| /* | 
 |  * PowerPC64 port by Mike Corrigan and Dave Engebretsen | 
 |  *   {mikejc|engebret}@us.ibm.com | 
 |  * | 
 |  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> | 
 |  * | 
 |  * SMP scalability work: | 
 |  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM | 
 |  *  | 
 |  *    Module name: htab.c | 
 |  * | 
 |  *    Description: | 
 |  *      PowerPC Hashed Page Table functions | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; either version | 
 |  * 2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #undef DEBUG | 
 | #undef DEBUG_LOW | 
 |  | 
 | #include <linux/spinlock.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/stat.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/init.h> | 
 | #include <linux/signal.h> | 
 |  | 
 | #include <asm/processor.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/mmu.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/page.h> | 
 | #include <asm/types.h> | 
 | #include <asm/system.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/lmb.h> | 
 | #include <asm/abs_addr.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/io.h> | 
 | #include <asm/eeh.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/cputable.h> | 
 | #include <asm/abs_addr.h> | 
 | #include <asm/sections.h> | 
 |  | 
 | #ifdef DEBUG | 
 | #define DBG(fmt...) udbg_printf(fmt) | 
 | #else | 
 | #define DBG(fmt...) | 
 | #endif | 
 |  | 
 | #ifdef DEBUG_LOW | 
 | #define DBG_LOW(fmt...) udbg_printf(fmt) | 
 | #else | 
 | #define DBG_LOW(fmt...) | 
 | #endif | 
 |  | 
 | #define KB (1024) | 
 | #define MB (1024*KB) | 
 |  | 
 | /* | 
 |  * Note:  pte   --> Linux PTE | 
 |  *        HPTE  --> PowerPC Hashed Page Table Entry | 
 |  * | 
 |  * Execution context: | 
 |  *   htab_initialize is called with the MMU off (of course), but | 
 |  *   the kernel has been copied down to zero so it can directly | 
 |  *   reference global data.  At this point it is very difficult | 
 |  *   to print debug info. | 
 |  * | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_U3_DART | 
 | extern unsigned long dart_tablebase; | 
 | #endif /* CONFIG_U3_DART */ | 
 |  | 
 | static unsigned long _SDR1; | 
 | struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; | 
 |  | 
 | hpte_t *htab_address; | 
 | unsigned long htab_size_bytes; | 
 | unsigned long htab_hash_mask; | 
 | int mmu_linear_psize = MMU_PAGE_4K; | 
 | int mmu_virtual_psize = MMU_PAGE_4K; | 
 | int mmu_vmalloc_psize = MMU_PAGE_4K; | 
 | int mmu_io_psize = MMU_PAGE_4K; | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | int mmu_huge_psize = MMU_PAGE_16M; | 
 | unsigned int HPAGE_SHIFT; | 
 | #endif | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | int mmu_ci_restrictions; | 
 | #endif | 
 |  | 
 | /* There are definitions of page sizes arrays to be used when none | 
 |  * is provided by the firmware. | 
 |  */ | 
 |  | 
 | /* Pre-POWER4 CPUs (4k pages only) | 
 |  */ | 
 | struct mmu_psize_def mmu_psize_defaults_old[] = { | 
 | 	[MMU_PAGE_4K] = { | 
 | 		.shift	= 12, | 
 | 		.sllp	= 0, | 
 | 		.penc	= 0, | 
 | 		.avpnm	= 0, | 
 | 		.tlbiel = 0, | 
 | 	}, | 
 | }; | 
 |  | 
 | /* POWER4, GPUL, POWER5 | 
 |  * | 
 |  * Support for 16Mb large pages | 
 |  */ | 
 | struct mmu_psize_def mmu_psize_defaults_gp[] = { | 
 | 	[MMU_PAGE_4K] = { | 
 | 		.shift	= 12, | 
 | 		.sllp	= 0, | 
 | 		.penc	= 0, | 
 | 		.avpnm	= 0, | 
 | 		.tlbiel = 1, | 
 | 	}, | 
 | 	[MMU_PAGE_16M] = { | 
 | 		.shift	= 24, | 
 | 		.sllp	= SLB_VSID_L, | 
 | 		.penc	= 0, | 
 | 		.avpnm	= 0x1UL, | 
 | 		.tlbiel = 0, | 
 | 	}, | 
 | }; | 
 |  | 
 |  | 
 | int htab_bolt_mapping(unsigned long vstart, unsigned long vend, | 
 | 		      unsigned long pstart, unsigned long mode, int psize) | 
 | { | 
 | 	unsigned long vaddr, paddr; | 
 | 	unsigned int step, shift; | 
 | 	unsigned long tmp_mode; | 
 | 	int ret = 0; | 
 |  | 
 | 	shift = mmu_psize_defs[psize].shift; | 
 | 	step = 1 << shift; | 
 |  | 
 | 	for (vaddr = vstart, paddr = pstart; vaddr < vend; | 
 | 	     vaddr += step, paddr += step) { | 
 | 		unsigned long vpn, hash, hpteg; | 
 | 		unsigned long vsid = get_kernel_vsid(vaddr); | 
 | 		unsigned long va = (vsid << 28) | (vaddr & 0x0fffffff); | 
 |  | 
 | 		vpn = va >> shift; | 
 | 		tmp_mode = mode; | 
 | 		 | 
 | 		/* Make non-kernel text non-executable */ | 
 | 		if (!in_kernel_text(vaddr)) | 
 | 			tmp_mode = mode | HPTE_R_N; | 
 |  | 
 | 		hash = hpt_hash(va, shift); | 
 | 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP); | 
 |  | 
 | 		DBG("htab_bolt_mapping: calling %p\n", ppc_md.hpte_insert); | 
 |  | 
 | 		BUG_ON(!ppc_md.hpte_insert); | 
 | 		ret = ppc_md.hpte_insert(hpteg, va, paddr, | 
 | 				tmp_mode, HPTE_V_BOLTED, psize); | 
 |  | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 	} | 
 | 	return ret < 0 ? ret : 0; | 
 | } | 
 |  | 
 | static int __init htab_dt_scan_page_sizes(unsigned long node, | 
 | 					  const char *uname, int depth, | 
 | 					  void *data) | 
 | { | 
 | 	char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
 | 	u32 *prop; | 
 | 	unsigned long size = 0; | 
 |  | 
 | 	/* We are scanning "cpu" nodes only */ | 
 | 	if (type == NULL || strcmp(type, "cpu") != 0) | 
 | 		return 0; | 
 |  | 
 | 	prop = (u32 *)of_get_flat_dt_prop(node, | 
 | 					  "ibm,segment-page-sizes", &size); | 
 | 	if (prop != NULL) { | 
 | 		DBG("Page sizes from device-tree:\n"); | 
 | 		size /= 4; | 
 | 		cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE); | 
 | 		while(size > 0) { | 
 | 			unsigned int shift = prop[0]; | 
 | 			unsigned int slbenc = prop[1]; | 
 | 			unsigned int lpnum = prop[2]; | 
 | 			unsigned int lpenc = 0; | 
 | 			struct mmu_psize_def *def; | 
 | 			int idx = -1; | 
 |  | 
 | 			size -= 3; prop += 3; | 
 | 			while(size > 0 && lpnum) { | 
 | 				if (prop[0] == shift) | 
 | 					lpenc = prop[1]; | 
 | 				prop += 2; size -= 2; | 
 | 				lpnum--; | 
 | 			} | 
 | 			switch(shift) { | 
 | 			case 0xc: | 
 | 				idx = MMU_PAGE_4K; | 
 | 				break; | 
 | 			case 0x10: | 
 | 				idx = MMU_PAGE_64K; | 
 | 				break; | 
 | 			case 0x14: | 
 | 				idx = MMU_PAGE_1M; | 
 | 				break; | 
 | 			case 0x18: | 
 | 				idx = MMU_PAGE_16M; | 
 | 				cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE; | 
 | 				break; | 
 | 			case 0x22: | 
 | 				idx = MMU_PAGE_16G; | 
 | 				break; | 
 | 			} | 
 | 			if (idx < 0) | 
 | 				continue; | 
 | 			def = &mmu_psize_defs[idx]; | 
 | 			def->shift = shift; | 
 | 			if (shift <= 23) | 
 | 				def->avpnm = 0; | 
 | 			else | 
 | 				def->avpnm = (1 << (shift - 23)) - 1; | 
 | 			def->sllp = slbenc; | 
 | 			def->penc = lpenc; | 
 | 			/* We don't know for sure what's up with tlbiel, so | 
 | 			 * for now we only set it for 4K and 64K pages | 
 | 			 */ | 
 | 			if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K) | 
 | 				def->tlbiel = 1; | 
 | 			else | 
 | 				def->tlbiel = 0; | 
 |  | 
 | 			DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, " | 
 | 			    "tlbiel=%d, penc=%d\n", | 
 | 			    idx, shift, def->sllp, def->avpnm, def->tlbiel, | 
 | 			    def->penc); | 
 | 		} | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void __init htab_init_page_sizes(void) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	/* Default to 4K pages only */ | 
 | 	memcpy(mmu_psize_defs, mmu_psize_defaults_old, | 
 | 	       sizeof(mmu_psize_defaults_old)); | 
 |  | 
 | 	/* | 
 | 	 * Try to find the available page sizes in the device-tree | 
 | 	 */ | 
 | 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL); | 
 | 	if (rc != 0)  /* Found */ | 
 | 		goto found; | 
 |  | 
 | 	/* | 
 | 	 * Not in the device-tree, let's fallback on known size | 
 | 	 * list for 16M capable GP & GR | 
 | 	 */ | 
 | 	if (cpu_has_feature(CPU_FTR_16M_PAGE)) | 
 | 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp, | 
 | 		       sizeof(mmu_psize_defaults_gp)); | 
 |  found: | 
 | 	/* | 
 | 	 * Pick a size for the linear mapping. Currently, we only support | 
 | 	 * 16M, 1M and 4K which is the default | 
 | 	 */ | 
 | 	if (mmu_psize_defs[MMU_PAGE_16M].shift) | 
 | 		mmu_linear_psize = MMU_PAGE_16M; | 
 | 	else if (mmu_psize_defs[MMU_PAGE_1M].shift) | 
 | 		mmu_linear_psize = MMU_PAGE_1M; | 
 |  | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 	/* | 
 | 	 * Pick a size for the ordinary pages. Default is 4K, we support | 
 | 	 * 64K for user mappings and vmalloc if supported by the processor. | 
 | 	 * We only use 64k for ioremap if the processor | 
 | 	 * (and firmware) support cache-inhibited large pages. | 
 | 	 * If not, we use 4k and set mmu_ci_restrictions so that | 
 | 	 * hash_page knows to switch processes that use cache-inhibited | 
 | 	 * mappings to 4k pages. | 
 | 	 */ | 
 | 	if (mmu_psize_defs[MMU_PAGE_64K].shift) { | 
 | 		mmu_virtual_psize = MMU_PAGE_64K; | 
 | 		mmu_vmalloc_psize = MMU_PAGE_64K; | 
 | 		if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE)) | 
 | 			mmu_io_psize = MMU_PAGE_64K; | 
 | 		else | 
 | 			mmu_ci_restrictions = 1; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	printk(KERN_DEBUG "Page orders: linear mapping = %d, " | 
 | 	       "virtual = %d, io = %d\n", | 
 | 	       mmu_psize_defs[mmu_linear_psize].shift, | 
 | 	       mmu_psize_defs[mmu_virtual_psize].shift, | 
 | 	       mmu_psize_defs[mmu_io_psize].shift); | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | 	/* Init large page size. Currently, we pick 16M or 1M depending | 
 | 	 * on what is available | 
 | 	 */ | 
 | 	if (mmu_psize_defs[MMU_PAGE_16M].shift) | 
 | 		mmu_huge_psize = MMU_PAGE_16M; | 
 | 	/* With 4k/4level pagetables, we can't (for now) cope with a | 
 | 	 * huge page size < PMD_SIZE */ | 
 | 	else if (mmu_psize_defs[MMU_PAGE_1M].shift) | 
 | 		mmu_huge_psize = MMU_PAGE_1M; | 
 |  | 
 | 	/* Calculate HPAGE_SHIFT and sanity check it */ | 
 | 	if (mmu_psize_defs[mmu_huge_psize].shift > MIN_HUGEPTE_SHIFT && | 
 | 	    mmu_psize_defs[mmu_huge_psize].shift < SID_SHIFT) | 
 | 		HPAGE_SHIFT = mmu_psize_defs[mmu_huge_psize].shift; | 
 | 	else | 
 | 		HPAGE_SHIFT = 0; /* No huge pages dude ! */ | 
 | #endif /* CONFIG_HUGETLB_PAGE */ | 
 | } | 
 |  | 
 | static int __init htab_dt_scan_pftsize(unsigned long node, | 
 | 				       const char *uname, int depth, | 
 | 				       void *data) | 
 | { | 
 | 	char *type = of_get_flat_dt_prop(node, "device_type", NULL); | 
 | 	u32 *prop; | 
 |  | 
 | 	/* We are scanning "cpu" nodes only */ | 
 | 	if (type == NULL || strcmp(type, "cpu") != 0) | 
 | 		return 0; | 
 |  | 
 | 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL); | 
 | 	if (prop != NULL) { | 
 | 		/* pft_size[0] is the NUMA CEC cookie */ | 
 | 		ppc64_pft_size = prop[1]; | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long __init htab_get_table_size(void) | 
 | { | 
 | 	unsigned long mem_size, rnd_mem_size, pteg_count; | 
 |  | 
 | 	/* If hash size isn't already provided by the platform, we try to | 
 | 	 * retrieve it from the device-tree. If it's not there neither, we | 
 | 	 * calculate it now based on the total RAM size | 
 | 	 */ | 
 | 	if (ppc64_pft_size == 0) | 
 | 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL); | 
 | 	if (ppc64_pft_size) | 
 | 		return 1UL << ppc64_pft_size; | 
 |  | 
 | 	/* round mem_size up to next power of 2 */ | 
 | 	mem_size = lmb_phys_mem_size(); | 
 | 	rnd_mem_size = 1UL << __ilog2(mem_size); | 
 | 	if (rnd_mem_size < mem_size) | 
 | 		rnd_mem_size <<= 1; | 
 |  | 
 | 	/* # pages / 2 */ | 
 | 	pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11); | 
 |  | 
 | 	return pteg_count << 7; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | void create_section_mapping(unsigned long start, unsigned long end) | 
 | { | 
 | 		BUG_ON(htab_bolt_mapping(start, end, __pa(start), | 
 | 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX, | 
 | 			mmu_linear_psize)); | 
 | } | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
 |  | 
 | static inline void make_bl(unsigned int *insn_addr, void *func) | 
 | { | 
 | 	unsigned long funcp = *((unsigned long *)func); | 
 | 	int offset = funcp - (unsigned long)insn_addr; | 
 |  | 
 | 	*insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc)); | 
 | 	flush_icache_range((unsigned long)insn_addr, 4+ | 
 | 			   (unsigned long)insn_addr); | 
 | } | 
 |  | 
 | static void __init htab_finish_init(void) | 
 | { | 
 | 	extern unsigned int *htab_call_hpte_insert1; | 
 | 	extern unsigned int *htab_call_hpte_insert2; | 
 | 	extern unsigned int *htab_call_hpte_remove; | 
 | 	extern unsigned int *htab_call_hpte_updatepp; | 
 |  | 
 | #ifdef CONFIG_PPC_64K_PAGES | 
 | 	extern unsigned int *ht64_call_hpte_insert1; | 
 | 	extern unsigned int *ht64_call_hpte_insert2; | 
 | 	extern unsigned int *ht64_call_hpte_remove; | 
 | 	extern unsigned int *ht64_call_hpte_updatepp; | 
 |  | 
 | 	make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert); | 
 | 	make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert); | 
 | 	make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove); | 
 | 	make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp); | 
 | #endif /* CONFIG_PPC_64K_PAGES */ | 
 |  | 
 | 	make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert); | 
 | 	make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert); | 
 | 	make_bl(htab_call_hpte_remove, ppc_md.hpte_remove); | 
 | 	make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp); | 
 | } | 
 |  | 
 | void __init htab_initialize(void) | 
 | { | 
 | 	unsigned long table; | 
 | 	unsigned long pteg_count; | 
 | 	unsigned long mode_rw; | 
 | 	unsigned long base = 0, size = 0; | 
 | 	int i; | 
 |  | 
 | 	extern unsigned long tce_alloc_start, tce_alloc_end; | 
 |  | 
 | 	DBG(" -> htab_initialize()\n"); | 
 |  | 
 | 	/* Initialize page sizes */ | 
 | 	htab_init_page_sizes(); | 
 |  | 
 | 	/* | 
 | 	 * Calculate the required size of the htab.  We want the number of | 
 | 	 * PTEGs to equal one half the number of real pages. | 
 | 	 */  | 
 | 	htab_size_bytes = htab_get_table_size(); | 
 | 	pteg_count = htab_size_bytes >> 7; | 
 |  | 
 | 	htab_hash_mask = pteg_count - 1; | 
 |  | 
 | 	if (firmware_has_feature(FW_FEATURE_LPAR)) { | 
 | 		/* Using a hypervisor which owns the htab */ | 
 | 		htab_address = NULL; | 
 | 		_SDR1 = 0;  | 
 | 	} else { | 
 | 		/* Find storage for the HPT.  Must be contiguous in | 
 | 		 * the absolute address space. | 
 | 		 */ | 
 | 		table = lmb_alloc(htab_size_bytes, htab_size_bytes); | 
 |  | 
 | 		DBG("Hash table allocated at %lx, size: %lx\n", table, | 
 | 		    htab_size_bytes); | 
 |  | 
 | 		htab_address = abs_to_virt(table); | 
 |  | 
 | 		/* htab absolute addr + encoded htabsize */ | 
 | 		_SDR1 = table + __ilog2(pteg_count) - 11; | 
 |  | 
 | 		/* Initialize the HPT with no entries */ | 
 | 		memset((void *)table, 0, htab_size_bytes); | 
 |  | 
 | 		/* Set SDR1 */ | 
 | 		mtspr(SPRN_SDR1, _SDR1); | 
 | 	} | 
 |  | 
 | 	mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX; | 
 |  | 
 | 	/* On U3 based machines, we need to reserve the DART area and | 
 | 	 * _NOT_ map it to avoid cache paradoxes as it's remapped non | 
 | 	 * cacheable later on | 
 | 	 */ | 
 |  | 
 | 	/* create bolted the linear mapping in the hash table */ | 
 | 	for (i=0; i < lmb.memory.cnt; i++) { | 
 | 		base = (unsigned long)__va(lmb.memory.region[i].base); | 
 | 		size = lmb.memory.region[i].size; | 
 |  | 
 | 		DBG("creating mapping for region: %lx : %lx\n", base, size); | 
 |  | 
 | #ifdef CONFIG_U3_DART | 
 | 		/* Do not map the DART space. Fortunately, it will be aligned | 
 | 		 * in such a way that it will not cross two lmb regions and | 
 | 		 * will fit within a single 16Mb page. | 
 | 		 * The DART space is assumed to be a full 16Mb region even if | 
 | 		 * we only use 2Mb of that space. We will use more of it later | 
 | 		 * for AGP GART. We have to use a full 16Mb large page. | 
 | 		 */ | 
 | 		DBG("DART base: %lx\n", dart_tablebase); | 
 |  | 
 | 		if (dart_tablebase != 0 && dart_tablebase >= base | 
 | 		    && dart_tablebase < (base + size)) { | 
 | 			unsigned long dart_table_end = dart_tablebase + 16 * MB; | 
 | 			if (base != dart_tablebase) | 
 | 				BUG_ON(htab_bolt_mapping(base, dart_tablebase, | 
 | 							__pa(base), mode_rw, | 
 | 							mmu_linear_psize)); | 
 | 			if ((base + size) > dart_table_end) | 
 | 				BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB, | 
 | 							base + size, | 
 | 							__pa(dart_table_end), | 
 | 							 mode_rw, | 
 | 							 mmu_linear_psize)); | 
 | 			continue; | 
 | 		} | 
 | #endif /* CONFIG_U3_DART */ | 
 | 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base), | 
 | 					mode_rw, mmu_linear_psize)); | 
 |        } | 
 |  | 
 | 	/* | 
 | 	 * If we have a memory_limit and we've allocated TCEs then we need to | 
 | 	 * explicitly map the TCE area at the top of RAM. We also cope with the | 
 | 	 * case that the TCEs start below memory_limit. | 
 | 	 * tce_alloc_start/end are 16MB aligned so the mapping should work | 
 | 	 * for either 4K or 16MB pages. | 
 | 	 */ | 
 | 	if (tce_alloc_start) { | 
 | 		tce_alloc_start = (unsigned long)__va(tce_alloc_start); | 
 | 		tce_alloc_end = (unsigned long)__va(tce_alloc_end); | 
 |  | 
 | 		if (base + size >= tce_alloc_start) | 
 | 			tce_alloc_start = base + size + 1; | 
 |  | 
 | 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end, | 
 | 					 __pa(tce_alloc_start), mode_rw, | 
 | 					 mmu_linear_psize)); | 
 | 	} | 
 |  | 
 | 	htab_finish_init(); | 
 |  | 
 | 	DBG(" <- htab_initialize()\n"); | 
 | } | 
 | #undef KB | 
 | #undef MB | 
 |  | 
 | void htab_initialize_secondary(void) | 
 | { | 
 | 	if (!firmware_has_feature(FW_FEATURE_LPAR)) | 
 | 		mtspr(SPRN_SDR1, _SDR1); | 
 | } | 
 |  | 
 | /* | 
 |  * Called by asm hashtable.S for doing lazy icache flush | 
 |  */ | 
 | unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (!pfn_valid(pte_pfn(pte))) | 
 | 		return pp; | 
 |  | 
 | 	page = pte_page(pte); | 
 |  | 
 | 	/* page is dirty */ | 
 | 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { | 
 | 		if (trap == 0x400) { | 
 | 			__flush_dcache_icache(page_address(page)); | 
 | 			set_bit(PG_arch_1, &page->flags); | 
 | 		} else | 
 | 			pp |= HPTE_R_N; | 
 | 	} | 
 | 	return pp; | 
 | } | 
 |  | 
 | /* Result code is: | 
 |  *  0 - handled | 
 |  *  1 - normal page fault | 
 |  * -1 - critical hash insertion error | 
 |  */ | 
 | int hash_page(unsigned long ea, unsigned long access, unsigned long trap) | 
 | { | 
 | 	void *pgdir; | 
 | 	unsigned long vsid; | 
 | 	struct mm_struct *mm; | 
 | 	pte_t *ptep; | 
 | 	cpumask_t tmp; | 
 | 	int rc, user_region = 0, local = 0; | 
 | 	int psize; | 
 |  | 
 | 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n", | 
 | 		ea, access, trap); | 
 |  | 
 | 	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) { | 
 | 		DBG_LOW(" out of pgtable range !\n"); | 
 |  		return 1; | 
 | 	} | 
 |  | 
 | 	/* Get region & vsid */ | 
 |  	switch (REGION_ID(ea)) { | 
 | 	case USER_REGION_ID: | 
 | 		user_region = 1; | 
 | 		mm = current->mm; | 
 | 		if (! mm) { | 
 | 			DBG_LOW(" user region with no mm !\n"); | 
 | 			return 1; | 
 | 		} | 
 | 		vsid = get_vsid(mm->context.id, ea); | 
 | 		psize = mm->context.user_psize; | 
 | 		break; | 
 | 	case VMALLOC_REGION_ID: | 
 | 		mm = &init_mm; | 
 | 		vsid = get_kernel_vsid(ea); | 
 | 		if (ea < VMALLOC_END) | 
 | 			psize = mmu_vmalloc_psize; | 
 | 		else | 
 | 			psize = mmu_io_psize; | 
 | 		break; | 
 | 	default: | 
 | 		/* Not a valid range | 
 | 		 * Send the problem up to do_page_fault  | 
 | 		 */ | 
 | 		return 1; | 
 | 	} | 
 | 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid); | 
 |  | 
 | 	/* Get pgdir */ | 
 | 	pgdir = mm->pgd; | 
 | 	if (pgdir == NULL) | 
 | 		return 1; | 
 |  | 
 | 	/* Check CPU locality */ | 
 | 	tmp = cpumask_of_cpu(smp_processor_id()); | 
 | 	if (user_region && cpus_equal(mm->cpu_vm_mask, tmp)) | 
 | 		local = 1; | 
 |  | 
 | 	/* Handle hugepage regions */ | 
 | 	if (unlikely(in_hugepage_area(mm->context, ea))) { | 
 | 		DBG_LOW(" -> huge page !\n"); | 
 | 		return hash_huge_page(mm, access, ea, vsid, local, trap); | 
 | 	} | 
 |  | 
 | 	/* Get PTE and page size from page tables */ | 
 | 	ptep = find_linux_pte(pgdir, ea); | 
 | 	if (ptep == NULL || !pte_present(*ptep)) { | 
 | 		DBG_LOW(" no PTE !\n"); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | #ifndef CONFIG_PPC_64K_PAGES | 
 | 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep)); | 
 | #else | 
 | 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep), | 
 | 		pte_val(*(ptep + PTRS_PER_PTE))); | 
 | #endif | 
 | 	/* Pre-check access permissions (will be re-checked atomically | 
 | 	 * in __hash_page_XX but this pre-check is a fast path | 
 | 	 */ | 
 | 	if (access & ~pte_val(*ptep)) { | 
 | 		DBG_LOW(" no access !\n"); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* Do actual hashing */ | 
 | #ifndef CONFIG_PPC_64K_PAGES | 
 | 	rc = __hash_page_4K(ea, access, vsid, ptep, trap, local); | 
 | #else | 
 | 	if (mmu_ci_restrictions) { | 
 | 		/* If this PTE is non-cacheable, switch to 4k */ | 
 | 		if (psize == MMU_PAGE_64K && | 
 | 		    (pte_val(*ptep) & _PAGE_NO_CACHE)) { | 
 | 			if (user_region) { | 
 | 				psize = MMU_PAGE_4K; | 
 | 				mm->context.user_psize = MMU_PAGE_4K; | 
 | 				mm->context.sllp = SLB_VSID_USER | | 
 | 					mmu_psize_defs[MMU_PAGE_4K].sllp; | 
 | 			} else if (ea < VMALLOC_END) { | 
 | 				/* | 
 | 				 * some driver did a non-cacheable mapping | 
 | 				 * in vmalloc space, so switch vmalloc | 
 | 				 * to 4k pages | 
 | 				 */ | 
 | 				printk(KERN_ALERT "Reducing vmalloc segment " | 
 | 				       "to 4kB pages because of " | 
 | 				       "non-cacheable mapping\n"); | 
 | 				psize = mmu_vmalloc_psize = MMU_PAGE_4K; | 
 | 			} | 
 | 		} | 
 | 		if (user_region) { | 
 | 			if (psize != get_paca()->context.user_psize) { | 
 | 				get_paca()->context = mm->context; | 
 | 				slb_flush_and_rebolt(); | 
 | 			} | 
 | 		} else if (get_paca()->vmalloc_sllp != | 
 | 			   mmu_psize_defs[mmu_vmalloc_psize].sllp) { | 
 | 			get_paca()->vmalloc_sllp = | 
 | 				mmu_psize_defs[mmu_vmalloc_psize].sllp; | 
 | 			slb_flush_and_rebolt(); | 
 | 		} | 
 | 	} | 
 | 	if (psize == MMU_PAGE_64K) | 
 | 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local); | 
 | 	else | 
 | 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, local); | 
 | #endif /* CONFIG_PPC_64K_PAGES */ | 
 |  | 
 | #ifndef CONFIG_PPC_64K_PAGES | 
 | 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep)); | 
 | #else | 
 | 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep), | 
 | 		pte_val(*(ptep + PTRS_PER_PTE))); | 
 | #endif | 
 | 	DBG_LOW(" -> rc=%d\n", rc); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hash_page); | 
 |  | 
 | void hash_preload(struct mm_struct *mm, unsigned long ea, | 
 | 		  unsigned long access, unsigned long trap) | 
 | { | 
 | 	unsigned long vsid; | 
 | 	void *pgdir; | 
 | 	pte_t *ptep; | 
 | 	cpumask_t mask; | 
 | 	unsigned long flags; | 
 | 	int local = 0; | 
 |  | 
 | 	/* We don't want huge pages prefaulted for now | 
 | 	 */ | 
 | 	if (unlikely(in_hugepage_area(mm->context, ea))) | 
 | 		return; | 
 |  | 
 | 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx," | 
 | 		" trap=%lx\n", mm, mm->pgd, ea, access, trap); | 
 |  | 
 | 	/* Get PTE, VSID, access mask */ | 
 | 	pgdir = mm->pgd; | 
 | 	if (pgdir == NULL) | 
 | 		return; | 
 | 	ptep = find_linux_pte(pgdir, ea); | 
 | 	if (!ptep) | 
 | 		return; | 
 | 	vsid = get_vsid(mm->context.id, ea); | 
 |  | 
 | 	/* Hash it in */ | 
 | 	local_irq_save(flags); | 
 | 	mask = cpumask_of_cpu(smp_processor_id()); | 
 | 	if (cpus_equal(mm->cpu_vm_mask, mask)) | 
 | 		local = 1; | 
 | #ifndef CONFIG_PPC_64K_PAGES | 
 | 	__hash_page_4K(ea, access, vsid, ptep, trap, local); | 
 | #else | 
 | 	if (mmu_ci_restrictions) { | 
 | 		/* If this PTE is non-cacheable, switch to 4k */ | 
 | 		if (mm->context.user_psize == MMU_PAGE_64K && | 
 | 		    (pte_val(*ptep) & _PAGE_NO_CACHE)) { | 
 | 			mm->context.user_psize = MMU_PAGE_4K; | 
 | 			mm->context.sllp = SLB_VSID_USER | | 
 | 				mmu_psize_defs[MMU_PAGE_4K].sllp; | 
 | 			get_paca()->context = mm->context; | 
 | 			slb_flush_and_rebolt(); | 
 | 		} | 
 | 	} | 
 | 	if (mm->context.user_psize == MMU_PAGE_64K) | 
 | 		__hash_page_64K(ea, access, vsid, ptep, trap, local); | 
 | 	else | 
 | 		__hash_page_4K(ea, access, vsid, ptep, trap, local); | 
 | #endif /* CONFIG_PPC_64K_PAGES */ | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int local) | 
 | { | 
 | 	unsigned long hash, index, shift, hidx, slot; | 
 |  | 
 | 	DBG_LOW("flush_hash_page(va=%016x)\n", va); | 
 | 	pte_iterate_hashed_subpages(pte, psize, va, index, shift) { | 
 | 		hash = hpt_hash(va, shift); | 
 | 		hidx = __rpte_to_hidx(pte, index); | 
 | 		if (hidx & _PTEIDX_SECONDARY) | 
 | 			hash = ~hash; | 
 | 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | 
 | 		slot += hidx & _PTEIDX_GROUP_IX; | 
 | 		DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index, slot, hidx); | 
 | 		ppc_md.hpte_invalidate(slot, va, psize, local); | 
 | 	} pte_iterate_hashed_end(); | 
 | } | 
 |  | 
 | void flush_hash_range(unsigned long number, int local) | 
 | { | 
 | 	if (ppc_md.flush_hash_range) | 
 | 		ppc_md.flush_hash_range(number, local); | 
 | 	else { | 
 | 		int i; | 
 | 		struct ppc64_tlb_batch *batch = | 
 | 			&__get_cpu_var(ppc64_tlb_batch); | 
 |  | 
 | 		for (i = 0; i < number; i++) | 
 | 			flush_hash_page(batch->vaddr[i], batch->pte[i], | 
 | 					batch->psize, local); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * low_hash_fault is called when we the low level hash code failed | 
 |  * to instert a PTE due to an hypervisor error | 
 |  */ | 
 | void low_hash_fault(struct pt_regs *regs, unsigned long address) | 
 | { | 
 | 	if (user_mode(regs)) { | 
 | 		siginfo_t info; | 
 |  | 
 | 		info.si_signo = SIGBUS; | 
 | 		info.si_errno = 0; | 
 | 		info.si_code = BUS_ADRERR; | 
 | 		info.si_addr = (void __user *)address; | 
 | 		force_sig_info(SIGBUS, &info, current); | 
 | 		return; | 
 | 	} | 
 | 	bad_page_fault(regs, address, SIGBUS); | 
 | } |