| #include <linux/gfp.h> |
| #include <linux/mm_types.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include "slab.h" |
| #include <linux/kmemcheck.h> |
| |
| void kmemcheck_alloc_shadow(struct page *page, int order, gfp_t flags, int node) |
| { |
| struct page *shadow; |
| int pages; |
| int i; |
| |
| pages = 1 << order; |
| |
| /* |
| * With kmemcheck enabled, we need to allocate a memory area for the |
| * shadow bits as well. |
| */ |
| shadow = alloc_pages_node(node, flags | __GFP_NOTRACK, order); |
| if (!shadow) { |
| if (printk_ratelimit()) |
| printk(KERN_ERR "kmemcheck: failed to allocate " |
| "shadow bitmap\n"); |
| return; |
| } |
| |
| for(i = 0; i < pages; ++i) |
| page[i].shadow = page_address(&shadow[i]); |
| |
| /* |
| * Mark it as non-present for the MMU so that our accesses to |
| * this memory will trigger a page fault and let us analyze |
| * the memory accesses. |
| */ |
| kmemcheck_hide_pages(page, pages); |
| } |
| |
| void kmemcheck_free_shadow(struct page *page, int order) |
| { |
| struct page *shadow; |
| int pages; |
| int i; |
| |
| if (!kmemcheck_page_is_tracked(page)) |
| return; |
| |
| pages = 1 << order; |
| |
| kmemcheck_show_pages(page, pages); |
| |
| shadow = virt_to_page(page[0].shadow); |
| |
| for(i = 0; i < pages; ++i) |
| page[i].shadow = NULL; |
| |
| __free_pages(shadow, order); |
| } |
| |
| void kmemcheck_slab_alloc(struct kmem_cache *s, gfp_t gfpflags, void *object, |
| size_t size) |
| { |
| if (unlikely(!object)) /* Skip object if allocation failed */ |
| return; |
| |
| /* |
| * Has already been memset(), which initializes the shadow for us |
| * as well. |
| */ |
| if (gfpflags & __GFP_ZERO) |
| return; |
| |
| /* No need to initialize the shadow of a non-tracked slab. */ |
| if (s->flags & SLAB_NOTRACK) |
| return; |
| |
| if (!kmemcheck_enabled || gfpflags & __GFP_NOTRACK) { |
| /* |
| * Allow notracked objects to be allocated from |
| * tracked caches. Note however that these objects |
| * will still get page faults on access, they just |
| * won't ever be flagged as uninitialized. If page |
| * faults are not acceptable, the slab cache itself |
| * should be marked NOTRACK. |
| */ |
| kmemcheck_mark_initialized(object, size); |
| } else if (!s->ctor) { |
| /* |
| * New objects should be marked uninitialized before |
| * they're returned to the called. |
| */ |
| kmemcheck_mark_uninitialized(object, size); |
| } |
| } |
| |
| void kmemcheck_slab_free(struct kmem_cache *s, void *object, size_t size) |
| { |
| /* TODO: RCU freeing is unsupported for now; hide false positives. */ |
| if (!s->ctor && !(s->flags & SLAB_DESTROY_BY_RCU)) |
| kmemcheck_mark_freed(object, size); |
| } |
| |
| void kmemcheck_pagealloc_alloc(struct page *page, unsigned int order, |
| gfp_t gfpflags) |
| { |
| int pages; |
| |
| if (gfpflags & (__GFP_HIGHMEM | __GFP_NOTRACK)) |
| return; |
| |
| pages = 1 << order; |
| |
| /* |
| * NOTE: We choose to track GFP_ZERO pages too; in fact, they |
| * can become uninitialized by copying uninitialized memory |
| * into them. |
| */ |
| |
| /* XXX: Can use zone->node for node? */ |
| kmemcheck_alloc_shadow(page, order, gfpflags, -1); |
| |
| if (gfpflags & __GFP_ZERO) |
| kmemcheck_mark_initialized_pages(page, pages); |
| else |
| kmemcheck_mark_uninitialized_pages(page, pages); |
| } |