blob: 1ab3c7df4f8b4e8880b48f306be53187e4b18709 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port
*
* Copyright (C) 2008 Nokia Corporation
*
* Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
* Peter Ujfalusi <peter.ujfalusi@ti.com>
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/dmaengine_pcm.h>
#include "omap-mcbsp-priv.h"
#include "omap-mcbsp.h"
#include "sdma-pcm.h"
#define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000)
enum {
OMAP_MCBSP_WORD_8 = 0,
OMAP_MCBSP_WORD_12,
OMAP_MCBSP_WORD_16,
OMAP_MCBSP_WORD_20,
OMAP_MCBSP_WORD_24,
OMAP_MCBSP_WORD_32,
};
static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
{
dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2));
dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1));
dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2));
dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1));
dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2));
dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1));
dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2));
dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1));
dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0));
dev_dbg(mcbsp->dev, "***********************\n");
}
static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
{
struct clk *fck_src;
const char *src;
int r;
if (fck_src_id == MCBSP_CLKS_PAD_SRC)
src = "pad_fck";
else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
src = "prcm_fck";
else
return -EINVAL;
fck_src = clk_get(mcbsp->dev, src);
if (IS_ERR(fck_src)) {
dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
return -EINVAL;
}
pm_runtime_put_sync(mcbsp->dev);
r = clk_set_parent(mcbsp->fclk, fck_src);
if (r) {
dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
src);
clk_put(fck_src);
return r;
}
pm_runtime_get_sync(mcbsp->dev);
clk_put(fck_src);
return 0;
}
static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
{
struct omap_mcbsp *mcbsp = data;
u16 irqst;
irqst = MCBSP_READ(mcbsp, IRQST);
dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
if (irqst & RSYNCERREN)
dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
if (irqst & RFSREN)
dev_dbg(mcbsp->dev, "RX Frame Sync\n");
if (irqst & REOFEN)
dev_dbg(mcbsp->dev, "RX End Of Frame\n");
if (irqst & RRDYEN)
dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
if (irqst & RUNDFLEN)
dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
if (irqst & ROVFLEN)
dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
if (irqst & XSYNCERREN)
dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
if (irqst & XFSXEN)
dev_dbg(mcbsp->dev, "TX Frame Sync\n");
if (irqst & XEOFEN)
dev_dbg(mcbsp->dev, "TX End Of Frame\n");
if (irqst & XRDYEN)
dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
if (irqst & XUNDFLEN)
dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
if (irqst & XOVFLEN)
dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
if (irqst & XEMPTYEOFEN)
dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
MCBSP_WRITE(mcbsp, IRQST, irqst);
return IRQ_HANDLED;
}
static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
{
struct omap_mcbsp *mcbsp = data;
u16 irqst_spcr2;
irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
if (irqst_spcr2 & XSYNC_ERR) {
dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
irqst_spcr2);
/* Writing zero to XSYNC_ERR clears the IRQ */
MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
}
return IRQ_HANDLED;
}
static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
{
struct omap_mcbsp *mcbsp = data;
u16 irqst_spcr1;
irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
if (irqst_spcr1 & RSYNC_ERR) {
dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
irqst_spcr1);
/* Writing zero to RSYNC_ERR clears the IRQ */
MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
}
return IRQ_HANDLED;
}
/*
* omap_mcbsp_config simply write a config to the
* appropriate McBSP.
* You either call this function or set the McBSP registers
* by yourself before calling omap_mcbsp_start().
*/
static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
const struct omap_mcbsp_reg_cfg *config)
{
dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
mcbsp->id, mcbsp->phys_base);
/* We write the given config */
MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
if (mcbsp->pdata->has_ccr) {
MCBSP_WRITE(mcbsp, XCCR, config->xccr);
MCBSP_WRITE(mcbsp, RCCR, config->rccr);
}
/* Enable wakeup behavior */
if (mcbsp->pdata->has_wakeup)
MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
/* Enable TX/RX sync error interrupts by default */
if (mcbsp->irq)
MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
}
/**
* omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
* @mcbsp: omap_mcbsp struct for the McBSP instance
* @stream: Stream direction (playback/capture)
*
* Returns the address of mcbsp data transmit register or data receive register
* to be used by DMA for transferring/receiving data
*/
static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
unsigned int stream)
{
int data_reg;
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (mcbsp->pdata->reg_size == 2)
data_reg = OMAP_MCBSP_REG_DXR1;
else
data_reg = OMAP_MCBSP_REG_DXR;
} else {
if (mcbsp->pdata->reg_size == 2)
data_reg = OMAP_MCBSP_REG_DRR1;
else
data_reg = OMAP_MCBSP_REG_DRR;
}
return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
}
/*
* omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
* The threshold parameter is 1 based, and it is converted (threshold - 1)
* for the THRSH2 register.
*/
static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
{
if (threshold && threshold <= mcbsp->max_tx_thres)
MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
}
/*
* omap_mcbsp_set_rx_threshold configures the receive threshold in words.
* The threshold parameter is 1 based, and it is converted (threshold - 1)
* for the THRSH1 register.
*/
static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
{
if (threshold && threshold <= mcbsp->max_rx_thres)
MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
}
/*
* omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
*/
static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
{
u16 buffstat;
/* Returns the number of free locations in the buffer */
buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
/* Number of slots are different in McBSP ports */
return mcbsp->pdata->buffer_size - buffstat;
}
/*
* omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
* to reach the threshold value (when the DMA will be triggered to read it)
*/
static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
{
u16 buffstat, threshold;
/* Returns the number of used locations in the buffer */
buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
/* RX threshold */
threshold = MCBSP_READ(mcbsp, THRSH1);
/* Return the number of location till we reach the threshold limit */
if (threshold <= buffstat)
return 0;
else
return threshold - buffstat;
}
static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
{
void *reg_cache;
int err;
reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
if (!reg_cache)
return -ENOMEM;
spin_lock(&mcbsp->lock);
if (!mcbsp->free) {
dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
err = -EBUSY;
goto err_kfree;
}
mcbsp->free = false;
mcbsp->reg_cache = reg_cache;
spin_unlock(&mcbsp->lock);
if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
mcbsp->pdata->ops->request(mcbsp->id - 1);
/*
* Make sure that transmitter, receiver and sample-rate generator are
* not running before activating IRQs.
*/
MCBSP_WRITE(mcbsp, SPCR1, 0);
MCBSP_WRITE(mcbsp, SPCR2, 0);
if (mcbsp->irq) {
err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
"McBSP", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request IRQ\n");
goto err_clk_disable;
}
} else {
err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
"McBSP TX", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
goto err_clk_disable;
}
err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
"McBSP RX", (void *)mcbsp);
if (err != 0) {
dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
goto err_free_irq;
}
}
return 0;
err_free_irq:
free_irq(mcbsp->tx_irq, (void *)mcbsp);
err_clk_disable:
if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id - 1);
/* Disable wakeup behavior */
if (mcbsp->pdata->has_wakeup)
MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
spin_lock(&mcbsp->lock);
mcbsp->free = true;
mcbsp->reg_cache = NULL;
err_kfree:
spin_unlock(&mcbsp->lock);
kfree(reg_cache);
return err;
}
static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
{
void *reg_cache;
if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id - 1);
/* Disable wakeup behavior */
if (mcbsp->pdata->has_wakeup)
MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
/* Disable interrupt requests */
if (mcbsp->irq)
MCBSP_WRITE(mcbsp, IRQEN, 0);
if (mcbsp->irq) {
free_irq(mcbsp->irq, (void *)mcbsp);
} else {
free_irq(mcbsp->rx_irq, (void *)mcbsp);
free_irq(mcbsp->tx_irq, (void *)mcbsp);
}
reg_cache = mcbsp->reg_cache;
/*
* Select CLKS source from internal source unconditionally before
* marking the McBSP port as free.
* If the external clock source via MCBSP_CLKS pin has been selected the
* system will refuse to enter idle if the CLKS pin source is not reset
* back to internal source.
*/
if (!mcbsp_omap1())
omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
spin_lock(&mcbsp->lock);
if (mcbsp->free)
dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
else
mcbsp->free = true;
mcbsp->reg_cache = NULL;
spin_unlock(&mcbsp->lock);
kfree(reg_cache);
}
/*
* Here we start the McBSP, by enabling transmitter, receiver or both.
* If no transmitter or receiver is active prior calling, then sample-rate
* generator and frame sync are started.
*/
static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
{
int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
int rx = !tx;
int enable_srg = 0;
u16 w;
if (mcbsp->st_data)
omap_mcbsp_st_start(mcbsp);
/* Only enable SRG, if McBSP is master */
w = MCBSP_READ_CACHE(mcbsp, PCR0);
if (w & (FSXM | FSRM | CLKXM | CLKRM))
enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
if (enable_srg) {
/* Start the sample generator */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
}
/* Enable transmitter and receiver */
tx &= 1;
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | tx);
rx &= 1;
w = MCBSP_READ_CACHE(mcbsp, SPCR1);
MCBSP_WRITE(mcbsp, SPCR1, w | rx);
/*
* Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
* REVISIT: 100us may give enough time for two CLKSRG, however
* due to some unknown PM related, clock gating etc. reason it
* is now at 500us.
*/
udelay(500);
if (enable_srg) {
/* Start frame sync */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
}
if (mcbsp->pdata->has_ccr) {
/* Release the transmitter and receiver */
w = MCBSP_READ_CACHE(mcbsp, XCCR);
w &= ~(tx ? XDISABLE : 0);
MCBSP_WRITE(mcbsp, XCCR, w);
w = MCBSP_READ_CACHE(mcbsp, RCCR);
w &= ~(rx ? RDISABLE : 0);
MCBSP_WRITE(mcbsp, RCCR, w);
}
/* Dump McBSP Regs */
omap_mcbsp_dump_reg(mcbsp);
}
static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
{
int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
int rx = !tx;
int idle;
u16 w;
/* Reset transmitter */
tx &= 1;
if (mcbsp->pdata->has_ccr) {
w = MCBSP_READ_CACHE(mcbsp, XCCR);
w |= (tx ? XDISABLE : 0);
MCBSP_WRITE(mcbsp, XCCR, w);
}
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
/* Reset receiver */
rx &= 1;
if (mcbsp->pdata->has_ccr) {
w = MCBSP_READ_CACHE(mcbsp, RCCR);
w |= (rx ? RDISABLE : 0);
MCBSP_WRITE(mcbsp, RCCR, w);
}
w = MCBSP_READ_CACHE(mcbsp, SPCR1);
MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
if (idle) {
/* Reset the sample rate generator */
w = MCBSP_READ_CACHE(mcbsp, SPCR2);
MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
}
if (mcbsp->st_data)
omap_mcbsp_st_stop(mcbsp);
}
#define max_thres(m) (mcbsp->pdata->buffer_size)
#define valid_threshold(m, val) ((val) <= max_thres(m))
#define THRESHOLD_PROP_BUILDER(prop) \
static ssize_t prop##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
\
return sprintf(buf, "%u\n", mcbsp->prop); \
} \
\
static ssize_t prop##_store(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t size) \
{ \
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
unsigned long val; \
int status; \
\
status = kstrtoul(buf, 0, &val); \
if (status) \
return status; \
\
if (!valid_threshold(mcbsp, val)) \
return -EDOM; \
\
mcbsp->prop = val; \
return size; \
} \
\
static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store)
THRESHOLD_PROP_BUILDER(max_tx_thres);
THRESHOLD_PROP_BUILDER(max_rx_thres);
static const char * const dma_op_modes[] = {
"element", "threshold",
};
static ssize_t dma_op_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
int dma_op_mode, i = 0;
ssize_t len = 0;
const char * const *s;
dma_op_mode = mcbsp->dma_op_mode;
for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
if (dma_op_mode == i)
len += sprintf(buf + len, "[%s] ", *s);
else
len += sprintf(buf + len, "%s ", *s);
}
len += sprintf(buf + len, "\n");
return len;
}
static ssize_t dma_op_mode_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t size)
{
struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
int i;
i = sysfs_match_string(dma_op_modes, buf);
if (i < 0)
return i;
spin_lock_irq(&mcbsp->lock);
if (!mcbsp->free) {
size = -EBUSY;
goto unlock;
}
mcbsp->dma_op_mode = i;
unlock:
spin_unlock_irq(&mcbsp->lock);
return size;
}
static DEVICE_ATTR_RW(dma_op_mode);
static const struct attribute *additional_attrs[] = {
&dev_attr_max_tx_thres.attr,
&dev_attr_max_rx_thres.attr,
&dev_attr_dma_op_mode.attr,
NULL,
};
static const struct attribute_group additional_attr_group = {
.attrs = (struct attribute **)additional_attrs,
};
/*
* McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
* 730 has only 2 McBSP, and both of them are MPU peripherals.
*/
static int omap_mcbsp_init(struct platform_device *pdev)
{
struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
struct resource *res;
int ret = 0;
spin_lock_init(&mcbsp->lock);
mcbsp->free = true;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mcbsp->io_base))
return PTR_ERR(mcbsp->io_base);
mcbsp->phys_base = res->start;
mcbsp->reg_cache_size = resource_size(res);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
if (!res)
mcbsp->phys_dma_base = mcbsp->phys_base;
else
mcbsp->phys_dma_base = res->start;
/*
* OMAP1, 2 uses two interrupt lines: TX, RX
* OMAP2430, OMAP3 SoC have combined IRQ line as well.
* OMAP4 and newer SoC only have the combined IRQ line.
* Use the combined IRQ if available since it gives better debugging
* possibilities.
*/
mcbsp->irq = platform_get_irq_byname(pdev, "common");
if (mcbsp->irq == -ENXIO) {
mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
if (mcbsp->tx_irq == -ENXIO) {
mcbsp->irq = platform_get_irq(pdev, 0);
mcbsp->tx_irq = 0;
} else {
mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
mcbsp->irq = 0;
}
}
if (!pdev->dev.of_node) {
res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
if (!res) {
dev_err(&pdev->dev, "invalid tx DMA channel\n");
return -ENODEV;
}
mcbsp->dma_req[0] = res->start;
mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
if (!res) {
dev_err(&pdev->dev, "invalid rx DMA channel\n");
return -ENODEV;
}
mcbsp->dma_req[1] = res->start;
mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
} else {
mcbsp->dma_data[0].filter_data = "tx";
mcbsp->dma_data[1].filter_data = "rx";
}
mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
SNDRV_PCM_STREAM_PLAYBACK);
mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
SNDRV_PCM_STREAM_CAPTURE);
mcbsp->fclk = clk_get(&pdev->dev, "fck");
if (IS_ERR(mcbsp->fclk)) {
ret = PTR_ERR(mcbsp->fclk);
dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
return ret;
}
mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
if (mcbsp->pdata->buffer_size) {
/*
* Initially configure the maximum thresholds to a safe value.
* The McBSP FIFO usage with these values should not go under
* 16 locations.
* If the whole FIFO without safety buffer is used, than there
* is a possibility that the DMA will be not able to push the
* new data on time, causing channel shifts in runtime.
*/
mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
ret = sysfs_create_group(&mcbsp->dev->kobj,
&additional_attr_group);
if (ret) {
dev_err(mcbsp->dev,
"Unable to create additional controls\n");
goto err_thres;
}
}
ret = omap_mcbsp_st_init(pdev);
if (ret)
goto err_st;
return 0;
err_st:
if (mcbsp->pdata->buffer_size)
sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
err_thres:
clk_put(mcbsp->fclk);
return ret;
}
/*
* Stream DMA parameters. DMA request line and port address are set runtime
* since they are different between OMAP1 and later OMAPs
*/
static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
unsigned int packet_size)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int words;
/* No need to proceed further if McBSP does not have FIFO */
if (mcbsp->pdata->buffer_size == 0)
return;
/*
* Configure McBSP threshold based on either:
* packet_size, when the sDMA is in packet mode, or based on the
* period size in THRESHOLD mode, otherwise use McBSP threshold = 1
* for mono streams.
*/
if (packet_size)
words = packet_size;
else
words = 1;
/* Configure McBSP internal buffer usage */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
omap_mcbsp_set_tx_threshold(mcbsp, words);
else
omap_mcbsp_set_rx_threshold(mcbsp, words);
}
static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_interval *buffer_size = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
struct snd_interval *channels = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_CHANNELS);
struct omap_mcbsp *mcbsp = rule->private;
struct snd_interval frames;
int size;
snd_interval_any(&frames);
size = mcbsp->pdata->buffer_size;
frames.min = size / channels->min;
frames.integer = 1;
return snd_interval_refine(buffer_size, &frames);
}
static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int err = 0;
if (!cpu_dai->active)
err = omap_mcbsp_request(mcbsp);
/*
* OMAP3 McBSP FIFO is word structured.
* McBSP2 has 1024 + 256 = 1280 word long buffer,
* McBSP1,3,4,5 has 128 word long buffer
* This means that the size of the FIFO depends on the sample format.
* For example on McBSP3:
* 16bit samples: size is 128 * 2 = 256 bytes
* 32bit samples: size is 128 * 4 = 512 bytes
* It is simpler to place constraint for buffer and period based on
* channels.
* McBSP3 as example again (16 or 32 bit samples):
* 1 channel (mono): size is 128 frames (128 words)
* 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
* 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
*/
if (mcbsp->pdata->buffer_size) {
/*
* Rule for the buffer size. We should not allow
* smaller buffer than the FIFO size to avoid underruns.
* This applies only for the playback stream.
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
snd_pcm_hw_rule_add(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
omap_mcbsp_hwrule_min_buffersize,
mcbsp,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
/* Make sure, that the period size is always even */
snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
}
return err;
}
static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
if (mcbsp->latency[stream2])
pm_qos_update_request(&mcbsp->pm_qos_req,
mcbsp->latency[stream2]);
else if (mcbsp->latency[stream1])
pm_qos_remove_request(&mcbsp->pm_qos_req);
mcbsp->latency[stream1] = 0;
if (!cpu_dai->active) {
omap_mcbsp_free(mcbsp);
mcbsp->configured = 0;
}
}
static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
int latency = mcbsp->latency[stream2];
/* Prevent omap hardware from hitting off between FIFO fills */
if (!latency || mcbsp->latency[stream1] < latency)
latency = mcbsp->latency[stream1];
if (pm_qos_request_active(pm_qos_req))
pm_qos_update_request(pm_qos_req, latency);
else if (latency)
pm_qos_add_request(pm_qos_req, PM_QOS_CPU_DMA_LATENCY, latency);
return 0;
}
static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
mcbsp->active++;
omap_mcbsp_start(mcbsp, substream->stream);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
omap_mcbsp_stop(mcbsp, substream->stream);
mcbsp->active--;
break;
default:
return -EINVAL;
}
return 0;
}
static snd_pcm_sframes_t omap_mcbsp_dai_delay(
struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
u16 fifo_use;
snd_pcm_sframes_t delay;
/* No need to proceed further if McBSP does not have FIFO */
if (mcbsp->pdata->buffer_size == 0)
return 0;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
else
fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
/*
* Divide the used locations with the channel count to get the
* FIFO usage in samples (don't care about partial samples in the
* buffer).
*/
delay = fifo_use / substream->runtime->channels;
return delay;
}
static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
struct snd_dmaengine_dai_dma_data *dma_data;
int wlen, channels, wpf;
int pkt_size = 0;
unsigned int format, div, framesize, master;
unsigned int buffer_size = mcbsp->pdata->buffer_size;
dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
channels = params_channels(params);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
wlen = 16;
break;
case SNDRV_PCM_FORMAT_S32_LE:
wlen = 32;
break;
default:
return -EINVAL;
}
if (buffer_size) {
int latency;
if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
int period_words, max_thrsh;
int divider = 0;
period_words = params_period_bytes(params) / (wlen / 8);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
max_thrsh = mcbsp->max_tx_thres;
else
max_thrsh = mcbsp->max_rx_thres;
/*
* Use sDMA packet mode if McBSP is in threshold mode:
* If period words less than the FIFO size the packet
* size is set to the number of period words, otherwise
* Look for the biggest threshold value which divides
* the period size evenly.
*/
divider = period_words / max_thrsh;
if (period_words % max_thrsh)
divider++;
while (period_words % divider &&
divider < period_words)
divider++;
if (divider == period_words)
return -EINVAL;
pkt_size = period_words / divider;
} else if (channels > 1) {
/* Use packet mode for non mono streams */
pkt_size = channels;
}
latency = (buffer_size - pkt_size) / channels;
latency = latency * USEC_PER_SEC /
(params->rate_num / params->rate_den);
mcbsp->latency[substream->stream] = latency;
omap_mcbsp_set_threshold(substream, pkt_size);
}
dma_data->maxburst = pkt_size;
if (mcbsp->configured) {
/* McBSP already configured by another stream */
return 0;
}
regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7));
regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7));
format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
wpf = channels;
if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
format == SND_SOC_DAIFMT_LEFT_J)) {
/* Use dual-phase frames */
regs->rcr2 |= RPHASE;
regs->xcr2 |= XPHASE;
/* Set 1 word per (McBSP) frame for phase1 and phase2 */
wpf--;
regs->rcr2 |= RFRLEN2(wpf - 1);
regs->xcr2 |= XFRLEN2(wpf - 1);
}
regs->rcr1 |= RFRLEN1(wpf - 1);
regs->xcr1 |= XFRLEN1(wpf - 1);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
/* Set word lengths */
regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16);
regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16);
regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16);
regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16);
break;
case SNDRV_PCM_FORMAT_S32_LE:
/* Set word lengths */
regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32);
regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32);
regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32);
regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32);
break;
default:
/* Unsupported PCM format */
return -EINVAL;
}
/* In McBSP master modes, FRAME (i.e. sample rate) is generated
* by _counting_ BCLKs. Calculate frame size in BCLKs */
master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
if (master == SND_SOC_DAIFMT_CBS_CFS) {
div = mcbsp->clk_div ? mcbsp->clk_div : 1;
framesize = (mcbsp->in_freq / div) / params_rate(params);
if (framesize < wlen * channels) {
printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
"channels\n", __func__);
return -EINVAL;
}
} else
framesize = wlen * channels;
/* Set FS period and length in terms of bit clock periods */
regs->srgr2 &= ~FPER(0xfff);
regs->srgr1 &= ~FWID(0xff);
switch (format) {
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_LEFT_J:
regs->srgr2 |= FPER(framesize - 1);
regs->srgr1 |= FWID((framesize >> 1) - 1);
break;
case SND_SOC_DAIFMT_DSP_A:
case SND_SOC_DAIFMT_DSP_B:
regs->srgr2 |= FPER(framesize - 1);
regs->srgr1 |= FWID(0);
break;
}
omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
mcbsp->wlen = wlen;
mcbsp->configured = 1;
return 0;
}
/*
* This must be called before _set_clkdiv and _set_sysclk since McBSP register
* cache is initialized here
*/
static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
unsigned int fmt)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
bool inv_fs = false;
if (mcbsp->configured)
return 0;
mcbsp->fmt = fmt;
memset(regs, 0, sizeof(*regs));
/* Generic McBSP register settings */
regs->spcr2 |= XINTM(3) | FREE;
regs->spcr1 |= RINTM(3);
/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
if (!mcbsp->pdata->has_ccr) {
regs->rcr2 |= RFIG;
regs->xcr2 |= XFIG;
}
/* Configure XCCR/RCCR only for revisions which have ccr registers */
if (mcbsp->pdata->has_ccr) {
regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
/* 1-bit data delay */
regs->rcr2 |= RDATDLY(1);
regs->xcr2 |= XDATDLY(1);
break;
case SND_SOC_DAIFMT_LEFT_J:
/* 0-bit data delay */
regs->rcr2 |= RDATDLY(0);
regs->xcr2 |= XDATDLY(0);
regs->spcr1 |= RJUST(2);
/* Invert FS polarity configuration */
inv_fs = true;
break;
case SND_SOC_DAIFMT_DSP_A:
/* 1-bit data delay */
regs->rcr2 |= RDATDLY(1);
regs->xcr2 |= XDATDLY(1);
/* Invert FS polarity configuration */
inv_fs = true;
break;
case SND_SOC_DAIFMT_DSP_B:
/* 0-bit data delay */
regs->rcr2 |= RDATDLY(0);
regs->xcr2 |= XDATDLY(0);
/* Invert FS polarity configuration */
inv_fs = true;
break;
default:
/* Unsupported data format */
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* McBSP master. Set FS and bit clocks as outputs */
regs->pcr0 |= FSXM | FSRM |
CLKXM | CLKRM;
/* Sample rate generator drives the FS */
regs->srgr2 |= FSGM;
break;
case SND_SOC_DAIFMT_CBM_CFS:
/* McBSP slave. FS clock as output */
regs->srgr2 |= FSGM;
regs->pcr0 |= FSXM | FSRM;
break;
case SND_SOC_DAIFMT_CBM_CFM:
/* McBSP slave */
break;
default:
/* Unsupported master/slave configuration */
return -EINVAL;
}
/* Set bit clock (CLKX/CLKR) and FS polarities */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
/*
* Normal BCLK + FS.
* FS active low. TX data driven on falling edge of bit clock
* and RX data sampled on rising edge of bit clock.
*/
regs->pcr0 |= FSXP | FSRP |
CLKXP | CLKRP;
break;
case SND_SOC_DAIFMT_NB_IF:
regs->pcr0 |= CLKXP | CLKRP;
break;
case SND_SOC_DAIFMT_IB_NF:
regs->pcr0 |= FSXP | FSRP;
break;
case SND_SOC_DAIFMT_IB_IF:
break;
default:
return -EINVAL;
}
if (inv_fs == true)
regs->pcr0 ^= FSXP | FSRP;
return 0;
}
static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
int div_id, int div)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
if (div_id != OMAP_MCBSP_CLKGDV)
return -ENODEV;
mcbsp->clk_div = div;
regs->srgr1 &= ~CLKGDV(0xff);
regs->srgr1 |= CLKGDV(div - 1);
return 0;
}
static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq,
int dir)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
int err = 0;
if (mcbsp->active) {
if (freq == mcbsp->in_freq)
return 0;
else
return -EBUSY;
}
mcbsp->in_freq = freq;
regs->srgr2 &= ~CLKSM;
regs->pcr0 &= ~SCLKME;
switch (clk_id) {
case OMAP_MCBSP_SYSCLK_CLK:
regs->srgr2 |= CLKSM;
break;
case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
if (mcbsp_omap1()) {
err = -EINVAL;
break;
}
err = omap2_mcbsp_set_clks_src(mcbsp,
MCBSP_CLKS_PRCM_SRC);
break;
case OMAP_MCBSP_SYSCLK_CLKS_EXT:
if (mcbsp_omap1()) {
err = 0;
break;
}
err = omap2_mcbsp_set_clks_src(mcbsp,
MCBSP_CLKS_PAD_SRC);
break;
case OMAP_MCBSP_SYSCLK_CLKX_EXT:
regs->srgr2 |= CLKSM;
regs->pcr0 |= SCLKME;
/*
* If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
* disable output on those pins. This enables to inject the
* reference clock through CLKX/CLKR. For this to work
* set_dai_sysclk() _needs_ to be called after set_dai_fmt().
*/
regs->pcr0 &= ~CLKXM;
break;
case OMAP_MCBSP_SYSCLK_CLKR_EXT:
regs->pcr0 |= SCLKME;
/* Disable ouput on CLKR pin in master mode */
regs->pcr0 &= ~CLKRM;
break;
default:
err = -ENODEV;
}
return err;
}
static const struct snd_soc_dai_ops mcbsp_dai_ops = {
.startup = omap_mcbsp_dai_startup,
.shutdown = omap_mcbsp_dai_shutdown,
.prepare = omap_mcbsp_dai_prepare,
.trigger = omap_mcbsp_dai_trigger,
.delay = omap_mcbsp_dai_delay,
.hw_params = omap_mcbsp_dai_hw_params,
.set_fmt = omap_mcbsp_dai_set_dai_fmt,
.set_clkdiv = omap_mcbsp_dai_set_clkdiv,
.set_sysclk = omap_mcbsp_dai_set_dai_sysclk,
};
static int omap_mcbsp_probe(struct snd_soc_dai *dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
pm_runtime_enable(mcbsp->dev);
snd_soc_dai_init_dma_data(dai,
&mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
&mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
return 0;
}
static int omap_mcbsp_remove(struct snd_soc_dai *dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
pm_runtime_disable(mcbsp->dev);
return 0;
}
static struct snd_soc_dai_driver omap_mcbsp_dai = {
.probe = omap_mcbsp_probe,
.remove = omap_mcbsp_remove,
.playback = {
.channels_min = 1,
.channels_max = 16,
.rates = OMAP_MCBSP_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
},
.capture = {
.channels_min = 1,
.channels_max = 16,
.rates = OMAP_MCBSP_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &mcbsp_dai_ops,
};
static const struct snd_soc_component_driver omap_mcbsp_component = {
.name = "omap-mcbsp",
};
static struct omap_mcbsp_platform_data omap2420_pdata = {
.reg_step = 4,
.reg_size = 2,
};
static struct omap_mcbsp_platform_data omap2430_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
};
static struct omap_mcbsp_platform_data omap3_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
.has_wakeup = true,
};
static struct omap_mcbsp_platform_data omap4_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
.has_wakeup = true,
};
static const struct of_device_id omap_mcbsp_of_match[] = {
{
.compatible = "ti,omap2420-mcbsp",
.data = &omap2420_pdata,
},
{
.compatible = "ti,omap2430-mcbsp",
.data = &omap2430_pdata,
},
{
.compatible = "ti,omap3-mcbsp",
.data = &omap3_pdata,
},
{
.compatible = "ti,omap4-mcbsp",
.data = &omap4_pdata,
},
{ },
};
MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
static int asoc_mcbsp_probe(struct platform_device *pdev)
{
struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
struct omap_mcbsp *mcbsp;
const struct of_device_id *match;
int ret;
match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
if (match) {
struct device_node *node = pdev->dev.of_node;
struct omap_mcbsp_platform_data *pdata_quirk = pdata;
int buffer_size;
pdata = devm_kzalloc(&pdev->dev,
sizeof(struct omap_mcbsp_platform_data),
GFP_KERNEL);
if (!pdata)
return -ENOMEM;
memcpy(pdata, match->data, sizeof(*pdata));
if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
pdata->buffer_size = buffer_size;
if (pdata_quirk)
pdata->force_ick_on = pdata_quirk->force_ick_on;
} else if (!pdata) {
dev_err(&pdev->dev, "missing platform data.\n");
return -EINVAL;
}
mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
if (!mcbsp)
return -ENOMEM;
mcbsp->id = pdev->id;
mcbsp->pdata = pdata;
mcbsp->dev = &pdev->dev;
platform_set_drvdata(pdev, mcbsp);
ret = omap_mcbsp_init(pdev);
if (ret)
return ret;
if (mcbsp->pdata->reg_size == 2) {
omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
}
ret = devm_snd_soc_register_component(&pdev->dev,
&omap_mcbsp_component,
&omap_mcbsp_dai, 1);
if (ret)
return ret;
return sdma_pcm_platform_register(&pdev->dev, NULL, NULL);
}
static int asoc_mcbsp_remove(struct platform_device *pdev)
{
struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id);
if (pm_qos_request_active(&mcbsp->pm_qos_req))
pm_qos_remove_request(&mcbsp->pm_qos_req);
if (mcbsp->pdata->buffer_size)
sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
omap_mcbsp_st_cleanup(pdev);
clk_put(mcbsp->fclk);
return 0;
}
static struct platform_driver asoc_mcbsp_driver = {
.driver = {
.name = "omap-mcbsp",
.of_match_table = omap_mcbsp_of_match,
},
.probe = asoc_mcbsp_probe,
.remove = asoc_mcbsp_remove,
};
module_platform_driver(asoc_mcbsp_driver);
MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
MODULE_DESCRIPTION("OMAP I2S SoC Interface");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:omap-mcbsp");