|  | /* | 
|  | * Generic waiting primitives. | 
|  | * | 
|  | * (C) 2004 Nadia Yvette Chambers, Oracle | 
|  | */ | 
|  | #include <linux/init.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/hash.h> | 
|  |  | 
|  | void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key) | 
|  | { | 
|  | spin_lock_init(&q->lock); | 
|  | lockdep_set_class_and_name(&q->lock, key, name); | 
|  | INIT_LIST_HEAD(&q->task_list); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(__init_waitqueue_head); | 
|  |  | 
|  | void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | wait->flags &= ~WQ_FLAG_EXCLUSIVE; | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __add_wait_queue(q, wait); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(add_wait_queue); | 
|  |  | 
|  | void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | wait->flags |= WQ_FLAG_EXCLUSIVE; | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __add_wait_queue_tail(q, wait); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(add_wait_queue_exclusive); | 
|  |  | 
|  | void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __remove_wait_queue(q, wait); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(remove_wait_queue); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | 
|  | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | 
|  | * number) then we wake all the non-exclusive tasks and one exclusive task. | 
|  | * | 
|  | * There are circumstances in which we can try to wake a task which has already | 
|  | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | 
|  | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 
|  | */ | 
|  | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 
|  | int nr_exclusive, int wake_flags, void *key) | 
|  | { | 
|  | wait_queue_t *curr, *next; | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | 
|  | unsigned flags = curr->flags; | 
|  |  | 
|  | if (curr->func(curr, mode, wake_flags, key) && | 
|  | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __wake_up - wake up threads blocked on a waitqueue. | 
|  | * @q: the waitqueue | 
|  | * @mode: which threads | 
|  | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
|  | * @key: is directly passed to the wakeup function | 
|  | * | 
|  | * It may be assumed that this function implies a write memory barrier before | 
|  | * changing the task state if and only if any tasks are woken up. | 
|  | */ | 
|  | void __wake_up(wait_queue_head_t *q, unsigned int mode, | 
|  | int nr_exclusive, void *key) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_common(q, mode, nr_exclusive, 0, key); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(__wake_up); | 
|  |  | 
|  | /* | 
|  | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 
|  | */ | 
|  | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) | 
|  | { | 
|  | __wake_up_common(q, mode, nr, 0, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__wake_up_locked); | 
|  |  | 
|  | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) | 
|  | { | 
|  | __wake_up_common(q, mode, 1, 0, key); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__wake_up_locked_key); | 
|  |  | 
|  | /** | 
|  | * __wake_up_sync_key - wake up threads blocked on a waitqueue. | 
|  | * @q: the waitqueue | 
|  | * @mode: which threads | 
|  | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
|  | * @key: opaque value to be passed to wakeup targets | 
|  | * | 
|  | * The sync wakeup differs that the waker knows that it will schedule | 
|  | * away soon, so while the target thread will be woken up, it will not | 
|  | * be migrated to another CPU - ie. the two threads are 'synchronized' | 
|  | * with each other. This can prevent needless bouncing between CPUs. | 
|  | * | 
|  | * On UP it can prevent extra preemption. | 
|  | * | 
|  | * It may be assumed that this function implies a write memory barrier before | 
|  | * changing the task state if and only if any tasks are woken up. | 
|  | */ | 
|  | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | 
|  | int nr_exclusive, void *key) | 
|  | { | 
|  | unsigned long flags; | 
|  | int wake_flags = 1; /* XXX WF_SYNC */ | 
|  |  | 
|  | if (unlikely(!q)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(nr_exclusive != 1)) | 
|  | wake_flags = 0; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | 
|  |  | 
|  | /* | 
|  | * __wake_up_sync - see __wake_up_sync_key() | 
|  | */ | 
|  | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 
|  | { | 
|  | __wake_up_sync_key(q, mode, nr_exclusive, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ | 
|  |  | 
|  | /* | 
|  | * Note: we use "set_current_state()" _after_ the wait-queue add, | 
|  | * because we need a memory barrier there on SMP, so that any | 
|  | * wake-function that tests for the wait-queue being active | 
|  | * will be guaranteed to see waitqueue addition _or_ subsequent | 
|  | * tests in this thread will see the wakeup having taken place. | 
|  | * | 
|  | * The spin_unlock() itself is semi-permeable and only protects | 
|  | * one way (it only protects stuff inside the critical region and | 
|  | * stops them from bleeding out - it would still allow subsequent | 
|  | * loads to move into the critical region). | 
|  | */ | 
|  | void | 
|  | prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | wait->flags &= ~WQ_FLAG_EXCLUSIVE; | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | if (list_empty(&wait->task_list)) | 
|  | __add_wait_queue(q, wait); | 
|  | set_current_state(state); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(prepare_to_wait); | 
|  |  | 
|  | void | 
|  | prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | wait->flags |= WQ_FLAG_EXCLUSIVE; | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | if (list_empty(&wait->task_list)) | 
|  | __add_wait_queue_tail(q, wait); | 
|  | set_current_state(state); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(prepare_to_wait_exclusive); | 
|  |  | 
|  | long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (signal_pending_state(state, current)) | 
|  | return -ERESTARTSYS; | 
|  |  | 
|  | wait->private = current; | 
|  | wait->func = autoremove_wake_function; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | if (list_empty(&wait->task_list)) { | 
|  | if (wait->flags & WQ_FLAG_EXCLUSIVE) | 
|  | __add_wait_queue_tail(q, wait); | 
|  | else | 
|  | __add_wait_queue(q, wait); | 
|  | } | 
|  | set_current_state(state); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(prepare_to_wait_event); | 
|  |  | 
|  | /** | 
|  | * finish_wait - clean up after waiting in a queue | 
|  | * @q: waitqueue waited on | 
|  | * @wait: wait descriptor | 
|  | * | 
|  | * Sets current thread back to running state and removes | 
|  | * the wait descriptor from the given waitqueue if still | 
|  | * queued. | 
|  | */ | 
|  | void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  | /* | 
|  | * We can check for list emptiness outside the lock | 
|  | * IFF: | 
|  | *  - we use the "careful" check that verifies both | 
|  | *    the next and prev pointers, so that there cannot | 
|  | *    be any half-pending updates in progress on other | 
|  | *    CPU's that we haven't seen yet (and that might | 
|  | *    still change the stack area. | 
|  | * and | 
|  | *  - all other users take the lock (ie we can only | 
|  | *    have _one_ other CPU that looks at or modifies | 
|  | *    the list). | 
|  | */ | 
|  | if (!list_empty_careful(&wait->task_list)) { | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | list_del_init(&wait->task_list); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(finish_wait); | 
|  |  | 
|  | /** | 
|  | * abort_exclusive_wait - abort exclusive waiting in a queue | 
|  | * @q: waitqueue waited on | 
|  | * @wait: wait descriptor | 
|  | * @mode: runstate of the waiter to be woken | 
|  | * @key: key to identify a wait bit queue or %NULL | 
|  | * | 
|  | * Sets current thread back to running state and removes | 
|  | * the wait descriptor from the given waitqueue if still | 
|  | * queued. | 
|  | * | 
|  | * Wakes up the next waiter if the caller is concurrently | 
|  | * woken up through the queue. | 
|  | * | 
|  | * This prevents waiter starvation where an exclusive waiter | 
|  | * aborts and is woken up concurrently and no one wakes up | 
|  | * the next waiter. | 
|  | */ | 
|  | void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, | 
|  | unsigned int mode, void *key) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | if (!list_empty(&wait->task_list)) | 
|  | list_del_init(&wait->task_list); | 
|  | else if (waitqueue_active(q)) | 
|  | __wake_up_locked_key(q, mode, key); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(abort_exclusive_wait); | 
|  |  | 
|  | int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) | 
|  | { | 
|  | int ret = default_wake_function(wait, mode, sync, key); | 
|  |  | 
|  | if (ret) | 
|  | list_del_init(&wait->task_list); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(autoremove_wake_function); | 
|  |  | 
|  | int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) | 
|  | { | 
|  | struct wait_bit_key *key = arg; | 
|  | struct wait_bit_queue *wait_bit | 
|  | = container_of(wait, struct wait_bit_queue, wait); | 
|  |  | 
|  | if (wait_bit->key.flags != key->flags || | 
|  | wait_bit->key.bit_nr != key->bit_nr || | 
|  | test_bit(key->bit_nr, key->flags)) | 
|  | return 0; | 
|  | else | 
|  | return autoremove_wake_function(wait, mode, sync, key); | 
|  | } | 
|  | EXPORT_SYMBOL(wake_bit_function); | 
|  |  | 
|  | /* | 
|  | * To allow interruptible waiting and asynchronous (i.e. nonblocking) | 
|  | * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are | 
|  | * permitted return codes. Nonzero return codes halt waiting and return. | 
|  | */ | 
|  | int __sched | 
|  | __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, | 
|  | int (*action)(void *), unsigned mode) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | do { | 
|  | prepare_to_wait(wq, &q->wait, mode); | 
|  | if (test_bit(q->key.bit_nr, q->key.flags)) | 
|  | ret = (*action)(q->key.flags); | 
|  | } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); | 
|  | finish_wait(wq, &q->wait); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__wait_on_bit); | 
|  |  | 
|  | int __sched out_of_line_wait_on_bit(void *word, int bit, | 
|  | int (*action)(void *), unsigned mode) | 
|  | { | 
|  | wait_queue_head_t *wq = bit_waitqueue(word, bit); | 
|  | DEFINE_WAIT_BIT(wait, word, bit); | 
|  |  | 
|  | return __wait_on_bit(wq, &wait, action, mode); | 
|  | } | 
|  | EXPORT_SYMBOL(out_of_line_wait_on_bit); | 
|  |  | 
|  | int __sched | 
|  | __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, | 
|  | int (*action)(void *), unsigned mode) | 
|  | { | 
|  | do { | 
|  | int ret; | 
|  |  | 
|  | prepare_to_wait_exclusive(wq, &q->wait, mode); | 
|  | if (!test_bit(q->key.bit_nr, q->key.flags)) | 
|  | continue; | 
|  | ret = action(q->key.flags); | 
|  | if (!ret) | 
|  | continue; | 
|  | abort_exclusive_wait(wq, &q->wait, mode, &q->key); | 
|  | return ret; | 
|  | } while (test_and_set_bit(q->key.bit_nr, q->key.flags)); | 
|  | finish_wait(wq, &q->wait); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(__wait_on_bit_lock); | 
|  |  | 
|  | int __sched out_of_line_wait_on_bit_lock(void *word, int bit, | 
|  | int (*action)(void *), unsigned mode) | 
|  | { | 
|  | wait_queue_head_t *wq = bit_waitqueue(word, bit); | 
|  | DEFINE_WAIT_BIT(wait, word, bit); | 
|  |  | 
|  | return __wait_on_bit_lock(wq, &wait, action, mode); | 
|  | } | 
|  | EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); | 
|  |  | 
|  | void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) | 
|  | { | 
|  | struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); | 
|  | if (waitqueue_active(wq)) | 
|  | __wake_up(wq, TASK_NORMAL, 1, &key); | 
|  | } | 
|  | EXPORT_SYMBOL(__wake_up_bit); | 
|  |  | 
|  | /** | 
|  | * wake_up_bit - wake up a waiter on a bit | 
|  | * @word: the word being waited on, a kernel virtual address | 
|  | * @bit: the bit of the word being waited on | 
|  | * | 
|  | * There is a standard hashed waitqueue table for generic use. This | 
|  | * is the part of the hashtable's accessor API that wakes up waiters | 
|  | * on a bit. For instance, if one were to have waiters on a bitflag, | 
|  | * one would call wake_up_bit() after clearing the bit. | 
|  | * | 
|  | * In order for this to function properly, as it uses waitqueue_active() | 
|  | * internally, some kind of memory barrier must be done prior to calling | 
|  | * this. Typically, this will be smp_mb__after_atomic(), but in some | 
|  | * cases where bitflags are manipulated non-atomically under a lock, one | 
|  | * may need to use a less regular barrier, such fs/inode.c's smp_mb(), | 
|  | * because spin_unlock() does not guarantee a memory barrier. | 
|  | */ | 
|  | void wake_up_bit(void *word, int bit) | 
|  | { | 
|  | __wake_up_bit(bit_waitqueue(word, bit), word, bit); | 
|  | } | 
|  | EXPORT_SYMBOL(wake_up_bit); | 
|  |  | 
|  | wait_queue_head_t *bit_waitqueue(void *word, int bit) | 
|  | { | 
|  | const int shift = BITS_PER_LONG == 32 ? 5 : 6; | 
|  | const struct zone *zone = page_zone(virt_to_page(word)); | 
|  | unsigned long val = (unsigned long)word << shift | bit; | 
|  |  | 
|  | return &zone->wait_table[hash_long(val, zone->wait_table_bits)]; | 
|  | } | 
|  | EXPORT_SYMBOL(bit_waitqueue); | 
|  |  | 
|  | /* | 
|  | * Manipulate the atomic_t address to produce a better bit waitqueue table hash | 
|  | * index (we're keying off bit -1, but that would produce a horrible hash | 
|  | * value). | 
|  | */ | 
|  | static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) | 
|  | { | 
|  | if (BITS_PER_LONG == 64) { | 
|  | unsigned long q = (unsigned long)p; | 
|  | return bit_waitqueue((void *)(q & ~1), q & 1); | 
|  | } | 
|  | return bit_waitqueue(p, 0); | 
|  | } | 
|  |  | 
|  | static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync, | 
|  | void *arg) | 
|  | { | 
|  | struct wait_bit_key *key = arg; | 
|  | struct wait_bit_queue *wait_bit | 
|  | = container_of(wait, struct wait_bit_queue, wait); | 
|  | atomic_t *val = key->flags; | 
|  |  | 
|  | if (wait_bit->key.flags != key->flags || | 
|  | wait_bit->key.bit_nr != key->bit_nr || | 
|  | atomic_read(val) != 0) | 
|  | return 0; | 
|  | return autoremove_wake_function(wait, mode, sync, key); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, | 
|  | * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero | 
|  | * return codes halt waiting and return. | 
|  | */ | 
|  | static __sched | 
|  | int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q, | 
|  | int (*action)(atomic_t *), unsigned mode) | 
|  | { | 
|  | atomic_t *val; | 
|  | int ret = 0; | 
|  |  | 
|  | do { | 
|  | prepare_to_wait(wq, &q->wait, mode); | 
|  | val = q->key.flags; | 
|  | if (atomic_read(val) == 0) | 
|  | break; | 
|  | ret = (*action)(val); | 
|  | } while (!ret && atomic_read(val) != 0); | 
|  | finish_wait(wq, &q->wait); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define DEFINE_WAIT_ATOMIC_T(name, p)					\ | 
|  | struct wait_bit_queue name = {					\ | 
|  | .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\ | 
|  | .wait	= {						\ | 
|  | .private	= current,			\ | 
|  | .func		= wake_atomic_t_function,	\ | 
|  | .task_list	=				\ | 
|  | LIST_HEAD_INIT((name).wait.task_list),	\ | 
|  | },							\ | 
|  | } | 
|  |  | 
|  | __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *), | 
|  | unsigned mode) | 
|  | { | 
|  | wait_queue_head_t *wq = atomic_t_waitqueue(p); | 
|  | DEFINE_WAIT_ATOMIC_T(wait, p); | 
|  |  | 
|  | return __wait_on_atomic_t(wq, &wait, action, mode); | 
|  | } | 
|  | EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); | 
|  |  | 
|  | /** | 
|  | * wake_up_atomic_t - Wake up a waiter on a atomic_t | 
|  | * @p: The atomic_t being waited on, a kernel virtual address | 
|  | * | 
|  | * Wake up anyone waiting for the atomic_t to go to zero. | 
|  | * | 
|  | * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t | 
|  | * check is done by the waiter's wake function, not the by the waker itself). | 
|  | */ | 
|  | void wake_up_atomic_t(atomic_t *p) | 
|  | { | 
|  | __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); | 
|  | } | 
|  | EXPORT_SYMBOL(wake_up_atomic_t); |