| #include <linux/init.h> | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/mc146818rtc.h> | 
 | #include <linux/interrupt.h> | 
 |  | 
 | #include <asm/mtrr.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/proto.h> | 
 | #include <asm/apicdef.h> | 
 | #include <asm/idle.h> | 
 | #include <asm/uv/uv_hub.h> | 
 | #include <asm/uv/uv_bau.h> | 
 |  | 
 | #include <mach_ipi.h> | 
 | /* | 
 |  *	Smarter SMP flushing macros. | 
 |  *		c/o Linus Torvalds. | 
 |  * | 
 |  *	These mean you can really definitely utterly forget about | 
 |  *	writing to user space from interrupts. (Its not allowed anyway). | 
 |  * | 
 |  *	Optimizations Manfred Spraul <manfred@colorfullife.com> | 
 |  * | 
 |  *	More scalable flush, from Andi Kleen | 
 |  * | 
 |  *	To avoid global state use 8 different call vectors. | 
 |  *	Each CPU uses a specific vector to trigger flushes on other | 
 |  *	CPUs. Depending on the received vector the target CPUs look into | 
 |  *	the right per cpu variable for the flush data. | 
 |  * | 
 |  *	With more than 8 CPUs they are hashed to the 8 available | 
 |  *	vectors. The limited global vector space forces us to this right now. | 
 |  *	In future when interrupts are split into per CPU domains this could be | 
 |  *	fixed, at the cost of triggering multiple IPIs in some cases. | 
 |  */ | 
 |  | 
 | union smp_flush_state { | 
 | 	struct { | 
 | 		cpumask_t flush_cpumask; | 
 | 		struct mm_struct *flush_mm; | 
 | 		unsigned long flush_va; | 
 | 		spinlock_t tlbstate_lock; | 
 | 	}; | 
 | 	char pad[SMP_CACHE_BYTES]; | 
 | } ____cacheline_aligned; | 
 |  | 
 | /* State is put into the per CPU data section, but padded | 
 |    to a full cache line because other CPUs can access it and we don't | 
 |    want false sharing in the per cpu data segment. */ | 
 | static DEFINE_PER_CPU(union smp_flush_state, flush_state); | 
 |  | 
 | /* | 
 |  * We cannot call mmdrop() because we are in interrupt context, | 
 |  * instead update mm->cpu_vm_mask. | 
 |  */ | 
 | void leave_mm(int cpu) | 
 | { | 
 | 	if (read_pda(mmu_state) == TLBSTATE_OK) | 
 | 		BUG(); | 
 | 	cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask); | 
 | 	load_cr3(swapper_pg_dir); | 
 | } | 
 | EXPORT_SYMBOL_GPL(leave_mm); | 
 |  | 
 | /* | 
 |  * | 
 |  * The flush IPI assumes that a thread switch happens in this order: | 
 |  * [cpu0: the cpu that switches] | 
 |  * 1) switch_mm() either 1a) or 1b) | 
 |  * 1a) thread switch to a different mm | 
 |  * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask); | 
 |  *	Stop ipi delivery for the old mm. This is not synchronized with | 
 |  *	the other cpus, but smp_invalidate_interrupt ignore flush ipis | 
 |  *	for the wrong mm, and in the worst case we perform a superfluous | 
 |  *	tlb flush. | 
 |  * 1a2) set cpu mmu_state to TLBSTATE_OK | 
 |  *	Now the smp_invalidate_interrupt won't call leave_mm if cpu0 | 
 |  *	was in lazy tlb mode. | 
 |  * 1a3) update cpu active_mm | 
 |  *	Now cpu0 accepts tlb flushes for the new mm. | 
 |  * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask); | 
 |  *	Now the other cpus will send tlb flush ipis. | 
 |  * 1a4) change cr3. | 
 |  * 1b) thread switch without mm change | 
 |  *	cpu active_mm is correct, cpu0 already handles | 
 |  *	flush ipis. | 
 |  * 1b1) set cpu mmu_state to TLBSTATE_OK | 
 |  * 1b2) test_and_set the cpu bit in cpu_vm_mask. | 
 |  *	Atomically set the bit [other cpus will start sending flush ipis], | 
 |  *	and test the bit. | 
 |  * 1b3) if the bit was 0: leave_mm was called, flush the tlb. | 
 |  * 2) switch %%esp, ie current | 
 |  * | 
 |  * The interrupt must handle 2 special cases: | 
 |  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm. | 
 |  * - the cpu performs speculative tlb reads, i.e. even if the cpu only | 
 |  *   runs in kernel space, the cpu could load tlb entries for user space | 
 |  *   pages. | 
 |  * | 
 |  * The good news is that cpu mmu_state is local to each cpu, no | 
 |  * write/read ordering problems. | 
 |  */ | 
 |  | 
 | /* | 
 |  * TLB flush IPI: | 
 |  * | 
 |  * 1) Flush the tlb entries if the cpu uses the mm that's being flushed. | 
 |  * 2) Leave the mm if we are in the lazy tlb mode. | 
 |  * | 
 |  * Interrupts are disabled. | 
 |  */ | 
 |  | 
 | asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs) | 
 | { | 
 | 	int cpu; | 
 | 	int sender; | 
 | 	union smp_flush_state *f; | 
 |  | 
 | 	cpu = smp_processor_id(); | 
 | 	/* | 
 | 	 * orig_rax contains the negated interrupt vector. | 
 | 	 * Use that to determine where the sender put the data. | 
 | 	 */ | 
 | 	sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START; | 
 | 	f = &per_cpu(flush_state, sender); | 
 |  | 
 | 	if (!cpu_isset(cpu, f->flush_cpumask)) | 
 | 		goto out; | 
 | 		/* | 
 | 		 * This was a BUG() but until someone can quote me the | 
 | 		 * line from the intel manual that guarantees an IPI to | 
 | 		 * multiple CPUs is retried _only_ on the erroring CPUs | 
 | 		 * its staying as a return | 
 | 		 * | 
 | 		 * BUG(); | 
 | 		 */ | 
 |  | 
 | 	if (f->flush_mm == read_pda(active_mm)) { | 
 | 		if (read_pda(mmu_state) == TLBSTATE_OK) { | 
 | 			if (f->flush_va == TLB_FLUSH_ALL) | 
 | 				local_flush_tlb(); | 
 | 			else | 
 | 				__flush_tlb_one(f->flush_va); | 
 | 		} else | 
 | 			leave_mm(cpu); | 
 | 	} | 
 | out: | 
 | 	ack_APIC_irq(); | 
 | 	cpu_clear(cpu, f->flush_cpumask); | 
 | 	inc_irq_stat(irq_tlb_count); | 
 | } | 
 |  | 
 | void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm, | 
 | 			     unsigned long va) | 
 | { | 
 | 	int sender; | 
 | 	union smp_flush_state *f; | 
 | 	cpumask_t cpumask = *cpumaskp; | 
 |  | 
 | 	if (is_uv_system() && uv_flush_tlb_others(&cpumask, mm, va)) | 
 | 		return; | 
 |  | 
 | 	/* Caller has disabled preemption */ | 
 | 	sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS; | 
 | 	f = &per_cpu(flush_state, sender); | 
 |  | 
 | 	/* | 
 | 	 * Could avoid this lock when | 
 | 	 * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is | 
 | 	 * probably not worth checking this for a cache-hot lock. | 
 | 	 */ | 
 | 	spin_lock(&f->tlbstate_lock); | 
 |  | 
 | 	f->flush_mm = mm; | 
 | 	f->flush_va = va; | 
 | 	cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask); | 
 |  | 
 | 	/* | 
 | 	 * Make the above memory operations globally visible before | 
 | 	 * sending the IPI. | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	/* | 
 | 	 * We have to send the IPI only to | 
 | 	 * CPUs affected. | 
 | 	 */ | 
 | 	send_IPI_mask(&cpumask, INVALIDATE_TLB_VECTOR_START + sender); | 
 |  | 
 | 	while (!cpus_empty(f->flush_cpumask)) | 
 | 		cpu_relax(); | 
 |  | 
 | 	f->flush_mm = NULL; | 
 | 	f->flush_va = 0; | 
 | 	spin_unlock(&f->tlbstate_lock); | 
 | } | 
 |  | 
 | static int __cpuinit init_smp_flush(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_possible_cpu(i) | 
 | 		spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 | core_initcall(init_smp_flush); | 
 |  | 
 | void flush_tlb_current_task(void) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	cpumask_t cpu_mask; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu_mask = mm->cpu_vm_mask; | 
 | 	cpu_clear(smp_processor_id(), cpu_mask); | 
 |  | 
 | 	local_flush_tlb(); | 
 | 	if (!cpus_empty(cpu_mask)) | 
 | 		flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | void flush_tlb_mm(struct mm_struct *mm) | 
 | { | 
 | 	cpumask_t cpu_mask; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu_mask = mm->cpu_vm_mask; | 
 | 	cpu_clear(smp_processor_id(), cpu_mask); | 
 |  | 
 | 	if (current->active_mm == mm) { | 
 | 		if (current->mm) | 
 | 			local_flush_tlb(); | 
 | 		else | 
 | 			leave_mm(smp_processor_id()); | 
 | 	} | 
 | 	if (!cpus_empty(cpu_mask)) | 
 | 		flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | void flush_tlb_page(struct vm_area_struct *vma, unsigned long va) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	cpumask_t cpu_mask; | 
 |  | 
 | 	preempt_disable(); | 
 | 	cpu_mask = mm->cpu_vm_mask; | 
 | 	cpu_clear(smp_processor_id(), cpu_mask); | 
 |  | 
 | 	if (current->active_mm == mm) { | 
 | 		if (current->mm) | 
 | 			__flush_tlb_one(va); | 
 | 		else | 
 | 			leave_mm(smp_processor_id()); | 
 | 	} | 
 |  | 
 | 	if (!cpus_empty(cpu_mask)) | 
 | 		flush_tlb_others(cpu_mask, mm, va); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void do_flush_tlb_all(void *info) | 
 | { | 
 | 	unsigned long cpu = smp_processor_id(); | 
 |  | 
 | 	__flush_tlb_all(); | 
 | 	if (read_pda(mmu_state) == TLBSTATE_LAZY) | 
 | 		leave_mm(cpu); | 
 | } | 
 |  | 
 | void flush_tlb_all(void) | 
 | { | 
 | 	on_each_cpu(do_flush_tlb_all, NULL, 1); | 
 | } |