFS_TEMPORARY_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| sizeof(*item)); |
| if (ret) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); |
| |
| memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); |
| |
| btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); |
| btrfs_set_balance_data(leaf, item, &disk_bargs); |
| btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); |
| btrfs_set_balance_meta(leaf, item, &disk_bargs); |
| btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); |
| btrfs_set_balance_sys(leaf, item, &disk_bargs); |
| |
| btrfs_set_balance_flags(leaf, item, bctl->flags); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| out: |
| btrfs_free_path(path); |
| err = btrfs_commit_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| return ret; |
| } |
| |
| static int del_balance_item(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| int ret, err; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| |
| key.objectid = BTRFS_BALANCE_OBJECTID; |
| key.type = BTRFS_TEMPORARY_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ret = btrfs_del_item(trans, root, path); |
| out: |
| btrfs_free_path(path); |
| err = btrfs_commit_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| return ret; |
| } |
| |
| /* |
| * This is a heuristic used to reduce the number of chunks balanced on |
| * resume after balance was interrupted. |
| */ |
| static void update_balance_args(struct btrfs_balance_control *bctl) |
| { |
| /* |
| * Turn on soft mode for chunk types that were being converted. |
| */ |
| if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) |
| bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; |
| if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) |
| bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; |
| if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) |
| bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; |
| |
| /* |
| * Turn on usage filter if is not already used. The idea is |
| * that chunks that we have already balanced should be |
| * reasonably full. Don't do it for chunks that are being |
| * converted - that will keep us from relocating unconverted |
| * (albeit full) chunks. |
| */ |
| if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && |
| !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && |
| !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { |
| bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; |
| bctl->data.usage = 90; |
| } |
| if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && |
| !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && |
| !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { |
| bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; |
| bctl->sys.usage = 90; |
| } |
| if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && |
| !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && |
| !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { |
| bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; |
| bctl->meta.usage = 90; |
| } |
| } |
| |
| /* |
| * Clear the balance status in fs_info and delete the balance item from disk. |
| */ |
| static void reset_balance_state(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| int ret; |
| |
| BUG_ON(!fs_info->balance_ctl); |
| |
| spin_lock(&fs_info->balance_lock); |
| fs_info->balance_ctl = NULL; |
| spin_unlock(&fs_info->balance_lock); |
| |
| kfree(bctl); |
| ret = del_balance_item(fs_info); |
| if (ret) |
| btrfs_handle_fs_error(fs_info, ret, NULL); |
| } |
| |
| /* |
| * Balance filters. Return 1 if chunk should be filtered out |
| * (should not be balanced). |
| */ |
| static int chunk_profiles_filter(u64 chunk_type, |
| struct btrfs_balance_args *bargs) |
| { |
| chunk_type = chunk_to_extended(chunk_type) & |
| BTRFS_EXTENDED_PROFILE_MASK; |
| |
| if (bargs->profiles & chunk_type) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, |
| struct btrfs_balance_args *bargs) |
| { |
| struct btrfs_block_group_cache *cache; |
| u64 chunk_used; |
| u64 user_thresh_min; |
| u64 user_thresh_max; |
| int ret = 1; |
| |
| cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| chunk_used = btrfs_block_group_used(&cache->item); |
| |
| if (bargs->usage_min == 0) |
| user_thresh_min = 0; |
| else |
| user_thresh_min = div_factor_fine(cache->key.offset, |
| bargs->usage_min); |
| |
| if (bargs->usage_max == 0) |
| user_thresh_max = 1; |
| else if (bargs->usage_max > 100) |
| user_thresh_max = cache->key.offset; |
| else |
| user_thresh_max = div_factor_fine(cache->key.offset, |
| bargs->usage_max); |
| |
| if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) |
| ret = 0; |
| |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| static int chunk_usage_filter(struct btrfs_fs_info *fs_info, |
| u64 chunk_offset, struct btrfs_balance_args *bargs) |
| { |
| struct btrfs_block_group_cache *cache; |
| u64 chunk_used, user_thresh; |
| int ret = 1; |
| |
| cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| chunk_used = btrfs_block_group_used(&cache->item); |
| |
| if (bargs->usage_min == 0) |
| user_thresh = 1; |
| else if (bargs->usage > 100) |
| user_thresh = cache->key.offset; |
| else |
| user_thresh = div_factor_fine(cache->key.offset, |
| bargs->usage); |
| |
| if (chunk_used < user_thresh) |
| ret = 0; |
| |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| static int chunk_devid_filter(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, |
| struct btrfs_balance_args *bargs) |
| { |
| struct btrfs_stripe *stripe; |
| int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| int i; |
| |
| for (i = 0; i < num_stripes; i++) { |
| stripe = btrfs_stripe_nr(chunk, i); |
| if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* [pstart, pend) */ |
| static int chunk_drange_filter(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, |
| struct btrfs_balance_args *bargs) |
| { |
| struct btrfs_stripe *stripe; |
| int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| u64 stripe_offset; |
| u64 stripe_length; |
| int factor; |
| int i; |
| |
| if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) |
| return 0; |
| |
| if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | |
| BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { |
| factor = num_stripes / 2; |
| } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { |
| factor = num_stripes - 1; |
| } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { |
| factor = num_stripes - 2; |
| } else { |
| factor = num_stripes; |
| } |
| |
| for (i = 0; i < num_stripes; i++) { |
| stripe = btrfs_stripe_nr(chunk, i); |
| if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) |
| continue; |
| |
| stripe_offset = btrfs_stripe_offset(leaf, stripe); |
| stripe_length = btrfs_chunk_length(leaf, chunk); |
| stripe_length = div_u64(stripe_length, factor); |
| |
| if (stripe_offset < bargs->pend && |
| stripe_offset + stripe_length > bargs->pstart) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* [vstart, vend) */ |
| static int chunk_vrange_filter(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, |
| u64 chunk_offset, |
| struct btrfs_balance_args *bargs) |
| { |
| if (chunk_offset < bargs->vend && |
| chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) |
| /* at least part of the chunk is inside this vrange */ |
| return 0; |
| |
| return 1; |
| } |
| |
| static int chunk_stripes_range_filter(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, |
| struct btrfs_balance_args *bargs) |
| { |
| int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| |
| if (bargs->stripes_min <= num_stripes |
| && num_stripes <= bargs->stripes_max) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int chunk_soft_convert_filter(u64 chunk_type, |
| struct btrfs_balance_args *bargs) |
| { |
| if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) |
| return 0; |
| |
| chunk_type = chunk_to_extended(chunk_type) & |
| BTRFS_EXTENDED_PROFILE_MASK; |
| |
| if (bargs->target == chunk_type) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int should_balance_chunk(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, u64 chunk_offset) |
| { |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| struct btrfs_balance_args *bargs = NULL; |
| u64 chunk_type = btrfs_chunk_type(leaf, chunk); |
| |
| /* type filter */ |
| if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & |
| (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { |
| return 0; |
| } |
| |
| if (chunk_type & BTRFS_BLOCK_GROUP_DATA) |
| bargs = &bctl->data; |
| else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) |
| bargs = &bctl->sys; |
| else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) |
| bargs = &bctl->meta; |
| |
| /* profiles filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && |
| chunk_profiles_filter(chunk_type, bargs)) { |
| return 0; |
| } |
| |
| /* usage filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && |
| chunk_usage_filter(fs_info, chunk_offset, bargs)) { |
| return 0; |
| } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && |
| chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { |
| return 0; |
| } |
| |
| /* devid filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && |
| chunk_devid_filter(leaf, chunk, bargs)) { |
| return 0; |
| } |
| |
| /* drange filter, makes sense only with devid filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && |
| chunk_drange_filter(leaf, chunk, bargs)) { |
| return 0; |
| } |
| |
| /* vrange filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && |
| chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { |
| return 0; |
| } |
| |
| /* stripes filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && |
| chunk_stripes_range_filter(leaf, chunk, bargs)) { |
| return 0; |
| } |
| |
| /* soft profile changing mode */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && |
| chunk_soft_convert_filter(chunk_type, bargs)) { |
| return 0; |
| } |
| |
| /* |
| * limited by count, must be the last filter |
| */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { |
| if (bargs->limit == 0) |
| return 0; |
| else |
| bargs->limit--; |
| } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { |
| /* |
| * Same logic as the 'limit' filter; the minimum cannot be |
| * determined here because we do not have the global information |
| * about the count of all chunks that satisfy the filters. |
| */ |
| if (bargs->limit_max == 0) |
| return 0; |
| else |
| bargs->limit_max--; |
| } |
| |
| return 1; |
| } |
| |
| static int __btrfs_balance(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| struct btrfs_root *chunk_root = fs_info->chunk_root; |
| struct btrfs_root *dev_root = fs_info->dev_root; |
| struct list_head *devices; |
| struct btrfs_device *device; |
| u64 old_size; |
| u64 size_to_free; |
| u64 chunk_type; |
| struct btrfs_chunk *chunk; |
| struct btrfs_path *path = NULL; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_trans_handle *trans; |
| struct extent_buffer *leaf; |
| int slot; |
| int ret; |
| int enospc_errors = 0; |
| bool counting = true; |
| /* The single value limit and min/max limits use the same bytes in the */ |
| u64 limit_data = bctl->data.limit; |
| u64 limit_meta = bctl->meta.limit; |
| u64 limit_sys = bctl->sys.limit; |
| u32 count_data = 0; |
| u32 count_meta = 0; |
| u32 count_sys = 0; |
| int chunk_reserved = 0; |
| |
| /* step one make some room on all the devices */ |
| devices = &fs_info->fs_devices->devices; |
| list_for_each_entry(device, devices, dev_list) { |
| old_size = btrfs_device_get_total_bytes(device); |
| size_to_free = div_factor(old_size, 1); |
| size_to_free = min_t(u64, size_to_free, SZ_1M); |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) || |
| btrfs_device_get_total_bytes(device) - |
| btrfs_device_get_bytes_used(device) > size_to_free || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) |
| continue; |
| |
| ret = btrfs_shrink_device(device, old_size - size_to_free); |
| if (ret == -ENOSPC) |
| break; |
| if (ret) { |
| /* btrfs_shrink_device never returns ret > 0 */ |
| WARN_ON(ret > 0); |
| goto error; |
| } |
| |
| trans = btrfs_start_transaction(dev_root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| btrfs_info_in_rcu(fs_info, |
| "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu", |
| rcu_str_deref(device->name), ret, |
| old_size, old_size - size_to_free); |
| goto error; |
| } |
| |
| ret = btrfs_grow_device(trans, device, old_size); |
| if (ret) { |
| btrfs_end_transaction(trans); |
| /* btrfs_grow_device never returns ret > 0 */ |
| WARN_ON(ret > 0); |
| btrfs_info_in_rcu(fs_info, |
| "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu", |
| rcu_str_deref(device->name), ret, |
| old_size, old_size - size_to_free); |
| goto error; |
| } |
| |
| btrfs_end_transaction(trans); |
| } |
| |
| /* step two, relocate all the chunks */ |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| /* zero out stat counters */ |
| spin_lock(&fs_info->balance_lock); |
| memset(&bctl->stat, 0, sizeof(bctl->stat)); |
| spin_unlock(&fs_info->balance_lock); |
| again: |
| if (!counting) { |
| /* |
| * The single value limit and min/max limits use the same bytes |
| * in the |
| */ |
| bctl->data.limit = limit_data; |
| bctl->meta.limit = limit_meta; |
| bctl->sys.limit = limit_sys; |
| } |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.offset = (u64)-1; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| while (1) { |
| if ((!counting && atomic_read(&fs_info->balance_pause_req)) || |
| atomic_read(&fs_info->balance_cancel_req)) { |
| ret = -ECANCELED; |
| goto error; |
| } |
| |
| mutex_lock(&fs_info->delete_unused_bgs_mutex); |
| ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| goto error; |
| } |
| |
| /* |
| * this shouldn't happen, it means the last relocate |
| * failed |
| */ |
| if (ret == 0) |
| BUG(); /* FIXME break ? */ |
| |
| ret = btrfs_previous_item(chunk_root, path, 0, |
| BTRFS_CHUNK_ITEM_KEY); |
| if (ret) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| ret = 0; |
| break; |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| if (found_key.objectid != key.objectid) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| break; |
| } |
| |
| chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); |
| chunk_type = btrfs_chunk_type(leaf, chunk); |
| |
| if (!counting) { |
| spin_lock(&fs_info->balance_lock); |
| bctl->stat.considered++; |
| spin_unlock(&fs_info->balance_lock); |
| } |
| |
| ret = should_balance_chunk(fs_info, leaf, chunk, |
| found_key.offset); |
| |
| btrfs_release_path(path); |
| if (!ret) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| goto loop; |
| } |
| |
| if (counting) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| spin_lock(&fs_info->balance_lock); |
| bctl->stat.expected++; |
| spin_unlock(&fs_info->balance_lock); |
| |
| if (chunk_type & BTRFS_BLOCK_GROUP_DATA) |
| count_data++; |
| else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) |
| count_sys++; |
| else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) |
| count_meta++; |
| |
| goto loop; |
| } |
| |
| /* |
| * Apply limit_min filter, no need to check if the LIMITS |
| * filter is used, limit_min is 0 by default |
| */ |
| if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && |
| count_data < bctl->data.limit_min) |
| || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && |
| count_meta < bctl->meta.limit_min) |
| || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && |
| count_sys < bctl->sys.limit_min)) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| goto loop; |
| } |
| |
| if (!chunk_reserved) { |
| /* |
| * We may be relocating the only data chunk we have, |
| * which could potentially end up with losing data's |
| * raid profile, so lets allocate an empty one in |
| * advance. |
| */ |
| ret = btrfs_may_alloc_data_chunk(fs_info, |
| found_key.offset); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| goto error; |
| } else if (ret == 1) { |
| chunk_reserved = 1; |
| } |
| } |
| |
| ret = btrfs_relocate_chunk(fs_info, found_key.offset); |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| if (ret && ret != -ENOSPC) |
| goto error; |
| if (ret == -ENOSPC) { |
| enospc_errors++; |
| } else { |
| spin_lock(&fs_info->balance_lock); |
| bctl->stat.completed++; |
| spin_unlock(&fs_info->balance_lock); |
| } |
| loop: |
| if (found_key.offset == 0) |
| break; |
| key.offset = found_key.offset - 1; |
| } |
| |
| if (counting) { |
| btrfs_release_path(path); |
| counting = false; |
| goto again; |
| } |
| error: |
| btrfs_free_path(path); |
| if (enospc_errors) { |
| btrfs_info(fs_info, "%d enospc errors during balance", |
| enospc_errors); |
| if (!ret) |
| ret = -ENOSPC; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * alloc_profile_is_valid - see if a given profile is valid and reduced |
| * @flags: profile to validate |
| * @extended: if true @flags is treated as an extended profile |
| */ |
| static int alloc_profile_is_valid(u64 flags, int extended) |
| { |
| u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : |
| BTRFS_BLOCK_GROUP_PROFILE_MASK); |
| |
| flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; |
| |
| /* 1) check that all other bits are zeroed */ |
| if (flags & ~mask) |
| return 0; |
| |
| /* 2) see if profile is reduced */ |
| if (flags == 0) |
| return !extended; /* "0" is valid for usual profiles */ |
| |
| /* true if exactly one bit set */ |
| return (flags & (flags - 1)) == 0; |
| } |
| |
| static inline int balance_need_close(struct btrfs_fs_info *fs_info) |
| { |
| /* cancel requested || normal exit path */ |
| return atomic_read(&fs_info->balance_cancel_req) || |
| (atomic_read(&fs_info->balance_pause_req) == 0 && |
| atomic_read(&fs_info->balance_cancel_req) == 0); |
| } |
| |
| /* Non-zero return value signifies invalidity */ |
| static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, |
| u64 allowed) |
| { |
| return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && |
| (!alloc_profile_is_valid(bctl_arg->target, 1) || |
| (bctl_arg->target & ~allowed))); |
| } |
| |
| /* |
| * Should be called with balance mutexe held |
| */ |
| int btrfs_balance(struct btrfs_fs_info *fs_info, |
| struct btrfs_balance_control *bctl, |
| struct btrfs_ioctl_balance_args *bargs) |
| { |
| u64 meta_target, data_target; |
| u64 allowed; |
| int mixed = 0; |
| int ret; |
| u64 num_devices; |
| unsigned seq; |
| |
| if (btrfs_fs_closing(fs_info) || |
| atomic_read(&fs_info->balance_pause_req) || |
| atomic_read(&fs_info->balance_cancel_req)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| allowed = btrfs_super_incompat_flags(fs_info->super_copy); |
| if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) |
| mixed = 1; |
| |
| /* |
| * In case of mixed groups both data and meta should be picked, |
| * and identical options should be given for both of them. |
| */ |
| allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; |
| if (mixed && (bctl->flags & allowed)) { |
| if (!(bctl->flags & BTRFS_BALANCE_DATA) || |
| !(bctl->flags & BTRFS_BALANCE_METADATA) || |
| memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { |
| btrfs_err(fs_info, |
| "balance: mixed groups data and metadata options must be the same"); |
| ret = -EINVAL; |
| goto out; |
| } |
| } |
| |
| num_devices = fs_info->fs_devices->num_devices; |
| btrfs_dev_replace_read_lock(&fs_info->dev_replace); |
| if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { |
| BUG_ON(num_devices < 1); |
| num_devices--; |
| } |
| btrfs_dev_replace_read_unlock(&fs_info->dev_replace); |
| allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; |
| if (num_devices > 1) |
| allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); |
| if (num_devices > 2) |
| allowed |= BTRFS_BLOCK_GROUP_RAID5; |
| if (num_devices > 3) |
| allowed |= (BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_RAID6); |
| if (validate_convert_profile(&bctl->data, allowed)) { |
| int index = btrfs_bg_flags_to_raid_index(bctl->data.target); |
| |
| btrfs_err(fs_info, |
| "balance: invalid convert data profile %s", |
| get_raid_name(index)); |
| ret = -EINVAL; |
| goto out; |
| } |
| if (validate_convert_profile(&bctl->meta, allowed)) { |
| int index = btrfs_bg_flags_to_raid_index(bctl->meta.target); |
| |
| btrfs_err(fs_info, |
| "balance: invalid convert metadata profile %s", |
| get_raid_name(index)); |
| ret = -EINVAL; |
| goto out; |
| } |
| if (validate_convert_profile(&bctl->sys, allowed)) { |
| int index = btrfs_bg_flags_to_raid_index(bctl->sys.target); |
| |
| btrfs_err(fs_info, |
| "balance: invalid convert system profile %s", |
| get_raid_name(index)); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* allow to reduce meta or sys integrity only if force set */ |
| allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_RAID5 | |
| BTRFS_BLOCK_GROUP_RAID6; |
| do { |
| seq = read_seqbegin(&fs_info->profiles_lock); |
| |
| if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && |
| (fs_info->avail_system_alloc_bits & allowed) && |
| !(bctl->sys.target & allowed)) || |
| ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && |
| (fs_info->avail_metadata_alloc_bits & allowed) && |
| !(bctl->meta.target & allowed))) { |
| if (bctl->flags & BTRFS_BALANCE_FORCE) { |
| btrfs_info(fs_info, |
| "balance: force reducing metadata integrity"); |
| } else { |
| btrfs_err(fs_info, |
| "balance: reduces metadata integrity, use --force if you want this"); |
| ret = -EINVAL; |
| goto out; |
| } |
| } |
| } while (read_seqretry(&fs_info->profiles_lock, seq)); |
| |
| /* if we're not converting, the target field is uninitialized */ |
| meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? |
| bctl->meta.target : fs_info->avail_metadata_alloc_bits; |
| data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? |
| bctl->data.target : fs_info->avail_data_alloc_bits; |
| if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < |
| btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { |
| int meta_index = btrfs_bg_flags_to_raid_index(meta_target); |
| int data_index = btrfs_bg_flags_to_raid_index(data_target); |
| |
| btrfs_warn(fs_info, |
| "balance: metadata profile %s has lower redundancy than data profile %s", |
| get_raid_name(meta_index), get_raid_name(data_index)); |
| } |
| |
| ret = insert_balance_item(fs_info, bctl); |
| if (ret && ret != -EEXIST) |
| goto out; |
| |
| if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { |
| BUG_ON(ret == -EEXIST); |
| BUG_ON(fs_info->balance_ctl); |
| spin_lock(&fs_info->balance_lock); |
| fs_info->balance_ctl = bctl; |
| spin_unlock(&fs_info->balance_lock); |
| } else { |
| BUG_ON(ret != -EEXIST); |
| spin_lock(&fs_info->balance_lock); |
| update_balance_args(bctl); |
| spin_unlock(&fs_info->balance_lock); |
| } |
| |
| ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); |
| set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); |
| mutex_unlock(&fs_info->balance_mutex); |
| |
| ret = __btrfs_balance(fs_info); |
| |
| mutex_lock(&fs_info->balance_mutex); |
| clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); |
| |
| if (bargs) { |
| memset(bargs, 0, sizeof(*bargs)); |
| btrfs_update_ioctl_balance_args(fs_info, bargs); |
| } |
| |
| if ((ret && ret != -ECANCELED && ret != -ENOSPC) || |
| balance_need_close(fs_info)) { |
| reset_balance_state(fs_info); |
| clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); |
| } |
| |
| wake_up(&fs_info->balance_wait_q); |
| |
| return ret; |
| out: |
| if (bctl->flags & BTRFS_BALANCE_RESUME) |
| reset_balance_state(fs_info); |
| else |
| kfree(bctl); |
| clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); |
| |
| return ret; |
| } |
| |
| static int balance_kthread(void *data) |
| { |
| struct btrfs_fs_info *fs_info = data; |
| int ret = 0; |
| |
| mutex_lock(&fs_info->balance_mutex); |
| if (fs_info->balance_ctl) { |
| btrfs_info(fs_info, "balance: resuming"); |
| ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); |
| } |
| mutex_unlock(&fs_info->balance_mutex); |
| |
| return ret; |
| } |
| |
| int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) |
| { |
| struct task_struct *tsk; |
| |
| mutex_lock(&fs_info->balance_mutex); |
| if (!fs_info->balance_ctl) { |
| mutex_unlock(&fs_info->balance_mutex); |
| return 0; |
| } |
| mutex_unlock(&fs_info->balance_mutex); |
| |
| if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { |
| btrfs_info(fs_info, "balance: resume skipped"); |
| return 0; |
| } |
| |
| /* |
| * A ro->rw remount sequence should continue with the paused balance |
| * regardless of who pauses it, system or the user as of now, so set |
| * the resume flag. |
| */ |
| spin_lock(&fs_info->balance_lock); |
| fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; |
| spin_unlock(&fs_info->balance_lock); |
| |
| tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); |
| return PTR_ERR_OR_ZERO(tsk); |
| } |
| |
| int btrfs_recover_balance(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_balance_control *bctl; |
| struct btrfs_balance_item *item; |
| struct btrfs_disk_balance_args disk_bargs; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_BALANCE_OBJECTID; |
| key.type = BTRFS_TEMPORARY_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { /* ret = -ENOENT; */ |
| ret = 0; |
| goto out; |
| } |
| |
| bctl = kzalloc(sizeof(*bctl), GFP_NOFS); |
| if (!bctl) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); |
| |
| bctl->flags = btrfs_balance_flags(leaf, item); |
| bctl->flags |= BTRFS_BALANCE_RESUME; |
| |
| btrfs_balance_data(leaf, item, &disk_bargs); |
| btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); |
| btrfs_balance_meta(leaf, item, &disk_bargs); |
| btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); |
| btrfs_balance_sys(leaf, item, &disk_bargs); |
| btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); |
| |
| /* |
| * This should never happen, as the paused balance state is recovered |
| * during mount without any chance of other exclusive ops to collide. |
| * |
| * This gives the exclusive op status to balance and keeps in paused |
| * state until user intervention (cancel or umount). If the ownership |
| * cannot be assigned, show a message but do not fail. The balance |
| * is in a paused state and must have fs_info::balance_ctl properly |
| * set up. |
| */ |
| if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) |
| btrfs_warn(fs_info, |
| "balance: cannot set exclusive op status, resume manually"); |
| |
| mutex_lock(&fs_info->balance_mutex); |
| BUG_ON(fs_info->balance_ctl); |
| spin_lock(&fs_info->balance_lock); |
| fs_info->balance_ctl = bctl; |
| spin_unlock(&fs_info->balance_lock); |
| mutex_unlock(&fs_info->balance_mutex); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_pause_balance(struct btrfs_fs_info *fs_info) |
| { |
| int ret = 0; |
| |
| mutex_lock(&fs_info->balance_mutex); |
| if (!fs_info->balance_ctl) { |
| mutex_unlock(&fs_info->balance_mutex); |
| return -ENOTCONN; |
| } |
| |
| if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { |
| atomic_inc(&fs_info->balance_pause_req); |
| mutex_unlock(&fs_info->balance_mutex); |
| |
| wait_event(fs_info->balance_wait_q, |
| !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); |
| |
| mutex_lock(&fs_info->balance_mutex); |
| /* we are good with balance_ctl ripped off from under us */ |
| BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); |
| atomic_dec(&fs_info->balance_pause_req); |
| } else { |
| ret = -ENOTCONN; |
| } |
| |
| mutex_unlock(&fs_info->balance_mutex); |
| return ret; |
| } |
| |
| int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->balance_mutex); |
| if (!fs_info->balance_ctl) { |
| mutex_unlock(&fs_info->balance_mutex); |
| return -ENOTCONN; |
| } |
| |
| /* |
| * A paused balance with the item stored on disk can be resumed at |
| * mount time if the mount is read-write. Otherwise it's still paused |
| * and we must not allow cancelling as it deletes the item. |
| */ |
| if (sb_rdonly(fs_info->sb)) { |
| mutex_unlock(&fs_info->balance_mutex); |
| return -EROFS; |
| } |
| |
| atomic_inc(&fs_info->balance_cancel_req); |
| /* |
| * if we are running just wait and return, balance item is |
| * deleted in btrfs_balance in this case |
| */ |
| if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { |
| mutex_unlock(&fs_info->balance_mutex); |
| wait_event(fs_info->balance_wait_q, |
| !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); |
| mutex_lock(&fs_info->balance_mutex); |
| } else { |
| mutex_unlock(&fs_info->balance_mutex); |
| /* |
| * Lock released to allow other waiters to continue, we'll |
| * reexamine the status again. |
| */ |
| mutex_lock(&fs_info->balance_mutex); |
| |
| if (fs_info->balance_ctl) { |
| reset_balance_state(fs_info); |
| clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); |
| btrfs_info(fs_info, "balance: canceled"); |
| } |
| } |
| |
| BUG_ON(fs_info->balance_ctl || |
| test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); |
| atomic_dec(&fs_info->balance_cancel_req); |
| mutex_unlock(&fs_info->balance_mutex); |
| return 0; |
| } |
| |
| static int btrfs_uuid_scan_kthread(void *data) |
| { |
| struct btrfs_fs_info *fs_info = data; |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_key key; |
| struct btrfs_path *path = NULL; |
| int ret = 0; |
| struct extent_buffer *eb; |
| int slot; |
| struct btrfs_root_item root_item; |
| u32 item_size; |
| struct btrfs_trans_handle *trans = NULL; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| key.objectid = 0; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = 0; |
| |
| while (1) { |
| ret = btrfs_search_forward(root, &key, path, |
| BTRFS_OLDEST_GENERATION); |
| if (ret) { |
| if (ret > 0) |
| ret = 0; |
| break; |
| } |
| |
| if (key.type != BTRFS_ROOT_ITEM_KEY || |
| (key.objectid < BTRFS_FIRST_FREE_OBJECTID && |
| key.objectid != BTRFS_FS_TREE_OBJECTID) || |
| key.objectid > BTRFS_LAST_FREE_OBJECTID) |
| goto skip; |
| |
| eb = path->nodes[0]; |
| slot = path->slots[0]; |
| item_size = btrfs_item_size_nr(eb, slot); |
| if (item_size < sizeof(root_item)) |
| goto skip; |
| |
| read_extent_buffer(eb, &root_item, |
| btrfs_item_ptr_offset(eb, slot), |
| (int)sizeof(root_item)); |
| if (btrfs_root_refs(&root_item) == 0) |
| goto skip; |
| |
| if (!btrfs_is_empty_uuid(root_item.uuid) || |
| !btrfs_is_empty_uuid(root_item.received_uuid)) { |
| if (trans) |
| goto update_tree; |
| |
| btrfs_release_path(path); |
| /* |
| * 1 - subvol uuid item |
| * 1 - received_subvol uuid item |
| */ |
| trans = btrfs_start_transaction(fs_info->uuid_root, 2); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| break; |
| } |
| continue; |
| } else { |
| goto skip; |
| } |
| update_tree: |
| if (!btrfs_is_empty_uuid(root_item.uuid)) { |
| ret = btrfs_uuid_tree_add(trans, root_item.uuid, |
| BTRFS_UUID_KEY_SUBVOL, |
| key.objectid); |
| if (ret < 0) { |
| btrfs_warn(fs_info, "uuid_tree_add failed %d", |
| ret); |
| break; |
| } |
| } |
| |
| if (!btrfs_is_empty_uuid(root_item.received_uuid)) { |
| ret = btrfs_uuid_tree_add(trans, |
| root_item.received_uuid, |
| BTRFS_UUID_KEY_RECEIVED_SUBVOL, |
| key.objectid); |
| if (ret < 0) { |
| btrfs_warn(fs_info, "uuid_tree_add failed %d", |
| ret); |
| break; |
| } |
| } |
| |
| skip: |
| if (trans) { |
| ret = btrfs_end_transaction(trans); |
| trans = NULL; |
| if (ret) |
| break; |
| } |
| |
| btrfs_release_path(path); |
| if (key.offset < (u64)-1) { |
| key.offset++; |
| } else if (key.type < BTRFS_ROOT_ITEM_KEY) { |
| key.offset = 0; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| } else if (key.objectid < (u64)-1) { |
| key.offset = 0; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.objectid++; |
| } else { |
| break; |
| } |
| cond_resched(); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| if (trans && !IS_ERR(trans)) |
| btrfs_end_transaction(trans); |
| if (ret) |
| btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); |
| else |
| set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); |
| up(&fs_info->uuid_tree_rescan_sem); |
| return 0; |
| } |
| |
| /* |
| * Callback for btrfs_uuid_tree_iterate(). |
| * returns: |
| * 0 check succeeded, the entry is not outdated. |
| * < 0 if an error occurred. |
| * > 0 if the check failed, which means the caller shall remove the entry. |
| */ |
| static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, |
| u8 *uuid, u8 type, u64 subid) |
| { |
| struct btrfs_key key; |
| int ret = 0; |
| struct btrfs_root *subvol_root; |
| |
| if (type != BTRFS_UUID_KEY_SUBVOL && |
| type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) |
| goto out; |
| |
| key.objectid = subid; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); |
| if (IS_ERR(subvol_root)) { |
| ret = PTR_ERR(subvol_root); |
| if (ret == -ENOENT) |
| ret = 1; |
| goto out; |
| } |
| |
| switch (type) { |
| case BTRFS_UUID_KEY_SUBVOL: |
| if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) |
| ret = 1; |
| break; |
| case BTRFS_UUID_KEY_RECEIVED_SUBVOL: |
| if (memcmp(uuid, subvol_root->root_item.received_uuid, |
| BTRFS_UUID_SIZE)) |
| ret = 1; |
| break; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int btrfs_uuid_rescan_kthread(void *data) |
| { |
| struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; |
| int ret; |
| |
| /* |
| * 1st step is to iterate through the existing UUID tree and |
| * to delete all entries that contain outdated data. |
| * 2nd step is to add all missing entries to the UUID tree. |
| */ |
| ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); |
| if (ret < 0) { |
| btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); |
| up(&fs_info->uuid_tree_rescan_sem); |
| return ret; |
| } |
| return btrfs_uuid_scan_kthread(data); |
| } |
| |
| int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_root *uuid_root; |
| struct task_struct *task; |
| int ret; |
| |
| /* |
| * 1 - root node |
| * 1 - root item |
| */ |
| trans = btrfs_start_transaction(tree_root, 2); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| uuid_root = btrfs_create_tree(trans, fs_info, |
| BTRFS_UUID_TREE_OBJECTID); |
| if (IS_ERR(uuid_root)) { |
| ret = PTR_ERR(uuid_root); |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| fs_info->uuid_root = uuid_root; |
| |
| ret = btrfs_commit_transaction(trans); |
| if (ret) |
| return ret; |
| |
| down(&fs_info->uuid_tree_rescan_sem); |
| task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); |
| if (IS_ERR(task)) { |
| /* fs_info->update_uuid_tree_gen remains 0 in all error case */ |
| btrfs_warn(fs_info, "failed to start uuid_scan task"); |
| up(&fs_info->uuid_tree_rescan_sem); |
| return PTR_ERR(task); |
| } |
| |
| return 0; |
| } |
| |
| int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) |
| { |
| struct task_struct *task; |
| |
| down(&fs_info->uuid_tree_rescan_sem); |
| task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); |
| if (IS_ERR(task)) { |
| /* fs_info->update_uuid_tree_gen remains 0 in all error case */ |
| btrfs_warn(fs_info, "failed to start uuid_rescan task"); |
| up(&fs_info->uuid_tree_rescan_sem); |
| return PTR_ERR(task); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * shrinking a device means finding all of the device extents past |
| * the new size, and then following the back refs to the chunks. |
| * The chunk relocation code actually frees the device extent |
| */ |
| int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_dev_extent *dev_extent = NULL; |
| struct btrfs_path *path; |
| u64 length; |
| u64 chunk_offset; |
| int ret; |
| int slot; |
| int failed = 0; |
| bool retried = false; |
| bool checked_pending_chunks = false; |
| struct extent_buffer *l; |
| struct btrfs_key key; |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| u64 old_total = btrfs_super_total_bytes(super_copy); |
| u64 old_size = btrfs_device_get_total_bytes(device); |
| u64 diff; |
| |
| new_size = round_down(new_size, fs_info->sectorsize); |
| diff = round_down(old_size - new_size, fs_info->sectorsize); |
| |
| if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) |
| return -EINVAL; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = READA_BACK; |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| |
| btrfs_device_set_total_bytes(device, new_size); |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| device->fs_devices->total_rw_bytes -= diff; |
| atomic64_sub(diff, &fs_info->free_chunk_space); |
| } |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| again: |
| key.objectid = device->devid; |
| key.offset = (u64)-1; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| do { |
| mutex_lock(&fs_info->delete_unused_bgs_mutex); |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| goto done; |
| } |
| |
| ret = btrfs_previous_item(root, path, 0, key.type); |
| if (ret) |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| if (ret < 0) |
| goto done; |
| if (ret) { |
| ret = 0; |
| btrfs_release_path(path); |
| break; |
| } |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(l, &key, path->slots[0]); |
| |
| if (key.objectid != device->devid) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| btrfs_release_path(path); |
| break; |
| } |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| length = btrfs_dev_extent_length(l, dev_extent); |
| |
| if (key.offset + length <= new_size) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| btrfs_release_path(path); |
| break; |
| } |
| |
| chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); |
| btrfs_release_path(path); |
| |
| /* |
| * We may be relocating the only data chunk we have, |
| * which could potentially end up with losing data's |
| * raid profile, so lets allocate an empty one in |
| * advance. |
| */ |
| ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| goto done; |
| } |
| |
| ret = btrfs_relocate_chunk(fs_info, chunk_offset); |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| if (ret && ret != -ENOSPC) |
| goto done; |
| if (ret == -ENOSPC) |
| failed++; |
| } while (key.offset-- > 0); |
| |
| if (failed && !retried) { |
| failed = 0; |
| retried = true; |
| goto again; |
| } else if (failed && retried) { |
| ret = -ENOSPC; |
| goto done; |
| } |
| |
| /* Shrinking succeeded, else we would be at "done". */ |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto done; |
| } |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| |
| /* |
| * We checked in the above loop all device extents that were already in |
| * the device tree. However before we have updated the device's |
| * total_bytes to the new size, we might have had chunk allocations that |
| * have not complete yet (new block groups attached to transaction |
| * handles), and therefore their device extents were not yet in the |
| * device tree and we missed them in the loop above. So if we have any |
| * pending chunk using a device extent that overlaps the device range |
| * that we can not use anymore, commit the current transaction and |
| * repeat the search on the device tree - this way we guarantee we will |
| * not have chunks using device extents that end beyond 'new_size'. |
| */ |
| if (!checked_pending_chunks) { |
| u64 start = new_size; |
| u64 len = old_size - new_size; |
| |
| if (contains_pending_extent(trans->transaction, device, |
| &start, len)) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| checked_pending_chunks = true; |
| failed = 0; |
| retried = false; |
| ret = btrfs_commit_transaction(trans); |
| if (ret) |
| goto done; |
| goto again; |
| } |
| } |
| |
| btrfs_device_set_disk_total_bytes(device, new_size); |
| if (list_empty(&device->resized_list)) |
| list_add_tail(&device->resized_list, |
| &fs_info->fs_devices->resized_devices); |
| |
| WARN_ON(diff > old_total); |
| btrfs_set_super_total_bytes(super_copy, |
| round_down(old_total - diff, fs_info->sectorsize)); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| /* Now btrfs_update_device() will change the on-disk size. */ |
| ret = btrfs_update_device(trans, device); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| } else { |
| ret = btrfs_commit_transaction(trans); |
| } |
| done: |
| btrfs_free_path(path); |
| if (ret) { |
| mutex_lock(&fs_info->chunk_mutex); |
| btrfs_device_set_total_bytes(device, old_size); |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| device->fs_devices->total_rw_bytes += diff; |
| atomic64_add(diff, &fs_info->free_chunk_space); |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| return ret; |
| } |
| |
| static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, |
| struct btrfs_key *key, |
| struct btrfs_chunk *chunk, int item_size) |
| { |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| struct btrfs_disk_key disk_key; |
| u32 array_size; |
| u8 *ptr; |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| array_size = btrfs_super_sys_array_size(super_copy); |
| if (array_size + item_size + sizeof(disk_key) |
| > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| return -EFBIG; |
| } |
| |
| ptr = super_copy->sys_chunk_array + array_size; |
| btrfs_cpu_key_to_disk(&disk_key, key); |
| memcpy(ptr, &disk_key, sizeof(disk_key)); |
| ptr += sizeof(disk_key); |
| memcpy(ptr, chunk, item_size); |
| item_size += sizeof(disk_key); |
| btrfs_set_super_sys_array_size(super_copy, array_size + item_size); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * sort the devices in descending order by max_avail, total_avail |
| */ |
| static int btrfs_cmp_device_info(const void *a, const void *b) |
| { |
| const struct btrfs_device_info *di_a = a; |
| const struct btrfs_device_info *di_b = b; |
| |
| if (di_a->max_avail > di_b->max_avail) |
| return -1; |
| if (di_a->max_avail < di_b->max_avail) |
| return 1; |
| if (di_a->total_avail > di_b->total_avail) |
| return -1; |
| if (di_a->total_avail < di_b->total_avail) |
| return 1; |
| return 0; |
| } |
| |
| static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) |
| { |
| if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| return; |
| |
| btrfs_set_fs_incompat(info, RAID56); |
| } |
| |
| #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ |
| - sizeof(struct btrfs_chunk)) \ |
| / sizeof(struct btrfs_stripe) + 1) |
| |
| #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ |
| - 2 * sizeof(struct btrfs_disk_key) \ |
| - 2 * sizeof(struct btrfs_chunk)) \ |
| / sizeof(struct btrfs_stripe) + 1) |
| |
| static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, |
| u64 start, u64 type) |
| { |
| struct btrfs_fs_info *info = trans->fs_info; |
| struct btrfs_fs_devices *fs_devices = info->fs_devices; |
| struct btrfs_device *device; |
| struct map_lookup *map = NULL; |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| struct btrfs_device_info *devices_info = NULL; |
| u64 total_avail; |
| int num_stripes; /* total number of stripes to allocate */ |
| int data_stripes; /* number of stripes that count for |
| block group size */ |
| int sub_stripes; /* sub_stripes info for map */ |
| int dev_stripes; /* stripes per dev */ |
| int devs_max; /* max devs to use */ |
| int devs_min; /* min devs needed */ |
| int devs_increment; /* ndevs has to be a multiple of this */ |
| int ncopies; /* how many copies to data has */ |
| int ret; |
| u64 max_stripe_size; |
| u64 max_chunk_size; |
| u64 stripe_size; |
| u64 num_bytes; |
| int ndevs; |
| int i; |
| int j; |
| int index; |
| |
| BUG_ON(!alloc_profile_is_valid(type, 0)); |
| |
| if (list_empty(&fs_devices->alloc_list)) { |
| if (btrfs_test_opt(info, ENOSPC_DEBUG)) |
| btrfs_debug(info, "%s: no writable device", __func__); |
| return -ENOSPC; |
| } |
| |
| index = btrfs_bg_flags_to_raid_index(type); |
| |
| sub_stripes = btrfs_raid_array[index].sub_stripes; |
| dev_stripes = btrfs_raid_array[index].dev_stripes; |
| devs_max = btrfs_raid_array[index].devs_max; |
| devs_min = btrfs_raid_array[index].devs_min; |
| devs_increment = btrfs_raid_array[index].devs_increment; |
| ncopies = btrfs_raid_array[index].ncopies; |
| |
| if (type & BTRFS_BLOCK_GROUP_DATA) { |
| max_stripe_size = SZ_1G; |
| max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; |
| if (!devs_max) |
| devs_max = BTRFS_MAX_DEVS(info); |
| } else if (type & BTRFS_BLOCK_GROUP_METADATA) { |
| /* for larger filesystems, use larger metadata chunks */ |
| if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) |
| max_stripe_size = SZ_1G; |
| else |
| max_stripe_size = SZ_256M; |
| max_chunk_size = max_stripe_size; |
| if (!devs_max) |
| devs_max = BTRFS_MAX_DEVS(info); |
| } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| max_stripe_size = SZ_32M; |
| max_chunk_size = 2 * max_stripe_size; |
| if (!devs_max) |
| devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; |
| } else { |
| btrfs_err(info, "invalid chunk type 0x%llx requested", |
| type); |
| BUG_ON(1); |
| } |
| |
| /* we don't want a chunk larger than 10% of writeable space */ |
| max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), |
| max_chunk_size); |
| |
| devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), |
| GFP_NOFS); |
| if (!devices_info) |
| return -ENOMEM; |
| |
| /* |
| * in the first pass through the devices list, we gather information |
| * about the available holes on each device. |
| */ |
| ndevs = 0; |
| list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { |
| u64 max_avail; |
| u64 dev_offset; |
| |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| WARN(1, KERN_ERR |
| "BTRFS: read-only device in alloc_list\n"); |
| continue; |
| } |
| |
| if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, |
| &device->dev_state) || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) |
| continue; |
| |
| if (device->total_bytes > device->bytes_used) |
| total_avail = device->total_bytes - device->bytes_used; |
| else |
| total_avail = 0; |
| |
| /* If there is no space on this device, skip it. */ |
| if (total_avail == 0) |
| continue; |
| |
| ret = find_free_dev_extent(trans, device, |
| max_stripe_size * dev_stripes, |
| &dev_offset, &max_avail); |
| if (ret && ret != -ENOSPC) |
| goto error; |
| |
| if (ret == 0) |
| max_avail = max_stripe_size * dev_stripes; |
| |
| if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) { |
| if (btrfs_test_opt(info, ENOSPC_DEBUG)) |
| btrfs_debug(info, |
| "%s: devid %llu has no free space, have=%llu want=%u", |
| __func__, device->devid, max_avail, |
| BTRFS_STRIPE_LEN * dev_stripes); |
| continue; |
| } |
| |
| if (ndevs == fs_devices->rw_devices) { |
| WARN(1, "%s: found more than %llu devices\n", |
| __func__, fs_devices->rw_devices); |
| break; |
| } |
| devices_info[ndevs].dev_offset = dev_offset; |
| devices_info[ndevs].max_avail = max_avail; |
| devices_info[ndevs].total_avail = total_avail; |
| devices_info[ndevs].dev = device; |
| ++ndevs; |
| } |
| |
| /* |
| * now sort the devices by hole size / available space |
| */ |
| sort(devices_info, ndevs, sizeof(struct btrfs_device_info), |
| btrfs_cmp_device_info, NULL); |
| |
| /* round down to number of usable stripes */ |
| ndevs = round_down(ndevs, devs_increment); |
| |
| if (ndevs < devs_min) { |
| ret = -ENOSPC; |
| if (btrfs_test_opt(info, ENOSPC_DEBUG)) { |
| btrfs_debug(info, |
| "%s: not enough devices with free space: have=%d minimum required=%d", |
| __func__, ndevs, devs_min); |
| } |
| goto error; |
| } |
| |
| ndevs = min(ndevs, devs_max); |
| |
| /* |
| * The primary goal is to maximize the number of stripes, so use as |
| * many devices as possible, even if the stripes are not maximum sized. |
| * |
| * The DUP profile stores more than one stripe per device, the |
| * max_avail is the total size so we have to adjust. |
| */ |
| stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); |
| num_stripes = ndevs * dev_stripes; |
| |
| /* |
| * this will have to be fixed for RAID1 and RAID10 over |
| * more drives |
| */ |
| data_stripes = num_stripes / ncopies; |
| |
| if (type & BTRFS_BLOCK_GROUP_RAID5) |
| data_stripes = num_stripes - 1; |
| |
| if (type & BTRFS_BLOCK_GROUP_RAID6) |
| data_stripes = num_stripes - 2; |
| |
| /* |
| * Use the number of data stripes to figure out how big this chunk |
| * is really going to be in terms of logical address space, |
| * and compare that answer with the max chunk size |
| */ |
| if (stripe_size * data_stripes > max_chunk_size) { |
| stripe_size = div_u64(max_chunk_size, data_stripes); |
| |
| /* bump the answer up to a 16MB boundary */ |
| stripe_size = round_up(stripe_size, SZ_16M); |
| |
| /* |
| * But don't go higher than the limits we found while searching |
| * for free extents |
| */ |
| stripe_size = min(devices_info[ndevs - 1].max_avail, |
| stripe_size); |
| } |
| |
| /* align to BTRFS_STRIPE_LEN */ |
| stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); |
| |
| map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); |
| if (!map) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| map->num_stripes = num_stripes; |
| |
| for (i = 0; i < ndevs; ++i) { |
| for (j = 0; j < dev_stripes; ++j) { |
| int s = i * dev_stripes + j; |
| map->stripes[s].dev = devices_info[i].dev; |
| map->stripes[s].physical = devices_info[i].dev_offset + |
| j * stripe_size; |
| } |
| } |
| map->stripe_len = BTRFS_STRIPE_LEN; |
| map->io_align = BTRFS_STRIPE_LEN; |
| map->io_width = BTRFS_STRIPE_LEN; |
| map->type = type; |
| map->sub_stripes = sub_stripes; |
| |
| num_bytes = stripe_size * data_stripes; |
| |
| trace_btrfs_chunk_alloc(info, map, start, num_bytes); |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| kfree(map); |
| ret = -ENOMEM; |
| goto error; |
| } |
| set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); |
| em->map_lookup = map; |
| em->start = start; |
| em->len = num_bytes; |
| em->block_start = 0; |
| em->block_len = em->len; |
| em->orig_block_len = stripe_size; |
| |
| em_tree = &info->mapping_tree.map_tree; |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 0); |
| if (ret) { |
| write_unlock(&em_tree->lock); |
| free_extent_map(em); |
| goto error; |
| } |
| |
| list_add_tail(&em->list, &trans->transaction->pending_chunks); |
| refcount_inc(&em->refs); |
| write_unlock(&em_tree->lock); |
| |
| ret = btrfs_make_block_group(trans, 0, type, start, num_bytes); |
| if (ret) |
| goto error_del_extent; |
| |
| for (i = 0; i < map->num_stripes; i++) { |
| num_bytes = map->stripes[i].dev->bytes_used + stripe_size; |
| btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); |
| } |
| |
| atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); |
| |
| free_extent_map(em); |
| check_raid56_incompat_flag(info, type); |
| |
| kfree(devices_info); |
| return 0; |
| |
| error_del_extent: |
| write_lock(&em_tree->lock); |
| remove_extent_mapping(em_tree, em); |
| write_unlock(&em_tree->lock); |
| |
| /* One for our allocation */ |
| free_extent_map(em); |
| /* One for the tree reference */ |
| free_extent_map(em); |
| /* One for the pending_chunks list reference */ |
| free_extent_map(em); |
| error: |
| kfree(devices_info); |
| return ret; |
| } |
| |
| int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, |
| u64 chunk_offset, u64 chunk_size) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| struct btrfs_root *chunk_root = fs_info->chunk_root; |
| struct btrfs_key key; |
| struct btrfs_device *device; |
| struct btrfs_chunk *chunk; |
| struct btrfs_stripe *stripe; |
| struct extent_map *em; |
| struct map_lookup *map; |
| size_t item_size; |
| u64 dev_offset; |
| u64 stripe_size; |
| int i = 0; |
| int ret = 0; |
| |
| em = get_chunk_map(fs_info, chunk_offset, chunk_size); |
| if (IS_ERR(em)) |
| return PTR_ERR(em); |
| |
| map = em->map_lookup; |
| item_size = btrfs_chunk_item_size(map->num_stripes); |
| stripe_size = em->orig_block_len; |
| |
| chunk = kzalloc(item_size, GFP_NOFS); |
| if (!chunk) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * Take the device list mutex to prevent races with the final phase of |
| * a device replace operation that replaces the device object associated |
| * with the map's stripes, because the device object's id can change |
| * at any time during that final phase of the device replace operation |
| * (dev-replace.c:btrfs_dev_replace_finishing()). |
| */ |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| for (i = 0; i < map->num_stripes; i++) { |
| device = map->stripes[i].dev; |
| dev_offset = map->stripes[i].physical; |
| |
| ret = btrfs_update_device(trans, device); |
| if (ret) |
| break; |
| ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, |
| dev_offset, stripe_size); |
| if (ret) |
| break; |
| } |
| if (ret) { |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| goto out; |
| } |
| |
| stripe = &chunk->stripe; |
| for (i = 0; i < map->num_stripes; i++) { |
| device = map->stripes[i].dev; |
| dev_offset = map->stripes[i].physical; |
| |
| btrfs_set_stack_stripe_devid(stripe, device->devid); |
| btrfs_set_stack_stripe_offset(stripe, dev_offset); |
| memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); |
| stripe++; |
| } |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| btrfs_set_stack_chunk_length(chunk, chunk_size); |
| btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); |
| btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); |
| btrfs_set_stack_chunk_type(chunk, map->type); |
| btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); |
| btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); |
| btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); |
| btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); |
| btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); |
| |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| key.offset = chunk_offset; |
| |
| ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); |
| if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| /* |
| * TODO: Cleanup of inserted chunk root in case of |
| * failure. |
| */ |
| ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); |
| } |
| |
| out: |
| kfree(chunk); |
| free_extent_map(em); |
| return ret; |
| } |
| |
| /* |
| * Chunk allocation falls into two parts. The first part does works |
| * that make the new allocated chunk useable, but not do any operation |
| * that modifies the chunk tree. The second part does the works that |
| * require modifying the chunk tree. This division is important for the |
| * bootstrap process of adding storage to a seed btrfs. |
| */ |
| int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) |
| { |
| u64 chunk_offset; |
| |
| lockdep_assert_held(&trans->fs_info->chunk_mutex); |
| chunk_offset = find_next_chunk(trans->fs_info); |
| return __btrfs_alloc_chunk(trans, chunk_offset, type); |
| } |
| |
| static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| u64 chunk_offset; |
| u64 sys_chunk_offset; |
| u64 alloc_profile; |
| int ret; |
| |
| chunk_offset = find_next_chunk(fs_info); |
| alloc_profile = btrfs_metadata_alloc_profile(fs_info); |
| ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); |
| if (ret) |
| return ret; |
| |
| sys_chunk_offset = find_next_chunk(fs_info); |
| alloc_profile = btrfs_system_alloc_profile(fs_info); |
| ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); |
| return ret; |
| } |
| |
| static inline int btrfs_chunk_max_errors(struct map_lookup *map) |
| { |
| int max_errors; |
| |
| if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_RAID5 | |
| BTRFS_BLOCK_GROUP_DUP)) { |
| max_errors = 1; |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { |
| max_errors = 2; |
| } else { |
| max_errors = 0; |
| } |
| |
| return max_errors; |
| } |
| |
| int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| int readonly = 0; |
| int miss_ndevs = 0; |
| int i; |
| |
| em = get_chunk_map(fs_info, chunk_offset, 1); |
| if (IS_ERR(em)) |
| return 1; |
| |
| map = em->map_lookup; |
| for (i = 0; i < map->num_stripes; i++) { |
| if (test_bit(BTRFS_DEV_STATE_MISSING, |
| &map->stripes[i].dev->dev_state)) { |
| miss_ndevs++; |
| continue; |
| } |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, |
| &map->stripes[i].dev->dev_state)) { |
| readonly = 1; |
| goto end; |
| } |
| } |
| |
| /* |
| * If the number of missing devices is larger than max errors, |
| * we can not write the data into that chunk successfully, so |
| * set it readonly. |
| */ |
| if (miss_ndevs > btrfs_chunk_max_errors(map)) |
| readonly = 1; |
| end: |
| free_extent_map(em); |
| return readonly; |
| } |
| |
| void btrfs_mapping_init(struct btrfs_mapping_tree *tree) |
| { |
| extent_map_tree_init(&tree->map_tree); |
| } |
| |
| void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) |
| { |
| struct extent_map *em; |
| |
| while (1) { |
| write_lock(&tree->map_tree.lock); |
| em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); |
| if (em) |
| remove_extent_mapping(&tree->map_tree, em); |
| write_unlock(&tree->map_tree.lock); |
| if (!em) |
| break; |
| /* once for us */ |
| free_extent_map(em); |
| /* once for the tree */ |
| free_extent_map(em); |
| } |
| } |
| |
| int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| int ret; |
| |
| em = get_chunk_map(fs_info, logical, len); |
| if (IS_ERR(em)) |
| /* |
| * We could return errors for these cases, but that could get |
| * ugly and we'd probably do the same thing which is just not do |
| * anything else and exit, so return 1 so the callers don't try |
| * to use other copies. |
| */ |
| return 1; |
| |
| map = em->map_lookup; |
| if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) |
| ret = map->num_stripes; |
| else if (map->type & BTRFS_BLOCK_GROUP_RAID10) |
| ret = map->sub_stripes; |
| else if (map->type & BTRFS_BLOCK_GROUP_RAID5) |
| ret = 2; |
| else if (map->type & BTRFS_BLOCK_GROUP_RAID6) |
| /* |
| * There could be two corrupted data stripes, we need |
| * to loop retry in order to rebuild the correct data. |
| * |
| * Fail a stripe at a time on every retry except the |
| * stripe under reconstruction. |
| */ |
| ret = map->num_stripes; |
| else |
| ret = 1; |
| free_extent_map(em); |
| |
| btrfs_dev_replace_read_lock(&fs_info->dev_replace); |
| if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && |
| fs_info->dev_replace.tgtdev) |
| ret++; |
| btrfs_dev_replace_read_unlock(&fs_info->dev_replace); |
| |
| return ret; |
| } |
| |
| unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, |
| u64 logical) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| unsigned long len = fs_info->sectorsize; |
| |
| em = get_chunk_map(fs_info, logical, len); |
| |
| if (!WARN_ON(IS_ERR(em))) { |
| map = em->map_lookup; |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| len = map->stripe_len * nr_data_stripes(map); |
| free_extent_map(em); |
| } |
| return len; |
| } |
| |
| int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| int ret = 0; |
| |
| em = get_chunk_map(fs_info, logical, len); |
| |
| if(!WARN_ON(IS_ERR(em))) { |
| map = em->map_lookup; |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| ret = 1; |
| free_extent_map(em); |
| } |
| return ret; |
| } |
| |
| static int find_live_mirror(struct btrfs_fs_info *fs_info, |
| struct map_lookup *map, int first, |
| int dev_replace_is_ongoing) |
| { |
| int i; |
| int num_stripes; |
| int preferred_mirror; |
| int tolerance; |
| struct btrfs_device *srcdev; |
| |
| ASSERT((map->type & |
| (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_RAID10) |
| num_stripes = map->sub_stripes; |
| else |
| num_stripes = map->num_stripes; |
| |
| preferred_mirror = first + current->pid % num_stripes; |
| |
| if (dev_replace_is_ongoing && |
| fs_info->dev_replace.cont_reading_from_srcdev_mode == |
| BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) |
| srcdev = fs_info->dev_replace.srcdev; |
| else |
| srcdev = NULL; |
| |
| /* |
| * try to avoid the drive that is the source drive for a |
| * dev-replace procedure, only choose it if no other non-missing |
| * mirror is available |
| */ |
| for (tolerance = 0; tolerance < 2; tolerance++) { |
| if (map->stripes[preferred_mirror].dev->bdev && |
| (tolerance || map->stripes[preferred_mirror].dev != srcdev)) |
| return preferred_mirror; |
| for (i = first; i < first + num_stripes; i++) { |
| if (map->stripes[i].dev->bdev && |
| (tolerance || map->stripes[i].dev != srcdev)) |
| return i; |
| } |
| } |
| |
| /* we couldn't find one that doesn't fail. Just return something |
| * and the io error handling code will clean up eventually |
| */ |
| return preferred_mirror; |
| } |
| |
| static inline int parity_smaller(u64 a, u64 b) |
| { |
| return a > b; |
| } |
| |
| /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ |
| static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) |
| { |
| struct btrfs_bio_stripe s; |
| int i; |
| u64 l; |
| int again = 1; |
| |
| while (again) { |
| again = 0; |
| for (i = 0; i < num_stripes - 1; i++) { |
| if (parity_smaller(bbio->raid_map[i], |
| bbio->raid_map[i+1])) { |
| s = bbio->stripes[i]; |
| l = bbio->raid_map[i]; |
| bbio->stripes[i] = bbio->stripes[i+1]; |
| bbio->raid_map[i] = bbio->raid_map[i+1]; |
| bbio->stripes[i+1] = s; |
| bbio->raid_map[i+1] = l; |
| |
| again = 1; |
| } |
| } |
| } |
| } |
| |
| static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) |
| { |
| struct btrfs_bio *bbio = kzalloc( |
| /* the size of the btrfs_bio */ |
| sizeof(struct btrfs_bio) + |
| /* plus the variable array for the stripes */ |
| sizeof(struct btrfs_bio_stripe) * (total_stripes) + |
| /* plus the variable array for the tgt dev */ |
| sizeof(int) * (real_stripes) + |
| /* |
| * plus the raid_map, which includes both the tgt dev |
| * and the stripes |
| */ |
| sizeof(u64) * (total_stripes), |
| GFP_NOFS|__GFP_NOFAIL); |
| |
| atomic_set(&bbio->error, 0); |
| refcount_set(&bbio->refs, 1); |
| |
| return bbio; |
| } |
| |
| void btrfs_get_bbio(struct btrfs_bio *bbio) |
| { |
| WARN_ON(!refcount_read(&bbio->refs)); |
| refcount_inc(&bbio->refs); |
| } |
| |
| void btrfs_put_bbio(struct btrfs_bio *bbio) |
| { |
| if (!bbio) |
| return; |
| if (refcount_dec_and_test(&bbio->refs)) |
| kfree(bbio); |
| } |
| |
| /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ |
| /* |
| * Please note that, discard won't be sent to target device of device |
| * replace. |
| */ |
| static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 length, |
| struct btrfs_bio **bbio_ret) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| struct btrfs_bio *bbio; |
| u64 offset; |
| u64 stripe_nr; |
| u64 stripe_nr_end; |
| u64 stripe_end_offset; |
| u64 stripe_cnt; |
| u64 stripe_len; |
| u64 stripe_offset; |
| u64 num_stripes; |
| u32 stripe_index; |
| u32 factor = 0; |
| u32 sub_stripes = 0; |
| u64 stripes_per_dev = 0; |
| u32 remaining_stripes = 0; |
| u32 last_stripe = 0; |
| int ret = 0; |
| int i; |
| |
| /* discard always return a bbio */ |
| ASSERT(bbio_ret); |
| |
| em = get_chunk_map(fs_info, logical, length); |
| if (IS_ERR(em)) |
| return PTR_ERR(em); |
| |
| map = em->map_lookup; |
| /* we don't discard raid56 yet */ |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| ret = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| offset = logical - em->start; |
| length = min_t(u64, em->len - offset, length); |
| |
| stripe_len = map->stripe_len; |
| /* |
| * stripe_nr counts the total number of stripes we have to stride |
| * to get to this block |
| */ |
| stripe_nr = div64_u64(offset, stripe_len); |
| |
| /* stripe_offset is the offset of this block in its stripe */ |
| stripe_offset = offset - stripe_nr * stripe_len; |
| |
| stripe_nr_end = round_up(offset + length, map->stripe_len); |
| stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); |
| stripe_cnt = stripe_nr_end - stripe_nr; |
| stripe_end_offset = stripe_nr_end * map->stripe_len - |
| (offset + length); |
| /* |
| * after this, stripe_nr is the number of stripes on this |
| * device we have to walk to find the data, and stripe_index is |
| * the number of our device in the stripe array |
| */ |
| num_stripes = 1; |
| stripe_index = 0; |
| if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID10)) { |
| if (map->type & BTRFS_BLOCK_GROUP_RAID0) |
| sub_stripes = 1; |
| else |
| sub_stripes = map->sub_stripes; |
| |
| factor = map->num_stripes / sub_stripes; |
| num_stripes = min_t(u64, map->num_stripes, |
| sub_stripes * stripe_cnt); |
| stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); |
| stripe_index *= sub_stripes; |
| stripes_per_dev = div_u64_rem(stripe_cnt, factor, |
| &remaining_stripes); |
| div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); |
| last_stripe *= sub_stripes; |
| } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_DUP)) { |
| num_stripes = map->num_stripes; |
| } else { |
| stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, |
| &stripe_index); |
| } |
| |
| bbio = alloc_btrfs_bio(num_stripes, 0); |
| if (!bbio) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| for (i = 0; i < num_stripes; i++) { |
| bbio->stripes[i].physical = |
| map->stripes[stripe_index].physical + |
| stripe_offset + stripe_nr * map->stripe_len; |
| bbio->stripes[i].dev = map->stripes[stripe_index].dev; |
| |
| if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID10)) { |
| bbio->stripes[i].length = stripes_per_dev * |
| map->stripe_len; |
| |
| if (i / sub_stripes < remaining_stripes) |
| bbio->stripes[i].length += |
| map->stripe_len; |
| |
| /* |
| * Special for the first stripe and |
| * the last stripe: |
| * |
| * |-------|...|-------| |
| * |----------| |
| * off end_off |
| */ |
| if (i < sub_stripes) |
| bbio->stripes[i].length -= |
| stripe_offset; |
| |
| if (stripe_index >= last_stripe && |
| stripe_index <= (last_stripe + |
| sub_stripes - 1)) |
| bbio->stripes[i].length -= |
| stripe_end_offset; |
| |
| if (i == sub_stripes - 1) |
| stripe_offset = 0; |
| } else { |
| bbio->stripes[i].length = length; |
| } |
| |
| stripe_index++; |
| if (stripe_index == map->num_stripes) { |
| stripe_index = 0; |
| stripe_nr++; |
| } |
| } |
| |
| *bbio_ret = bbio; |
| bbio->map_type = map->type; |
| bbio->num_stripes = num_stripes; |
| out: |
| free_extent_map(em); |
| return ret; |
| } |
| |
| /* |
| * In dev-replace case, for repair case (that's the only case where the mirror |
| * is selected explicitly when calling btrfs_map_block), blocks left of the |
| * left cursor can also be read from the target drive. |
| * |
| * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the |
| * array of stripes. |
| * For READ, it also needs to be supported using the same mirror number. |
| * |
| * If the requested block is not left of the left cursor, EIO is returned. This |
| * can happen because btrfs_num_copies() returns one more in the dev-replace |
| * case. |
| */ |
| static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 length, |
| u64 srcdev_devid, int *mirror_num, |
| u64 *physical) |
| { |
| struct btrfs_bio *bbio = NULL; |
| int num_stripes; |
| int index_srcdev = 0; |
| int found = 0; |
| u64 physical_of_found = 0; |
| int i; |
| int ret = 0; |
| |
| ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, |
| logical, &length, &bbio, 0, 0); |
| if (ret) { |
| ASSERT(bbio == NULL); |
| return ret; |
| } |
| |
| num_stripes = bbio->num_stripes; |
| if (*mirror_num > num_stripes) { |
| /* |
| * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, |
| * that means that the requested area is not left of the left |
| * cursor |
| */ |
| btrfs_put_bbio(bbio); |
| return -EIO; |
| } |
| |
| /* |
| * process the rest of the function using the mirror_num of the source |
| * drive. Therefore look it up first. At the end, patch the device |
| * pointer to the one of the target drive. |
| */ |
| for (i = 0; i < num_stripes; i++) { |
| if (bbio->stripes[i].dev->devid != srcdev_devid) |
| continue; |
| |
| /* |
| * In case of DUP, in order to keep it simple, only add the |
| * mirror with the lowest physical address |
| */ |
| if (found && |
| physical_of_found <= bbio->stripes[i].physical) |
| continue; |
| |
| index_srcdev = i; |
| found = 1; |
| physical_of_found = bbio->stripes[i].physical; |
| } |
| |
| btrfs_put_bbio(bbio); |
| |
| ASSERT(found); |
| if (!found) |
| return -EIO; |
| |
| *mirror_num = index_srcdev + 1; |
| *physical = physical_of_found; |
| return ret; |
| } |
| |
| static void handle_ops_on_dev_replace(enum btrfs_map_op op, |
| struct btrfs_bio **bbio_ret, |
| struct btrfs_dev_replace *dev_replace, |
| int *num_stripes_ret, int *max_errors_ret) |
| { |
| struct btrfs_bio *bbio = *bbio_ret; |
| u64 srcdev_devid = dev_replace->srcdev->devid; |
| int tgtdev_indexes = 0; |
| int num_stripes = *num_stripes_ret; |
| int max_errors = *max_errors_ret; |
| int i; |
| |
| if (op == BTRFS_MAP_WRITE) { |
| int index_where_to_add; |
| |
| /* |
| * duplicate the write operations while the dev replace |
| * procedure is running. Since the copying of the old disk to |
| * the new disk takes place at run time while the filesystem is |
| * mounted writable, the regular write operations to the old |
| * disk have to be duplicated to go to the new disk as well. |
| * |
| * Note that device->missing is handled by the caller, and that |
| * the write to the old disk is already set up in the stripes |
| * array. |
| */ |
| index_where_to_add = num_stripes; |
| for (i = 0; i < num_stripes; i++) { |
| if (bbio->stripes[i].dev->devid == srcdev_devid) { |
| /* write to new disk, too */ |
| struct btrfs_bio_stripe *new = |
| bbio->stripes + index_where_to_add; |
| struct btrfs_bio_stripe *old = |
| bbio->stripes + i; |
| |
| new->physical = old->physical; |
| new->length = old->length; |
| new->dev = dev_replace->tgtdev; |
| bbio->tgtdev_map[i] = index_where_to_add; |
| index_where_to_add++; |
| max_errors++; |
| tgtdev_indexes++; |
| } |
| } |
| num_stripes = index_where_to_add; |
| } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { |
| int index_srcdev = 0; |
| int found = 0; |
| u64 physical_of_found = 0; |
| |
| /* |
| * During the dev-replace procedure, the target drive can also |
| * be used to read data in case it is needed to repair a corrupt |
| * block elsewhere. This is possible if the requested area is |
| * left of the left cursor. In this area, the target drive is a |
| * full copy of the source drive. |
| */ |
| for (i = 0; i < num_stripes; i++) { |
| if (bbio->stripes[i].dev->devid == srcdev_devid) { |
| /* |
| * In case of DUP, in order to keep it simple, |
| * only add the mirror with the lowest physical |
| * address |
| */ |
| if (found && |
| physical_of_found <= |
| bbio->stripes[i].physical) |
| continue; |
| index_srcdev = i; |
| found = 1; |
| physical_of_found = bbio->stripes[i].physical; |
| } |
| } |
| if (found) { |
| struct btrfs_bio_stripe *tgtdev_stripe = |
| bbio->stripes + num_stripes; |
| |
| tgtdev_stripe->physical = physical_of_found; |
| tgtdev_stripe->length = |
| bbio->stripes[index_srcdev].length; |
| tgtdev_stripe->dev = dev_replace->tgtdev; |
| bbio->tgtdev_map[index_srcdev] = num_stripes; |
| |
| tgtdev_indexes++; |
| num_stripes++; |
| } |
| } |
| |
| *num_stripes_ret = num_stripes; |
| *max_errors_ret = max_errors; |
| bbio->num_tgtdevs = tgtdev_indexes; |
| *bbio_ret = bbio; |
| } |
| |
| static bool need_full_stripe(enum btrfs_map_op op) |
| { |
| return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); |
| } |
| |
| static int __btrfs_map_block(struct btrfs_fs_info *fs_info, |
| enum btrfs_map_op op, |
| u64 logical, u64 *length, |
| struct btrfs_bio **bbio_ret, |
| int mirror_num, int need_raid_map) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| u64 offset; |
| u64 stripe_offset; |
| u64 stripe_nr; |
| u64 stripe_len; |
| u32 stripe_index; |
| int i; |
| int ret = 0; |
| int num_stripes; |
| int max_errors = 0; |
| int tgtdev_indexes = 0; |
| struct btrfs_bio *bbio = NULL; |
| struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; |
| int dev_replace_is_ongoing = 0; |
| int num_alloc_stripes; |
| int patch_the_first_stripe_for_dev_replace = 0; |
| u64 physical_to_patch_in_first_stripe = 0; |
| u64 raid56_full_stripe_start = (u64)-1; |
| |
| if (op == BTRFS_MAP_DISCARD) |
| return __btrfs_map_block_for_discard(fs_info, logical, |
| *length, bbio_ret); |
| |
| em = get_chunk_map(fs_info, logical, *length); |
| if (IS_ERR(em)) |
| return PTR_ERR(em); |
| |
| map = em->map_lookup; |
| offset = logical - em->start; |
| |
| stripe_len = map->stripe_len; |
| stripe_nr = offset; |
| /* |
| * stripe_nr counts the total number of stripes we have to stride |
| * to get to this block |
| */ |
| stripe_nr = div64_u64(stripe_nr, stripe_len); |
| |
| stripe_offset = stripe_nr * stripe_len; |
| if (offset < stripe_offset) { |
| btrfs_crit(fs_info, |
| "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu", |
| stripe_offset, offset, em->start, logical, |
| stripe_len); |
| free_extent_map(em); |
| return -EINVAL; |
| } |
| |
| /* stripe_offset is the offset of this block in its stripe*/ |
| stripe_offset = offset - stripe_offset; |
| |
| /* if we're here for raid56, we need to know the stripe aligned start */ |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); |
| raid56_full_stripe_start = offset; |
| |
| /* allow a write of a full stripe, but make sure we don't |
| * allow straddling of stripes |
| */ |
| raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, |
| full_stripe_len); |
| raid56_full_stripe_start *= full_stripe_len; |
| } |
| |
| if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { |
| u64 max_len; |
| /* For writes to RAID[56], allow a full stripeset across all disks. |
| For other RAID types and for RAID[56] reads, just allow a single |
| stripe (on a single disk). */ |
| if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && |
| (op == BTRFS_MAP_WRITE)) { |
| max_len = stripe_len * nr_data_stripes(map) - |
| (offset - raid56_full_stripe_start); |
| } else { |
| /* we limit the length of each bio to what fits in a stripe */ |
| max_len = stripe_len - stripe_offset; |
| } |
| *length = min_t(u64, em->len - offset, max_len); |
| } else { |
| *length = em->len - offset; |
| } |
| |
| /* This is for when we're called from btrfs_merge_bio_hook() and all |
| it cares about is the length */ |
| if (!bbio_ret) |
| goto out; |
| |
| btrfs_dev_replace_read_lock(dev_replace); |
| dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); |
| if (!dev_replace_is_ongoing) |
| btrfs_dev_replace_read_unlock(dev_replace); |
| else |
| btrfs_dev_replace_set_lock_blocking(dev_replace); |
| |
| if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && |
| !need_full_stripe(op) && dev_replace->tgtdev != NULL) { |
| ret = get_extra_mirror_from_replace(fs_info, logical, *length, |
| dev_replace->srcdev->devid, |
| &mirror_num, |
| &physical_to_patch_in_first_stripe); |
| if (ret) |
| goto out; |
| else |
| patch_the_first_stripe_for_dev_replace = 1; |
| } else if (mirror_num > map->num_stripes) { |
| mirror_num = 0; |
| } |
| |
| num_stripes = 1; |
| stripe_index = 0; |
| if (map->type & BTRFS_BLOCK_GROUP_RAID0) { |
| stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, |
| &stripe_index); |
| if (!need_full_stripe(op)) |
| mirror_num = 1; |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { |
| if (need_full_stripe(op)) |
| num_stripes = map->num_stripes; |
| else if (mirror_num) |
| stripe_index = mirror_num - 1; |
| else { |
| stripe_index = find_live_mirror(fs_info, map, 0, |
| dev_replace_is_ongoing); |
| mirror_num = stripe_index + 1; |
| } |
| |
| } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { |
| if (need_full_stripe(op)) { |
| num_stripes = map->num_stripes; |
| } else if (mirror_num) { |
| stripe_index = mirror_num - 1; |
| } else { |
| mirror_num = 1; |
| } |
| |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| u32 factor = map->num_stripes / map->sub_stripes; |
| |
| stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); |
| stripe_index *= map->sub_stripes; |
| |
| if (need_full_stripe(op)) |
| num_stripes = map->sub_stripes; |
| else if (mirror_num) |
| stripe_index += mirror_num - 1; |
| else { |
| int old_stripe_index = stripe_index; |
| stripe_index = find_live_mirror(fs_info, map, |
| stripe_index, |
| dev_replace_is_ongoing); |
| mirror_num = stripe_index - old_stripe_index + 1; |
| } |
| |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { |
| /* push stripe_nr back to the start of the full stripe */ |
| stripe_nr = div64_u64(raid56_full_stripe_start, |
| stripe_len * nr_data_stripes(map)); |
| |
| /* RAID[56] write or recovery. Return all stripes */ |
| num_stripes = map->num_stripes; |
| max_errors = nr_parity_stripes(map); |
| |
| *length = map->stripe_len; |
| stripe_index = 0; |
| stripe_offset = 0; |
| } else { |
| /* |
| * Mirror #0 or #1 means the original data block. |
| * Mirror #2 is RAID5 parity block. |
| * Mirror #3 is RAID6 Q block. |
| */ |
| stripe_nr = div_u64_rem(stripe_nr, |
| nr_data_stripes(map), &stripe_index); |
| if (mirror_num > 1) |
| stripe_index = nr_data_stripes(map) + |
| mirror_num - 2; |
| |
| /* We distribute the parity blocks across stripes */ |
| div_u64_rem(stripe_nr + stripe_index, map->num_stripes, |
| &stripe_index); |
| if (!need_full_stripe(op) && mirror_num <= 1) |
| mirror_num = 1; |
| } |
| } else { |
| /* |
| * after this, stripe_nr is the number of stripes on this |
| * device we have to walk to find the data, and stripe_index is |
| * the number of our device in the stripe array |
| */ |
| stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, |
| &stripe_index); |
| mirror_num = stripe_index + 1; |
| } |
| if (stripe_index >= map->num_stripes) { |
| btrfs_crit(fs_info, |
| "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", |
| stripe_index, map->num_stripes); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| num_alloc_stripes = num_stripes; |
| if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { |
| if (op == BTRFS_MAP_WRITE) |
| num_alloc_stripes <<= 1; |
| if (op == BTRFS_MAP_GET_READ_MIRRORS) |
| num_alloc_stripes++; |
| tgtdev_indexes = num_stripes; |
| } |
| |
| bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); |
| if (!bbio) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) |
| bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); |
| |
| /* build raid_map */ |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && |
| (need_full_stripe(op) || mirror_num > 1)) { |
| u64 tmp; |
| unsigned rot; |
| |
| bbio->raid_map = (u64 *)((void *)bbio->stripes + |
| sizeof(struct btrfs_bio_stripe) * |
| num_alloc_stripes + |
| sizeof(int) * tgtdev_indexes); |
| |
| /* Work out the disk rotation on this stripe-set */ |
| div_u64_rem(stripe_nr, num_stripes, &rot); |
| |
| /* Fill in the logical address of each stripe */ |
| tmp = stripe_nr * nr_data_stripes(map); |
| for (i = 0; i < nr_data_stripes(map); i++) |
| bbio->raid_map[(i+rot) % num_stripes] = |
| em->start + (tmp + i) * map->stripe_len; |
| |
| bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; |
| if (map->type & BTRFS_BLOCK_GROUP_RAID6) |
| bbio->raid_map[(i+rot+1) % num_stripes] = |
| RAID6_Q_STRIPE; |
| } |
| |
| |
| for (i = 0; i < num_stripes; i++) { |
| bbio->stripes[i].physical = |
| map->stripes[stripe_index].physical + |
| stripe_offset + |
| stripe_nr * map->stripe_len; |
| bbio->stripes[i].dev = |
| map->stripes[stripe_index].dev; |
| stripe_index++; |
| } |
| |
| if (need_full_stripe(op)) |
| max_errors = btrfs_chunk_max_errors(map); |
| |
| if (bbio->raid_map) |
| sort_parity_stripes(bbio, num_stripes); |
| |
| if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && |
| need_full_stripe(op)) { |
| handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, |
| &max_errors); |
| } |
| |
| *bbio_ret = bbio; |
| bbio->map_type = map->type; |
| bbio->num_stripes = num_stripes; |
| bbio->max_errors = max_errors; |
| bbio->mirror_num = mirror_num; |
| |
| /* |
| * this is the case that REQ_READ && dev_replace_is_ongoing && |
| * mirror_num == num_stripes + 1 && dev_replace target drive is |
| * available as a mirror |
| */ |
| if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { |
| WARN_ON(num_stripes > 1); |
| bbio->stripes[0].dev = dev_replace->tgtdev; |
| bbio->stripes[0].physical = physical_to_patch_in_first_stripe; |
| bbio->mirror_num = map->num_stripes + 1; |
| } |
| out: |
| if (dev_replace_is_ongoing) { |
| btrfs_dev_replace_clear_lock_blocking(dev_replace); |
| btrfs_dev_replace_read_unlock(dev_replace); |
| } |
| free_extent_map(em); |
| return ret; |
| } |
| |
| int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, |
| u64 logical, u64 *length, |
| struct btrfs_bio **bbio_ret, int mirror_num) |
| { |
| return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, |
| mirror_num, 0); |
| } |
| |
| /* For Scrub/replace */ |
| int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, |
| u64 logical, u64 *length, |
| struct btrfs_bio **bbio_ret) |
| { |
| return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); |
| } |
| |
| int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, |
| u64 physical, u64 **logical, int *naddrs, int *stripe_len) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| u64 *buf; |
| u64 bytenr; |
| u64 length; |
| u64 stripe_nr; |
| u64 rmap_len; |
| int i, j, nr = 0; |
| |
| em = get_chunk_map(fs_info, chunk_start, 1); |
| if (IS_ERR(em)) |
| return -EIO; |
| |
| map = em->map_lookup; |
| length = em->len; |
| rmap_len = map->stripe_len; |
| |
| if (map->type & BTRFS_BLOCK_GROUP_RAID10) |
| length = div_u64(length, map->num_stripes / map->sub_stripes); |
| else if (map->type & BTRFS_BLOCK_GROUP_RAID0) |
| length = div_u64(length, map->num_stripes); |
| else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| length = div_u64(length, nr_data_stripes(map)); |
| rmap_len = map->stripe_len * nr_data_stripes(map); |
| } |
| |
| buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); |
| BUG_ON(!buf); /* -ENOMEM */ |
| |
| for (i = 0; i < map->num_stripes; i++) { |
| if (map->stripes[i].physical > physical || |
| map->stripes[i].physical + length <= physical) |
| continue; |
| |
| stripe_nr = physical - map->stripes[i].physical; |
| stripe_nr = div64_u64(stripe_nr, map->stripe_len); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| stripe_nr = stripe_nr * map->num_stripes + i; |
| stripe_nr = div_u64(stripe_nr, map->sub_stripes); |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { |
| stripe_nr = stripe_nr * map->num_stripes + i; |
| } /* else if RAID[56], multiply by nr_data_stripes(). |
| * Alternatively, just use rmap_len below instead of |
| * map->stripe_len */ |
| |
| bytenr = chunk_start + stripe_nr * rmap_len; |
| WARN_ON(nr >= map->num_stripes); |
| for (j = 0; j < nr; j++) { |
| if (buf[j] == bytenr) |
| break; |
| } |
| if (j == nr) { |
| WARN_ON(nr >= map->num_stripes); |
| buf[nr++] = bytenr; |
| } |
| } |
| |
| *logical = buf; |
| *naddrs = nr; |
| *stripe_len = rmap_len; |
| |
| free_extent_map(em); |
| return 0; |
| } |
| |
| static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) |
| { |
| bio->bi_private = bbio->private; |
| bio->bi_end_io = bbio->end_io; |
| bio_endio(bio); |
| |
| btrfs_put_bbio(bbio); |
| } |
| |
| static void btrfs_end_bio(struct bio *bio) |
| { |
| struct btrfs_bio *bbio = bio->bi_private; |
| int is_orig_bio = 0; |
| |
| if (bio->bi_status) { |
| atomic_inc(&bbio->error); |
| if (bio->bi_status == BLK_STS_IOERR || |
| bio->bi_status == BLK_STS_TARGET) { |
| unsigned int stripe_index = |
| btrfs_io_bio(bio)->stripe_index; |
| struct btrfs_device *dev; |
| |
| BUG_ON(stripe_index >= bbio->num_stripes); |
| dev = bbio->stripes[stripe_index].dev; |
| if (dev->bdev) { |
| if (bio_op(bio) == REQ_OP_WRITE) |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_WRITE_ERRS); |
| else |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_READ_ERRS); |
| if (bio->bi_opf & REQ_PREFLUSH) |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_FLUSH_ERRS); |
| } |
| } |
| } |
| |
| if (bio == bbio->orig_bio) |
| is_orig_bio = 1; |
| |
| btrfs_bio_counter_dec(bbio->fs_info); |
| |
| if (atomic_dec_and_test(&bbio->stripes_pending)) { |
| if (!is_orig_bio) { |
| bio_put(bio); |
| bio = bbio->orig_bio; |
| } |
| |
| btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; |
| /* only send an error to the higher layers if it is |
| * beyond the tolerance of the btrfs bio |
| */ |
| if (atomic_read(&bbio->error) > bbio->max_errors) { |
| bio->bi_status = BLK_STS_IOERR; |
| } else { |
| /* |
| * this bio is actually up to date, we didn't |
| * go over the max number of errors |
| */ |
| bio->bi_status = BLK_STS_OK; |
| } |
| |
| btrfs_end_bbio(bbio, bio); |
| } else if (!is_orig_bio) { |
| bio_put(bio); |
| } |
| } |
| |
| /* |
| * see run_scheduled_bios for a description of why bios are collected for |
| * async submit. |
| * |
| * This will add one bio to the pending list for a device and make sure |
| * the work struct is scheduled. |
| */ |
| static noinline void btrfs_schedule_bio(struct btrfs_device *device, |
| struct bio *bio) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| int should_queue = 1; |
| struct btrfs_pending_bios *pending_bios; |
| |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) || |
| !device->bdev) { |
| bio_io_error(bio); |
| return; |
| } |
| |
| /* don't bother with additional async steps for reads, right now */ |
| if (bio_op(bio) == REQ_OP_READ) { |
| btrfsic_submit_bio(bio); |
| return; |
| } |
| |
| WARN_ON(bio->bi_next); |
| bio->bi_next = NULL; |
| |
| spin_lock(&device->io_lock); |
| if (op_is_sync(bio->bi_opf)) |
| pending_bios = &device->pending_sync_bios; |
| else |
| pending_bios = &device->pending_bios; |
| |
| if (pending_bios->tail) |
| pending_bios->tail->bi_next = bio; |
| |
| pending_bios->tail = bio; |
| if (!pending_bios->head) |
| pending_bios->head = bio; |
| if (device->running_pending) |
| should_queue = 0; |
| |
| spin_unlock(&device->io_lock); |
| |
| if (should_queue) |
| btrfs_queue_work(fs_info->submit_workers, &device->work); |
| } |
| |
| static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, |
| u64 physical, int dev_nr, int async) |
| { |
| struct btrfs_device *dev = bbio->stripes[dev_nr].dev; |
| struct btrfs_fs_info *fs_info = bbio->fs_info; |
| |
| bio->bi_private = bbio; |
| btrfs_io_bio(bio)->stripe_index = dev_nr; |
| bio->bi_end_io = btrfs_end_bio; |
| bio->bi_iter.bi_sector = physical >> 9; |
| btrfs_debug_in_rcu(fs_info, |
| "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", |
| bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, |
| (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid, |
| bio->bi_iter.bi_size); |
| bio_set_dev(bio, dev->bdev); |
| |
| btrfs_bio_counter_inc_noblocked(fs_info); |
| |
| if (async) |
| btrfs_schedule_bio(dev, bio); |
| else |
| btrfsic_submit_bio(bio); |
| } |
| |
| static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) |
| { |
| atomic_inc(&bbio->error); |
| if (atomic_dec_and_test(&bbio->stripes_pending)) { |
| /* Should be the original bio. */ |
| WARN_ON(bio != bbio->orig_bio); |
| |
| btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; |
| bio->bi_iter.bi_sector = logical >> 9; |
| if (atomic_read(&bbio->error) > bbio->max_errors) |
| bio->bi_status = BLK_STS_IOERR; |
| else |
| bio->bi_status = BLK_STS_OK; |
| btrfs_end_bbio(bbio, bio); |
| } |
| } |
| |
| blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, |
| int mirror_num, int async_submit) |
| { |
| struct btrfs_device *dev; |
| struct bio *first_bio = bio; |
| u64 logical = (u64)bio->bi_iter.bi_sector << 9; |
| u64 length = 0; |
| u64 map_length; |
| int ret; |
| int dev_nr; |
| int total_devs; |
| struct btrfs_bio *bbio = NULL; |
| |
| length = bio->bi_iter.bi_size; |
| map_length = length; |
| |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, |
| &map_length, &bbio, mirror_num, 1); |
| if (ret) { |
| btrfs_bio_counter_dec(fs_info); |
| return errno_to_blk_status(ret); |
| } |
| |
| total_devs = bbio->num_stripes; |
| bbio->orig_bio = first_bio; |
| bbio->private = first_bio->bi_private; |
| bbio->end_io = first_bio->bi_end_io; |
| bbio->fs_info = fs_info; |
| atomic_set(&bbio->stripes_pending, bbio->num_stripes); |
| |
| if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && |
| ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { |
| /* In this case, map_length has been set to the length of |
| a single stripe; not the whole write */ |
| if (bio_op(bio) == REQ_OP_WRITE) { |
| ret = raid56_parity_write(fs_info, bio, bbio, |
| map_length); |
| } else { |
| ret = raid56_parity_recover(fs_info, bio, bbio, |
| map_length, mirror_num, 1); |
| } |
| |
| btrfs_bio_counter_dec(fs_info); |
| return errno_to_blk_status(ret); |
| } |
| |
| if (map_length < length) { |
| btrfs_crit(fs_info, |
| "mapping failed logical %llu bio len %llu len %llu", |
| logical, length, map_length); |
| BUG(); |
| } |
| |
| for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { |
| dev = bbio->stripes[dev_nr].dev; |
| if (!dev || !dev->bdev || |
| (bio_op(first_bio) == REQ_OP_WRITE && |
| !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { |
| bbio_error(bbio, first_bio, logical); |
| continue; |
| } |
| |
| if (dev_nr < total_devs - 1) |
| bio = btrfs_bio_clone(first_bio); |
| else |
| bio = first_bio; |
| |
| submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, |
| dev_nr, async_submit); |
| } |
| btrfs_bio_counter_dec(fs_info); |
| return BLK_STS_OK; |
| } |
| |
| struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, |
| u8 *uuid, u8 *fsid) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *cur_devices; |
| |
| cur_devices = fs_info->fs_devices; |
| while (cur_devices) { |
| if (!fsid || |
| !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) { |
| device = find_device(cur_devices, devid, uuid); |
| if (device) |
| return device; |
| } |
| cur_devices = cur_devices->seed; |
| } |
| return NULL; |
| } |
| |
| static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, |
| u64 devid, u8 *dev_uuid) |
| { |
| struct btrfs_device *device; |
| |
| device = btrfs_alloc_device(NULL, &devid, dev_uuid); |
| if (IS_ERR(device)) |
| return device; |
| |
| list_add(&device->dev_list, &fs_devices->devices); |
| device->fs_devices = fs_devices; |
| fs_devices->num_devices++; |
| |
| set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); |
| fs_devices->missing_devices++; |
| |
| return device; |
| } |
| |
| /** |
| * btrfs_alloc_device - allocate struct btrfs_device |
| * @fs_info: used only for generating a new devid, can be NULL if |
| * devid is provided (i.e. @devid != NULL). |
| * @devid: a pointer to devid for this device. If NULL a new devid |
| * is generated. |
| * @uuid: a pointer to UUID for this device. If NULL a new UUID |
| * is generated. |
| * |
| * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() |
| * on error. Returned struct is not linked onto any lists and must be |
| * destroyed with btrfs_free_device. |
| */ |
| struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, |
| const u64 *devid, |
| const u8 *uuid) |
| { |
| struct btrfs_device *dev; |
| u64 tmp; |
| |
| if (WARN_ON(!devid && !fs_info)) |
| return ERR_PTR(-EINVAL); |
| |
| dev = __alloc_device(); |
| if (IS_ERR(dev)) |
| return dev; |
| |
| if (devid) |
| tmp = *devid; |
| else { |
| int ret; |
| |
| ret = find_next_devid(fs_info, &tmp); |
| if (ret) { |
| btrfs_free_device(dev); |
| return ERR_PTR(ret); |
| } |
| } |
| dev->devid = tmp; |
| |
| if (uuid) |
| memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); |
| else |
| generate_random_uuid(dev->uuid); |
| |
| btrfs_init_work(&dev->work, btrfs_submit_helper, |
| pending_bios_fn, NULL, NULL); |
| |
| return dev; |
| } |
| |
| /* Return -EIO if any error, otherwise return 0. */ |
| static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, u64 logical) |
| { |
| u64 length; |
| u64 stripe_len; |
| u16 num_stripes; |
| u16 sub_stripes; |
| u64 type; |
| u64 features; |
| bool mixed = false; |
| |
| length = btrfs_chunk_length(leaf, chunk); |
| stripe_len = btrfs_chunk_stripe_len(leaf, chunk); |
| num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); |
| type = btrfs_chunk_type(leaf, chunk); |
| |
| if (!num_stripes) { |
| btrfs_err(fs_info, "invalid chunk num_stripes: %u", |
| num_stripes); |
| return -EIO; |
| } |
| if (!IS_ALIGNED(logical, fs_info->sectorsize)) { |
| btrfs_err(fs_info, "invalid chunk logical %llu", logical); |
| return -EIO; |
| } |
| if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) { |
| btrfs_err(fs_info, "invalid chunk sectorsize %u", |
| btrfs_chunk_sector_size(leaf, chunk)); |
| return -EIO; |
| } |
| if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) { |
| btrfs_err(fs_info, "invalid chunk length %llu", length); |
| return -EIO; |
| } |
| if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) { |
| btrfs_err(fs_info, "invalid chunk stripe length: %llu", |
| stripe_len); |
| return -EIO; |
| } |
| if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & |
| type) { |
| btrfs_err(fs_info, "unrecognized chunk type: %llu", |
| ~(BTRFS_BLOCK_GROUP_TYPE_MASK | |
| BTRFS_BLOCK_GROUP_PROFILE_MASK) & |
| btrfs_chunk_type(leaf, chunk)); |
| return -EIO; |
| } |
| |
| if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) { |
| btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type); |
| return -EIO; |
| } |
| |
| if ((type & BTRFS_BLOCK_GROUP_SYSTEM) && |
| (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) { |
| btrfs_err(fs_info, |
| "system chunk with data or metadata type: 0x%llx", type); |
| return -EIO; |
| } |
| |
| features = btrfs_super_incompat_flags(fs_info->super_copy); |
| if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) |
| mixed = true; |
| |
| if (!mixed) { |
| if ((type & BTRFS_BLOCK_GROUP_METADATA) && |
| (type & BTRFS_BLOCK_GROUP_DATA)) { |
| btrfs_err(fs_info, |
| "mixed chunk type in non-mixed mode: 0x%llx", type); |
| return -EIO; |
| } |
| } |
| |
| if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) || |
| (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) || |
| (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) || |
| (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) || |
| (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) || |
| ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && |
| num_stripes != 1)) { |
| btrfs_err(fs_info, |
| "invalid num_stripes:sub_stripes %u:%u for profile %llu", |
| num_stripes, sub_stripes, |
| type & BTRFS_BLOCK_GROUP_PROFILE_MASK); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, |
| u64 devid, u8 *uuid, bool error) |
| { |
| if (error) |
| btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", |
| devid, uuid); |
| else |
| btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", |
| devid, uuid); |
| } |
| |
| static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, |
| struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk) |
| { |
| struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; |
| struct map_lookup *map; |
| struct extent_map *em; |
| u64 logical; |
| u64 length; |
| u64 devid; |
| u8 uuid[BTRFS_UUID_SIZE]; |
| int num_stripes; |
| int ret; |
| int i; |
| |
| logical = key->offset; |
| length = btrfs_chunk_length(leaf, chunk); |
| num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| |
| ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical); |
| if (ret) |
| return ret; |
| |
| read_lock(&map_tree->map_tree.lock); |
| em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); |
| read_unlock(&map_tree->map_tree.lock); |
| |
| /* already mapped? */ |
| if (em && em->start <= logical && em->start + em->len > logical) { |
| free_extent_map(em); |
| return 0; |
| } else if (em) { |
| free_extent_map(em); |
| } |
| |
| em = alloc_extent_map(); |
| if (!em) |
| return -ENOMEM; |
| map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); |
| if (!map) { |
| free_extent_map(em); |
| return -ENOMEM; |
| } |
| |
| set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); |
| em->map_lookup = map; |
| em->start = logical; |
| em->len = length; |
| em->orig_start = 0; |
| em->block_start = 0; |
| em->block_len = em->len; |
| |
| map->num_stripes = num_stripes; |
| map->io_width = btrfs_chunk_io_width(leaf, chunk); |
| map->io_align = btrfs_chunk_io_align(leaf, chunk); |
| map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); |
| map->type = btrfs_chunk_type(leaf, chunk); |
| map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); |
| map->verified_stripes = 0; |
| for (i = 0; i < num_stripes; i++) { |
| map->stripes[i].physical = |
| btrfs_stripe_offset_nr(leaf, chunk, i); |
| devid = btrfs_stripe_devid_nr(leaf, chunk, i); |
| read_extent_buffer(leaf, uuid, (unsigned long) |
| btrfs_stripe_dev_uuid_nr(chunk, i), |
| BTRFS_UUID_SIZE); |
| map->stripes[i].dev = btrfs_find_device(fs_info, devid, |
| uuid, NULL); |
| if (!map->stripes[i].dev && |
| !btrfs_test_opt(fs_info, DEGRADED)) { |
| free_extent_map(em); |
| btrfs_report_missing_device(fs_info, devid, uuid, true); |
| return -ENOENT; |
| } |
| if (!map->stripes[i].dev) { |
| map->stripes[i].dev = |
| add_missing_dev(fs_info->fs_devices, devid, |
| uuid); |
| if (IS_ERR(map->stripes[i].dev)) { |
| free_extent_map(em); |
| btrfs_err(fs_info, |
| "failed to init missing dev %llu: %ld", |
| devid, PTR_ERR(map->stripes[i].dev)); |
| return PTR_ERR(map->stripes[i].dev); |
| } |
| btrfs_report_missing_device(fs_info, devid, uuid, false); |
| } |
| set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, |
| &(map->stripes[i].dev->dev_state)); |
| |
| } |
| |
| write_lock(&map_tree->map_tree.lock); |
| ret = add_extent_mapping(&map_tree->map_tree, em, 0); |
| write_unlock(&map_tree->map_tree.lock); |
| if (ret < 0) { |
| btrfs_err(fs_info, |
| "failed to add chunk map, start=%llu len=%llu: %d", |
| em->start, em->len, ret); |
| } |
| free_extent_map(em); |
| |
| return ret; |
| } |
| |
| static void fill_device_from_item(struct extent_buffer *leaf, |
| struct btrfs_dev_item *dev_item, |
| struct btrfs_device *device) |
| { |
| unsigned long ptr; |
| |
| device->devid = btrfs_device_id(leaf, dev_item); |
| device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); |
| device->total_bytes = device->disk_total_bytes; |
| device->commit_total_bytes = device->disk_total_bytes; |
| device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); |
| device->commit_bytes_used = device->bytes_used; |
| device->type = btrfs_device_type(leaf, dev_item); |
| device->io_align = btrfs_device_io_align(leaf, dev_item); |
| device->io_width = btrfs_device_io_width(leaf, dev_item); |
| device->sector_size = btrfs_device_sector_size(leaf, dev_item); |
| WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); |
| clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); |
| |
| ptr = btrfs_device_uuid(dev_item); |
| read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
| } |
| |
| static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, |
| u8 *fsid) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| int ret; |
| |
| lockdep_assert_held(&uuid_mutex); |
| ASSERT(fsid); |
| |
| fs_devices = fs_info->fs_devices->seed; |
| while (fs_devices) { |
| if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) |
| return fs_devices; |
| |
| fs_devices = fs_devices->seed; |
| } |
| |
| fs_devices = find_fsid(fsid); |
| if (!fs_devices) { |
| if (!btrfs_test_opt(fs_info, DEGRADED)) |
| return ERR_PTR(-ENOENT); |
| |
| fs_devices = alloc_fs_devices(fsid); |
| if (IS_ERR(fs_devices)) |
| return fs_devices; |
| |
| fs_devices->seeding = 1; |
| fs_devices->opened = 1; |
| return fs_devices; |
| } |
| |
| fs_devices = clone_fs_devices(fs_devices); |
| if (IS_ERR(fs_devices)) |
| return fs_devices; |
| |
| ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); |
| if (ret) { |
| free_fs_devices(fs_devices); |
| fs_devices = ERR_PTR(ret); |
| goto out; |
| } |
| |
| if (!fs_devices->seeding) { |
| close_fs_devices(fs_devices); |
| free_fs_devices(fs_devices); |
| fs_devices = ERR_PTR(-EINVAL); |
| goto out; |
| } |
| |
| fs_devices->seed = fs_info->fs_devices->seed; |
| fs_info->fs_devices->seed = fs_devices; |
| out: |
| return fs_devices; |
| } |
| |
| static int read_one_dev(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *leaf, |
| struct btrfs_dev_item *dev_item) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_device *device; |
| u64 devid; |
| int ret; |
| u8 fs_uuid[BTRFS_FSID_SIZE]; |
| u8 dev_uuid[BTRFS_UUID_SIZE]; |
| |
| devid = btrfs_device_id(leaf, dev_item); |
| read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), |
| BTRFS_UUID_SIZE); |
| read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), |
| BTRFS_FSID_SIZE); |
| |
| if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) { |
| fs_devices = open_seed_devices(fs_info, fs_uuid); |
| if (IS_ERR(fs_devices)) |
| return PTR_ERR(fs_devices); |
| } |
| |
| device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid); |
| if (!device) { |
| if (!btrfs_test_opt(fs_info, DEGRADED)) { |
| btrfs_report_missing_device(fs_info, devid, |
| dev_uuid, true); |
| return -ENOENT; |
| } |
| |
| device = add_missing_dev(fs_devices, devid, dev_uuid); |
| if (IS_ERR(device)) { |
| btrfs_err(fs_info, |
| "failed to add missing dev %llu: %ld", |
| devid, PTR_ERR(device)); |
| return PTR_ERR(device); |
| } |
| btrfs_report_missing_device(fs_info, devid, dev_uuid, false); |
| } else { |
| if (!device->bdev) { |
| if (!btrfs_test_opt(fs_info, DEGRADED)) { |
| btrfs_report_missing_device(fs_info, |
| devid, dev_uuid, true); |
| return -ENOENT; |
| } |
| btrfs_report_missing_device(fs_info, devid, |
| dev_uuid, false); |
| } |
| |
| if (!device->bdev && |
| !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { |
| /* |
| * this happens when a device that was properly setup |
| * in the device info lists suddenly goes bad. |
| * device->bdev is NULL, and so we have to set |
| * device->missing to one here |
| */ |
| device->fs_devices->missing_devices++; |
| set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); |
| } |
| |
| /* Move the device to its own fs_devices */ |
| if (device->fs_devices != fs_devices) { |
| ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, |
| &device->dev_state)); |
| |
| list_move(&device->dev_list, &fs_devices->devices); |
| device->fs_devices->num_devices--; |
| fs_devices->num_devices++; |
| |
| device->fs_devices->missing_devices--; |
| fs_devices->missing_devices++; |
| |
| device->fs_devices = fs_devices; |
| } |
| } |
| |
| if (device->fs_devices != fs_info->fs_devices) { |
| BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); |
| if (device->generation != |
| btrfs_device_generation(leaf, dev_item)) |
| return -EINVAL; |
| } |
| |
| fill_device_from_item(leaf, dev_item, device); |
| set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| device->fs_devices->total_rw_bytes += device->total_bytes; |
| atomic64_add(device->total_bytes - device->bytes_used, |
| &fs_info->free_chunk_space); |
| } |
| ret = 0; |
| return ret; |
| } |
| |
| int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| struct extent_buffer *sb; |
| struct btrfs_disk_key *disk_key; |
| struct btrfs_chunk *chunk; |
| u8 *array_ptr; |
| unsigned long sb_array_offset; |
| int ret = 0; |
| u32 num_stripes; |
| u32 array_size; |
| u32 len = 0; |
| u32 cur_offset; |
| u64 type; |
| struct btrfs_key key; |
| |
| ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); |
| /* |
| * This will create extent buffer of nodesize, superblock size is |
| * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will |
| * overallocate but we can keep it as-is, only the first page is used. |
| */ |
| sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); |
| if (IS_ERR(sb)) |
| return PTR_ERR(sb); |
| set_extent_buffer_uptodate(sb); |
| btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); |
| /* |
| * The sb extent buffer is artificial and just used to read the system array. |
| * set_extent_buffer_uptodate() call does not properly mark all it's |
| * pages up-to-date when the page is larger: extent does not cover the |
| * whole page and consequently check_page_uptodate does not find all |
| * the page's extents up-to-date (the hole beyond sb), |
| * write_extent_buffer then triggers a WARN_ON. |
| * |
| * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, |
| * but sb spans only this function. Add an explicit SetPageUptodate call |
| * to silence the warning eg. on PowerPC 64. |
| */ |
| if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) |
| SetPageUptodate(sb->pages[0]); |
| |
| write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); |
| array_size = btrfs_super_sys_array_size(super_copy); |
| |
| array_ptr = super_copy->sys_chunk_array; |
| sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); |
| cur_offset = 0; |
| |
| while (cur_offset < array_size) { |
| disk_key = (struct btrfs_disk_key *)array_ptr; |
| len = sizeof(*disk_key); |
| if (cur_offset + len > array_size) |
| goto out_short_read; |
| |
| btrfs_disk_key_to_cpu(&key, disk_key); |
| |
| array_ptr += len; |
| sb_array_offset += len; |
| cur_offset += len; |
| |
| if (key.type == BTRFS_CHUNK_ITEM_KEY) { |
| chunk = (struct btrfs_chunk *)sb_array_offset; |
| /* |
| * At least one btrfs_chunk with one stripe must be |
| * present, exact stripe count check comes afterwards |
| */ |
| len = btrfs_chunk_item_size(1); |
| if (cur_offset + len > array_size) |
| goto out_short_read; |
| |
| num_stripes = btrfs_chunk_num_stripes(sb, chunk); |
| if (!num_stripes) { |
| btrfs_err(fs_info, |
| "invalid number of stripes %u in sys_array at offset %u", |
| num_stripes, cur_offset); |
| ret = -EIO; |
| break; |
| } |
| |
| type = btrfs_chunk_type(sb, chunk); |
| if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { |
| btrfs_err(fs_info, |
| "invalid chunk type %llu in sys_array at offset %u", |
| type, cur_offset); |
| ret = -EIO; |
| break; |
| } |
| |
| len = btrfs_chunk_item_size(num_stripes); |
| if (cur_offset + len > array_size) |
| goto out_short_read; |
| |
| ret = read_one_chunk(fs_info, &key, sb, chunk); |
| if (ret) |
| break; |
| } else { |
| btrfs_err(fs_info, |
| "unexpected item type %u in sys_array at offset %u", |
| (u32)key.type, cur_offset); |
| ret = -EIO; |
| break; |
| } |
| array_ptr += len; |
| sb_array_offset += len; |
| cur_offset += len; |
| } |
| clear_extent_buffer_uptodate(sb); |
| free_extent_buffer_stale(sb); |
| return ret; |
| |
| out_short_read: |
| btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", |
| len, cur_offset); |
| clear_extent_buffer_uptodate(sb); |
| free_extent_buffer_stale(sb); |
| return -EIO; |
| } |
| |
| /* |
| * Check if all chunks in the fs are OK for read-write degraded mount |
| * |
| * If the @failing_dev is specified, it's accounted as missing. |
| * |
| * Return true if all chunks meet the minimal RW mount requirements. |
| * Return false if any chunk doesn't meet the minimal RW mount requirements. |
| */ |
| bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, |
| struct btrfs_device *failing_dev) |
| { |
| struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; |
| struct extent_map *em; |
| u64 next_start = 0; |
| bool ret = true; |
| |
| read_lock(&map_tree->map_tree.lock); |
| em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1); |
| read_unlock(&map_tree->map_tree.lock); |
| /* No chunk at all? Return false anyway */ |
| if (!em) { |
| ret = false; |
| goto out; |
| } |
| while (em) { |
| struct map_lookup *map; |
| int missing = 0; |
| int max_tolerated; |
| int i; |
| |
| map = em->map_lookup; |
| max_tolerated = |
| btrfs_get_num_tolerated_disk_barrier_failures( |
| map->type); |
| for (i = 0; i < map->num_stripes; i++) { |
| struct btrfs_device *dev = map->stripes[i].dev; |
| |
| if (!dev || !dev->bdev || |
| test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || |
| dev->last_flush_error) |
| missing++; |
| else if (failing_dev && failing_dev == dev) |
| missing++; |
| } |
| if (missing > max_tolerated) { |
| if (!failing_dev) |
| btrfs_warn(fs_info, |
| "chunk %llu missing %d devices, max tolerance is %d for writeable mount", |
| em->start, missing, max_tolerated); |
| free_extent_map(em); |
| ret = false; |
| goto out; |
| } |
| next_start = extent_map_end(em); |
| free_extent_map(em); |
| |
| read_lock(&map_tree->map_tree.lock); |
| em = lookup_extent_mapping(&map_tree->map_tree, next_start, |
| (u64)(-1) - next_start); |
| read_unlock(&map_tree->map_tree.lock); |
| } |
| out: |
| return ret; |
| } |
| |
| int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root = fs_info->chunk_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| int ret; |
| int slot; |
| u64 total_dev = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * uuid_mutex is needed only if we are mounting a sprout FS |
| * otherwise we don't need it. |
| */ |
| mutex_lock(&uuid_mutex); |
| mutex_lock(&fs_info->chunk_mutex); |
| |
| /* |
| * Read all device items, and then all the chunk items. All |
| * device items are found before any chunk item (their object id |
| * is smaller than the lowest possible object id for a chunk |
| * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). |
| */ |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.offset = 0; |
| key.type = 0; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| while (1) { |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto error; |
| break; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| if (found_key.type == BTRFS_DEV_ITEM_KEY) { |
| struct btrfs_dev_item *dev_item; |
| dev_item = btrfs_item_ptr(leaf, slot, |
| struct btrfs_dev_item); |
| ret = read_one_dev(fs_info, leaf, dev_item); |
| if (ret) |
| goto error; |
| total_dev++; |
| } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { |
| struct btrfs_chunk *chunk; |
| chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); |
| ret = read_one_chunk(fs_info, &found_key, leaf, chunk); |
| if (ret) |
| goto error; |
| } |
| path->slots[0]++; |
| } |
| |
| /* |
| * After loading chunk tree, we've got all device information, |
| * do another round of validation checks. |
| */ |
| if (total_dev != fs_info->fs_devices->total_devices) { |
| btrfs_err(fs_info, |
| "super_num_devices %llu mismatch with num_devices %llu found here", |
| btrfs_super_num_devices(fs_info->super_copy), |
| total_dev); |
| ret = -EINVAL; |
| goto error; |
| } |
| if (btrfs_super_total_bytes(fs_info->super_copy) < |
| fs_info->fs_devices->total_rw_bytes) { |
| btrfs_err(fs_info, |
| "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", |
| btrfs_super_total_bytes(fs_info->super_copy), |
| fs_info->fs_devices->total_rw_bytes); |
| ret = -EINVAL; |
| goto error; |
| } |
| ret = 0; |
| error: |
| mutex_unlock(&fs_info->chunk_mutex); |
| mutex_unlock(&uuid_mutex); |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_device *device; |
| |
| while (fs_devices) { |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) |
| device->fs_info = fs_info; |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| fs_devices = fs_devices->seed; |
| } |
| } |
| |
| static void __btrfs_reset_dev_stats(struct btrfs_device *dev) |
| { |
| int i; |
| |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) |
| btrfs_dev_stat_reset(dev, i); |
| } |
| |
| int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_root *dev_root = fs_info->dev_root; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct extent_buffer *eb; |
| int slot; |
| int ret = 0; |
| struct btrfs_device *device; |
| struct btrfs_path *path = NULL; |
| int i; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| int item_size; |
| struct btrfs_dev_stats_item *ptr; |
| |
| key.objectid = BTRFS_DEV_STATS_OBJECTID; |
| key.type = BTRFS_PERSISTENT_ITEM_KEY; |
| key.offset = device->devid; |
| ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); |
| if (ret) { |
| __btrfs_reset_dev_stats(device); |
| device->dev_stats_valid = 1; |
| btrfs_release_path(path); |
| continue; |
| } |
| slot = path->slots[0]; |
| eb = path->nodes[0]; |
| btrfs_item_key_to_cpu(eb, &found_key, slot); |
| item_size = btrfs_item_size_nr(eb, slot); |
| |
| ptr = btrfs_item_ptr(eb, slot, |
| struct btrfs_dev_stats_item); |
| |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { |
| if (item_size >= (1 + i) * sizeof(__le64)) |
| btrfs_dev_stat_set(device, i, |
| btrfs_dev_stats_value(eb, ptr, i)); |
| else |
| btrfs_dev_stat_reset(device, i); |
| } |
| |
| device->dev_stats_valid = 1; |
| btrfs_dev_stat_print_on_load(device); |
| btrfs_release_path(path); |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| out: |
| btrfs_free_path(path); |
| return ret < 0 ? ret : 0; |
| } |
| |
| static int update_dev_stat_item(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *dev_root = fs_info->dev_root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct extent_buffer *eb; |
| struct btrfs_dev_stats_item *ptr; |
| int ret; |
| int i; |
| |
| key.objectid = BTRFS_DEV_STATS_OBJECTID; |
| key.type = BTRFS_PERSISTENT_ITEM_KEY; |
| key.offset = device->devid; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); |
| if (ret < 0) { |
| btrfs_warn_in_rcu(fs_info, |
| "error %d while searching for dev_stats item for device %s", |
| ret, rcu_str_deref(device->name)); |
| goto out; |
| } |
| |
| if (ret == 0 && |
| btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { |
| /* need to delete old one and insert a new one */ |
| ret = btrfs_del_item(trans, dev_root, path); |
| if (ret != 0) { |
| btrfs_warn_in_rcu(fs_info, |
| "delete too small dev_stats item for device %s failed %d", |
| rcu_str_deref(device->name), ret); |
| goto out; |
| } |
| ret = 1; |
| } |
| |
| if (ret == 1) { |
| /* need to insert a new item */ |
| btrfs_release_path(path); |
| ret = btrfs_insert_empty_item(trans, dev_root, path, |
| &key, sizeof(*ptr)); |
| if (ret < 0) { |
| btrfs_warn_in_rcu(fs_info, |
| "insert dev_stats item for device %s failed %d", |
| rcu_str_deref(device->name), ret); |
| goto out; |
| } |
| } |
| |
| eb = path->nodes[0]; |
| ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) |
| btrfs_set_dev_stats_value(eb, ptr, i, |
| btrfs_dev_stat_read(device, i)); |
| btrfs_mark_buffer_dirty(eb); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * called from commit_transaction. Writes all changed device stats to disk. |
| */ |
| int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_device *device; |
| int stats_cnt; |
| int ret = 0; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| stats_cnt = atomic_read(&device->dev_stats_ccnt); |
| if (!device->dev_stats_valid || stats_cnt == 0) |
| continue; |
| |
| |
| /* |
| * There is a LOAD-LOAD control dependency between the value of |
| * dev_stats_ccnt and updating the on-disk values which requires |
| * reading the in-memory counters. Such control dependencies |
| * require explicit read memory barriers. |
| * |
| * This memory barriers pairs with smp_mb__before_atomic in |
| * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full |
| * barrier implied by atomic_xchg in |
| * btrfs_dev_stats_read_and_reset |
| */ |
| smp_rmb(); |
| |
| ret = update_dev_stat_item(trans, device); |
| if (!ret) |
| atomic_sub(stats_cnt, &device->dev_stats_ccnt); |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| return ret; |
| } |
| |
| void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) |
| { |
| btrfs_dev_stat_inc(dev, index); |
| btrfs_dev_stat_print_on_error(dev); |
| } |
| |
| static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) |
| { |
| if (!dev->dev_stats_valid) |
| return; |
| btrfs_err_rl_in_rcu(dev->fs_info, |
| "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", |
| rcu_str_deref(dev->name), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); |
| } |
| |
| static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) |
| { |
| int i; |
| |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) |
| if (btrfs_dev_stat_read(dev, i) != 0) |
| break; |
| if (i == BTRFS_DEV_STAT_VALUES_MAX) |
| return; /* all values == 0, suppress message */ |
| |
| btrfs_info_in_rcu(dev->fs_info, |
| "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", |
| rcu_str_deref(dev->name), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); |
| } |
| |
| int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, |
| struct btrfs_ioctl_get_dev_stats *stats) |
| { |
| struct btrfs_device *dev; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| int i; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| if (!dev) { |
| btrfs_warn(fs_info, "get dev_stats failed, device not found"); |
| return -ENODEV; |
| } else if (!dev->dev_stats_valid) { |
| btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); |
| return -ENODEV; |
| } else if (stats->flags & BTRFS_DEV_STATS_RESET) { |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { |
| if (stats->nr_items > i) |
| stats->values[i] = |
| btrfs_dev_stat_read_and_reset(dev, i); |
| else |
| btrfs_dev_stat_reset(dev, i); |
| } |
| } else { |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) |
| if (stats->nr_items > i) |
| stats->values[i] = btrfs_dev_stat_read(dev, i); |
| } |
| if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) |
| stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; |
| return 0; |
| } |
| |
| void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) |
| { |
| struct buffer_head *bh; |
| struct btrfs_super_block *disk_super; |
| int copy_num; |
| |
| if (!bdev) |
| return; |
| |
| for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; |
| copy_num++) { |
| |
| if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) |
| continue; |
| |
| disk_super = (struct btrfs_super_block *)bh->b_data; |
| |
| memset(&disk_super->magic, 0, sizeof(disk_super->magic)); |
| set_buffer_dirty(bh); |
| sync_dirty_buffer(bh); |
| brelse(bh); |
| } |
| |
| /* Notify udev that device has changed */ |
| btrfs_kobject_uevent(bdev, KOBJ_CHANGE); |
| |
| /* Update ctime/mtime for device path for libblkid */ |
| update_dev_time(device_path); |
| } |
| |
| /* |
| * Update the size of all devices, which is used for writing out the |
| * super blocks. |
| */ |
| void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_device *curr, *next; |
| |
| if (list_empty(&fs_devices->resized_devices)) |
| return; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| mutex_lock(&fs_info->chunk_mutex); |
| list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, |
| resized_list) { |
| list_del_init(&curr->resized_list); |
| curr->commit_total_bytes = curr->disk_total_bytes; |
| } |
| mutex_unlock(&fs_info->chunk_mutex); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| } |
| |
| /* Must be invoked during the transaction commit */ |
| void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct extent_map *em; |
| struct map_lookup *map; |
| struct btrfs_device *dev; |
| int i; |
| |
| if (list_empty(&trans->pending_chunks)) |
| return; |
| |
| /* In order to kick the device replace finish process */ |
| mutex_lock(&fs_info->chunk_mutex); |
| list_for_each_entry(em, &trans->pending_chunks, list) { |
| map = em->map_lookup; |
| |
| for (i = 0; i < map->num_stripes; i++) { |
| dev = map->stripes[i].dev; |
| dev->commit_bytes_used = dev->bytes_used; |
| } |
| } |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| |
| void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| while (fs_devices) { |
| fs_devices->fs_info = fs_info; |
| fs_devices = fs_devices->seed; |
| } |
| } |
| |
| void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| while (fs_devices) { |
| fs_devices->fs_info = NULL; |
| fs_devices = fs_devices->seed; |
| } |
| } |
| |
| /* |
| * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. |
| */ |
| int btrfs_bg_type_to_factor(u64 flags) |
| { |
| if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| return 2; |
| return 1; |
| } |
| |
| |
| static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) |
| { |
| int index = btrfs_bg_flags_to_raid_index(type); |
| int ncopies = btrfs_raid_array[index].ncopies; |
| int data_stripes; |
| |
| switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { |
| case BTRFS_BLOCK_GROUP_RAID5: |
| data_stripes = num_stripes - 1; |
| break; |
| case BTRFS_BLOCK_GROUP_RAID6: |
| data_stripes = num_stripes - 2; |
| break; |
| default: |
| data_stripes = num_stripes / ncopies; |
| break; |
| } |
| return div_u64(chunk_len, data_stripes); |
| } |
| |
| static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, |
| u64 chunk_offset, u64 devid, |
| u64 physical_offset, u64 physical_len) |
| { |
| struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; |
| struct extent_map *em; |
| struct map_lookup *map; |
| u64 stripe_len; |
| bool found = false; |
| int ret = 0; |
| int i; |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, chunk_offset, 1); |
| read_unlock(&em_tree->lock); |
| |
| if (!em) { |
| btrfs_err(fs_info, |
| "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", |
| physical_offset, devid); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| map = em->map_lookup; |
| stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); |
| if (physical_len != stripe_len) { |
| btrfs_err(fs_info, |
| "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", |
| physical_offset, devid, em->start, physical_len, |
| stripe_len); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| for (i = 0; i < map->num_stripes; i++) { |
| if (map->stripes[i].dev->devid == devid && |
| map->stripes[i].physical == physical_offset) { |
| found = true; |
| if (map->verified_stripes >= map->num_stripes) { |
| btrfs_err(fs_info, |
| "too many dev extents for chunk %llu found", |
| em->start); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| map->verified_stripes++; |
| break; |
| } |
| } |
| if (!found) { |
| btrfs_err(fs_info, |
| "dev extent physical offset %llu devid %llu has no corresponding chunk", |
| physical_offset, devid); |
| ret = -EUCLEAN; |
| } |
| out: |
| free_extent_map(em); |
| return ret; |
| } |
| |
| static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) |
| { |
| struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; |
| struct extent_map *em; |
| struct rb_node *node; |
| int ret = 0; |
| |
| read_lock(&em_tree->lock); |
| for (node = rb_first(&em_tree->map); node; node = rb_next(node)) { |
| em = rb_entry(node, struct extent_map, rb_node); |
| if (em->map_lookup->num_stripes != |
| em->map_lookup->verified_stripes) { |
| btrfs_err(fs_info, |
| "chunk %llu has missing dev extent, have %d expect %d", |
| em->start, em->map_lookup->verified_stripes, |
| em->map_lookup->num_stripes); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| out: |
| read_unlock(&em_tree->lock); |
| return ret; |
| } |
| |
| /* |
| * Ensure that all dev extents are mapped to correct chunk, otherwise |
| * later chunk allocation/free would cause unexpected behavior. |
| * |
| * NOTE: This will iterate through the whole device tree, which should be of |
| * the same size level as the chunk tree. This slightly increases mount time. |
| */ |
| int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_path *path; |
| struct btrfs_root *root = fs_info->dev_root; |
| struct btrfs_key key; |
| int ret = 0; |
| |
| key.objectid = 1; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| key.offset = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = READA_FORWARD; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_item(root, path); |
| if (ret < 0) |
| goto out; |
| /* No dev extents at all? Not good */ |
| if (ret > 0) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| while (1) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_dev_extent *dext; |
| int slot = path->slots[0]; |
| u64 chunk_offset; |
| u64 physical_offset; |
| u64 physical_len; |
| u64 devid; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.type != BTRFS_DEV_EXTENT_KEY) |
| break; |
| devid = key.objectid; |
| physical_offset = key.offset; |
| |
| dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); |
| chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); |
| physical_len = btrfs_dev_extent_length(leaf, dext); |
| |
| ret = verify_one_dev_extent(fs_info, chunk_offset, devid, |
| physical_offset, physical_len); |
| if (ret < 0) |
| goto out; |
| ret = btrfs_next_item(root, path); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| } |
| |
| /* Ensure all chunks have corresponding dev extents */ |
| ret = verify_chunk_dev_extent_mapping(fs_info); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |