| /* $Id: sunhme.c,v 1.124 2002/01/15 06:25:51 davem Exp $ |
| * sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching, |
| * auto carrier detecting ethernet driver. Also known as the |
| * "Happy Meal Ethernet" found on SunSwift SBUS cards. |
| * |
| * Copyright (C) 1996, 1998, 1999, 2002, 2003 David S. Miller (davem@redhat.com) |
| * |
| * Changes : |
| * 2000/11/11 Willy Tarreau <willy AT meta-x.org> |
| * - port to non-sparc architectures. Tested only on x86 and |
| * only currently works with QFE PCI cards. |
| * - ability to specify the MAC address at module load time by passing this |
| * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50 |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/fcntl.h> |
| #include <linux/interrupt.h> |
| #include <linux/ioport.h> |
| #include <linux/in.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/ethtool.h> |
| #include <linux/mii.h> |
| #include <linux/crc32.h> |
| #include <linux/random.h> |
| #include <linux/errno.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/dma.h> |
| #include <asm/byteorder.h> |
| |
| #ifdef __sparc__ |
| #include <asm/idprom.h> |
| #include <asm/sbus.h> |
| #include <asm/openprom.h> |
| #include <asm/oplib.h> |
| #include <asm/auxio.h> |
| #ifndef __sparc_v9__ |
| #include <asm/io-unit.h> |
| #endif |
| #endif |
| #include <asm/uaccess.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/irq.h> |
| |
| #ifdef CONFIG_PCI |
| #include <linux/pci.h> |
| #ifdef __sparc__ |
| #include <asm/pbm.h> |
| #endif |
| #endif |
| |
| #include "sunhme.h" |
| |
| #define DRV_NAME "sunhme" |
| #define DRV_VERSION "2.02" |
| #define DRV_RELDATE "8/24/03" |
| #define DRV_AUTHOR "David S. Miller (davem@redhat.com)" |
| |
| static char version[] = |
| DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n"; |
| |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_AUTHOR(DRV_AUTHOR); |
| MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver"); |
| MODULE_LICENSE("GPL"); |
| |
| static int macaddr[6]; |
| |
| /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ |
| module_param_array(macaddr, int, NULL, 0); |
| MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set"); |
| |
| static struct happy_meal *root_happy_dev; |
| |
| #ifdef CONFIG_SBUS |
| static struct quattro *qfe_sbus_list; |
| #endif |
| |
| #ifdef CONFIG_PCI |
| static struct quattro *qfe_pci_list; |
| #endif |
| |
| #undef HMEDEBUG |
| #undef SXDEBUG |
| #undef RXDEBUG |
| #undef TXDEBUG |
| #undef TXLOGGING |
| |
| #ifdef TXLOGGING |
| struct hme_tx_logent { |
| unsigned int tstamp; |
| int tx_new, tx_old; |
| unsigned int action; |
| #define TXLOG_ACTION_IRQ 0x01 |
| #define TXLOG_ACTION_TXMIT 0x02 |
| #define TXLOG_ACTION_TBUSY 0x04 |
| #define TXLOG_ACTION_NBUFS 0x08 |
| unsigned int status; |
| }; |
| #define TX_LOG_LEN 128 |
| static struct hme_tx_logent tx_log[TX_LOG_LEN]; |
| static int txlog_cur_entry; |
| static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s) |
| { |
| struct hme_tx_logent *tlp; |
| unsigned long flags; |
| |
| save_and_cli(flags); |
| tlp = &tx_log[txlog_cur_entry]; |
| tlp->tstamp = (unsigned int)jiffies; |
| tlp->tx_new = hp->tx_new; |
| tlp->tx_old = hp->tx_old; |
| tlp->action = a; |
| tlp->status = s; |
| txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1); |
| restore_flags(flags); |
| } |
| static __inline__ void tx_dump_log(void) |
| { |
| int i, this; |
| |
| this = txlog_cur_entry; |
| for (i = 0; i < TX_LOG_LEN; i++) { |
| printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i, |
| tx_log[this].tstamp, |
| tx_log[this].tx_new, tx_log[this].tx_old, |
| tx_log[this].action, tx_log[this].status); |
| this = (this + 1) & (TX_LOG_LEN - 1); |
| } |
| } |
| static __inline__ void tx_dump_ring(struct happy_meal *hp) |
| { |
| struct hmeal_init_block *hb = hp->happy_block; |
| struct happy_meal_txd *tp = &hb->happy_meal_txd[0]; |
| int i; |
| |
| for (i = 0; i < TX_RING_SIZE; i+=4) { |
| printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n", |
| i, i + 4, |
| le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr), |
| le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr), |
| le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr), |
| le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr)); |
| } |
| } |
| #else |
| #define tx_add_log(hp, a, s) do { } while(0) |
| #define tx_dump_log() do { } while(0) |
| #define tx_dump_ring(hp) do { } while(0) |
| #endif |
| |
| #ifdef HMEDEBUG |
| #define HMD(x) printk x |
| #else |
| #define HMD(x) |
| #endif |
| |
| /* #define AUTO_SWITCH_DEBUG */ |
| |
| #ifdef AUTO_SWITCH_DEBUG |
| #define ASD(x) printk x |
| #else |
| #define ASD(x) |
| #endif |
| |
| #define DEFAULT_IPG0 16 /* For lance-mode only */ |
| #define DEFAULT_IPG1 8 /* For all modes */ |
| #define DEFAULT_IPG2 4 /* For all modes */ |
| #define DEFAULT_JAMSIZE 4 /* Toe jam */ |
| |
| #if defined(CONFIG_PCI) && defined(MODULE) |
| /* This happy_pci_ids is declared __initdata because it is only used |
| as an advisory to depmod. If this is ported to the new PCI interface |
| where it could be referenced at any time due to hot plugging, |
| the __initdata reference should be removed. */ |
| |
| static struct pci_device_id happymeal_pci_ids[] = { |
| { |
| .vendor = PCI_VENDOR_ID_SUN, |
| .device = PCI_DEVICE_ID_SUN_HAPPYMEAL, |
| .subvendor = PCI_ANY_ID, |
| .subdevice = PCI_ANY_ID, |
| }, |
| { } /* Terminating entry */ |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, happymeal_pci_ids); |
| |
| #endif |
| |
| /* NOTE: In the descriptor writes one _must_ write the address |
| * member _first_. The card must not be allowed to see |
| * the updated descriptor flags until the address is |
| * correct. I've added a write memory barrier between |
| * the two stores so that I can sleep well at night... -DaveM |
| */ |
| |
| #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) |
| static void sbus_hme_write32(void __iomem *reg, u32 val) |
| { |
| sbus_writel(val, reg); |
| } |
| |
| static u32 sbus_hme_read32(void __iomem *reg) |
| { |
| return sbus_readl(reg); |
| } |
| |
| static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr) |
| { |
| rxd->rx_addr = addr; |
| wmb(); |
| rxd->rx_flags = flags; |
| } |
| |
| static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr) |
| { |
| txd->tx_addr = addr; |
| wmb(); |
| txd->tx_flags = flags; |
| } |
| |
| static u32 sbus_hme_read_desc32(u32 *p) |
| { |
| return *p; |
| } |
| |
| static void pci_hme_write32(void __iomem *reg, u32 val) |
| { |
| writel(val, reg); |
| } |
| |
| static u32 pci_hme_read32(void __iomem *reg) |
| { |
| return readl(reg); |
| } |
| |
| static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr) |
| { |
| rxd->rx_addr = cpu_to_le32(addr); |
| wmb(); |
| rxd->rx_flags = cpu_to_le32(flags); |
| } |
| |
| static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr) |
| { |
| txd->tx_addr = cpu_to_le32(addr); |
| wmb(); |
| txd->tx_flags = cpu_to_le32(flags); |
| } |
| |
| static u32 pci_hme_read_desc32(u32 *p) |
| { |
| return cpu_to_le32p(p); |
| } |
| |
| #define hme_write32(__hp, __reg, __val) \ |
| ((__hp)->write32((__reg), (__val))) |
| #define hme_read32(__hp, __reg) \ |
| ((__hp)->read32(__reg)) |
| #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ |
| ((__hp)->write_rxd((__rxd), (__flags), (__addr))) |
| #define hme_write_txd(__hp, __txd, __flags, __addr) \ |
| ((__hp)->write_txd((__txd), (__flags), (__addr))) |
| #define hme_read_desc32(__hp, __p) \ |
| ((__hp)->read_desc32(__p)) |
| #define hme_dma_map(__hp, __ptr, __size, __dir) \ |
| ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir))) |
| #define hme_dma_unmap(__hp, __addr, __size, __dir) \ |
| ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir))) |
| #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ |
| ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))) |
| #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ |
| ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))) |
| #else |
| #ifdef CONFIG_SBUS |
| /* SBUS only compilation */ |
| #define hme_write32(__hp, __reg, __val) \ |
| sbus_writel((__val), (__reg)) |
| #define hme_read32(__hp, __reg) \ |
| sbus_readl(__reg) |
| #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ |
| do { (__rxd)->rx_addr = (__addr); \ |
| wmb(); \ |
| (__rxd)->rx_flags = (__flags); \ |
| } while(0) |
| #define hme_write_txd(__hp, __txd, __flags, __addr) \ |
| do { (__txd)->tx_addr = (__addr); \ |
| wmb(); \ |
| (__txd)->tx_flags = (__flags); \ |
| } while(0) |
| #define hme_read_desc32(__hp, __p) (*(__p)) |
| #define hme_dma_map(__hp, __ptr, __size, __dir) \ |
| sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir)) |
| #define hme_dma_unmap(__hp, __addr, __size, __dir) \ |
| sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ |
| sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ |
| sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| #else |
| /* PCI only compilation */ |
| #define hme_write32(__hp, __reg, __val) \ |
| writel((__val), (__reg)) |
| #define hme_read32(__hp, __reg) \ |
| readl(__reg) |
| #define hme_write_rxd(__hp, __rxd, __flags, __addr) \ |
| do { (__rxd)->rx_addr = cpu_to_le32(__addr); \ |
| wmb(); \ |
| (__rxd)->rx_flags = cpu_to_le32(__flags); \ |
| } while(0) |
| #define hme_write_txd(__hp, __txd, __flags, __addr) \ |
| do { (__txd)->tx_addr = cpu_to_le32(__addr); \ |
| wmb(); \ |
| (__txd)->tx_flags = cpu_to_le32(__flags); \ |
| } while(0) |
| #define hme_read_desc32(__hp, __p) cpu_to_le32p(__p) |
| #define hme_dma_map(__hp, __ptr, __size, __dir) \ |
| pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir)) |
| #define hme_dma_unmap(__hp, __addr, __size, __dir) \ |
| pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \ |
| pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \ |
| pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)) |
| #endif |
| #endif |
| |
| |
| #ifdef SBUS_DMA_BIDIRECTIONAL |
| # define DMA_BIDIRECTIONAL SBUS_DMA_BIDIRECTIONAL |
| #else |
| # define DMA_BIDIRECTIONAL 0 |
| #endif |
| |
| #ifdef SBUS_DMA_FROMDEVICE |
| # define DMA_FROMDEVICE SBUS_DMA_FROMDEVICE |
| #else |
| # define DMA_TODEVICE 1 |
| #endif |
| |
| #ifdef SBUS_DMA_TODEVICE |
| # define DMA_TODEVICE SBUS_DMA_TODEVICE |
| #else |
| # define DMA_FROMDEVICE 2 |
| #endif |
| |
| |
| /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */ |
| static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit) |
| { |
| hme_write32(hp, tregs + TCVR_BBDATA, bit); |
| hme_write32(hp, tregs + TCVR_BBCLOCK, 0); |
| hme_write32(hp, tregs + TCVR_BBCLOCK, 1); |
| } |
| |
| #if 0 |
| static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal) |
| { |
| u32 ret; |
| |
| hme_write32(hp, tregs + TCVR_BBCLOCK, 0); |
| hme_write32(hp, tregs + TCVR_BBCLOCK, 1); |
| ret = hme_read32(hp, tregs + TCVR_CFG); |
| if (internal) |
| ret &= TCV_CFG_MDIO0; |
| else |
| ret &= TCV_CFG_MDIO1; |
| |
| return ret; |
| } |
| #endif |
| |
| static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal) |
| { |
| u32 retval; |
| |
| hme_write32(hp, tregs + TCVR_BBCLOCK, 0); |
| udelay(1); |
| retval = hme_read32(hp, tregs + TCVR_CFG); |
| if (internal) |
| retval &= TCV_CFG_MDIO0; |
| else |
| retval &= TCV_CFG_MDIO1; |
| hme_write32(hp, tregs + TCVR_BBCLOCK, 1); |
| |
| return retval; |
| } |
| |
| #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */ |
| |
| static int happy_meal_bb_read(struct happy_meal *hp, |
| void __iomem *tregs, int reg) |
| { |
| u32 tmp; |
| int retval = 0; |
| int i; |
| |
| ASD(("happy_meal_bb_read: reg=%d ", reg)); |
| |
| /* Enable the MIF BitBang outputs. */ |
| hme_write32(hp, tregs + TCVR_BBOENAB, 1); |
| |
| /* Force BitBang into the idle state. */ |
| for (i = 0; i < 32; i++) |
| BB_PUT_BIT(hp, tregs, 1); |
| |
| /* Give it the read sequence. */ |
| BB_PUT_BIT(hp, tregs, 0); |
| BB_PUT_BIT(hp, tregs, 1); |
| BB_PUT_BIT(hp, tregs, 1); |
| BB_PUT_BIT(hp, tregs, 0); |
| |
| /* Give it the PHY address. */ |
| tmp = hp->paddr & 0xff; |
| for (i = 4; i >= 0; i--) |
| BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); |
| |
| /* Tell it what register we want to read. */ |
| tmp = (reg & 0xff); |
| for (i = 4; i >= 0; i--) |
| BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); |
| |
| /* Close down the MIF BitBang outputs. */ |
| hme_write32(hp, tregs + TCVR_BBOENAB, 0); |
| |
| /* Now read in the value. */ |
| (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); |
| for (i = 15; i >= 0; i--) |
| retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); |
| (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); |
| (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); |
| (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); |
| ASD(("value=%x\n", retval)); |
| return retval; |
| } |
| |
| static void happy_meal_bb_write(struct happy_meal *hp, |
| void __iomem *tregs, int reg, |
| unsigned short value) |
| { |
| u32 tmp; |
| int i; |
| |
| ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value)); |
| |
| /* Enable the MIF BitBang outputs. */ |
| hme_write32(hp, tregs + TCVR_BBOENAB, 1); |
| |
| /* Force BitBang into the idle state. */ |
| for (i = 0; i < 32; i++) |
| BB_PUT_BIT(hp, tregs, 1); |
| |
| /* Give it write sequence. */ |
| BB_PUT_BIT(hp, tregs, 0); |
| BB_PUT_BIT(hp, tregs, 1); |
| BB_PUT_BIT(hp, tregs, 0); |
| BB_PUT_BIT(hp, tregs, 1); |
| |
| /* Give it the PHY address. */ |
| tmp = (hp->paddr & 0xff); |
| for (i = 4; i >= 0; i--) |
| BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); |
| |
| /* Tell it what register we will be writing. */ |
| tmp = (reg & 0xff); |
| for (i = 4; i >= 0; i--) |
| BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); |
| |
| /* Tell it to become ready for the bits. */ |
| BB_PUT_BIT(hp, tregs, 1); |
| BB_PUT_BIT(hp, tregs, 0); |
| |
| for (i = 15; i >= 0; i--) |
| BB_PUT_BIT(hp, tregs, ((value >> i) & 1)); |
| |
| /* Close down the MIF BitBang outputs. */ |
| hme_write32(hp, tregs + TCVR_BBOENAB, 0); |
| } |
| |
| #define TCVR_READ_TRIES 16 |
| |
| static int happy_meal_tcvr_read(struct happy_meal *hp, |
| void __iomem *tregs, int reg) |
| { |
| int tries = TCVR_READ_TRIES; |
| int retval; |
| |
| ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg)); |
| if (hp->tcvr_type == none) { |
| ASD(("no transceiver, value=TCVR_FAILURE\n")); |
| return TCVR_FAILURE; |
| } |
| |
| if (!(hp->happy_flags & HFLAG_FENABLE)) { |
| ASD(("doing bit bang\n")); |
| return happy_meal_bb_read(hp, tregs, reg); |
| } |
| |
| hme_write32(hp, tregs + TCVR_FRAME, |
| (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18))); |
| while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries) |
| udelay(20); |
| if (!tries) { |
| printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n"); |
| return TCVR_FAILURE; |
| } |
| retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff; |
| ASD(("value=%04x\n", retval)); |
| return retval; |
| } |
| |
| #define TCVR_WRITE_TRIES 16 |
| |
| static void happy_meal_tcvr_write(struct happy_meal *hp, |
| void __iomem *tregs, int reg, |
| unsigned short value) |
| { |
| int tries = TCVR_WRITE_TRIES; |
| |
| ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value)); |
| |
| /* Welcome to Sun Microsystems, can I take your order please? */ |
| if (!(hp->happy_flags & HFLAG_FENABLE)) { |
| happy_meal_bb_write(hp, tregs, reg, value); |
| return; |
| } |
| |
| /* Would you like fries with that? */ |
| hme_write32(hp, tregs + TCVR_FRAME, |
| (FRAME_WRITE | (hp->paddr << 23) | |
| ((reg & 0xff) << 18) | (value & 0xffff))); |
| while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries) |
| udelay(20); |
| |
| /* Anything else? */ |
| if (!tries) |
| printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n"); |
| |
| /* Fifty-two cents is your change, have a nice day. */ |
| } |
| |
| /* Auto negotiation. The scheme is very simple. We have a timer routine |
| * that keeps watching the auto negotiation process as it progresses. |
| * The DP83840 is first told to start doing it's thing, we set up the time |
| * and place the timer state machine in it's initial state. |
| * |
| * Here the timer peeks at the DP83840 status registers at each click to see |
| * if the auto negotiation has completed, we assume here that the DP83840 PHY |
| * will time out at some point and just tell us what (didn't) happen. For |
| * complete coverage we only allow so many of the ticks at this level to run, |
| * when this has expired we print a warning message and try another strategy. |
| * This "other" strategy is to force the interface into various speed/duplex |
| * configurations and we stop when we see a link-up condition before the |
| * maximum number of "peek" ticks have occurred. |
| * |
| * Once a valid link status has been detected we configure the BigMAC and |
| * the rest of the Happy Meal to speak the most efficient protocol we could |
| * get a clean link for. The priority for link configurations, highest first |
| * is: |
| * 100 Base-T Full Duplex |
| * 100 Base-T Half Duplex |
| * 10 Base-T Full Duplex |
| * 10 Base-T Half Duplex |
| * |
| * We start a new timer now, after a successful auto negotiation status has |
| * been detected. This timer just waits for the link-up bit to get set in |
| * the BMCR of the DP83840. When this occurs we print a kernel log message |
| * describing the link type in use and the fact that it is up. |
| * |
| * If a fatal error of some sort is signalled and detected in the interrupt |
| * service routine, and the chip is reset, or the link is ifconfig'd down |
| * and then back up, this entire process repeats itself all over again. |
| */ |
| static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs) |
| { |
| hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| |
| /* Downgrade from full to half duplex. Only possible |
| * via ethtool. |
| */ |
| if (hp->sw_bmcr & BMCR_FULLDPLX) { |
| hp->sw_bmcr &= ~(BMCR_FULLDPLX); |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| return 0; |
| } |
| |
| /* Downgrade from 100 to 10. */ |
| if (hp->sw_bmcr & BMCR_SPEED100) { |
| hp->sw_bmcr &= ~(BMCR_SPEED100); |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| return 0; |
| } |
| |
| /* We've tried everything. */ |
| return -1; |
| } |
| |
| static void display_link_mode(struct happy_meal *hp, void __iomem *tregs) |
| { |
| printk(KERN_INFO "%s: Link is up using ", hp->dev->name); |
| if (hp->tcvr_type == external) |
| printk("external "); |
| else |
| printk("internal "); |
| printk("transceiver at "); |
| hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); |
| if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) { |
| if (hp->sw_lpa & LPA_100FULL) |
| printk("100Mb/s, Full Duplex.\n"); |
| else |
| printk("100Mb/s, Half Duplex.\n"); |
| } else { |
| if (hp->sw_lpa & LPA_10FULL) |
| printk("10Mb/s, Full Duplex.\n"); |
| else |
| printk("10Mb/s, Half Duplex.\n"); |
| } |
| } |
| |
| static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs) |
| { |
| printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name); |
| if (hp->tcvr_type == external) |
| printk("external "); |
| else |
| printk("internal "); |
| printk("transceiver at "); |
| hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| if (hp->sw_bmcr & BMCR_SPEED100) |
| printk("100Mb/s, "); |
| else |
| printk("10Mb/s, "); |
| if (hp->sw_bmcr & BMCR_FULLDPLX) |
| printk("Full Duplex.\n"); |
| else |
| printk("Half Duplex.\n"); |
| } |
| |
| static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs) |
| { |
| int full; |
| |
| /* All we care about is making sure the bigmac tx_cfg has a |
| * proper duplex setting. |
| */ |
| if (hp->timer_state == arbwait) { |
| hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); |
| if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL))) |
| goto no_response; |
| if (hp->sw_lpa & LPA_100FULL) |
| full = 1; |
| else if (hp->sw_lpa & LPA_100HALF) |
| full = 0; |
| else if (hp->sw_lpa & LPA_10FULL) |
| full = 1; |
| else |
| full = 0; |
| } else { |
| /* Forcing a link mode. */ |
| hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| if (hp->sw_bmcr & BMCR_FULLDPLX) |
| full = 1; |
| else |
| full = 0; |
| } |
| |
| /* Before changing other bits in the tx_cfg register, and in |
| * general any of other the TX config registers too, you |
| * must: |
| * 1) Clear Enable |
| * 2) Poll with reads until that bit reads back as zero |
| * 3) Make TX configuration changes |
| * 4) Set Enable once more |
| */ |
| hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, |
| hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & |
| ~(BIGMAC_TXCFG_ENABLE)); |
| while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE) |
| barrier(); |
| if (full) { |
| hp->happy_flags |= HFLAG_FULL; |
| hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, |
| hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) | |
| BIGMAC_TXCFG_FULLDPLX); |
| } else { |
| hp->happy_flags &= ~(HFLAG_FULL); |
| hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, |
| hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & |
| ~(BIGMAC_TXCFG_FULLDPLX)); |
| } |
| hme_write32(hp, hp->bigmacregs + BMAC_TXCFG, |
| hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) | |
| BIGMAC_TXCFG_ENABLE); |
| return 0; |
| no_response: |
| return 1; |
| } |
| |
| static int happy_meal_init(struct happy_meal *hp); |
| |
| static int is_lucent_phy(struct happy_meal *hp) |
| { |
| void __iomem *tregs = hp->tcvregs; |
| unsigned short mr2, mr3; |
| int ret = 0; |
| |
| mr2 = happy_meal_tcvr_read(hp, tregs, 2); |
| mr3 = happy_meal_tcvr_read(hp, tregs, 3); |
| if ((mr2 & 0xffff) == 0x0180 && |
| ((mr3 & 0xffff) >> 10) == 0x1d) |
| ret = 1; |
| |
| return ret; |
| } |
| |
| static void happy_meal_timer(unsigned long data) |
| { |
| struct happy_meal *hp = (struct happy_meal *) data; |
| void __iomem *tregs = hp->tcvregs; |
| int restart_timer = 0; |
| |
| spin_lock_irq(&hp->happy_lock); |
| |
| hp->timer_ticks++; |
| switch(hp->timer_state) { |
| case arbwait: |
| /* Only allow for 5 ticks, thats 10 seconds and much too |
| * long to wait for arbitration to complete. |
| */ |
| if (hp->timer_ticks >= 10) { |
| /* Enter force mode. */ |
| do_force_mode: |
| hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n", |
| hp->dev->name); |
| hp->sw_bmcr = BMCR_SPEED100; |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| |
| if (!is_lucent_phy(hp)) { |
| /* OK, seems we need do disable the transceiver for the first |
| * tick to make sure we get an accurate link state at the |
| * second tick. |
| */ |
| hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); |
| hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); |
| happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); |
| } |
| hp->timer_state = ltrywait; |
| hp->timer_ticks = 0; |
| restart_timer = 1; |
| } else { |
| /* Anything interesting happen? */ |
| hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) { |
| int ret; |
| |
| /* Just what we've been waiting for... */ |
| ret = set_happy_link_modes(hp, tregs); |
| if (ret) { |
| /* Ooops, something bad happened, go to force |
| * mode. |
| * |
| * XXX Broken hubs which don't support 802.3u |
| * XXX auto-negotiation make this happen as well. |
| */ |
| goto do_force_mode; |
| } |
| |
| /* Success, at least so far, advance our state engine. */ |
| hp->timer_state = lupwait; |
| restart_timer = 1; |
| } else { |
| restart_timer = 1; |
| } |
| } |
| break; |
| |
| case lupwait: |
| /* Auto negotiation was successful and we are awaiting a |
| * link up status. I have decided to let this timer run |
| * forever until some sort of error is signalled, reporting |
| * a message to the user at 10 second intervals. |
| */ |
| hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| if (hp->sw_bmsr & BMSR_LSTATUS) { |
| /* Wheee, it's up, display the link mode in use and put |
| * the timer to sleep. |
| */ |
| display_link_mode(hp, tregs); |
| hp->timer_state = asleep; |
| restart_timer = 0; |
| } else { |
| if (hp->timer_ticks >= 10) { |
| printk(KERN_NOTICE "%s: Auto negotiation successful, link still " |
| "not completely up.\n", hp->dev->name); |
| hp->timer_ticks = 0; |
| restart_timer = 1; |
| } else { |
| restart_timer = 1; |
| } |
| } |
| break; |
| |
| case ltrywait: |
| /* Making the timeout here too long can make it take |
| * annoyingly long to attempt all of the link mode |
| * permutations, but then again this is essentially |
| * error recovery code for the most part. |
| */ |
| hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); |
| if (hp->timer_ticks == 1) { |
| if (!is_lucent_phy(hp)) { |
| /* Re-enable transceiver, we'll re-enable the transceiver next |
| * tick, then check link state on the following tick. |
| */ |
| hp->sw_csconfig |= CSCONFIG_TCVDISAB; |
| happy_meal_tcvr_write(hp, tregs, |
| DP83840_CSCONFIG, hp->sw_csconfig); |
| } |
| restart_timer = 1; |
| break; |
| } |
| if (hp->timer_ticks == 2) { |
| if (!is_lucent_phy(hp)) { |
| hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); |
| happy_meal_tcvr_write(hp, tregs, |
| DP83840_CSCONFIG, hp->sw_csconfig); |
| } |
| restart_timer = 1; |
| break; |
| } |
| if (hp->sw_bmsr & BMSR_LSTATUS) { |
| /* Force mode selection success. */ |
| display_forced_link_mode(hp, tregs); |
| set_happy_link_modes(hp, tregs); /* XXX error? then what? */ |
| hp->timer_state = asleep; |
| restart_timer = 0; |
| } else { |
| if (hp->timer_ticks >= 4) { /* 6 seconds or so... */ |
| int ret; |
| |
| ret = try_next_permutation(hp, tregs); |
| if (ret == -1) { |
| /* Aieee, tried them all, reset the |
| * chip and try all over again. |
| */ |
| |
| /* Let the user know... */ |
| printk(KERN_NOTICE "%s: Link down, cable problem?\n", |
| hp->dev->name); |
| |
| ret = happy_meal_init(hp); |
| if (ret) { |
| /* ho hum... */ |
| printk(KERN_ERR "%s: Error, cannot re-init the " |
| "Happy Meal.\n", hp->dev->name); |
| } |
| goto out; |
| } |
| if (!is_lucent_phy(hp)) { |
| hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, |
| DP83840_CSCONFIG); |
| hp->sw_csconfig |= CSCONFIG_TCVDISAB; |
| happy_meal_tcvr_write(hp, tregs, |
| DP83840_CSCONFIG, hp->sw_csconfig); |
| } |
| hp->timer_ticks = 0; |
| restart_timer = 1; |
| } else { |
| restart_timer = 1; |
| } |
| } |
| break; |
| |
| case asleep: |
| default: |
| /* Can't happens.... */ |
| printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n", |
| hp->dev->name); |
| restart_timer = 0; |
| hp->timer_ticks = 0; |
| hp->timer_state = asleep; /* foo on you */ |
| break; |
| }; |
| |
| if (restart_timer) { |
| hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */ |
| add_timer(&hp->happy_timer); |
| } |
| |
| out: |
| spin_unlock_irq(&hp->happy_lock); |
| } |
| |
| #define TX_RESET_TRIES 32 |
| #define RX_RESET_TRIES 32 |
| |
| /* hp->happy_lock must be held */ |
| static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs) |
| { |
| int tries = TX_RESET_TRIES; |
| |
| HMD(("happy_meal_tx_reset: reset, ")); |
| |
| /* Would you like to try our SMCC Delux? */ |
| hme_write32(hp, bregs + BMAC_TXSWRESET, 0); |
| while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries) |
| udelay(20); |
| |
| /* Lettuce, tomato, buggy hardware (no extra charge)? */ |
| if (!tries) |
| printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!"); |
| |
| /* Take care. */ |
| HMD(("done\n")); |
| } |
| |
| /* hp->happy_lock must be held */ |
| static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs) |
| { |
| int tries = RX_RESET_TRIES; |
| |
| HMD(("happy_meal_rx_reset: reset, ")); |
| |
| /* We have a special on GNU/Viking hardware bugs today. */ |
| hme_write32(hp, bregs + BMAC_RXSWRESET, 0); |
| while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries) |
| udelay(20); |
| |
| /* Will that be all? */ |
| if (!tries) |
| printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!"); |
| |
| /* Don't forget your vik_1137125_wa. Have a nice day. */ |
| HMD(("done\n")); |
| } |
| |
| #define STOP_TRIES 16 |
| |
| /* hp->happy_lock must be held */ |
| static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs) |
| { |
| int tries = STOP_TRIES; |
| |
| HMD(("happy_meal_stop: reset, ")); |
| |
| /* We're consolidating our STB products, it's your lucky day. */ |
| hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL); |
| while (hme_read32(hp, gregs + GREG_SWRESET) && --tries) |
| udelay(20); |
| |
| /* Come back next week when we are "Sun Microelectronics". */ |
| if (!tries) |
| printk(KERN_ERR "happy meal: Fry guys."); |
| |
| /* Remember: "Different name, same old buggy as shit hardware." */ |
| HMD(("done\n")); |
| } |
| |
| /* hp->happy_lock must be held */ |
| static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs) |
| { |
| struct net_device_stats *stats = &hp->net_stats; |
| |
| stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR); |
| hme_write32(hp, bregs + BMAC_RCRCECTR, 0); |
| |
| stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR); |
| hme_write32(hp, bregs + BMAC_UNALECTR, 0); |
| |
| stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR); |
| hme_write32(hp, bregs + BMAC_GLECTR, 0); |
| |
| stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR); |
| |
| stats->collisions += |
| (hme_read32(hp, bregs + BMAC_EXCTR) + |
| hme_read32(hp, bregs + BMAC_LTCTR)); |
| hme_write32(hp, bregs + BMAC_EXCTR, 0); |
| hme_write32(hp, bregs + BMAC_LTCTR, 0); |
| } |
| |
| /* hp->happy_lock must be held */ |
| static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs) |
| { |
| ASD(("happy_meal_poll_stop: ")); |
| |
| /* If polling disabled or not polling already, nothing to do. */ |
| if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) != |
| (HFLAG_POLLENABLE | HFLAG_POLL)) { |
| HMD(("not polling, return\n")); |
| return; |
| } |
| |
| /* Shut up the MIF. */ |
| ASD(("were polling, mif ints off, ")); |
| hme_write32(hp, tregs + TCVR_IMASK, 0xffff); |
| |
| /* Turn off polling. */ |
| ASD(("polling off, ")); |
| hme_write32(hp, tregs + TCVR_CFG, |
| hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE)); |
| |
| /* We are no longer polling. */ |
| hp->happy_flags &= ~(HFLAG_POLL); |
| |
| /* Let the bits set. */ |
| udelay(200); |
| ASD(("done\n")); |
| } |
| |
| /* Only Sun can take such nice parts and fuck up the programming interface |
| * like this. Good job guys... |
| */ |
| #define TCVR_RESET_TRIES 16 /* It should reset quickly */ |
| #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */ |
| |
| /* hp->happy_lock must be held */ |
| static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs) |
| { |
| u32 tconfig; |
| int result, tries = TCVR_RESET_TRIES; |
| |
| tconfig = hme_read32(hp, tregs + TCVR_CFG); |
| ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig)); |
| if (hp->tcvr_type == external) { |
| ASD(("external<")); |
| hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT)); |
| hp->tcvr_type = internal; |
| hp->paddr = TCV_PADDR_ITX; |
| ASD(("ISOLATE,")); |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, |
| (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); |
| result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| if (result == TCVR_FAILURE) { |
| ASD(("phyread_fail>\n")); |
| return -1; |
| } |
| ASD(("phyread_ok,PSELECT>")); |
| hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT); |
| hp->tcvr_type = external; |
| hp->paddr = TCV_PADDR_ETX; |
| } else { |
| if (tconfig & TCV_CFG_MDIO1) { |
| ASD(("internal<PSELECT,")); |
| hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT)); |
| ASD(("ISOLATE,")); |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, |
| (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); |
| result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| if (result == TCVR_FAILURE) { |
| ASD(("phyread_fail>\n")); |
| return -1; |
| } |
| ASD(("phyread_ok,~PSELECT>")); |
| hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT))); |
| hp->tcvr_type = internal; |
| hp->paddr = TCV_PADDR_ITX; |
| } |
| } |
| |
| ASD(("BMCR_RESET ")); |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET); |
| |
| while (--tries) { |
| result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| if (result == TCVR_FAILURE) |
| return -1; |
| hp->sw_bmcr = result; |
| if (!(result & BMCR_RESET)) |
| break; |
| udelay(20); |
| } |
| if (!tries) { |
| ASD(("BMCR RESET FAILED!\n")); |
| return -1; |
| } |
| ASD(("RESET_OK\n")); |
| |
| /* Get fresh copies of the PHY registers. */ |
| hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1); |
| hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2); |
| hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); |
| |
| ASD(("UNISOLATE")); |
| hp->sw_bmcr &= ~(BMCR_ISOLATE); |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| |
| tries = TCVR_UNISOLATE_TRIES; |
| while (--tries) { |
| result = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| if (result == TCVR_FAILURE) |
| return -1; |
| if (!(result & BMCR_ISOLATE)) |
| break; |
| udelay(20); |
| } |
| if (!tries) { |
| ASD((" FAILED!\n")); |
| return -1; |
| } |
| ASD((" SUCCESS and CSCONFIG_DFBYPASS\n")); |
| if (!is_lucent_phy(hp)) { |
| result = happy_meal_tcvr_read(hp, tregs, |
| DP83840_CSCONFIG); |
| happy_meal_tcvr_write(hp, tregs, |
| DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS)); |
| } |
| return 0; |
| } |
| |
| /* Figure out whether we have an internal or external transceiver. |
| * |
| * hp->happy_lock must be held |
| */ |
| static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs) |
| { |
| unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG); |
| |
| ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig)); |
| if (hp->happy_flags & HFLAG_POLL) { |
| /* If we are polling, we must stop to get the transceiver type. */ |
| ASD(("<polling> ")); |
| if (hp->tcvr_type == internal) { |
| if (tconfig & TCV_CFG_MDIO1) { |
| ASD(("<internal> <poll stop> ")); |
| happy_meal_poll_stop(hp, tregs); |
| hp->paddr = TCV_PADDR_ETX; |
| hp->tcvr_type = external; |
| ASD(("<external>\n")); |
| tconfig &= ~(TCV_CFG_PENABLE); |
| tconfig |= TCV_CFG_PSELECT; |
| hme_write32(hp, tregs + TCVR_CFG, tconfig); |
| } |
| } else { |
| if (hp->tcvr_type == external) { |
| ASD(("<external> ")); |
| if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) { |
| ASD(("<poll stop> ")); |
| happy_meal_poll_stop(hp, tregs); |
| hp->paddr = TCV_PADDR_ITX; |
| hp->tcvr_type = internal; |
| ASD(("<internal>\n")); |
| hme_write32(hp, tregs + TCVR_CFG, |
| hme_read32(hp, tregs + TCVR_CFG) & |
| ~(TCV_CFG_PSELECT)); |
| } |
| ASD(("\n")); |
| } else { |
| ASD(("<none>\n")); |
| } |
| } |
| } else { |
| u32 reread = hme_read32(hp, tregs + TCVR_CFG); |
| |
| /* Else we can just work off of the MDIO bits. */ |
| ASD(("<not polling> ")); |
| if (reread & TCV_CFG_MDIO1) { |
| hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT); |
| hp->paddr = TCV_PADDR_ETX; |
| hp->tcvr_type = external; |
| ASD(("<external>\n")); |
| } else { |
| if (reread & TCV_CFG_MDIO0) { |
| hme_write32(hp, tregs + TCVR_CFG, |
| tconfig & ~(TCV_CFG_PSELECT)); |
| hp->paddr = TCV_PADDR_ITX; |
| hp->tcvr_type = internal; |
| ASD(("<internal>\n")); |
| } else { |
| printk(KERN_ERR "happy meal: Transceiver and a coke please."); |
| hp->tcvr_type = none; /* Grrr... */ |
| ASD(("<none>\n")); |
| } |
| } |
| } |
| } |
| |
| /* The receive ring buffers are a bit tricky to get right. Here goes... |
| * |
| * The buffers we dma into must be 64 byte aligned. So we use a special |
| * alloc_skb() routine for the happy meal to allocate 64 bytes more than |
| * we really need. |
| * |
| * We use skb_reserve() to align the data block we get in the skb. We |
| * also program the etxregs->cfg register to use an offset of 2. This |
| * imperical constant plus the ethernet header size will always leave |
| * us with a nicely aligned ip header once we pass things up to the |
| * protocol layers. |
| * |
| * The numbers work out to: |
| * |
| * Max ethernet frame size 1518 |
| * Ethernet header size 14 |
| * Happy Meal base offset 2 |
| * |
| * Say a skb data area is at 0xf001b010, and its size alloced is |
| * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes. |
| * |
| * First our alloc_skb() routine aligns the data base to a 64 byte |
| * boundary. We now have 0xf001b040 as our skb data address. We |
| * plug this into the receive descriptor address. |
| * |
| * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset. |
| * So now the data we will end up looking at starts at 0xf001b042. When |
| * the packet arrives, we will check out the size received and subtract |
| * this from the skb->length. Then we just pass the packet up to the |
| * protocols as is, and allocate a new skb to replace this slot we have |
| * just received from. |
| * |
| * The ethernet layer will strip the ether header from the front of the |
| * skb we just sent to it, this leaves us with the ip header sitting |
| * nicely aligned at 0xf001b050. Also, for tcp and udp packets the |
| * Happy Meal has even checksummed the tcp/udp data for us. The 16 |
| * bit checksum is obtained from the low bits of the receive descriptor |
| * flags, thus: |
| * |
| * skb->csum = rxd->rx_flags & 0xffff; |
| * skb->ip_summed = CHECKSUM_HW; |
| * |
| * before sending off the skb to the protocols, and we are good as gold. |
| */ |
| static void happy_meal_clean_rings(struct happy_meal *hp) |
| { |
| int i; |
| |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| if (hp->rx_skbs[i] != NULL) { |
| struct sk_buff *skb = hp->rx_skbs[i]; |
| struct happy_meal_rxd *rxd; |
| u32 dma_addr; |
| |
| rxd = &hp->happy_block->happy_meal_rxd[i]; |
| dma_addr = hme_read_desc32(hp, &rxd->rx_addr); |
| hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE); |
| dev_kfree_skb_any(skb); |
| hp->rx_skbs[i] = NULL; |
| } |
| } |
| |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| if (hp->tx_skbs[i] != NULL) { |
| struct sk_buff *skb = hp->tx_skbs[i]; |
| struct happy_meal_txd *txd; |
| u32 dma_addr; |
| int frag; |
| |
| hp->tx_skbs[i] = NULL; |
| |
| for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| txd = &hp->happy_block->happy_meal_txd[i]; |
| dma_addr = hme_read_desc32(hp, &txd->tx_addr); |
| hme_dma_unmap(hp, dma_addr, |
| (hme_read_desc32(hp, &txd->tx_flags) |
| & TXFLAG_SIZE), |
| DMA_TODEVICE); |
| |
| if (frag != skb_shinfo(skb)->nr_frags) |
| i++; |
| } |
| |
| dev_kfree_skb_any(skb); |
| } |
| } |
| } |
| |
| /* hp->happy_lock must be held */ |
| static void happy_meal_init_rings(struct happy_meal *hp) |
| { |
| struct hmeal_init_block *hb = hp->happy_block; |
| struct net_device *dev = hp->dev; |
| int i; |
| |
| HMD(("happy_meal_init_rings: counters to zero, ")); |
| hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0; |
| |
| /* Free any skippy bufs left around in the rings. */ |
| HMD(("clean, ")); |
| happy_meal_clean_rings(hp); |
| |
| /* Now get new skippy bufs for the receive ring. */ |
| HMD(("init rxring, ")); |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| struct sk_buff *skb; |
| |
| skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); |
| if (!skb) { |
| hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0); |
| continue; |
| } |
| hp->rx_skbs[i] = skb; |
| skb->dev = dev; |
| |
| /* Because we reserve afterwards. */ |
| skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET)); |
| hme_write_rxd(hp, &hb->happy_meal_rxd[i], |
| (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)), |
| hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE)); |
| skb_reserve(skb, RX_OFFSET); |
| } |
| |
| HMD(("init txring, ")); |
| for (i = 0; i < TX_RING_SIZE; i++) |
| hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0); |
| |
| HMD(("done\n")); |
| } |
| |
| /* hp->happy_lock must be held */ |
| static void happy_meal_begin_auto_negotiation(struct happy_meal *hp, |
| void __iomem *tregs, |
| struct ethtool_cmd *ep) |
| { |
| int timeout; |
| |
| /* Read all of the registers we are interested in now. */ |
| hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1); |
| hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2); |
| |
| /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */ |
| |
| hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); |
| if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { |
| /* Advertise everything we can support. */ |
| if (hp->sw_bmsr & BMSR_10HALF) |
| hp->sw_advertise |= (ADVERTISE_10HALF); |
| else |
| hp->sw_advertise &= ~(ADVERTISE_10HALF); |
| |
| if (hp->sw_bmsr & BMSR_10FULL) |
| hp->sw_advertise |= (ADVERTISE_10FULL); |
| else |
| hp->sw_advertise &= ~(ADVERTISE_10FULL); |
| if (hp->sw_bmsr & BMSR_100HALF) |
| hp->sw_advertise |= (ADVERTISE_100HALF); |
| else |
| hp->sw_advertise &= ~(ADVERTISE_100HALF); |
| if (hp->sw_bmsr & BMSR_100FULL) |
| hp->sw_advertise |= (ADVERTISE_100FULL); |
| else |
| hp->sw_advertise &= ~(ADVERTISE_100FULL); |
| happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise); |
| |
| /* XXX Currently no Happy Meal cards I know off support 100BaseT4, |
| * XXX and this is because the DP83840 does not support it, changes |
| * XXX would need to be made to the tx/rx logic in the driver as well |
| * XXX so I completely skip checking for it in the BMSR for now. |
| */ |
| |
| #ifdef AUTO_SWITCH_DEBUG |
| ASD(("%s: Advertising [ ", hp->dev->name)); |
| if (hp->sw_advertise & ADVERTISE_10HALF) |
| ASD(("10H ")); |
| if (hp->sw_advertise & ADVERTISE_10FULL) |
| ASD(("10F ")); |
| if (hp->sw_advertise & ADVERTISE_100HALF) |
| ASD(("100H ")); |
| if (hp->sw_advertise & ADVERTISE_100FULL) |
| ASD(("100F ")); |
| #endif |
| |
| /* Enable Auto-Negotiation, this is usually on already... */ |
| hp->sw_bmcr |= BMCR_ANENABLE; |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| |
| /* Restart it to make sure it is going. */ |
| hp->sw_bmcr |= BMCR_ANRESTART; |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| |
| /* BMCR_ANRESTART self clears when the process has begun. */ |
| |
| timeout = 64; /* More than enough. */ |
| while (--timeout) { |
| hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| if (!(hp->sw_bmcr & BMCR_ANRESTART)) |
| break; /* got it. */ |
| udelay(10); |
| } |
| if (!timeout) { |
| printk(KERN_ERR "%s: Happy Meal would not start auto negotiation " |
| "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr); |
| printk(KERN_NOTICE "%s: Performing force link detection.\n", |
| hp->dev->name); |
| goto force_link; |
| } else { |
| hp->timer_state = arbwait; |
| } |
| } else { |
| force_link: |
| /* Force the link up, trying first a particular mode. |
| * Either we are here at the request of ethtool or |
| * because the Happy Meal would not start to autoneg. |
| */ |
| |
| /* Disable auto-negotiation in BMCR, enable the duplex and |
| * speed setting, init the timer state machine, and fire it off. |
| */ |
| if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) { |
| hp->sw_bmcr = BMCR_SPEED100; |
| } else { |
| if (ep->speed == SPEED_100) |
| hp->sw_bmcr = BMCR_SPEED100; |
| else |
| hp->sw_bmcr = 0; |
| if (ep->duplex == DUPLEX_FULL) |
| hp->sw_bmcr |= BMCR_FULLDPLX; |
| } |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| |
| if (!is_lucent_phy(hp)) { |
| /* OK, seems we need do disable the transceiver for the first |
| * tick to make sure we get an accurate link state at the |
| * second tick. |
| */ |
| hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, |
| DP83840_CSCONFIG); |
| hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); |
| happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, |
| hp->sw_csconfig); |
| } |
| hp->timer_state = ltrywait; |
| } |
| |
| hp->timer_ticks = 0; |
| hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */ |
| hp->happy_timer.data = (unsigned long) hp; |
| hp->happy_timer.function = &happy_meal_timer; |
| add_timer(&hp->happy_timer); |
| } |
| |
| /* hp->happy_lock must be held */ |
| static int happy_meal_init(struct happy_meal *hp) |
| { |
| void __iomem *gregs = hp->gregs; |
| void __iomem *etxregs = hp->etxregs; |
| void __iomem *erxregs = hp->erxregs; |
| void __iomem *bregs = hp->bigmacregs; |
| void __iomem *tregs = hp->tcvregs; |
| u32 regtmp, rxcfg; |
| unsigned char *e = &hp->dev->dev_addr[0]; |
| |
| /* If auto-negotiation timer is running, kill it. */ |
| del_timer(&hp->happy_timer); |
| |
| HMD(("happy_meal_init: happy_flags[%08x] ", |
| hp->happy_flags)); |
| if (!(hp->happy_flags & HFLAG_INIT)) { |
| HMD(("set HFLAG_INIT, ")); |
| hp->happy_flags |= HFLAG_INIT; |
| happy_meal_get_counters(hp, bregs); |
| } |
| |
| /* Stop polling. */ |
| HMD(("to happy_meal_poll_stop\n")); |
| happy_meal_poll_stop(hp, tregs); |
| |
| /* Stop transmitter and receiver. */ |
| HMD(("happy_meal_init: to happy_meal_stop\n")); |
| happy_meal_stop(hp, gregs); |
| |
| /* Alloc and reset the tx/rx descriptor chains. */ |
| HMD(("happy_meal_init: to happy_meal_init_rings\n")); |
| happy_meal_init_rings(hp); |
| |
| /* Shut up the MIF. */ |
| HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ", |
| hme_read32(hp, tregs + TCVR_IMASK))); |
| hme_write32(hp, tregs + TCVR_IMASK, 0xffff); |
| |
| /* See if we can enable the MIF frame on this card to speak to the DP83840. */ |
| if (hp->happy_flags & HFLAG_FENABLE) { |
| HMD(("use frame old[%08x], ", |
| hme_read32(hp, tregs + TCVR_CFG))); |
| hme_write32(hp, tregs + TCVR_CFG, |
| hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE)); |
| } else { |
| HMD(("use bitbang old[%08x], ", |
| hme_read32(hp, tregs + TCVR_CFG))); |
| hme_write32(hp, tregs + TCVR_CFG, |
| hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE); |
| } |
| |
| /* Check the state of the transceiver. */ |
| HMD(("to happy_meal_transceiver_check\n")); |
| happy_meal_transceiver_check(hp, tregs); |
| |
| /* Put the Big Mac into a sane state. */ |
| HMD(("happy_meal_init: ")); |
| switch(hp->tcvr_type) { |
| case none: |
| /* Cannot operate if we don't know the transceiver type! */ |
| HMD(("AAIEEE no transceiver type, EAGAIN")); |
| return -EAGAIN; |
| |
| case internal: |
| /* Using the MII buffers. */ |
| HMD(("internal, using MII, ")); |
| hme_write32(hp, bregs + BMAC_XIFCFG, 0); |
| break; |
| |
| case external: |
| /* Not using the MII, disable it. */ |
| HMD(("external, disable MII, ")); |
| hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB); |
| break; |
| }; |
| |
| if (happy_meal_tcvr_reset(hp, tregs)) |
| return -EAGAIN; |
| |
| /* Reset the Happy Meal Big Mac transceiver and the receiver. */ |
| HMD(("tx/rx reset, ")); |
| happy_meal_tx_reset(hp, bregs); |
| happy_meal_rx_reset(hp, bregs); |
| |
| /* Set jam size and inter-packet gaps to reasonable defaults. */ |
| HMD(("jsize/ipg1/ipg2, ")); |
| hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE); |
| hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1); |
| hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2); |
| |
| /* Load up the MAC address and random seed. */ |
| HMD(("rseed/macaddr, ")); |
| |
| /* The docs recommend to use the 10LSB of our MAC here. */ |
| hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff)); |
| |
| hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5])); |
| hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3])); |
| hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1])); |
| |
| HMD(("htable, ")); |
| if ((hp->dev->flags & IFF_ALLMULTI) || |
| (hp->dev->mc_count > 64)) { |
| hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff); |
| hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff); |
| hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff); |
| hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff); |
| } else if ((hp->dev->flags & IFF_PROMISC) == 0) { |
| u16 hash_table[4]; |
| struct dev_mc_list *dmi = hp->dev->mc_list; |
| char *addrs; |
| int i; |
| u32 crc; |
| |
| for (i = 0; i < 4; i++) |
| hash_table[i] = 0; |
| |
| for (i = 0; i < hp->dev->mc_count; i++) { |
| addrs = dmi->dmi_addr; |
| dmi = dmi->next; |
| |
| if (!(*addrs & 1)) |
| continue; |
| |
| crc = ether_crc_le(6, addrs); |
| crc >>= 26; |
| hash_table[crc >> 4] |= 1 << (crc & 0xf); |
| } |
| hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]); |
| hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]); |
| hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]); |
| hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]); |
| } else { |
| hme_write32(hp, bregs + BMAC_HTABLE3, 0); |
| hme_write32(hp, bregs + BMAC_HTABLE2, 0); |
| hme_write32(hp, bregs + BMAC_HTABLE1, 0); |
| hme_write32(hp, bregs + BMAC_HTABLE0, 0); |
| } |
| |
| /* Set the RX and TX ring ptrs. */ |
| HMD(("ring ptrs rxr[%08x] txr[%08x]\n", |
| ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)), |
| ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)))); |
| hme_write32(hp, erxregs + ERX_RING, |
| ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))); |
| hme_write32(hp, etxregs + ETX_RING, |
| ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))); |
| |
| /* Parity issues in the ERX unit of some HME revisions can cause some |
| * registers to not be written unless their parity is even. Detect such |
| * lost writes and simply rewrite with a low bit set (which will be ignored |
| * since the rxring needs to be 2K aligned). |
| */ |
| if (hme_read32(hp, erxregs + ERX_RING) != |
| ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))) |
| hme_write32(hp, erxregs + ERX_RING, |
| ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)) |
| | 0x4); |
| |
| /* Set the supported burst sizes. */ |
| HMD(("happy_meal_init: old[%08x] bursts<", |
| hme_read32(hp, gregs + GREG_CFG))); |
| |
| #ifndef __sparc__ |
| /* It is always PCI and can handle 64byte bursts. */ |
| hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64); |
| #else |
| if ((hp->happy_bursts & DMA_BURST64) && |
| ((hp->happy_flags & HFLAG_PCI) != 0 |
| #ifdef CONFIG_SBUS |
| || sbus_can_burst64(hp->happy_dev) |
| #endif |
| || 0)) { |
| u32 gcfg = GREG_CFG_BURST64; |
| |
| /* I have no idea if I should set the extended |
| * transfer mode bit for Cheerio, so for now I |
| * do not. -DaveM |
| */ |
| #ifdef CONFIG_SBUS |
| if ((hp->happy_flags & HFLAG_PCI) == 0 && |
| sbus_can_dma_64bit(hp->happy_dev)) { |
| sbus_set_sbus64(hp->happy_dev, |
| hp->happy_bursts); |
| gcfg |= GREG_CFG_64BIT; |
| } |
| #endif |
| |
| HMD(("64>")); |
| hme_write32(hp, gregs + GREG_CFG, gcfg); |
| } else if (hp->happy_bursts & DMA_BURST32) { |
| HMD(("32>")); |
| hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32); |
| } else if (hp->happy_bursts & DMA_BURST16) { |
| HMD(("16>")); |
| hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16); |
| } else { |
| HMD(("XXX>")); |
| hme_write32(hp, gregs + GREG_CFG, 0); |
| } |
| #endif /* __sparc__ */ |
| |
| /* Turn off interrupts we do not want to hear. */ |
| HMD((", enable global interrupts, ")); |
| hme_write32(hp, gregs + GREG_IMASK, |
| (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP | |
| GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR)); |
| |
| /* Set the transmit ring buffer size. */ |
| HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE, |
| hme_read32(hp, etxregs + ETX_RSIZE))); |
| hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1); |
| |
| /* Enable transmitter DVMA. */ |
| HMD(("tx dma enable old[%08x], ", |
| hme_read32(hp, etxregs + ETX_CFG))); |
| hme_write32(hp, etxregs + ETX_CFG, |
| hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE); |
| |
| /* This chip really rots, for the receiver sometimes when you |
| * write to its control registers not all the bits get there |
| * properly. I cannot think of a sane way to provide complete |
| * coverage for this hardware bug yet. |
| */ |
| HMD(("erx regs bug old[%08x]\n", |
| hme_read32(hp, erxregs + ERX_CFG))); |
| hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET)); |
| regtmp = hme_read32(hp, erxregs + ERX_CFG); |
| hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET)); |
| if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) { |
| printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n"); |
| printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n", |
| ERX_CFG_DEFAULT(RX_OFFSET), regtmp); |
| /* XXX Should return failure here... */ |
| } |
| |
| /* Enable Big Mac hash table filter. */ |
| HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ", |
| hme_read32(hp, bregs + BMAC_RXCFG))); |
| rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME; |
| if (hp->dev->flags & IFF_PROMISC) |
| rxcfg |= BIGMAC_RXCFG_PMISC; |
| hme_write32(hp, bregs + BMAC_RXCFG, rxcfg); |
| |
| /* Let the bits settle in the chip. */ |
| udelay(10); |
| |
| /* Ok, configure the Big Mac transmitter. */ |
| HMD(("BIGMAC init, ")); |
| regtmp = 0; |
| if (hp->happy_flags & HFLAG_FULL) |
| regtmp |= BIGMAC_TXCFG_FULLDPLX; |
| |
| /* Don't turn on the "don't give up" bit for now. It could cause hme |
| * to deadlock with the PHY if a Jabber occurs. |
| */ |
| hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/); |
| |
| /* Give up after 16 TX attempts. */ |
| hme_write32(hp, bregs + BMAC_ALIMIT, 16); |
| |
| /* Enable the output drivers no matter what. */ |
| regtmp = BIGMAC_XCFG_ODENABLE; |
| |
| /* If card can do lance mode, enable it. */ |
| if (hp->happy_flags & HFLAG_LANCE) |
| regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE; |
| |
| /* Disable the MII buffers if using external transceiver. */ |
| if (hp->tcvr_type == external) |
| regtmp |= BIGMAC_XCFG_MIIDISAB; |
| |
| HMD(("XIF config old[%08x], ", |
| hme_read32(hp, bregs + BMAC_XIFCFG))); |
| hme_write32(hp, bregs + BMAC_XIFCFG, regtmp); |
| |
| /* Start things up. */ |
| HMD(("tx old[%08x] and rx [%08x] ON!\n", |
| hme_read32(hp, bregs + BMAC_TXCFG), |
| hme_read32(hp, bregs + BMAC_RXCFG))); |
| hme_write32(hp, bregs + BMAC_TXCFG, |
| hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE); |
| hme_write32(hp, bregs + BMAC_RXCFG, |
| hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE); |
| |
| /* Get the autonegotiation started, and the watch timer ticking. */ |
| happy_meal_begin_auto_negotiation(hp, tregs, NULL); |
| |
| /* Success. */ |
| return 0; |
| } |
| |
| /* hp->happy_lock must be held */ |
| static void happy_meal_set_initial_advertisement(struct happy_meal *hp) |
| { |
| void __iomem *tregs = hp->tcvregs; |
| void __iomem *bregs = hp->bigmacregs; |
| void __iomem *gregs = hp->gregs; |
| |
| happy_meal_stop(hp, gregs); |
| hme_write32(hp, tregs + TCVR_IMASK, 0xffff); |
| if (hp->happy_flags & HFLAG_FENABLE) |
| hme_write32(hp, tregs + TCVR_CFG, |
| hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE)); |
| else |
| hme_write32(hp, tregs + TCVR_CFG, |
| hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE); |
| happy_meal_transceiver_check(hp, tregs); |
| switch(hp->tcvr_type) { |
| case none: |
| return; |
| case internal: |
| hme_write32(hp, bregs + BMAC_XIFCFG, 0); |
| break; |
| case external: |
| hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB); |
| break; |
| }; |
| if (happy_meal_tcvr_reset(hp, tregs)) |
| return; |
| |
| /* Latch PHY registers as of now. */ |
| hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR); |
| hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE); |
| |
| /* Advertise everything we can support. */ |
| if (hp->sw_bmsr & BMSR_10HALF) |
| hp->sw_advertise |= (ADVERTISE_10HALF); |
| else |
| hp->sw_advertise &= ~(ADVERTISE_10HALF); |
| |
| if (hp->sw_bmsr & BMSR_10FULL) |
| hp->sw_advertise |= (ADVERTISE_10FULL); |
| else |
| hp->sw_advertise &= ~(ADVERTISE_10FULL); |
| if (hp->sw_bmsr & BMSR_100HALF) |
| hp->sw_advertise |= (ADVERTISE_100HALF); |
| else |
| hp->sw_advertise &= ~(ADVERTISE_100HALF); |
| if (hp->sw_bmsr & BMSR_100FULL) |
| hp->sw_advertise |= (ADVERTISE_100FULL); |
| else |
| hp->sw_advertise &= ~(ADVERTISE_100FULL); |
| |
| /* Update the PHY advertisement register. */ |
| happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise); |
| } |
| |
| /* Once status is latched (by happy_meal_interrupt) it is cleared by |
| * the hardware, so we cannot re-read it and get a correct value. |
| * |
| * hp->happy_lock must be held |
| */ |
| static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status) |
| { |
| int reset = 0; |
| |
| /* Only print messages for non-counter related interrupts. */ |
| if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND | |
| GREG_STAT_MAXPKTERR | GREG_STAT_RXERR | |
| GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR | |
| GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR | |
| GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR | |
| GREG_STAT_SLVPERR)) |
| printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n", |
| hp->dev->name, status); |
| |
| if (status & GREG_STAT_RFIFOVF) { |
| /* Receive FIFO overflow is harmless and the hardware will take |
| care of it, just some packets are lost. Who cares. */ |
| printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name); |
| } |
| |
| if (status & GREG_STAT_STSTERR) { |
| /* BigMAC SQE link test failed. */ |
| printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name); |
| reset = 1; |
| } |
| |
| if (status & GREG_STAT_TFIFO_UND) { |
| /* Transmit FIFO underrun, again DMA error likely. */ |
| printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n", |
| hp->dev->name); |
| reset = 1; |
| } |
| |
| if (status & GREG_STAT_MAXPKTERR) { |
| /* Driver error, tried to transmit something larger |
| * than ethernet max mtu. |
| */ |
| printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name); |
| reset = 1; |
| } |
| |
| if (status & GREG_STAT_NORXD) { |
| /* This is harmless, it just means the system is |
| * quite loaded and the incoming packet rate was |
| * faster than the interrupt handler could keep up |
| * with. |
| */ |
| printk(KERN_INFO "%s: Happy Meal out of receive " |
| "descriptors, packet dropped.\n", |
| hp->dev->name); |
| } |
| |
| if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) { |
| /* All sorts of DMA receive errors. */ |
| printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name); |
| if (status & GREG_STAT_RXERR) |
| printk("GenericError "); |
| if (status & GREG_STAT_RXPERR) |
| printk("ParityError "); |
| if (status & GREG_STAT_RXTERR) |
| printk("RxTagBotch "); |
| printk("]\n"); |
| reset = 1; |
| } |
| |
| if (status & GREG_STAT_EOPERR) { |
| /* Driver bug, didn't set EOP bit in tx descriptor given |
| * to the happy meal. |
| */ |
| printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n", |
| hp->dev->name); |
| reset = 1; |
| } |
| |
| if (status & GREG_STAT_MIFIRQ) { |
| /* MIF signalled an interrupt, were we polling it? */ |
| printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name); |
| } |
| |
| if (status & |
| (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) { |
| /* All sorts of transmit DMA errors. */ |
| printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name); |
| if (status & GREG_STAT_TXEACK) |
| printk("GenericError "); |
| if (status & GREG_STAT_TXLERR) |
| printk("LateError "); |
| if (status & GREG_STAT_TXPERR) |
| printk("ParityErro "); |
| if (status & GREG_STAT_TXTERR) |
| printk("TagBotch "); |
| printk("]\n"); |
| reset = 1; |
| } |
| |
| if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) { |
| /* Bus or parity error when cpu accessed happy meal registers |
| * or it's internal FIFO's. Should never see this. |
| */ |
| printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n", |
| hp->dev->name, |
| (status & GREG_STAT_SLVPERR) ? "parity" : "generic"); |
| reset = 1; |
| } |
| |
| if (reset) { |
| printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name); |
| happy_meal_init(hp); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* hp->happy_lock must be held */ |
| static void happy_meal_mif_interrupt(struct happy_meal *hp) |
| { |
| void __iomem *tregs = hp->tcvregs; |
| |
| printk(KERN_INFO "%s: Link status change.\n", hp->dev->name); |
| hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR); |
| hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA); |
| |
| /* Use the fastest transmission protocol possible. */ |
| if (hp->sw_lpa & LPA_100FULL) { |
| printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name); |
| hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100); |
| } else if (hp->sw_lpa & LPA_100HALF) { |
| printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name); |
| hp->sw_bmcr |= BMCR_SPEED100; |
| } else if (hp->sw_lpa & LPA_10FULL) { |
| printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name); |
| hp->sw_bmcr |= BMCR_FULLDPLX; |
| } else { |
| printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name); |
| } |
| happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr); |
| |
| /* Finally stop polling and shut up the MIF. */ |
| happy_meal_poll_stop(hp, tregs); |
| } |
| |
| #ifdef TXDEBUG |
| #define TXD(x) printk x |
| #else |
| #define TXD(x) |
| #endif |
| |
| /* hp->happy_lock must be held */ |
| static void happy_meal_tx(struct happy_meal *hp) |
| { |
| struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; |
| struct happy_meal_txd *this; |
| struct net_device *dev = hp->dev; |
| int elem; |
| |
| elem = hp->tx_old; |
| TXD(("TX<")); |
| while (elem != hp->tx_new) { |
| struct sk_buff *skb; |
| u32 flags, dma_addr, dma_len; |
| int frag; |
| |
| TXD(("[%d]", elem)); |
| this = &txbase[elem]; |
| flags = hme_read_desc32(hp, &this->tx_flags); |
| if (flags & TXFLAG_OWN) |
| break; |
| skb = hp->tx_skbs[elem]; |
| if (skb_shinfo(skb)->nr_frags) { |
| int last; |
| |
| last = elem + skb_shinfo(skb)->nr_frags; |
| last &= (TX_RING_SIZE - 1); |
| flags = hme_read_desc32(hp, &txbase[last].tx_flags); |
| if (flags & TXFLAG_OWN) |
| break; |
| } |
| hp->tx_skbs[elem] = NULL; |
| hp->net_stats.tx_bytes += skb->len; |
| |
| for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| dma_addr = hme_read_desc32(hp, &this->tx_addr); |
| dma_len = hme_read_desc32(hp, &this->tx_flags); |
| |
| dma_len &= TXFLAG_SIZE; |
| hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE); |
| |
| elem = NEXT_TX(elem); |
| this = &txbase[elem]; |
| } |
| |
| dev_kfree_skb_irq(skb); |
| hp->net_stats.tx_packets++; |
| } |
| hp->tx_old = elem; |
| TXD((">")); |
| |
| if (netif_queue_stopped(dev) && |
| TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1)) |
| netif_wake_queue(dev); |
| } |
| |
| #ifdef RXDEBUG |
| #define RXD(x) printk x |
| #else |
| #define RXD(x) |
| #endif |
| |
| /* Originally I used to handle the allocation failure by just giving back just |
| * that one ring buffer to the happy meal. Problem is that usually when that |
| * condition is triggered, the happy meal expects you to do something reasonable |
| * with all of the packets it has DMA'd in. So now I just drop the entire |
| * ring when we cannot get a new skb and give them all back to the happy meal, |
| * maybe things will be "happier" now. |
| * |
| * hp->happy_lock must be held |
| */ |
| static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev) |
| { |
| struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; |
| struct happy_meal_rxd *this; |
| int elem = hp->rx_new, drops = 0; |
| u32 flags; |
| |
| RXD(("RX<")); |
| this = &rxbase[elem]; |
| while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) { |
| struct sk_buff *skb; |
| int len = flags >> 16; |
| u16 csum = flags & RXFLAG_CSUM; |
| u32 dma_addr = hme_read_desc32(hp, &this->rx_addr); |
| |
| RXD(("[%d ", elem)); |
| |
| /* Check for errors. */ |
| if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { |
| RXD(("ERR(%08x)]", flags)); |
| hp->net_stats.rx_errors++; |
| if (len < ETH_ZLEN) |
| hp->net_stats.rx_length_errors++; |
| if (len & (RXFLAG_OVERFLOW >> 16)) { |
| hp->net_stats.rx_over_errors++; |
| hp->net_stats.rx_fifo_errors++; |
| } |
| |
| /* Return it to the Happy meal. */ |
| drop_it: |
| hp->net_stats.rx_dropped++; |
| hme_write_rxd(hp, this, |
| (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), |
| dma_addr); |
| goto next; |
| } |
| skb = hp->rx_skbs[elem]; |
| if (len > RX_COPY_THRESHOLD) { |
| struct sk_buff *new_skb; |
| |
| /* Now refill the entry, if we can. */ |
| new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); |
| if (new_skb == NULL) { |
| drops++; |
| goto drop_it; |
| } |
| hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE); |
| hp->rx_skbs[elem] = new_skb; |
| new_skb->dev = dev; |
| skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET)); |
| hme_write_rxd(hp, this, |
| (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), |
| hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE)); |
| skb_reserve(new_skb, RX_OFFSET); |
| |
| /* Trim the original skb for the netif. */ |
| skb_trim(skb, len); |
| } else { |
| struct sk_buff *copy_skb = dev_alloc_skb(len + 2); |
| |
| if (copy_skb == NULL) { |
| drops++; |
| goto drop_it; |
| } |
| |
| copy_skb->dev = dev; |
| skb_reserve(copy_skb, 2); |
| skb_put(copy_skb, len); |
| hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE); |
| memcpy(copy_skb->data, skb->data, len); |
| hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE); |
| |
| /* Reuse original ring buffer. */ |
| hme_write_rxd(hp, this, |
| (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), |
| dma_addr); |
| |
| skb = copy_skb; |
| } |
| |
| /* This card is _fucking_ hot... */ |
| skb->csum = ntohs(csum ^ 0xffff); |
| skb->ip_summed = CHECKSUM_HW; |
| |
| RXD(("len=%d csum=%4x]", len, csum)); |
| skb->protocol = eth_type_trans(skb, dev); |
| netif_rx(skb); |
| |
| dev->last_rx = jiffies; |
| hp->net_stats.rx_packets++; |
| hp->net_stats.rx_bytes += len; |
| next: |
| elem = NEXT_RX(elem); |
| this = &rxbase[elem]; |
| } |
| hp->rx_new = elem; |
| if (drops) |
| printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name); |
| RXD((">")); |
| } |
| |
| static irqreturn_t happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct net_device *dev = (struct net_device *) dev_id; |
| struct happy_meal *hp = dev->priv; |
| u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT); |
| |
| HMD(("happy_meal_interrupt: status=%08x ", happy_status)); |
| |
| spin_lock(&hp->happy_lock); |
| |
| if (happy_status & GREG_STAT_ERRORS) { |
| HMD(("ERRORS ")); |
| if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status)) |
| goto out; |
| } |
| |
| if (happy_status & GREG_STAT_MIFIRQ) { |
| HMD(("MIFIRQ ")); |
| happy_meal_mif_interrupt(hp); |
| } |
| |
| if (happy_status & GREG_STAT_TXALL) { |
| HMD(("TXALL ")); |
| happy_meal_tx(hp); |
| } |
| |
| if (happy_status & GREG_STAT_RXTOHOST) { |
| HMD(("RXTOHOST ")); |
| happy_meal_rx(hp, dev); |
| } |
| |
| HMD(("done\n")); |
| out: |
| spin_unlock(&hp->happy_lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_SBUS |
| static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie, struct pt_regs *ptregs) |
| { |
| struct quattro *qp = (struct quattro *) cookie; |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| struct net_device *dev = qp->happy_meals[i]; |
| struct happy_meal *hp = dev->priv; |
| u32 happy_status = hme_read32(hp, hp->gregs + GREG_STAT); |
| |
| HMD(("quattro_interrupt: status=%08x ", happy_status)); |
| |
| if (!(happy_status & (GREG_STAT_ERRORS | |
| GREG_STAT_MIFIRQ | |
| GREG_STAT_TXALL | |
| GREG_STAT_RXTOHOST))) |
| continue; |
| |
| spin_lock(&hp->happy_lock); |
| |
| if (happy_status & GREG_STAT_ERRORS) { |
| HMD(("ERRORS ")); |
| if (happy_meal_is_not_so_happy(hp, happy_status)) |
| goto next; |
| } |
| |
| if (happy_status & GREG_STAT_MIFIRQ) { |
| HMD(("MIFIRQ ")); |
| happy_meal_mif_interrupt(hp); |
| } |
| |
| if (happy_status & GREG_STAT_TXALL) { |
| HMD(("TXALL ")); |
| happy_meal_tx(hp); |
| } |
| |
| if (happy_status & GREG_STAT_RXTOHOST) { |
| HMD(("RXTOHOST ")); |
| happy_meal_rx(hp, dev); |
| } |
| |
| next: |
| spin_unlock(&hp->happy_lock); |
| } |
| HMD(("done\n")); |
| |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| static int happy_meal_open(struct net_device *dev) |
| { |
| struct happy_meal *hp = dev->priv; |
| int res; |
| |
| HMD(("happy_meal_open: ")); |
| |
| /* On SBUS Quattro QFE cards, all hme interrupts are concentrated |
| * into a single source which we register handling at probe time. |
| */ |
| if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) { |
| if (request_irq(dev->irq, &happy_meal_interrupt, |
| SA_SHIRQ, dev->name, (void *)dev)) { |
| HMD(("EAGAIN\n")); |
| printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n", |
| dev->irq); |
| |
| return -EAGAIN; |
| } |
| } |
| |
| HMD(("to happy_meal_init\n")); |
| |
| spin_lock_irq(&hp->happy_lock); |
| res = happy_meal_init(hp); |
| spin_unlock_irq(&hp->happy_lock); |
| |
| if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)) |
| free_irq(dev->irq, dev); |
| return res; |
| } |
| |
| static int happy_meal_close(struct net_device *dev) |
| { |
| struct happy_meal *hp = dev->priv; |
| |
| spin_lock_irq(&hp->happy_lock); |
| happy_meal_stop(hp, hp->gregs); |
| happy_meal_clean_rings(hp); |
| |
| /* If auto-negotiation timer is running, kill it. */ |
| del_timer(&hp->happy_timer); |
| |
| spin_unlock_irq(&hp->happy_lock); |
| |
| /* On Quattro QFE cards, all hme interrupts are concentrated |
| * into a single source which we register handling at probe |
| * time and never unregister. |
| */ |
| if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) |
| free_irq(dev->irq, dev); |
| |
| return 0; |
| } |
| |
| #ifdef SXDEBUG |
| #define SXD(x) printk x |
| #else |
| #define SXD(x) |
| #endif |
| |
| static void happy_meal_tx_timeout(struct net_device *dev) |
| { |
| struct happy_meal *hp = dev->priv; |
| |
| printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name); |
| tx_dump_log(); |
| printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name, |
| hme_read32(hp, hp->gregs + GREG_STAT), |
| hme_read32(hp, hp->etxregs + ETX_CFG), |
| hme_read32(hp, hp->bigmacregs + BMAC_TXCFG)); |
| |
| spin_lock_irq(&hp->happy_lock); |
| happy_meal_init(hp); |
| spin_unlock_irq(&hp->happy_lock); |
| |
| netif_wake_queue(dev); |
| } |
| |
| static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct happy_meal *hp = dev->priv; |
| int entry; |
| u32 tx_flags; |
| |
| tx_flags = TXFLAG_OWN; |
| if (skb->ip_summed == CHECKSUM_HW) { |
| u32 csum_start_off, csum_stuff_off; |
| |
| csum_start_off = (u32) (skb->h.raw - skb->data); |
| csum_stuff_off = (u32) ((skb->h.raw + skb->csum) - skb->data); |
| |
| tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE | |
| ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) | |
| ((csum_stuff_off << 20) & TXFLAG_CSLOCATION)); |
| } |
| |
| spin_lock_irq(&hp->happy_lock); |
| |
| if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) { |
| netif_stop_queue(dev); |
| spin_unlock_irq(&hp->happy_lock); |
| printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n", |
| dev->name); |
| return 1; |
| } |
| |
| entry = hp->tx_new; |
| SXD(("SX<l[%d]e[%d]>", len, entry)); |
| hp->tx_skbs[entry] = skb; |
| |
| if (skb_shinfo(skb)->nr_frags == 0) { |
| u32 mapping, len; |
| |
| len = skb->len; |
| mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE); |
| tx_flags |= (TXFLAG_SOP | TXFLAG_EOP); |
| hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry], |
| (tx_flags | (len & TXFLAG_SIZE)), |
| mapping); |
| entry = NEXT_TX(entry); |
| } else { |
| u32 first_len, first_mapping; |
| int frag, first_entry = entry; |
| |
| /* We must give this initial chunk to the device last. |
| * Otherwise we could race with the device. |
| */ |
| first_len = skb_headlen(skb); |
| first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE); |
| entry = NEXT_TX(entry); |
| |
| for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { |
| skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; |
| u32 len, mapping, this_txflags; |
| |
| len = this_frag->size; |
| mapping = hme_dma_map(hp, |
| ((void *) page_address(this_frag->page) + |
| this_frag->page_offset), |
| len, DMA_TODEVICE); |
| this_txflags = tx_flags; |
| if (frag == skb_shinfo(skb)->nr_frags - 1) |
| this_txflags |= TXFLAG_EOP; |
| hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry], |
| (this_txflags | (len & TXFLAG_SIZE)), |
| mapping); |
| entry = NEXT_TX(entry); |
| } |
| hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry], |
| (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)), |
| first_mapping); |
| } |
| |
| hp->tx_new = entry; |
| |
| if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1)) |
| netif_stop_queue(dev); |
| |
| /* Get it going. */ |
| hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP); |
| |
| spin_unlock_irq(&hp->happy_lock); |
| |
| dev->trans_start = jiffies; |
| |
| tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); |
| return 0; |
| } |
| |
| static struct net_device_stats *happy_meal_get_stats(struct net_device *dev) |
| { |
| struct happy_meal *hp = dev->priv; |
| |
| spin_lock_irq(&hp->happy_lock); |
| happy_meal_get_counters(hp, hp->bigmacregs); |
| spin_unlock_irq(&hp->happy_lock); |
| |
| return &hp->net_stats; |
| } |
| |
| static void happy_meal_set_multicast(struct net_device *dev) |
| { |
| struct happy_meal *hp = dev->priv; |
| void __iomem *bregs = hp->bigmacregs; |
| struct dev_mc_list *dmi = dev->mc_list; |
| char *addrs; |
| int i; |
| u32 crc; |
| |
| spin_lock_irq(&hp->happy_lock); |
| |
| netif_stop_queue(dev); |
| |
| if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { |
| hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff); |
| hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff); |
| hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff); |
| hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff); |
| } else if (dev->flags & IFF_PROMISC) { |
| hme_write32(hp, bregs + BMAC_RXCFG, |
| hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC); |
| } else { |
| u16 hash_table[4]; |
| |
| for (i = 0; i < 4; i++) |
| hash_table[i] = 0; |
| |
| for (i = 0; i < dev->mc_count; i++) { |
| addrs = dmi->dmi_addr; |
| dmi = dmi->next; |
| |
| if (!(*addrs & 1)) |
| continue; |
| |
| crc = ether_crc_le(6, addrs); |
| crc >>= 26; |
| hash_table[crc >> 4] |= 1 << (crc & 0xf); |
| } |
| hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]); |
| hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]); |
| hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]); |
| hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]); |
| } |
| |
| netif_wake_queue(dev); |
| |
| spin_unlock_irq(&hp->happy_lock); |
| } |
| |
| /* Ethtool support... */ |
| static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct happy_meal *hp = dev->priv; |
| |
| cmd->supported = |
| (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | |
| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | |
| SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII); |
| |
| /* XXX hardcoded stuff for now */ |
| cmd->port = PORT_TP; /* XXX no MII support */ |
| cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */ |
| cmd->phy_address = 0; /* XXX fixed PHYAD */ |
| |
| /* Record PHY settings. */ |
| spin_lock_irq(&hp->happy_lock); |
| hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR); |
| hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA); |
| spin_unlock_irq(&hp->happy_lock); |
| |
| if (hp->sw_bmcr & BMCR_ANENABLE) { |
| cmd->autoneg = AUTONEG_ENABLE; |
| cmd->speed = |
| (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ? |
| SPEED_100 : SPEED_10; |
| if (cmd->speed == SPEED_100) |
| cmd->duplex = |
| (hp->sw_lpa & (LPA_100FULL)) ? |
| DUPLEX_FULL : DUPLEX_HALF; |
| else |
| cmd->duplex = |
| (hp->sw_lpa & (LPA_10FULL)) ? |
| DUPLEX_FULL : DUPLEX_HALF; |
| } else { |
| cmd->autoneg = AUTONEG_DISABLE; |
| cmd->speed = |
| (hp->sw_bmcr & BMCR_SPEED100) ? |
| SPEED_100 : SPEED_10; |
| cmd->duplex = |
| (hp->sw_bmcr & BMCR_FULLDPLX) ? |
| DUPLEX_FULL : DUPLEX_HALF; |
| } |
| return 0; |
| } |
| |
| static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct happy_meal *hp = dev->priv; |
| |
| /* Verify the settings we care about. */ |
| if (cmd->autoneg != AUTONEG_ENABLE && |
| cmd->autoneg != AUTONEG_DISABLE) |
| return -EINVAL; |
| if (cmd->autoneg == AUTONEG_DISABLE && |
| ((cmd->speed != SPEED_100 && |
| cmd->speed != SPEED_10) || |
| (cmd->duplex != DUPLEX_HALF && |
| cmd->duplex != DUPLEX_FULL))) |
| return -EINVAL; |
| |
| /* Ok, do it to it. */ |
| spin_lock_irq(&hp->happy_lock); |
| del_timer(&hp->happy_timer); |
| happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd); |
| spin_unlock_irq(&hp->happy_lock); |
| |
| return 0; |
| } |
| |
| static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct happy_meal *hp = dev->priv; |
| |
| strcpy(info->driver, "sunhme"); |
| strcpy(info->version, "2.02"); |
| if (hp->happy_flags & HFLAG_PCI) { |
| struct pci_dev *pdev = hp->happy_dev; |
| strcpy(info->bus_info, pci_name(pdev)); |
| } |
| #ifdef CONFIG_SBUS |
| else { |
| struct sbus_dev *sdev = hp->happy_dev; |
| sprintf(info->bus_info, "SBUS:%d", |
| sdev->slot); |
| } |
| #endif |
| } |
| |
| static u32 hme_get_link(struct net_device *dev) |
| { |
| struct happy_meal *hp = dev->priv; |
| |
| spin_lock_irq(&hp->happy_lock); |
| hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR); |
| spin_unlock_irq(&hp->happy_lock); |
| |
| return (hp->sw_bmsr & BMSR_LSTATUS); |
| } |
| |
| static struct ethtool_ops hme_ethtool_ops = { |
| .get_settings = hme_get_settings, |
| .set_settings = hme_set_settings, |
| .get_drvinfo = hme_get_drvinfo, |
| .get_link = hme_get_link, |
| }; |
| |
| static int hme_version_printed; |
| |
| #ifdef CONFIG_SBUS |
| void __init quattro_get_ranges(struct quattro *qp) |
| { |
| struct sbus_dev *sdev = qp->quattro_dev; |
| int err; |
| |
| err = prom_getproperty(sdev->prom_node, |
| "ranges", |
| (char *)&qp->ranges[0], |
| sizeof(qp->ranges)); |
| if (err == 0 || err == -1) { |
| qp->nranges = 0; |
| return; |
| } |
| qp->nranges = (err / sizeof(struct linux_prom_ranges)); |
| } |
| |
| static void __init quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp) |
| { |
| struct sbus_dev *sdev = hp->happy_dev; |
| int rng; |
| |
| for (rng = 0; rng < qp->nranges; rng++) { |
| struct linux_prom_ranges *rngp = &qp->ranges[rng]; |
| int reg; |
| |
| for (reg = 0; reg < 5; reg++) { |
| if (sdev->reg_addrs[reg].which_io == |
| rngp->ot_child_space) |
| break; |
| } |
| if (reg == 5) |
| continue; |
| |
| sdev->reg_addrs[reg].which_io = rngp->ot_parent_space; |
| sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base; |
| } |
| } |
| |
| /* Given a happy meal sbus device, find it's quattro parent. |
| * If none exist, allocate and return a new one. |
| * |
| * Return NULL on failure. |
| */ |
| static struct quattro * __init quattro_sbus_find(struct sbus_dev *goal_sdev) |
| { |
| struct sbus_bus *sbus; |
| struct sbus_dev *sdev; |
| struct quattro *qp; |
| int i; |
| |
| if (qfe_sbus_list == NULL) |
| goto found; |
| |
| for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) { |
| for (i = 0, sdev = qp->quattro_dev; |
| (sdev != NULL) && (i < 4); |
| sdev = sdev->next, i++) { |
| if (sdev == goal_sdev) |
| return qp; |
| } |
| } |
| for_each_sbus(sbus) { |
| for_each_sbusdev(sdev, sbus) { |
| if (sdev == goal_sdev) |
| goto found; |
| } |
| } |
| |
| /* Cannot find quattro parent, fail. */ |
| return NULL; |
| |
| found: |
| qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); |
| if (qp != NULL) { |
| int i; |
| |
| for (i = 0; i < 4; i++) |
| qp->happy_meals[i] = NULL; |
| |
| qp->quattro_dev = goal_sdev; |
| qp->next = qfe_sbus_list; |
| qfe_sbus_list = qp; |
| quattro_get_ranges(qp); |
| } |
| return qp; |
| } |
| |
| /* After all quattro cards have been probed, we call these functions |
| * to register the IRQ handlers. |
| */ |
| static void __init quattro_sbus_register_irqs(void) |
| { |
| struct quattro *qp; |
| |
| for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) { |
| struct sbus_dev *sdev = qp->quattro_dev; |
| int err; |
| |
| err = request_irq(sdev->irqs[0], |
| quattro_sbus_interrupt, |
| SA_SHIRQ, "Quattro", |
| qp); |
| if (err != 0) { |
| printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err); |
| panic("QFE request irq"); |
| } |
| } |
| } |
| #endif /* CONFIG_SBUS */ |
| |
| #ifdef CONFIG_PCI |
| static struct quattro * __init quattro_pci_find(struct pci_dev *pdev) |
| { |
| struct pci_dev *bdev = pdev->bus->self; |
| struct quattro *qp; |
| |
| if (!bdev) return NULL; |
| for (qp = qfe_pci_list; qp != NULL; qp = qp->next) { |
| struct pci_dev *qpdev = qp->quattro_dev; |
| |
| if (qpdev == bdev) |
| return qp; |
| } |
| qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); |
| if (qp != NULL) { |
| int i; |
| |
| for (i = 0; i < 4; i++) |
| qp->happy_meals[i] = NULL; |
| |
| qp->quattro_dev = bdev; |
| qp->next = qfe_pci_list; |
| qfe_pci_list = qp; |
| |
| /* No range tricks necessary on PCI. */ |
| qp->nranges = 0; |
| } |
| return qp; |
| } |
| #endif /* CONFIG_PCI */ |
| |
| #ifdef CONFIG_SBUS |
| static int __init happy_meal_sbus_init(struct sbus_dev *sdev, int is_qfe) |
| { |
| struct quattro *qp = NULL; |
| struct happy_meal *hp; |
| struct net_device *dev; |
| int i, qfe_slot = -1; |
| int err = -ENODEV; |
| |
| if (is_qfe) { |
| qp = quattro_sbus_find(sdev); |
| if (qp == NULL) |
| goto err_out; |
| for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) |
| if (qp->happy_meals[qfe_slot] == NULL) |
| break; |
| if (qfe_slot == 4) |
| goto err_out; |
| } |
| |
| err = -ENOMEM; |
| dev = alloc_etherdev(sizeof(struct happy_meal)); |
| if (!dev) |
| goto err_out; |
| SET_MODULE_OWNER(dev); |
| |
| if (hme_version_printed++ == 0) |
| printk(KERN_INFO "%s", version); |
| |
| /* If user did not specify a MAC address specifically, use |
| * the Quattro local-mac-address property... |
| */ |
| for (i = 0; i < 6; i++) { |
| if (macaddr[i] != 0) |
| break; |
| } |
| if (i < 6) { /* a mac address was given */ |
| for (i = 0; i < 6; i++) |
| dev->dev_addr[i] = macaddr[i]; |
| macaddr[5]++; |
| } else if (qfe_slot != -1 && |
| prom_getproplen(sdev->prom_node, |
| "local-mac-address") == 6) { |
| prom_getproperty(sdev->prom_node, "local-mac-address", |
| dev->dev_addr, 6); |
| } else { |
| memcpy(dev->dev_addr, idprom->id_ethaddr, 6); |
| } |
| |
| hp = dev->priv; |
| |
| hp->happy_dev = sdev; |
| |
| spin_lock_init(&hp->happy_lock); |
| |
| err = -ENODEV; |
| if (sdev->num_registers != 5) { |
| printk(KERN_ERR "happymeal: Device does not have 5 regs, it has %d.\n", |
| sdev->num_registers); |
| printk(KERN_ERR "happymeal: Would you like that for here or to go?\n"); |
| goto err_out_free_netdev; |
| } |
| |
| if (qp != NULL) { |
| hp->qfe_parent = qp; |
| hp->qfe_ent = qfe_slot; |
| qp->happy_meals[qfe_slot] = dev; |
| quattro_apply_ranges(qp, hp); |
| } |
| |
| hp->gregs = sbus_ioremap(&sdev->resource[0], 0, |
| GREG_REG_SIZE, "HME Global Regs"); |
| if (!hp->gregs) { |
| printk(KERN_ERR "happymeal: Cannot map Happy Meal global registers.\n"); |
| goto err_out_free_netdev; |
| } |
| |
| hp->etxregs = sbus_ioremap(&sdev->resource[1], 0, |
| ETX_REG_SIZE, "HME TX Regs"); |
| if (!hp->etxregs) { |
| printk(KERN_ERR "happymeal: Cannot map Happy Meal MAC Transmit registers.\n"); |
| goto err_out_iounmap; |
| } |
| |
| hp->erxregs = sbus_ioremap(&sdev->resource[2], 0, |
| ERX_REG_SIZE, "HME RX Regs"); |
| if (!hp->erxregs) { |
| printk(KERN_ERR "happymeal: Cannot map Happy Meal MAC Receive registers.\n"); |
| goto err_out_iounmap; |
| } |
| |
| hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0, |
| BMAC_REG_SIZE, "HME BIGMAC Regs"); |
| if (!hp->bigmacregs) { |
| printk(KERN_ERR "happymeal: Cannot map Happy Meal BIGMAC registers.\n"); |
| goto err_out_iounmap; |
| } |
| |
| hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0, |
| TCVR_REG_SIZE, "HME Tranceiver Regs"); |
| if (!hp->tcvregs) { |
| printk(KERN_ERR "happymeal: Cannot map Happy Meal Tranceiver registers.\n"); |
| goto err_out_iounmap; |
| } |
| |
| hp->hm_revision = prom_getintdefault(sdev->prom_node, "hm-rev", 0xff); |
| if (hp->hm_revision == 0xff) |
| hp->hm_revision = 0xa0; |
| |
| /* Now enable the feature flags we can. */ |
| if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21) |
| hp->happy_flags = HFLAG_20_21; |
| else if (hp->hm_revision != 0xa0) |
| hp->happy_flags = HFLAG_NOT_A0; |
| |
| if (qp != NULL) |
| hp->happy_flags |= HFLAG_QUATTRO; |
| |
| /* Get the supported DVMA burst sizes from our Happy SBUS. */ |
| hp->happy_bursts = prom_getintdefault(sdev->bus->prom_node, |
| "burst-sizes", 0x00); |
| |
| hp->happy_block = sbus_alloc_consistent(hp->happy_dev, |
| PAGE_SIZE, |
| &hp->hblock_dvma); |
| err = -ENOMEM; |
| if (!hp->happy_block) { |
| printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n"); |
| goto err_out_iounmap; |
| } |
| |
| /* Force check of the link first time we are brought up. */ |
| hp->linkcheck = 0; |
| |
| /* Force timer state to 'asleep' with count of zero. */ |
| hp->timer_state = asleep; |
| hp->timer_ticks = 0; |
| |
| init_timer(&hp->happy_timer); |
| |
| hp->dev = dev; |
| dev->open = &happy_meal_open; |
| dev->stop = &happy_meal_close; |
| dev->hard_start_xmit = &happy_meal_start_xmit; |
| dev->get_stats = &happy_meal_get_stats; |
| dev->set_multicast_list = &happy_meal_set_multicast; |
| dev->tx_timeout = &happy_meal_tx_timeout; |
| dev->watchdog_timeo = 5*HZ; |
| dev->ethtool_ops = &hme_ethtool_ops; |
| |
| /* Happy Meal can do it all... except VLAN. */ |
| dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED; |
| |
| dev->irq = sdev->irqs[0]; |
| |
| #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) |
| /* Hook up PCI register/dma accessors. */ |
| hp->read_desc32 = sbus_hme_read_desc32; |
| hp->write_txd = sbus_hme_write_txd; |
| hp->write_rxd = sbus_hme_write_rxd; |
| hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single; |
| hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single; |
| hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int)) |
| sbus_dma_sync_single_for_cpu; |
| hp->dma_sync_for_device = (void (*)(void *, u32, long, int)) |
| sbus_dma_sync_single_for_device; |
| hp->read32 = sbus_hme_read32; |
| hp->write32 = sbus_hme_write32; |
| #endif |
| |
| /* Grrr, Happy Meal comes up by default not advertising |
| * full duplex 100baseT capabilities, fix this. |
| */ |
| spin_lock_irq(&hp->happy_lock); |
| happy_meal_set_initial_advertisement(hp); |
| spin_unlock_irq(&hp->happy_lock); |
| |
| if (register_netdev(hp->dev)) { |
| printk(KERN_ERR "happymeal: Cannot register net device, " |
| "aborting.\n"); |
| goto err_out_free_consistent; |
| } |
| |
| if (qfe_slot != -1) |
| printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ", |
| dev->name, qfe_slot); |
| else |
| printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ", |
| dev->name); |
| |
| for (i = 0; i < 6; i++) |
| printk("%2.2x%c", |
| dev->dev_addr[i], i == 5 ? ' ' : ':'); |
| printk("\n"); |
| |
| /* We are home free at this point, link us in to the happy |
| * device list. |
| */ |
| hp->next_module = root_happy_dev; |
| root_happy_dev = hp; |
| |
| return 0; |
| |
| err_out_free_consistent: |
| sbus_free_consistent(hp->happy_dev, |
| PAGE_SIZE, |
| hp->happy_block, |
| hp->hblock_dvma); |
| |
| err_out_iounmap: |
| if (hp->gregs) |
| sbus_iounmap(hp->gregs, GREG_REG_SIZE); |
| if (hp->etxregs) |
| sbus_iounmap(hp->etxregs, ETX_REG_SIZE); |
| if (hp->erxregs) |
| sbus_iounmap(hp->erxregs, ERX_REG_SIZE); |
| if (hp->bigmacregs) |
| sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE); |
| if (hp->tcvregs) |
| sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE); |
| |
| err_out_free_netdev: |
| free_netdev(dev); |
| |
| err_out: |
| return err; |
| } |
| #endif |
| |
| #ifdef CONFIG_PCI |
| #ifndef __sparc__ |
| static int is_quattro_p(struct pci_dev *pdev) |
| { |
| struct pci_dev *busdev = pdev->bus->self; |
| struct list_head *tmp; |
| int n_hmes; |
| |
| if (busdev == NULL || |
| busdev->vendor != PCI_VENDOR_ID_DEC || |
| busdev->device != PCI_DEVICE_ID_DEC_21153) |
| return 0; |
| |
| n_hmes = 0; |
| tmp = pdev->bus->devices.next; |
| while (tmp != &pdev->bus->devices) { |
| struct pci_dev *this_pdev = pci_dev_b(tmp); |
| |
| if (this_pdev->vendor == PCI_VENDOR_ID_SUN && |
| this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL) |
| n_hmes++; |
| |
| tmp = tmp->next; |
| } |
| |
| if (n_hmes != 4) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Fetch MAC address from vital product data of PCI ROM. */ |
| static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr) |
| { |
| int this_offset; |
| |
| for (this_offset = 0x20; this_offset < len; this_offset++) { |
| void __iomem *p = rom_base + this_offset; |
| |
| if (readb(p + 0) != 0x90 || |
| readb(p + 1) != 0x00 || |
| readb(p + 2) != 0x09 || |
| readb(p + 3) != 0x4e || |
| readb(p + 4) != 0x41 || |
| readb(p + 5) != 0x06) |
| continue; |
| |
| this_offset += 6; |
| p += 6; |
| |
| if (index == 0) { |
| int i; |
| |
| for (i = 0; i < 6; i++) |
| dev_addr[i] = readb(p + i); |
| return 1; |
| } |
| index--; |
| } |
| return 0; |
| } |
| |
| static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr) |
| { |
| size_t size; |
| void __iomem *p = pci_map_rom(pdev, &size); |
| |
| if (p) { |
| int index = 0; |
| int found; |
| |
| if (is_quattro_p(pdev)) |
| index = PCI_SLOT(pdev->devfn); |
| |
| found = readb(p) == 0x55 && |
| readb(p + 1) == 0xaa && |
| find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr); |
| pci_unmap_rom(pdev, p); |
| if (found) |
| return; |
| } |
| |
| /* Sun MAC prefix then 3 random bytes. */ |
| dev_addr[0] = 0x08; |
| dev_addr[1] = 0x00; |
| dev_addr[2] = 0x20; |
| get_random_bytes(&dev_addr[3], 3); |
| return; |
| } |
| #endif /* !(__sparc__) */ |
| |
| static int __init happy_meal_pci_init(struct pci_dev *pdev) |
| { |
| struct quattro *qp = NULL; |
| #ifdef __sparc__ |
| struct pcidev_cookie *pcp; |
| #endif |
| struct happy_meal *hp; |
| struct net_device *dev; |
| void __iomem *hpreg_base; |
| unsigned long hpreg_res; |
| int i, qfe_slot = -1; |
| char prom_name[64]; |
| int err; |
| |
| /* Now make sure pci_dev cookie is there. */ |
| #ifdef __sparc__ |
| pcp = pdev->sysdata; |
| if (pcp == NULL) { |
| printk(KERN_ERR "happymeal(PCI): Some PCI device info missing\n"); |
| return -ENODEV; |
| } |
| |
| strcpy(prom_name, pcp->prom_node->name); |
| #else |
| if (is_quattro_p(pdev)) |
| strcpy(prom_name, "SUNW,qfe"); |
| else |
| strcpy(prom_name, "SUNW,hme"); |
| #endif |
| |
| err = -ENODEV; |
| if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) { |
| qp = quattro_pci_find(pdev); |
| if (qp == NULL) |
| goto err_out; |
| for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) |
| if (qp->happy_meals[qfe_slot] == NULL) |
| break; |
| if (qfe_slot == 4) |
| goto err_out; |
| } |
| |
| dev = alloc_etherdev(sizeof(struct happy_meal)); |
| err = -ENOMEM; |
| if (!dev) |
| goto err_out; |
| SET_MODULE_OWNER(dev); |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| if (hme_version_printed++ == 0) |
| printk(KERN_INFO "%s", version); |
| |
| dev->base_addr = (long) pdev; |
| |
| hp = (struct happy_meal *)dev->priv; |
| memset(hp, 0, sizeof(*hp)); |
| |
| hp->happy_dev = pdev; |
| |
| spin_lock_init(&hp->happy_lock); |
| |
| if (qp != NULL) { |
| hp->qfe_parent = qp; |
| hp->qfe_ent = qfe_slot; |
| qp->happy_meals[qfe_slot] = dev; |
| } |
| |
| hpreg_res = pci_resource_start(pdev, 0); |
| err = -ENODEV; |
| if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { |
| printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n"); |
| goto err_out_clear_quattro; |
| } |
| if (pci_request_regions(pdev, DRV_NAME)) { |
| printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, " |
| "aborting.\n"); |
| goto err_out_clear_quattro; |
| } |
| |
| if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) { |
| printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n"); |
| goto err_out_free_res; |
| } |
| |
| for (i = 0; i < 6; i++) { |
| if (macaddr[i] != 0) |
| break; |
| } |
| if (i < 6) { /* a mac address was given */ |
| for (i = 0; i < 6; i++) |
| dev->dev_addr[i] = macaddr[i]; |
| macaddr[5]++; |
| } else { |
| #ifdef __sparc__ |
| unsigned char *addr; |
| int len; |
| |
| if (qfe_slot != -1 && |
| (addr = of_get_property(pcp->prom_node, |
| "local-mac-address", &len)) != NULL |
| && len == 6) { |
| memcpy(dev->dev_addr, addr, 6); |
| } else { |
| memcpy(dev->dev_addr, idprom->id_ethaddr, 6); |
| } |
| #else |
| get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]); |
| #endif |
| } |
| |
| /* Layout registers. */ |
| hp->gregs = (hpreg_base + 0x0000UL); |
| hp->etxregs = (hpreg_base + 0x2000UL); |
| hp->erxregs = (hpreg_base + 0x4000UL); |
| hp->bigmacregs = (hpreg_base + 0x6000UL); |
| hp->tcvregs = (hpreg_base + 0x7000UL); |
| |
| #ifdef __sparc__ |
| hp->hm_revision = of_getintprop_default(pcp->prom_node, "hm-rev", 0xff); |
| if (hp->hm_revision == 0xff) { |
| unsigned char prev; |
| |
| pci_read_config_byte(pdev, PCI_REVISION_ID, &prev); |
| hp->hm_revision = 0xc0 | (prev & 0x0f); |
| } |
| #else |
| /* works with this on non-sparc hosts */ |
| hp->hm_revision = 0x20; |
| #endif |
| |
| /* Now enable the feature flags we can. */ |
| if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21) |
| hp->happy_flags = HFLAG_20_21; |
| else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0) |
| hp->happy_flags = HFLAG_NOT_A0; |
| |
| if (qp != NULL) |
| hp->happy_flags |= HFLAG_QUATTRO; |
| |
| /* And of course, indicate this is PCI. */ |
| hp->happy_flags |= HFLAG_PCI; |
| |
| #ifdef __sparc__ |
| /* Assume PCI happy meals can handle all burst sizes. */ |
| hp->happy_bursts = DMA_BURSTBITS; |
| #endif |
| |
| hp->happy_block = (struct hmeal_init_block *) |
| pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma); |
| |
| err = -ENODEV; |
| if (!hp->happy_block) { |
| printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n"); |
| goto err_out_iounmap; |
| } |
| |
| hp->linkcheck = 0; |
| hp->timer_state = asleep; |
| hp->timer_ticks = 0; |
| |
| init_timer(&hp->happy_timer); |
| |
| hp->dev = dev; |
| dev->open = &happy_meal_open; |
| dev->stop = &happy_meal_close; |
| dev->hard_start_xmit = &happy_meal_start_xmit; |
| dev->get_stats = &happy_meal_get_stats; |
| dev->set_multicast_list = &happy_meal_set_multicast; |
| dev->tx_timeout = &happy_meal_tx_timeout; |
| dev->watchdog_timeo = 5*HZ; |
| dev->ethtool_ops = &hme_ethtool_ops; |
| dev->irq = pdev->irq; |
| dev->dma = 0; |
| |
| /* Happy Meal can do it all... */ |
| dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM; |
| |
| #if defined(CONFIG_SBUS) && defined(CONFIG_PCI) |
| /* Hook up PCI register/dma accessors. */ |
| hp->read_desc32 = pci_hme_read_desc32; |
| hp->write_txd = pci_hme_write_txd; |
| hp->write_rxd = pci_hme_write_rxd; |
| hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single; |
| hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single; |
| hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int)) |
| pci_dma_sync_single_for_cpu; |
| hp->dma_sync_for_device = (void (*)(void *, u32, long, int)) |
| pci_dma_sync_single_for_device; |
| hp->read32 = pci_hme_read32; |
| hp->write32 = pci_hme_write32; |
| #endif |
| |
| /* Grrr, Happy Meal comes up by default not advertising |
| * full duplex 100baseT capabilities, fix this. |
| */ |
| spin_lock_irq(&hp->happy_lock); |
| happy_meal_set_initial_advertisement(hp); |
| spin_unlock_irq(&hp->happy_lock); |
| |
| if (register_netdev(hp->dev)) { |
| printk(KERN_ERR "happymeal(PCI): Cannot register net device, " |
| "aborting.\n"); |
| goto err_out_iounmap; |
| } |
| |
| if (!qfe_slot) { |
| struct pci_dev *qpdev = qp->quattro_dev; |
| |
| prom_name[0] = 0; |
| if (!strncmp(dev->name, "eth", 3)) { |
| int i = simple_strtoul(dev->name + 3, NULL, 10); |
| sprintf(prom_name, "-%d", i + 3); |
| } |
| printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name); |
| if (qpdev->vendor == PCI_VENDOR_ID_DEC && |
| qpdev->device == PCI_DEVICE_ID_DEC_21153) |
| printk("DEC 21153 PCI Bridge\n"); |
| else |
| printk("unknown bridge %04x.%04x\n", |
| qpdev->vendor, qpdev->device); |
| } |
| |
| if (qfe_slot != -1) |
| printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ", |
| dev->name, qfe_slot); |
| else |
| printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ", |
| dev->name); |
| |
| for (i = 0; i < 6; i++) |
| printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':'); |
| |
| printk("\n"); |
| |
| /* We are home free at this point, link us in to the happy |
| * device list. |
| */ |
| hp->next_module = root_happy_dev; |
| root_happy_dev = hp; |
| |
| return 0; |
| |
| err_out_iounmap: |
| iounmap(hp->gregs); |
| |
| err_out_free_res: |
| pci_release_regions(pdev); |
| |
| err_out_clear_quattro: |
| if (qp != NULL) |
| qp->happy_meals[qfe_slot] = NULL; |
| |
| free_netdev(dev); |
| |
| err_out: |
| return err; |
| } |
| #endif |
| |
| #ifdef CONFIG_SBUS |
| static int __init happy_meal_sbus_probe(void) |
| { |
| struct sbus_bus *sbus; |
| struct sbus_dev *sdev; |
| int cards = 0; |
| char model[128]; |
| |
| for_each_sbus(sbus) { |
| for_each_sbusdev(sdev, sbus) { |
| char *name = sdev->prom_name; |
| |
| if (!strcmp(name, "SUNW,hme")) { |
| cards++; |
| prom_getstring(sdev->prom_node, "model", |
| model, sizeof(model)); |
| if (!strcmp(model, "SUNW,sbus-qfe")) |
| happy_meal_sbus_init(sdev, 1); |
| else |
| happy_meal_sbus_init(sdev, 0); |
| } else if (!strcmp(name, "qfe") || |
| !strcmp(name, "SUNW,qfe")) { |
| cards++; |
| happy_meal_sbus_init(sdev, 1); |
| } |
| } |
| } |
| if (cards != 0) |
| quattro_sbus_register_irqs(); |
| return cards; |
| } |
| #endif |
| |
| #ifdef CONFIG_PCI |
| static int __init happy_meal_pci_probe(void) |
| { |
| struct pci_dev *pdev = NULL; |
| int cards = 0; |
| |
| while ((pdev = pci_find_device(PCI_VENDOR_ID_SUN, |
| PCI_DEVICE_ID_SUN_HAPPYMEAL, pdev)) != NULL) { |
| if (pci_enable_device(pdev)) |
| continue; |
| pci_set_master(pdev); |
| cards++; |
| happy_meal_pci_init(pdev); |
| } |
| return cards; |
| } |
| #endif |
| |
| static int __init happy_meal_probe(void) |
| { |
| static int called = 0; |
| int cards; |
| |
| root_happy_dev = NULL; |
| |
| if (called) |
| return -ENODEV; |
| called++; |
| |
| cards = 0; |
| #ifdef CONFIG_SBUS |
| cards += happy_meal_sbus_probe(); |
| #endif |
| #ifdef CONFIG_PCI |
| cards += happy_meal_pci_probe(); |
| #endif |
| if (!cards) |
| return -ENODEV; |
| return 0; |
| } |
| |
| |
| static void __exit happy_meal_cleanup_module(void) |
| { |
| #ifdef CONFIG_SBUS |
| struct quattro *last_seen_qfe = NULL; |
| #endif |
| |
| while (root_happy_dev) { |
| struct happy_meal *hp = root_happy_dev; |
| struct happy_meal *next = root_happy_dev->next_module; |
| struct net_device *dev = hp->dev; |
| |
| /* Unregister netdev before unmapping registers as this |
| * call can end up trying to access those registers. |
| */ |
| unregister_netdev(dev); |
| |
| #ifdef CONFIG_SBUS |
| if (!(hp->happy_flags & HFLAG_PCI)) { |
| if (hp->happy_flags & HFLAG_QUATTRO) { |
| if (hp->qfe_parent != last_seen_qfe) { |
| free_irq(dev->irq, hp->qfe_parent); |
| last_seen_qfe = hp->qfe_parent; |
| } |
| } |
| |
| sbus_iounmap(hp->gregs, GREG_REG_SIZE); |
| sbus_iounmap(hp->etxregs, ETX_REG_SIZE); |
| sbus_iounmap(hp->erxregs, ERX_REG_SIZE); |
| sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE); |
| sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE); |
| sbus_free_consistent(hp->happy_dev, |
| PAGE_SIZE, |
| hp->happy_block, |
| hp->hblock_dvma); |
| } |
| #endif |
| #ifdef CONFIG_PCI |
| if ((hp->happy_flags & HFLAG_PCI)) { |
| pci_free_consistent(hp->happy_dev, |
| PAGE_SIZE, |
| hp->happy_block, |
| hp->hblock_dvma); |
| iounmap(hp->gregs); |
| pci_release_regions(hp->happy_dev); |
| } |
| #endif |
| free_netdev(dev); |
| |
| root_happy_dev = next; |
| } |
| |
| /* Now cleanup the quattro lists. */ |
| #ifdef CONFIG_SBUS |
| while (qfe_sbus_list) { |
| struct quattro *qfe = qfe_sbus_list; |
| struct quattro *next = qfe->next; |
| |
| kfree(qfe); |
| |
| qfe_sbus_list = next; |
| } |
| #endif |
| #ifdef CONFIG_PCI |
| while (qfe_pci_list) { |
| struct quattro *qfe = qfe_pci_list; |
| struct quattro *next = qfe->next; |
| |
| kfree(qfe); |
| |
| qfe_pci_list = next; |
| } |
| #endif |
| } |
| |
| module_init(happy_meal_probe); |
| module_exit(happy_meal_cleanup_module); |