| /* |
| * linux/fs/befs/btree.c |
| * |
| * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com> |
| * |
| * Licensed under the GNU GPL. See the file COPYING for details. |
| * |
| * 2002-02-05: Sergey S. Kostyliov added binary search withing |
| * btree nodes. |
| * |
| * Many thanks to: |
| * |
| * Dominic Giampaolo, author of "Practical File System |
| * Design with the Be File System", for such a helpful book. |
| * |
| * Marcus J. Ranum, author of the b+tree package in |
| * comp.sources.misc volume 10. This code is not copied from that |
| * work, but it is partially based on it. |
| * |
| * Makoto Kato, author of the original BeFS for linux filesystem |
| * driver. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/buffer_head.h> |
| |
| #include "befs.h" |
| #include "btree.h" |
| #include "datastream.h" |
| |
| /* |
| * The btree functions in this file are built on top of the |
| * datastream.c interface, which is in turn built on top of the |
| * io.c interface. |
| */ |
| |
| /* Befs B+tree structure: |
| * |
| * The first thing in the tree is the tree superblock. It tells you |
| * all kinds of useful things about the tree, like where the rootnode |
| * is located, and the size of the nodes (always 1024 with current version |
| * of BeOS). |
| * |
| * The rest of the tree consists of a series of nodes. Nodes contain a header |
| * (struct befs_btree_nodehead), the packed key data, an array of shorts |
| * containing the ending offsets for each of the keys, and an array of |
| * befs_off_t values. In interior nodes, the keys are the ending keys for |
| * the childnode they point to, and the values are offsets into the |
| * datastream containing the tree. |
| */ |
| |
| /* Note: |
| * |
| * The book states 2 confusing things about befs b+trees. First, |
| * it states that the overflow field of node headers is used by internal nodes |
| * to point to another node that "effectively continues this one". Here is what |
| * I believe that means. Each key in internal nodes points to another node that |
| * contains key values less than itself. Inspection reveals that the last key |
| * in the internal node is not the last key in the index. Keys that are |
| * greater than the last key in the internal node go into the overflow node. |
| * I imagine there is a performance reason for this. |
| * |
| * Second, it states that the header of a btree node is sufficient to |
| * distinguish internal nodes from leaf nodes. Without saying exactly how. |
| * After figuring out the first, it becomes obvious that internal nodes have |
| * overflow nodes and leafnodes do not. |
| */ |
| |
| /* |
| * Currently, this code is only good for directory B+trees. |
| * In order to be used for other BFS indexes, it needs to be extended to handle |
| * duplicate keys and non-string keytypes (int32, int64, float, double). |
| */ |
| |
| /* |
| * In memory structure of each btree node |
| */ |
| typedef struct { |
| befs_btree_nodehead head; /* head of node converted to cpu byteorder */ |
| struct buffer_head *bh; |
| befs_btree_nodehead *od_node; /* on disk node */ |
| } befs_btree_node; |
| |
| /* local constants */ |
| static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL; |
| |
| /* local functions */ |
| static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds, |
| befs_btree_super * bt_super, |
| befs_btree_node * this_node, |
| befs_off_t * node_off); |
| |
| static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds, |
| befs_btree_super * sup); |
| |
| static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds, |
| befs_btree_node * node, befs_off_t node_off); |
| |
| static int befs_leafnode(befs_btree_node * node); |
| |
| static u16 *befs_bt_keylen_index(befs_btree_node * node); |
| |
| static befs_off_t *befs_bt_valarray(befs_btree_node * node); |
| |
| static char *befs_bt_keydata(befs_btree_node * node); |
| |
| static int befs_find_key(struct super_block *sb, befs_btree_node * node, |
| const char *findkey, befs_off_t * value); |
| |
| static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node, |
| int index, u16 * keylen); |
| |
| static int befs_compare_strings(const void *key1, int keylen1, |
| const void *key2, int keylen2); |
| |
| /** |
| * befs_bt_read_super - read in btree superblock convert to cpu byteorder |
| * @sb: Filesystem superblock |
| * @ds: Datastream to read from |
| * @sup: Buffer in which to place the btree superblock |
| * |
| * Calls befs_read_datastream to read in the btree superblock and |
| * makes sure it is in cpu byteorder, byteswapping if necessary. |
| * |
| * On success, returns BEFS_OK and *@sup contains the btree superblock, |
| * in cpu byte order. |
| * |
| * On failure, BEFS_ERR is returned. |
| */ |
| static int |
| befs_bt_read_super(struct super_block *sb, befs_data_stream * ds, |
| befs_btree_super * sup) |
| { |
| struct buffer_head *bh = NULL; |
| befs_btree_super *od_sup = NULL; |
| |
| befs_debug(sb, "---> befs_btree_read_super()"); |
| |
| bh = befs_read_datastream(sb, ds, 0, NULL); |
| |
| if (!bh) { |
| befs_error(sb, "Couldn't read index header."); |
| goto error; |
| } |
| od_sup = (befs_btree_super *) bh->b_data; |
| befs_dump_index_entry(sb, od_sup); |
| |
| sup->magic = fs32_to_cpu(sb, od_sup->magic); |
| sup->node_size = fs32_to_cpu(sb, od_sup->node_size); |
| sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth); |
| sup->data_type = fs32_to_cpu(sb, od_sup->data_type); |
| sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr); |
| sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr); |
| sup->max_size = fs64_to_cpu(sb, od_sup->max_size); |
| |
| brelse(bh); |
| if (sup->magic != BEFS_BTREE_MAGIC) { |
| befs_error(sb, "Index header has bad magic."); |
| goto error; |
| } |
| |
| befs_debug(sb, "<--- befs_btree_read_super()"); |
| return BEFS_OK; |
| |
| error: |
| befs_debug(sb, "<--- befs_btree_read_super() ERROR"); |
| return BEFS_ERR; |
| } |
| |
| /** |
| * befs_bt_read_node - read in btree node and convert to cpu byteorder |
| * @sb: Filesystem superblock |
| * @ds: Datastream to read from |
| * @node: Buffer in which to place the btree node |
| * @node_off: Starting offset (in bytes) of the node in @ds |
| * |
| * Calls befs_read_datastream to read in the indicated btree node and |
| * makes sure its header fields are in cpu byteorder, byteswapping if |
| * necessary. |
| * Note: node->bh must be NULL when this function called first |
| * time. Don't forget brelse(node->bh) after last call. |
| * |
| * On success, returns BEFS_OK and *@node contains the btree node that |
| * starts at @node_off, with the node->head fields in cpu byte order. |
| * |
| * On failure, BEFS_ERR is returned. |
| */ |
| |
| static int |
| befs_bt_read_node(struct super_block *sb, befs_data_stream * ds, |
| befs_btree_node * node, befs_off_t node_off) |
| { |
| uint off = 0; |
| |
| befs_debug(sb, "---> befs_bt_read_node()"); |
| |
| if (node->bh) |
| brelse(node->bh); |
| |
| node->bh = befs_read_datastream(sb, ds, node_off, &off); |
| if (!node->bh) { |
| befs_error(sb, "befs_bt_read_node() failed to read " |
| "node at %Lu", node_off); |
| befs_debug(sb, "<--- befs_bt_read_node() ERROR"); |
| |
| return BEFS_ERR; |
| } |
| node->od_node = |
| (befs_btree_nodehead *) ((void *) node->bh->b_data + off); |
| |
| befs_dump_index_node(sb, node->od_node); |
| |
| node->head.left = fs64_to_cpu(sb, node->od_node->left); |
| node->head.right = fs64_to_cpu(sb, node->od_node->right); |
| node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow); |
| node->head.all_key_count = |
| fs16_to_cpu(sb, node->od_node->all_key_count); |
| node->head.all_key_length = |
| fs16_to_cpu(sb, node->od_node->all_key_length); |
| |
| befs_debug(sb, "<--- befs_btree_read_node()"); |
| return BEFS_OK; |
| } |
| |
| /** |
| * befs_btree_find - Find a key in a befs B+tree |
| * @sb: Filesystem superblock |
| * @ds: Datastream containing btree |
| * @key: Key string to lookup in btree |
| * @value: Value stored with @key |
| * |
| * On sucess, returns BEFS_OK and sets *@value to the value stored |
| * with @key (usually the disk block number of an inode). |
| * |
| * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND. |
| * |
| * Algorithm: |
| * Read the superblock and rootnode of the b+tree. |
| * Drill down through the interior nodes using befs_find_key(). |
| * Once at the correct leaf node, use befs_find_key() again to get the |
| * actuall value stored with the key. |
| */ |
| int |
| befs_btree_find(struct super_block *sb, befs_data_stream * ds, |
| const char *key, befs_off_t * value) |
| { |
| befs_btree_node *this_node = NULL; |
| befs_btree_super bt_super; |
| befs_off_t node_off; |
| int res; |
| |
| befs_debug(sb, "---> befs_btree_find() Key: %s", key); |
| |
| if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { |
| befs_error(sb, |
| "befs_btree_find() failed to read index superblock"); |
| goto error; |
| } |
| |
| this_node = (befs_btree_node *) kmalloc(sizeof (befs_btree_node), |
| GFP_NOFS); |
| if (!this_node) { |
| befs_error(sb, "befs_btree_find() failed to allocate %u " |
| "bytes of memory", sizeof (befs_btree_node)); |
| goto error; |
| } |
| |
| this_node->bh = NULL; |
| |
| /* read in root node */ |
| node_off = bt_super.root_node_ptr; |
| if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { |
| befs_error(sb, "befs_btree_find() failed to read " |
| "node at %Lu", node_off); |
| goto error_alloc; |
| } |
| |
| while (!befs_leafnode(this_node)) { |
| res = befs_find_key(sb, this_node, key, &node_off); |
| if (res == BEFS_BT_NOT_FOUND) |
| node_off = this_node->head.overflow; |
| /* if no match, go to overflow node */ |
| if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { |
| befs_error(sb, "befs_btree_find() failed to read " |
| "node at %Lu", node_off); |
| goto error_alloc; |
| } |
| } |
| |
| /* at the correct leaf node now */ |
| |
| res = befs_find_key(sb, this_node, key, value); |
| |
| brelse(this_node->bh); |
| kfree(this_node); |
| |
| if (res != BEFS_BT_MATCH) { |
| befs_debug(sb, "<--- befs_btree_find() Key %s not found", key); |
| *value = 0; |
| return BEFS_BT_NOT_FOUND; |
| } |
| befs_debug(sb, "<--- befs_btree_find() Found key %s, value %Lu", |
| key, *value); |
| return BEFS_OK; |
| |
| error_alloc: |
| kfree(this_node); |
| error: |
| *value = 0; |
| befs_debug(sb, "<--- befs_btree_find() ERROR"); |
| return BEFS_ERR; |
| } |
| |
| /** |
| * befs_find_key - Search for a key within a node |
| * @sb: Filesystem superblock |
| * @node: Node to find the key within |
| * @key: Keystring to search for |
| * @value: If key is found, the value stored with the key is put here |
| * |
| * finds exact match if one exists, and returns BEFS_BT_MATCH |
| * If no exact match, finds first key in node that is greater |
| * (alphabetically) than the search key and returns BEFS_BT_PARMATCH |
| * (for partial match, I guess). Can you think of something better to |
| * call it? |
| * |
| * If no key was a match or greater than the search key, return |
| * BEFS_BT_NOT_FOUND. |
| * |
| * Use binary search instead of a linear. |
| */ |
| static int |
| befs_find_key(struct super_block *sb, befs_btree_node * node, |
| const char *findkey, befs_off_t * value) |
| { |
| int first, last, mid; |
| int eq; |
| u16 keylen; |
| int findkey_len; |
| char *thiskey; |
| befs_off_t *valarray; |
| |
| befs_debug(sb, "---> befs_find_key() %s", findkey); |
| |
| *value = 0; |
| |
| findkey_len = strlen(findkey); |
| |
| /* if node can not contain key, just skeep this node */ |
| last = node->head.all_key_count - 1; |
| thiskey = befs_bt_get_key(sb, node, last, &keylen); |
| |
| eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len); |
| if (eq < 0) { |
| befs_debug(sb, "<--- befs_find_key() %s not found", findkey); |
| return BEFS_BT_NOT_FOUND; |
| } |
| |
| valarray = befs_bt_valarray(node); |
| |
| /* simple binary search */ |
| first = 0; |
| mid = 0; |
| while (last >= first) { |
| mid = (last + first) / 2; |
| befs_debug(sb, "first: %d, last: %d, mid: %d", first, last, |
| mid); |
| thiskey = befs_bt_get_key(sb, node, mid, &keylen); |
| eq = befs_compare_strings(thiskey, keylen, findkey, |
| findkey_len); |
| |
| if (eq == 0) { |
| befs_debug(sb, "<--- befs_find_key() found %s at %d", |
| thiskey, mid); |
| |
| *value = fs64_to_cpu(sb, valarray[mid]); |
| return BEFS_BT_MATCH; |
| } |
| if (eq > 0) |
| last = mid - 1; |
| else |
| first = mid + 1; |
| } |
| if (eq < 0) |
| *value = fs64_to_cpu(sb, valarray[mid + 1]); |
| else |
| *value = fs64_to_cpu(sb, valarray[mid]); |
| befs_debug(sb, "<--- befs_find_key() found %s at %d", thiskey, mid); |
| return BEFS_BT_PARMATCH; |
| } |
| |
| /** |
| * befs_btree_read - Traverse leafnodes of a btree |
| * @sb: Filesystem superblock |
| * @ds: Datastream containing btree |
| * @key_no: Key number (alphabetical order) of key to read |
| * @bufsize: Size of the buffer to return key in |
| * @keybuf: Pointer to a buffer to put the key in |
| * @keysize: Length of the returned key |
| * @value: Value stored with the returned key |
| * |
| * Heres how it works: Key_no is the index of the key/value pair to |
| * return in keybuf/value. |
| * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is |
| * the number of charecters in the key (just a convenience). |
| * |
| * Algorithm: |
| * Get the first leafnode of the tree. See if the requested key is in that |
| * node. If not, follow the node->right link to the next leafnode. Repeat |
| * until the (key_no)th key is found or the tree is out of keys. |
| */ |
| int |
| befs_btree_read(struct super_block *sb, befs_data_stream * ds, |
| loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize, |
| befs_off_t * value) |
| { |
| befs_btree_node *this_node; |
| befs_btree_super bt_super; |
| befs_off_t node_off = 0; |
| int cur_key; |
| befs_off_t *valarray; |
| char *keystart; |
| u16 keylen; |
| int res; |
| |
| uint key_sum = 0; |
| |
| befs_debug(sb, "---> befs_btree_read()"); |
| |
| if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { |
| befs_error(sb, |
| "befs_btree_read() failed to read index superblock"); |
| goto error; |
| } |
| |
| if ((this_node = (befs_btree_node *) |
| kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) { |
| befs_error(sb, "befs_btree_read() failed to allocate %u " |
| "bytes of memory", sizeof (befs_btree_node)); |
| goto error; |
| } |
| |
| node_off = bt_super.root_node_ptr; |
| this_node->bh = NULL; |
| |
| /* seeks down to first leafnode, reads it into this_node */ |
| res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off); |
| if (res == BEFS_BT_EMPTY) { |
| brelse(this_node->bh); |
| kfree(this_node); |
| *value = 0; |
| *keysize = 0; |
| befs_debug(sb, "<--- befs_btree_read() Tree is EMPTY"); |
| return BEFS_BT_EMPTY; |
| } else if (res == BEFS_ERR) { |
| goto error_alloc; |
| } |
| |
| /* find the leaf node containing the key_no key */ |
| |
| while (key_sum + this_node->head.all_key_count <= key_no) { |
| |
| /* no more nodes to look in: key_no is too large */ |
| if (this_node->head.right == befs_bt_inval) { |
| *keysize = 0; |
| *value = 0; |
| befs_debug(sb, |
| "<--- befs_btree_read() END of keys at %Lu", |
| key_sum + this_node->head.all_key_count); |
| brelse(this_node->bh); |
| kfree(this_node); |
| return BEFS_BT_END; |
| } |
| |
| key_sum += this_node->head.all_key_count; |
| node_off = this_node->head.right; |
| |
| if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { |
| befs_error(sb, "befs_btree_read() failed to read " |
| "node at %Lu", node_off); |
| goto error_alloc; |
| } |
| } |
| |
| /* how many keys into this_node is key_no */ |
| cur_key = key_no - key_sum; |
| |
| /* get pointers to datastructures within the node body */ |
| valarray = befs_bt_valarray(this_node); |
| |
| keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen); |
| |
| befs_debug(sb, "Read [%Lu,%d]: keysize %d", node_off, cur_key, keylen); |
| |
| if (bufsize < keylen + 1) { |
| befs_error(sb, "befs_btree_read() keybuf too small (%u) " |
| "for key of size %d", bufsize, keylen); |
| brelse(this_node->bh); |
| goto error_alloc; |
| }; |
| |
| strncpy(keybuf, keystart, keylen); |
| *value = fs64_to_cpu(sb, valarray[cur_key]); |
| *keysize = keylen; |
| keybuf[keylen] = '\0'; |
| |
| befs_debug(sb, "Read [%Lu,%d]: Key \"%.*s\", Value %Lu", node_off, |
| cur_key, keylen, keybuf, *value); |
| |
| brelse(this_node->bh); |
| kfree(this_node); |
| |
| befs_debug(sb, "<--- befs_btree_read()"); |
| |
| return BEFS_OK; |
| |
| error_alloc: |
| kfree(this_node); |
| |
| error: |
| *keysize = 0; |
| *value = 0; |
| befs_debug(sb, "<--- befs_btree_read() ERROR"); |
| return BEFS_ERR; |
| } |
| |
| /** |
| * befs_btree_seekleaf - Find the first leafnode in the btree |
| * @sb: Filesystem superblock |
| * @ds: Datastream containing btree |
| * @bt_super: Pointer to the superblock of the btree |
| * @this_node: Buffer to return the leafnode in |
| * @node_off: Pointer to offset of current node within datastream. Modified |
| * by the function. |
| * |
| * |
| * Helper function for btree traverse. Moves the current position to the |
| * start of the first leaf node. |
| * |
| * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY. |
| */ |
| static int |
| befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds, |
| befs_btree_super * bt_super, befs_btree_node * this_node, |
| befs_off_t * node_off) |
| { |
| |
| befs_debug(sb, "---> befs_btree_seekleaf()"); |
| |
| if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { |
| befs_error(sb, "befs_btree_seekleaf() failed to read " |
| "node at %Lu", *node_off); |
| goto error; |
| } |
| befs_debug(sb, "Seekleaf to root node %Lu", *node_off); |
| |
| if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) { |
| befs_debug(sb, "<--- befs_btree_seekleaf() Tree is EMPTY"); |
| return BEFS_BT_EMPTY; |
| } |
| |
| while (!befs_leafnode(this_node)) { |
| |
| if (this_node->head.all_key_count == 0) { |
| befs_debug(sb, "befs_btree_seekleaf() encountered " |
| "an empty interior node: %Lu. Using Overflow " |
| "node: %Lu", *node_off, |
| this_node->head.overflow); |
| *node_off = this_node->head.overflow; |
| } else { |
| befs_off_t *valarray = befs_bt_valarray(this_node); |
| *node_off = fs64_to_cpu(sb, valarray[0]); |
| } |
| if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { |
| befs_error(sb, "befs_btree_seekleaf() failed to read " |
| "node at %Lu", *node_off); |
| goto error; |
| } |
| |
| befs_debug(sb, "Seekleaf to child node %Lu", *node_off); |
| } |
| befs_debug(sb, "Node %Lu is a leaf node", *node_off); |
| |
| return BEFS_OK; |
| |
| error: |
| befs_debug(sb, "<--- befs_btree_seekleaf() ERROR"); |
| return BEFS_ERR; |
| } |
| |
| /** |
| * befs_leafnode - Determine if the btree node is a leaf node or an |
| * interior node |
| * @node: Pointer to node structure to test |
| * |
| * Return 1 if leaf, 0 if interior |
| */ |
| static int |
| befs_leafnode(befs_btree_node * node) |
| { |
| /* all interior nodes (and only interior nodes) have an overflow node */ |
| if (node->head.overflow == befs_bt_inval) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /** |
| * befs_bt_keylen_index - Finds start of keylen index in a node |
| * @node: Pointer to the node structure to find the keylen index within |
| * |
| * Returns a pointer to the start of the key length index array |
| * of the B+tree node *@node |
| * |
| * "The length of all the keys in the node is added to the size of the |
| * header and then rounded up to a multiple of four to get the beginning |
| * of the key length index" (p.88, practical filesystem design). |
| * |
| * Except that rounding up to 8 works, and rounding up to 4 doesn't. |
| */ |
| static u16 * |
| befs_bt_keylen_index(befs_btree_node * node) |
| { |
| const int keylen_align = 8; |
| unsigned long int off = |
| (sizeof (befs_btree_nodehead) + node->head.all_key_length); |
| ulong tmp = off % keylen_align; |
| |
| if (tmp) |
| off += keylen_align - tmp; |
| |
| return (u16 *) ((void *) node->od_node + off); |
| } |
| |
| /** |
| * befs_bt_valarray - Finds the start of value array in a node |
| * @node: Pointer to the node structure to find the value array within |
| * |
| * Returns a pointer to the start of the value array |
| * of the node pointed to by the node header |
| */ |
| static befs_off_t * |
| befs_bt_valarray(befs_btree_node * node) |
| { |
| void *keylen_index_start = (void *) befs_bt_keylen_index(node); |
| size_t keylen_index_size = node->head.all_key_count * sizeof (u16); |
| |
| return (befs_off_t *) (keylen_index_start + keylen_index_size); |
| } |
| |
| /** |
| * befs_bt_keydata - Finds start of keydata array in a node |
| * @node: Pointer to the node structure to find the keydata array within |
| * |
| * Returns a pointer to the start of the keydata array |
| * of the node pointed to by the node header |
| */ |
| static char * |
| befs_bt_keydata(befs_btree_node * node) |
| { |
| return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead)); |
| } |
| |
| /** |
| * befs_bt_get_key - returns a pointer to the start of a key |
| * @sb: filesystem superblock |
| * @node: node in which to look for the key |
| * @index: the index of the key to get |
| * @keylen: modified to be the length of the key at @index |
| * |
| * Returns a valid pointer into @node on success. |
| * Returns NULL on failure (bad input) and sets *@keylen = 0 |
| */ |
| static char * |
| befs_bt_get_key(struct super_block *sb, befs_btree_node * node, |
| int index, u16 * keylen) |
| { |
| int prev_key_end; |
| char *keystart; |
| u16 *keylen_index; |
| |
| if (index < 0 || index > node->head.all_key_count) { |
| *keylen = 0; |
| return NULL; |
| } |
| |
| keystart = befs_bt_keydata(node); |
| keylen_index = befs_bt_keylen_index(node); |
| |
| if (index == 0) |
| prev_key_end = 0; |
| else |
| prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]); |
| |
| *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end; |
| |
| return keystart + prev_key_end; |
| } |
| |
| /** |
| * befs_compare_strings - compare two strings |
| * @key1: pointer to the first key to be compared |
| * @keylen1: length in bytes of key1 |
| * @key2: pointer to the second key to be compared |
| * @kelen2: length in bytes of key2 |
| * |
| * Returns 0 if @key1 and @key2 are equal. |
| * Returns >0 if @key1 is greater. |
| * Returns <0 if @key2 is greater.. |
| */ |
| static int |
| befs_compare_strings(const void *key1, int keylen1, |
| const void *key2, int keylen2) |
| { |
| int len = min_t(int, keylen1, keylen2); |
| int result = strncmp(key1, key2, len); |
| if (result == 0) |
| result = keylen1 - keylen2; |
| return result; |
| } |
| |
| /* These will be used for non-string keyed btrees */ |
| #if 0 |
| static int |
| btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2) |
| { |
| return *(int32_t *) key1 - *(int32_t *) key2; |
| } |
| |
| static int |
| btree_compare_uint32(cont void *key1, int keylen1, |
| const void *key2, int keylen2) |
| { |
| if (*(u_int32_t *) key1 == *(u_int32_t *) key2) |
| return 0; |
| else if (*(u_int32_t *) key1 > *(u_int32_t *) key2) |
| return 1; |
| |
| return -1; |
| } |
| static int |
| btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2) |
| { |
| if (*(int64_t *) key1 == *(int64_t *) key2) |
| return 0; |
| else if (*(int64_t *) key1 > *(int64_t *) key2) |
| return 1; |
| |
| return -1; |
| } |
| |
| static int |
| btree_compare_uint64(cont void *key1, int keylen1, |
| const void *key2, int keylen2) |
| { |
| if (*(u_int64_t *) key1 == *(u_int64_t *) key2) |
| return 0; |
| else if (*(u_int64_t *) key1 > *(u_int64_t *) key2) |
| return 1; |
| |
| return -1; |
| } |
| |
| static int |
| btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2) |
| { |
| float result = *(float *) key1 - *(float *) key2; |
| if (result == 0.0f) |
| return 0; |
| |
| return (result < 0.0f) ? -1 : 1; |
| } |
| |
| static int |
| btree_compare_double(cont void *key1, int keylen1, |
| const void *key2, int keylen2) |
| { |
| double result = *(double *) key1 - *(double *) key2; |
| if (result == 0.0) |
| return 0; |
| |
| return (result < 0.0) ? -1 : 1; |
| } |
| #endif //0 |