|  | /* | 
|  | *  linux/arch/arm/kernel/smp.c | 
|  | * | 
|  | *  Copyright (C) 2002 ARM Limited, All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/completion.h> | 
|  |  | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/localtimer.h> | 
|  |  | 
|  | /* | 
|  | * as from 2.5, kernels no longer have an init_tasks structure | 
|  | * so we need some other way of telling a new secondary core | 
|  | * where to place its SVC stack | 
|  | */ | 
|  | struct secondary_data secondary_data; | 
|  |  | 
|  | enum ipi_msg_type { | 
|  | IPI_TIMER = 2, | 
|  | IPI_RESCHEDULE, | 
|  | IPI_CALL_FUNC, | 
|  | IPI_CALL_FUNC_SINGLE, | 
|  | IPI_CPU_STOP, | 
|  | }; | 
|  |  | 
|  | int __cpuinit __cpu_up(unsigned int cpu) | 
|  | { | 
|  | struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); | 
|  | struct task_struct *idle = ci->idle; | 
|  | pgd_t *pgd; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Spawn a new process manually, if not already done. | 
|  | * Grab a pointer to its task struct so we can mess with it | 
|  | */ | 
|  | if (!idle) { | 
|  | idle = fork_idle(cpu); | 
|  | if (IS_ERR(idle)) { | 
|  | printk(KERN_ERR "CPU%u: fork() failed\n", cpu); | 
|  | return PTR_ERR(idle); | 
|  | } | 
|  | ci->idle = idle; | 
|  | } else { | 
|  | /* | 
|  | * Since this idle thread is being re-used, call | 
|  | * init_idle() to reinitialize the thread structure. | 
|  | */ | 
|  | init_idle(idle, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate initial page tables to allow the new CPU to | 
|  | * enable the MMU safely.  This essentially means a set | 
|  | * of our "standard" page tables, with the addition of | 
|  | * a 1:1 mapping for the physical address of the kernel. | 
|  | */ | 
|  | pgd = pgd_alloc(&init_mm); | 
|  | if (!pgd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (PHYS_OFFSET != PAGE_OFFSET) { | 
|  | #ifndef CONFIG_HOTPLUG_CPU | 
|  | identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end)); | 
|  | #endif | 
|  | identity_mapping_add(pgd, __pa(_stext), __pa(_etext)); | 
|  | identity_mapping_add(pgd, __pa(_sdata), __pa(_edata)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to tell the secondary core where to find | 
|  | * its stack and the page tables. | 
|  | */ | 
|  | secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; | 
|  | secondary_data.pgdir = virt_to_phys(pgd); | 
|  | __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); | 
|  | outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); | 
|  |  | 
|  | /* | 
|  | * Now bring the CPU into our world. | 
|  | */ | 
|  | ret = boot_secondary(cpu, idle); | 
|  | if (ret == 0) { | 
|  | unsigned long timeout; | 
|  |  | 
|  | /* | 
|  | * CPU was successfully started, wait for it | 
|  | * to come online or time out. | 
|  | */ | 
|  | timeout = jiffies + HZ; | 
|  | while (time_before(jiffies, timeout)) { | 
|  | if (cpu_online(cpu)) | 
|  | break; | 
|  |  | 
|  | udelay(10); | 
|  | barrier(); | 
|  | } | 
|  |  | 
|  | if (!cpu_online(cpu)) { | 
|  | pr_crit("CPU%u: failed to come online\n", cpu); | 
|  | ret = -EIO; | 
|  | } | 
|  | } else { | 
|  | pr_err("CPU%u: failed to boot: %d\n", cpu, ret); | 
|  | } | 
|  |  | 
|  | secondary_data.stack = NULL; | 
|  | secondary_data.pgdir = 0; | 
|  |  | 
|  | if (PHYS_OFFSET != PAGE_OFFSET) { | 
|  | #ifndef CONFIG_HOTPLUG_CPU | 
|  | identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end)); | 
|  | #endif | 
|  | identity_mapping_del(pgd, __pa(_stext), __pa(_etext)); | 
|  | identity_mapping_del(pgd, __pa(_sdata), __pa(_edata)); | 
|  | } | 
|  |  | 
|  | pgd_free(&init_mm, pgd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void percpu_timer_stop(void); | 
|  |  | 
|  | /* | 
|  | * __cpu_disable runs on the processor to be shutdown. | 
|  | */ | 
|  | int __cpu_disable(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | struct task_struct *p; | 
|  | int ret; | 
|  |  | 
|  | ret = platform_cpu_disable(cpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Take this CPU offline.  Once we clear this, we can't return, | 
|  | * and we must not schedule until we're ready to give up the cpu. | 
|  | */ | 
|  | set_cpu_online(cpu, false); | 
|  |  | 
|  | /* | 
|  | * OK - migrate IRQs away from this CPU | 
|  | */ | 
|  | migrate_irqs(); | 
|  |  | 
|  | /* | 
|  | * Stop the local timer for this CPU. | 
|  | */ | 
|  | percpu_timer_stop(); | 
|  |  | 
|  | /* | 
|  | * Flush user cache and TLB mappings, and then remove this CPU | 
|  | * from the vm mask set of all processes. | 
|  | */ | 
|  | flush_cache_all(); | 
|  | local_flush_tlb_all(); | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | for_each_process(p) { | 
|  | if (p->mm) | 
|  | cpumask_clear_cpu(cpu, mm_cpumask(p->mm)); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static DECLARE_COMPLETION(cpu_died); | 
|  |  | 
|  | /* | 
|  | * called on the thread which is asking for a CPU to be shutdown - | 
|  | * waits until shutdown has completed, or it is timed out. | 
|  | */ | 
|  | void __cpu_die(unsigned int cpu) | 
|  | { | 
|  | if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { | 
|  | pr_err("CPU%u: cpu didn't die\n", cpu); | 
|  | return; | 
|  | } | 
|  | printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); | 
|  |  | 
|  | if (!platform_cpu_kill(cpu)) | 
|  | printk("CPU%u: unable to kill\n", cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from the idle thread for the CPU which has been shutdown. | 
|  | * | 
|  | * Note that we disable IRQs here, but do not re-enable them | 
|  | * before returning to the caller. This is also the behaviour | 
|  | * of the other hotplug-cpu capable cores, so presumably coming | 
|  | * out of idle fixes this. | 
|  | */ | 
|  | void __ref cpu_die(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | idle_task_exit(); | 
|  |  | 
|  | local_irq_disable(); | 
|  | mb(); | 
|  |  | 
|  | /* Tell __cpu_die() that this CPU is now safe to dispose of */ | 
|  | complete(&cpu_died); | 
|  |  | 
|  | /* | 
|  | * actual CPU shutdown procedure is at least platform (if not | 
|  | * CPU) specific. | 
|  | */ | 
|  | platform_cpu_die(cpu); | 
|  |  | 
|  | /* | 
|  | * Do not return to the idle loop - jump back to the secondary | 
|  | * cpu initialisation.  There's some initialisation which needs | 
|  | * to be repeated to undo the effects of taking the CPU offline. | 
|  | */ | 
|  | __asm__("mov	sp, %0\n" | 
|  | "	mov	fp, #0\n" | 
|  | "	b	secondary_start_kernel" | 
|  | : | 
|  | : "r" (task_stack_page(current) + THREAD_SIZE - 8)); | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * Called by both boot and secondaries to move global data into | 
|  | * per-processor storage. | 
|  | */ | 
|  | static void __cpuinit smp_store_cpu_info(unsigned int cpuid) | 
|  | { | 
|  | struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); | 
|  |  | 
|  | cpu_info->loops_per_jiffy = loops_per_jiffy; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the secondary CPU boot entry.  We're using this CPUs | 
|  | * idle thread stack, but a set of temporary page tables. | 
|  | */ | 
|  | asmlinkage void __cpuinit secondary_start_kernel(void) | 
|  | { | 
|  | struct mm_struct *mm = &init_mm; | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | printk("CPU%u: Booted secondary processor\n", cpu); | 
|  |  | 
|  | /* | 
|  | * All kernel threads share the same mm context; grab a | 
|  | * reference and switch to it. | 
|  | */ | 
|  | atomic_inc(&mm->mm_count); | 
|  | current->active_mm = mm; | 
|  | cpumask_set_cpu(cpu, mm_cpumask(mm)); | 
|  | cpu_switch_mm(mm->pgd, mm); | 
|  | enter_lazy_tlb(mm, current); | 
|  | local_flush_tlb_all(); | 
|  |  | 
|  | cpu_init(); | 
|  | preempt_disable(); | 
|  | trace_hardirqs_off(); | 
|  |  | 
|  | /* | 
|  | * Give the platform a chance to do its own initialisation. | 
|  | */ | 
|  | platform_secondary_init(cpu); | 
|  |  | 
|  | /* | 
|  | * Enable local interrupts. | 
|  | */ | 
|  | notify_cpu_starting(cpu); | 
|  | local_irq_enable(); | 
|  | local_fiq_enable(); | 
|  |  | 
|  | /* | 
|  | * Setup the percpu timer for this CPU. | 
|  | */ | 
|  | percpu_timer_setup(); | 
|  |  | 
|  | calibrate_delay(); | 
|  |  | 
|  | smp_store_cpu_info(cpu); | 
|  |  | 
|  | /* | 
|  | * OK, now it's safe to let the boot CPU continue | 
|  | */ | 
|  | set_cpu_online(cpu, true); | 
|  |  | 
|  | /* | 
|  | * OK, it's off to the idle thread for us | 
|  | */ | 
|  | cpu_idle(); | 
|  | } | 
|  |  | 
|  | void __init smp_cpus_done(unsigned int max_cpus) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long bogosum = 0; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; | 
|  |  | 
|  | printk(KERN_INFO "SMP: Total of %d processors activated " | 
|  | "(%lu.%02lu BogoMIPS).\n", | 
|  | num_online_cpus(), | 
|  | bogosum / (500000/HZ), | 
|  | (bogosum / (5000/HZ)) % 100); | 
|  | } | 
|  |  | 
|  | void __init smp_prepare_boot_cpu(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | per_cpu(cpu_data, cpu).idle = current; | 
|  | } | 
|  |  | 
|  | void __init smp_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | unsigned int ncores = num_possible_cpus(); | 
|  |  | 
|  | smp_store_cpu_info(smp_processor_id()); | 
|  |  | 
|  | /* | 
|  | * are we trying to boot more cores than exist? | 
|  | */ | 
|  | if (max_cpus > ncores) | 
|  | max_cpus = ncores; | 
|  |  | 
|  | if (max_cpus > 1) { | 
|  | /* | 
|  | * Enable the local timer or broadcast device for the | 
|  | * boot CPU, but only if we have more than one CPU. | 
|  | */ | 
|  | percpu_timer_setup(); | 
|  |  | 
|  | /* | 
|  | * Initialise the SCU if there are more than one CPU | 
|  | * and let them know where to start. | 
|  | */ | 
|  | platform_smp_prepare_cpus(max_cpus); | 
|  | } | 
|  | } | 
|  |  | 
|  | void arch_send_call_function_ipi_mask(const struct cpumask *mask) | 
|  | { | 
|  | smp_cross_call(mask, IPI_CALL_FUNC); | 
|  | } | 
|  |  | 
|  | void arch_send_call_function_single_ipi(int cpu) | 
|  | { | 
|  | smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); | 
|  | } | 
|  |  | 
|  | static const char *ipi_types[NR_IPI] = { | 
|  | #define S(x,s)	[x - IPI_TIMER] = s | 
|  | S(IPI_TIMER, "Timer broadcast interrupts"), | 
|  | S(IPI_RESCHEDULE, "Rescheduling interrupts"), | 
|  | S(IPI_CALL_FUNC, "Function call interrupts"), | 
|  | S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), | 
|  | S(IPI_CPU_STOP, "CPU stop interrupts"), | 
|  | }; | 
|  |  | 
|  | void show_ipi_list(struct seq_file *p, int prec) | 
|  | { | 
|  | unsigned int cpu, i; | 
|  |  | 
|  | for (i = 0; i < NR_IPI; i++) { | 
|  | seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); | 
|  |  | 
|  | for_each_present_cpu(cpu) | 
|  | seq_printf(p, "%10u ", | 
|  | __get_irq_stat(cpu, ipi_irqs[i])); | 
|  |  | 
|  | seq_printf(p, " %s\n", ipi_types[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | u64 smp_irq_stat_cpu(unsigned int cpu) | 
|  | { | 
|  | u64 sum = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_IPI; i++) | 
|  | sum += __get_irq_stat(cpu, ipi_irqs[i]); | 
|  |  | 
|  | #ifdef CONFIG_LOCAL_TIMERS | 
|  | sum += __get_irq_stat(cpu, local_timer_irqs); | 
|  | #endif | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Timer (local or broadcast) support | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); | 
|  |  | 
|  | static void ipi_timer(void) | 
|  | { | 
|  | struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent); | 
|  | irq_enter(); | 
|  | evt->event_handler(evt); | 
|  | irq_exit(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_LOCAL_TIMERS | 
|  | asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs) | 
|  | { | 
|  | struct pt_regs *old_regs = set_irq_regs(regs); | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | if (local_timer_ack()) { | 
|  | __inc_irq_stat(cpu, local_timer_irqs); | 
|  | ipi_timer(); | 
|  | } | 
|  |  | 
|  | set_irq_regs(old_regs); | 
|  | } | 
|  |  | 
|  | void show_local_irqs(struct seq_file *p, int prec) | 
|  | { | 
|  | unsigned int cpu; | 
|  |  | 
|  | seq_printf(p, "%*s: ", prec, "LOC"); | 
|  |  | 
|  | for_each_present_cpu(cpu) | 
|  | seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs)); | 
|  |  | 
|  | seq_printf(p, " Local timer interrupts\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST | 
|  | static void smp_timer_broadcast(const struct cpumask *mask) | 
|  | { | 
|  | smp_cross_call(mask, IPI_TIMER); | 
|  | } | 
|  | #else | 
|  | #define smp_timer_broadcast	NULL | 
|  | #endif | 
|  |  | 
|  | static void broadcast_timer_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *evt) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void broadcast_timer_setup(struct clock_event_device *evt) | 
|  | { | 
|  | evt->name	= "dummy_timer"; | 
|  | evt->features	= CLOCK_EVT_FEAT_ONESHOT | | 
|  | CLOCK_EVT_FEAT_PERIODIC | | 
|  | CLOCK_EVT_FEAT_DUMMY; | 
|  | evt->rating	= 400; | 
|  | evt->mult	= 1; | 
|  | evt->set_mode	= broadcast_timer_set_mode; | 
|  |  | 
|  | clockevents_register_device(evt); | 
|  | } | 
|  |  | 
|  | void __cpuinit percpu_timer_setup(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); | 
|  |  | 
|  | evt->cpumask = cpumask_of(cpu); | 
|  | evt->broadcast = smp_timer_broadcast; | 
|  |  | 
|  | if (local_timer_setup(evt)) | 
|  | broadcast_timer_setup(evt); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* | 
|  | * The generic clock events code purposely does not stop the local timer | 
|  | * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it | 
|  | * manually here. | 
|  | */ | 
|  | static void percpu_timer_stop(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); | 
|  |  | 
|  | evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static DEFINE_SPINLOCK(stop_lock); | 
|  |  | 
|  | /* | 
|  | * ipi_cpu_stop - handle IPI from smp_send_stop() | 
|  | */ | 
|  | static void ipi_cpu_stop(unsigned int cpu) | 
|  | { | 
|  | if (system_state == SYSTEM_BOOTING || | 
|  | system_state == SYSTEM_RUNNING) { | 
|  | spin_lock(&stop_lock); | 
|  | printk(KERN_CRIT "CPU%u: stopping\n", cpu); | 
|  | dump_stack(); | 
|  | spin_unlock(&stop_lock); | 
|  | } | 
|  |  | 
|  | set_cpu_online(cpu, false); | 
|  |  | 
|  | local_fiq_disable(); | 
|  | local_irq_disable(); | 
|  |  | 
|  | while (1) | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Main handler for inter-processor interrupts | 
|  | */ | 
|  | asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | struct pt_regs *old_regs = set_irq_regs(regs); | 
|  |  | 
|  | if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI) | 
|  | __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]); | 
|  |  | 
|  | switch (ipinr) { | 
|  | case IPI_TIMER: | 
|  | ipi_timer(); | 
|  | break; | 
|  |  | 
|  | case IPI_RESCHEDULE: | 
|  | /* | 
|  | * nothing more to do - eveything is | 
|  | * done on the interrupt return path | 
|  | */ | 
|  | break; | 
|  |  | 
|  | case IPI_CALL_FUNC: | 
|  | generic_smp_call_function_interrupt(); | 
|  | break; | 
|  |  | 
|  | case IPI_CALL_FUNC_SINGLE: | 
|  | generic_smp_call_function_single_interrupt(); | 
|  | break; | 
|  |  | 
|  | case IPI_CPU_STOP: | 
|  | ipi_cpu_stop(cpu); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", | 
|  | cpu, ipinr); | 
|  | break; | 
|  | } | 
|  | set_irq_regs(old_regs); | 
|  | } | 
|  |  | 
|  | void smp_send_reschedule(int cpu) | 
|  | { | 
|  | smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); | 
|  | } | 
|  |  | 
|  | void smp_send_stop(void) | 
|  | { | 
|  | unsigned long timeout; | 
|  |  | 
|  | if (num_online_cpus() > 1) { | 
|  | cpumask_t mask = cpu_online_map; | 
|  | cpu_clear(smp_processor_id(), mask); | 
|  |  | 
|  | smp_cross_call(&mask, IPI_CPU_STOP); | 
|  | } | 
|  |  | 
|  | /* Wait up to one second for other CPUs to stop */ | 
|  | timeout = USEC_PER_SEC; | 
|  | while (num_online_cpus() > 1 && timeout--) | 
|  | udelay(1); | 
|  |  | 
|  | if (num_online_cpus() > 1) | 
|  | pr_warning("SMP: failed to stop secondary CPUs\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * not supported here | 
|  | */ | 
|  | int setup_profiling_timer(unsigned int multiplier) | 
|  | { | 
|  | return -EINVAL; | 
|  | } |