|  | /* | 
|  | * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> | 
|  | * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> | 
|  | * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> | 
|  | * | 
|  | * Permission to use, copy, modify, and distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
|  | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
|  | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /*************************************\ | 
|  | * EEPROM access functions and helpers * | 
|  | \*************************************/ | 
|  |  | 
|  | #include "ath5k.h" | 
|  | #include "reg.h" | 
|  | #include "debug.h" | 
|  | #include "base.h" | 
|  |  | 
|  | /* | 
|  | * Read from eeprom | 
|  | */ | 
|  | static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data) | 
|  | { | 
|  | u32 status, timeout; | 
|  |  | 
|  | ATH5K_TRACE(ah->ah_sc); | 
|  | /* | 
|  | * Initialize EEPROM access | 
|  | */ | 
|  | if (ah->ah_version == AR5K_AR5210) { | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE); | 
|  | (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset)); | 
|  | } else { | 
|  | ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE); | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD, | 
|  | AR5K_EEPROM_CMD_READ); | 
|  | } | 
|  |  | 
|  | for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) { | 
|  | status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS); | 
|  | if (status & AR5K_EEPROM_STAT_RDDONE) { | 
|  | if (status & AR5K_EEPROM_STAT_RDERR) | 
|  | return -EIO; | 
|  | *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) & | 
|  | 0xffff); | 
|  | return 0; | 
|  | } | 
|  | udelay(15); | 
|  | } | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Translate binary channel representation in EEPROM to frequency | 
|  | */ | 
|  | static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin, | 
|  | unsigned int mode) | 
|  | { | 
|  | u16 val; | 
|  |  | 
|  | if (bin == AR5K_EEPROM_CHANNEL_DIS) | 
|  | return bin; | 
|  |  | 
|  | if (mode == AR5K_EEPROM_MODE_11A) { | 
|  | if (ee->ee_version > AR5K_EEPROM_VERSION_3_2) | 
|  | val = (5 * bin) + 4800; | 
|  | else | 
|  | val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 : | 
|  | (bin * 10) + 5100; | 
|  | } else { | 
|  | if (ee->ee_version > AR5K_EEPROM_VERSION_3_2) | 
|  | val = bin + 2300; | 
|  | else | 
|  | val = bin + 2400; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize eeprom & capabilities structs | 
|  | */ | 
|  | static int | 
|  | ath5k_eeprom_init_header(struct ath5k_hw *ah) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | int ret; | 
|  | u16 val; | 
|  |  | 
|  | /* | 
|  | * Read values from EEPROM and store them in the capability structure | 
|  | */ | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic); | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect); | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain); | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version); | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header); | 
|  |  | 
|  | /* Return if we have an old EEPROM */ | 
|  | if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0) | 
|  | return 0; | 
|  |  | 
|  | #ifdef notyet | 
|  | /* | 
|  | * Validate the checksum of the EEPROM date. There are some | 
|  | * devices with invalid EEPROMs. | 
|  | */ | 
|  | for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) { | 
|  | AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val); | 
|  | cksum ^= val; | 
|  | } | 
|  | if (cksum != AR5K_EEPROM_INFO_CKSUM) { | 
|  | ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum); | 
|  | return -EIO; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version), | 
|  | ee_ant_gain); | 
|  |  | 
|  | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) { | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0); | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1); | 
|  |  | 
|  | /* XXX: Don't know which versions include these two */ | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2); | 
|  |  | 
|  | if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3); | 
|  |  | 
|  | if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) { | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4); | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5); | 
|  | AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) { | 
|  | AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val); | 
|  | ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7; | 
|  | ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7; | 
|  |  | 
|  | AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val); | 
|  | ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7; | 
|  | ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7; | 
|  | } | 
|  |  | 
|  | AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val); | 
|  |  | 
|  | if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val) | 
|  | ee->ee_is_hb63 = true; | 
|  | else | 
|  | ee->ee_is_hb63 = false; | 
|  |  | 
|  | AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val); | 
|  | ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL); | 
|  | ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Read antenna infos from eeprom | 
|  | */ | 
|  | static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset, | 
|  | unsigned int mode) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | u32 o = *offset; | 
|  | u16 val; | 
|  | int ret, i = 0; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f; | 
|  | ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f; | 
|  | ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf; | 
|  | ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f; | 
|  | ee->ee_ant_control[mode][i++]	= val & 0x3f; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f; | 
|  | ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f; | 
|  | ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3; | 
|  | ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f; | 
|  | ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f; | 
|  | ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf; | 
|  | ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f; | 
|  | ee->ee_ant_control[mode][i++]	= val & 0x3f; | 
|  |  | 
|  | /* Get antenna switch tables */ | 
|  | ah->ah_ant_ctl[mode][AR5K_ANT_CTL] = | 
|  | (ee->ee_ant_control[mode][0] << 4); | 
|  | ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] = | 
|  | ee->ee_ant_control[mode][1] 	| | 
|  | (ee->ee_ant_control[mode][2] << 6) 	| | 
|  | (ee->ee_ant_control[mode][3] << 12) | | 
|  | (ee->ee_ant_control[mode][4] << 18) | | 
|  | (ee->ee_ant_control[mode][5] << 24); | 
|  | ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] = | 
|  | ee->ee_ant_control[mode][6] 	| | 
|  | (ee->ee_ant_control[mode][7] << 6) 	| | 
|  | (ee->ee_ant_control[mode][8] << 12) | | 
|  | (ee->ee_ant_control[mode][9] << 18) | | 
|  | (ee->ee_ant_control[mode][10] << 24); | 
|  |  | 
|  | /* return new offset */ | 
|  | *offset = o; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read supported modes and some mode-specific calibration data | 
|  | * from eeprom | 
|  | */ | 
|  | static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset, | 
|  | unsigned int mode) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | u32 o = *offset; | 
|  | u16 val; | 
|  | int ret; | 
|  |  | 
|  | ee->ee_n_piers[mode] = 0; | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff); | 
|  | switch(mode) { | 
|  | case AR5K_EEPROM_MODE_11A: | 
|  | ee->ee_ob[mode][3]	= (val >> 5) & 0x7; | 
|  | ee->ee_db[mode][3]	= (val >> 2) & 0x7; | 
|  | ee->ee_ob[mode][2]	= (val << 1) & 0x7; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_ob[mode][2]	|= (val >> 15) & 0x1; | 
|  | ee->ee_db[mode][2]	= (val >> 12) & 0x7; | 
|  | ee->ee_ob[mode][1]	= (val >> 9) & 0x7; | 
|  | ee->ee_db[mode][1]	= (val >> 6) & 0x7; | 
|  | ee->ee_ob[mode][0]	= (val >> 3) & 0x7; | 
|  | ee->ee_db[mode][0]	= val & 0x7; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11G: | 
|  | case AR5K_EEPROM_MODE_11B: | 
|  | ee->ee_ob[mode][1]	= (val >> 4) & 0x7; | 
|  | ee->ee_db[mode][1]	= val & 0x7; | 
|  | break; | 
|  | } | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff; | 
|  | ee->ee_thr_62[mode]		= val & 0xff; | 
|  |  | 
|  | if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) | 
|  | ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff; | 
|  | ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff; | 
|  |  | 
|  | if ((val & 0xff) & 0x80) | 
|  | ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1); | 
|  | else | 
|  | ee->ee_noise_floor_thr[mode] = val & 0xff; | 
|  |  | 
|  | if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) | 
|  | ee->ee_noise_floor_thr[mode] = | 
|  | mode == AR5K_EEPROM_MODE_11A ? -54 : -1; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff; | 
|  | ee->ee_x_gain[mode]		= (val >> 1) & 0xf; | 
|  | ee->ee_xpd[mode]		= val & 0x1; | 
|  |  | 
|  | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) | 
|  | ee->ee_fixed_bias[mode] = (val >> 13) & 0x1; | 
|  |  | 
|  | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) { | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_false_detect[mode] = (val >> 6) & 0x7f; | 
|  |  | 
|  | if (mode == AR5K_EEPROM_MODE_11A) | 
|  | ee->ee_xr_power[mode] = val & 0x3f; | 
|  | else { | 
|  | ee->ee_ob[mode][0] = val & 0x7; | 
|  | ee->ee_db[mode][0] = (val >> 3) & 0x7; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) { | 
|  | ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN; | 
|  | ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA; | 
|  | } else { | 
|  | ee->ee_i_gain[mode] = (val >> 13) & 0x7; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_i_gain[mode] |= (val << 3) & 0x38; | 
|  |  | 
|  | if (mode == AR5K_EEPROM_MODE_11G) { | 
|  | ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff; | 
|  | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6) | 
|  | ee->ee_scaled_cck_delta = (val >> 11) & 0x1f; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 && | 
|  | mode == AR5K_EEPROM_MODE_11A) { | 
|  | ee->ee_i_cal[mode] = (val >> 8) & 0x3f; | 
|  | ee->ee_q_cal[mode] = (val >> 3) & 0x1f; | 
|  | } | 
|  |  | 
|  | if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0) | 
|  | goto done; | 
|  |  | 
|  | /* Note: >= v5 have bg freq piers on another location | 
|  | * so these freq piers are ignored for >= v5 (should be 0xff | 
|  | * anyway) */ | 
|  | switch(mode) { | 
|  | case AR5K_EEPROM_MODE_11A: | 
|  | if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1) | 
|  | break; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_margin_tx_rx[mode] = val & 0x3f; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11B: | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  |  | 
|  | ee->ee_pwr_cal_b[0].freq = | 
|  | ath5k_eeprom_bin2freq(ee, val & 0xff, mode); | 
|  | if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS) | 
|  | ee->ee_n_piers[mode]++; | 
|  |  | 
|  | ee->ee_pwr_cal_b[1].freq = | 
|  | ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); | 
|  | if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS) | 
|  | ee->ee_n_piers[mode]++; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_pwr_cal_b[2].freq = | 
|  | ath5k_eeprom_bin2freq(ee, val & 0xff, mode); | 
|  | if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS) | 
|  | ee->ee_n_piers[mode]++; | 
|  |  | 
|  | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) | 
|  | ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11G: | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  |  | 
|  | ee->ee_pwr_cal_g[0].freq = | 
|  | ath5k_eeprom_bin2freq(ee, val & 0xff, mode); | 
|  | if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS) | 
|  | ee->ee_n_piers[mode]++; | 
|  |  | 
|  | ee->ee_pwr_cal_g[1].freq = | 
|  | ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); | 
|  | if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS) | 
|  | ee->ee_n_piers[mode]++; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_turbo_max_power[mode] = val & 0x7f; | 
|  | ee->ee_xr_power[mode] = (val >> 7) & 0x3f; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_pwr_cal_g[2].freq = | 
|  | ath5k_eeprom_bin2freq(ee, val & 0xff, mode); | 
|  | if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS) | 
|  | ee->ee_n_piers[mode]++; | 
|  |  | 
|  | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) | 
|  | ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; | 
|  |  | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_i_cal[mode] = (val >> 8) & 0x3f; | 
|  | ee->ee_q_cal[mode] = (val >> 3) & 0x1f; | 
|  |  | 
|  | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) { | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_cck_ofdm_gain_delta = val & 0xff; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | done: | 
|  | /* return new offset */ | 
|  | *offset = o; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read turbo mode information on newer EEPROM versions | 
|  | */ | 
|  | static int | 
|  | ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah, | 
|  | u32 *offset, unsigned int mode) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | u32 o = *offset; | 
|  | u16 val; | 
|  | int ret; | 
|  |  | 
|  | if (ee->ee_version < AR5K_EEPROM_VERSION_5_0) | 
|  | return 0; | 
|  |  | 
|  | switch (mode){ | 
|  | case AR5K_EEPROM_MODE_11A: | 
|  | ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f; | 
|  |  | 
|  | ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7; | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3; | 
|  | ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f; | 
|  |  | 
|  | ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f; | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7; | 
|  | ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff; | 
|  |  | 
|  | if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2) | 
|  | ee->ee_pd_gain_overlap = (val >> 9) & 0xf; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11G: | 
|  | ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f; | 
|  |  | 
|  | ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7; | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1; | 
|  | ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f; | 
|  |  | 
|  | ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f; | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  | ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5; | 
|  | ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* return new offset */ | 
|  | *offset = o; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read mode-specific data (except power calibration data) */ | 
|  | static int | 
|  | ath5k_eeprom_init_modes(struct ath5k_hw *ah) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | u32 mode_offset[3]; | 
|  | unsigned int mode; | 
|  | u32 offset; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Get values for all modes | 
|  | */ | 
|  | mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version); | 
|  | mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version); | 
|  | mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version); | 
|  |  | 
|  | ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] = | 
|  | AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header); | 
|  |  | 
|  | for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) { | 
|  | offset = mode_offset[mode]; | 
|  |  | 
|  | ret = ath5k_eeprom_read_ants(ah, &offset, mode); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = ath5k_eeprom_read_modes(ah, &offset, mode); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* override for older eeprom versions for better performance */ | 
|  | if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) { | 
|  | ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15; | 
|  | ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28; | 
|  | ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff | 
|  | * frequency mask) */ | 
|  | static inline int | 
|  | ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max, | 
|  | struct ath5k_chan_pcal_info *pc, unsigned int mode) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | int o = *offset; | 
|  | int i = 0; | 
|  | u8 freq1, freq2; | 
|  | int ret; | 
|  | u16 val; | 
|  |  | 
|  | ee->ee_n_piers[mode] = 0; | 
|  | while(i < max) { | 
|  | AR5K_EEPROM_READ(o++, val); | 
|  |  | 
|  | freq1 = val & 0xff; | 
|  | if (!freq1) | 
|  | break; | 
|  |  | 
|  | pc[i++].freq = ath5k_eeprom_bin2freq(ee, | 
|  | freq1, mode); | 
|  | ee->ee_n_piers[mode]++; | 
|  |  | 
|  | freq2 = (val >> 8) & 0xff; | 
|  | if (!freq2) | 
|  | break; | 
|  |  | 
|  | pc[i++].freq = ath5k_eeprom_bin2freq(ee, | 
|  | freq2, mode); | 
|  | ee->ee_n_piers[mode]++; | 
|  | } | 
|  |  | 
|  | /* return new offset */ | 
|  | *offset = o; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read frequency piers for 802.11a */ | 
|  | static int | 
|  | ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a; | 
|  | int i, ret; | 
|  | u16 val; | 
|  | u8 mask; | 
|  |  | 
|  | if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) { | 
|  | ath5k_eeprom_read_freq_list(ah, &offset, | 
|  | AR5K_EEPROM_N_5GHZ_CHAN, pcal, | 
|  | AR5K_EEPROM_MODE_11A); | 
|  | } else { | 
|  | mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version); | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcal[0].freq  = (val >> 9) & mask; | 
|  | pcal[1].freq  = (val >> 2) & mask; | 
|  | pcal[2].freq  = (val << 5) & mask; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcal[2].freq |= (val >> 11) & 0x1f; | 
|  | pcal[3].freq  = (val >> 4) & mask; | 
|  | pcal[4].freq  = (val << 3) & mask; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcal[4].freq |= (val >> 13) & 0x7; | 
|  | pcal[5].freq  = (val >> 6) & mask; | 
|  | pcal[6].freq  = (val << 1) & mask; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcal[6].freq |= (val >> 15) & 0x1; | 
|  | pcal[7].freq  = (val >> 8) & mask; | 
|  | pcal[8].freq  = (val >> 1) & mask; | 
|  | pcal[9].freq  = (val << 6) & mask; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcal[9].freq |= (val >> 10) & 0x3f; | 
|  |  | 
|  | /* Fixed number of piers */ | 
|  | ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10; | 
|  |  | 
|  | for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) { | 
|  | pcal[i].freq = ath5k_eeprom_bin2freq(ee, | 
|  | pcal[i].freq, AR5K_EEPROM_MODE_11A); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */ | 
|  | static inline int | 
|  | ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_chan_pcal_info *pcal; | 
|  |  | 
|  | switch(mode) { | 
|  | case AR5K_EEPROM_MODE_11B: | 
|  | pcal = ee->ee_pwr_cal_b; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11G: | 
|  | pcal = ee->ee_pwr_cal_g; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ath5k_eeprom_read_freq_list(ah, &offset, | 
|  | AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal, | 
|  | mode); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read power calibration for RF5111 chips | 
|  | * | 
|  | * For RF5111 we have an XPD -eXternal Power Detector- curve | 
|  | * for each calibrated channel. Each curve has 0,5dB Power steps | 
|  | * on x axis and PCDAC steps (offsets) on y axis and looks like an | 
|  | * exponential function. To recreate the curve we read 11 points | 
|  | * here and interpolate later. | 
|  | */ | 
|  |  | 
|  | /* Used to match PCDAC steps with power values on RF5111 chips | 
|  | * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC | 
|  | * steps that match with the power values we read from eeprom. On | 
|  | * older eeprom versions (< 3.2) these steps are equaly spaced at | 
|  | * 10% of the pcdac curve -until the curve reaches it's maximum- | 
|  | * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2) | 
|  | * these 11 steps are spaced in a different way. This function returns | 
|  | * the pcdac steps based on eeprom version and curve min/max so that we | 
|  | * can have pcdac/pwr points. | 
|  | */ | 
|  | static inline void | 
|  | ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp) | 
|  | { | 
|  | static const u16 intercepts3[] = | 
|  | { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 }; | 
|  | static const u16 intercepts3_2[] = | 
|  | { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }; | 
|  | const u16 *ip; | 
|  | int i; | 
|  |  | 
|  | if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2) | 
|  | ip = intercepts3_2; | 
|  | else | 
|  | ip = intercepts3; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(intercepts3); i++) | 
|  | vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100; | 
|  | } | 
|  |  | 
|  | /* Convert RF5111 specific data to generic raw data | 
|  | * used by interpolation code */ | 
|  | static int | 
|  | ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode, | 
|  | struct ath5k_chan_pcal_info *chinfo) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_chan_pcal_info_rf5111 *pcinfo; | 
|  | struct ath5k_pdgain_info *pd; | 
|  | u8 pier, point, idx; | 
|  | u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; | 
|  |  | 
|  | /* Fill raw data for each calibration pier */ | 
|  | for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { | 
|  |  | 
|  | pcinfo = &chinfo[pier].rf5111_info; | 
|  |  | 
|  | /* Allocate pd_curves for this cal pier */ | 
|  | chinfo[pier].pd_curves = | 
|  | kcalloc(AR5K_EEPROM_N_PD_CURVES, | 
|  | sizeof(struct ath5k_pdgain_info), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!chinfo[pier].pd_curves) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Only one curve for RF5111 | 
|  | * find out which one and place | 
|  | * in in pd_curves. | 
|  | * Note: ee_x_gain is reversed here */ | 
|  | for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) { | 
|  |  | 
|  | if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) { | 
|  | pdgain_idx[0] = idx; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ee->ee_pd_gains[mode] = 1; | 
|  |  | 
|  | pd = &chinfo[pier].pd_curves[idx]; | 
|  |  | 
|  | pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111; | 
|  |  | 
|  | /* Allocate pd points for this curve */ | 
|  | pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111, | 
|  | sizeof(u8), GFP_KERNEL); | 
|  | if (!pd->pd_step) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111, | 
|  | sizeof(s16), GFP_KERNEL); | 
|  | if (!pd->pd_pwr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Fill raw dataset | 
|  | * (convert power to 0.25dB units | 
|  | * for RF5112 combatibility) */ | 
|  | for (point = 0; point < pd->pd_points; point++) { | 
|  |  | 
|  | /* Absolute values */ | 
|  | pd->pd_pwr[point] = 2 * pcinfo->pwr[point]; | 
|  |  | 
|  | /* Already sorted */ | 
|  | pd->pd_step[point] = pcinfo->pcdac[point]; | 
|  | } | 
|  |  | 
|  | /* Set min/max pwr */ | 
|  | chinfo[pier].min_pwr = pd->pd_pwr[0]; | 
|  | chinfo[pier].max_pwr = pd->pd_pwr[10]; | 
|  |  | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Parse EEPROM data */ | 
|  | static int | 
|  | ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_chan_pcal_info *pcal; | 
|  | int offset, ret; | 
|  | int i; | 
|  | u16 val; | 
|  |  | 
|  | offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); | 
|  | switch(mode) { | 
|  | case AR5K_EEPROM_MODE_11A: | 
|  | if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) | 
|  | return 0; | 
|  |  | 
|  | ret = ath5k_eeprom_init_11a_pcal_freq(ah, | 
|  | offset + AR5K_EEPROM_GROUP1_OFFSET); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | offset += AR5K_EEPROM_GROUP2_OFFSET; | 
|  | pcal = ee->ee_pwr_cal_a; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11B: | 
|  | if (!AR5K_EEPROM_HDR_11B(ee->ee_header) && | 
|  | !AR5K_EEPROM_HDR_11G(ee->ee_header)) | 
|  | return 0; | 
|  |  | 
|  | pcal = ee->ee_pwr_cal_b; | 
|  | offset += AR5K_EEPROM_GROUP3_OFFSET; | 
|  |  | 
|  | /* fixed piers */ | 
|  | pcal[0].freq = 2412; | 
|  | pcal[1].freq = 2447; | 
|  | pcal[2].freq = 2484; | 
|  | ee->ee_n_piers[mode] = 3; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11G: | 
|  | if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) | 
|  | return 0; | 
|  |  | 
|  | pcal = ee->ee_pwr_cal_g; | 
|  | offset += AR5K_EEPROM_GROUP4_OFFSET; | 
|  |  | 
|  | /* fixed piers */ | 
|  | pcal[0].freq = 2312; | 
|  | pcal[1].freq = 2412; | 
|  | pcal[2].freq = 2484; | 
|  | ee->ee_n_piers[mode] = 3; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ee->ee_n_piers[mode]; i++) { | 
|  | struct ath5k_chan_pcal_info_rf5111 *cdata = | 
|  | &pcal[i].rf5111_info; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M); | 
|  | cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M); | 
|  | cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M); | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | cdata->pwr[0] |= ((val >> 14) & 0x3); | 
|  | cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M); | 
|  | cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M); | 
|  | cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M); | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | cdata->pwr[3] |= ((val >> 12) & 0xf); | 
|  | cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M); | 
|  | cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M); | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M); | 
|  | cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M); | 
|  | cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M); | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | cdata->pwr[8] |= ((val >> 14) & 0x3); | 
|  | cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M); | 
|  | cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M); | 
|  |  | 
|  | ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min, | 
|  | cdata->pcdac_max, cdata->pcdac); | 
|  | } | 
|  |  | 
|  | return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Read power calibration for RF5112 chips | 
|  | * | 
|  | * For RF5112 we have 4 XPD -eXternal Power Detector- curves | 
|  | * for each calibrated channel on 0, -6, -12 and -18dbm but we only | 
|  | * use the higher (3) and the lower (0) curves. Each curve has 0.5dB | 
|  | * power steps on x axis and PCDAC steps on y axis and looks like a | 
|  | * linear function. To recreate the curve and pass the power values | 
|  | * on hw, we read 4 points for xpd 0 (lower gain -> max power) | 
|  | * and 3 points for xpd 3 (higher gain -> lower power) here and | 
|  | * interpolate later. | 
|  | * | 
|  | * Note: Many vendors just use xpd 0 so xpd 3 is zeroed. | 
|  | */ | 
|  |  | 
|  | /* Convert RF5112 specific data to generic raw data | 
|  | * used by interpolation code */ | 
|  | static int | 
|  | ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode, | 
|  | struct ath5k_chan_pcal_info *chinfo) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_chan_pcal_info_rf5112 *pcinfo; | 
|  | u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; | 
|  | unsigned int pier, pdg, point; | 
|  |  | 
|  | /* Fill raw data for each calibration pier */ | 
|  | for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { | 
|  |  | 
|  | pcinfo = &chinfo[pier].rf5112_info; | 
|  |  | 
|  | /* Allocate pd_curves for this cal pier */ | 
|  | chinfo[pier].pd_curves = | 
|  | kcalloc(AR5K_EEPROM_N_PD_CURVES, | 
|  | sizeof(struct ath5k_pdgain_info), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!chinfo[pier].pd_curves) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Fill pd_curves */ | 
|  | for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { | 
|  |  | 
|  | u8 idx = pdgain_idx[pdg]; | 
|  | struct ath5k_pdgain_info *pd = | 
|  | &chinfo[pier].pd_curves[idx]; | 
|  |  | 
|  | /* Lowest gain curve (max power) */ | 
|  | if (pdg == 0) { | 
|  | /* One more point for better accuracy */ | 
|  | pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS; | 
|  |  | 
|  | /* Allocate pd points for this curve */ | 
|  | pd->pd_step = kcalloc(pd->pd_points, | 
|  | sizeof(u8), GFP_KERNEL); | 
|  |  | 
|  | if (!pd->pd_step) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pd->pd_pwr = kcalloc(pd->pd_points, | 
|  | sizeof(s16), GFP_KERNEL); | 
|  |  | 
|  | if (!pd->pd_pwr) | 
|  | return -ENOMEM; | 
|  |  | 
|  |  | 
|  | /* Fill raw dataset | 
|  | * (all power levels are in 0.25dB units) */ | 
|  | pd->pd_step[0] = pcinfo->pcdac_x0[0]; | 
|  | pd->pd_pwr[0] = pcinfo->pwr_x0[0]; | 
|  |  | 
|  | for (point = 1; point < pd->pd_points; | 
|  | point++) { | 
|  | /* Absolute values */ | 
|  | pd->pd_pwr[point] = | 
|  | pcinfo->pwr_x0[point]; | 
|  |  | 
|  | /* Deltas */ | 
|  | pd->pd_step[point] = | 
|  | pd->pd_step[point - 1] + | 
|  | pcinfo->pcdac_x0[point]; | 
|  | } | 
|  |  | 
|  | /* Set min power for this frequency */ | 
|  | chinfo[pier].min_pwr = pd->pd_pwr[0]; | 
|  |  | 
|  | /* Highest gain curve (min power) */ | 
|  | } else if (pdg == 1) { | 
|  |  | 
|  | pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS; | 
|  |  | 
|  | /* Allocate pd points for this curve */ | 
|  | pd->pd_step = kcalloc(pd->pd_points, | 
|  | sizeof(u8), GFP_KERNEL); | 
|  |  | 
|  | if (!pd->pd_step) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pd->pd_pwr = kcalloc(pd->pd_points, | 
|  | sizeof(s16), GFP_KERNEL); | 
|  |  | 
|  | if (!pd->pd_pwr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Fill raw dataset | 
|  | * (all power levels are in 0.25dB units) */ | 
|  | for (point = 0; point < pd->pd_points; | 
|  | point++) { | 
|  | /* Absolute values */ | 
|  | pd->pd_pwr[point] = | 
|  | pcinfo->pwr_x3[point]; | 
|  |  | 
|  | /* Fixed points */ | 
|  | pd->pd_step[point] = | 
|  | pcinfo->pcdac_x3[point]; | 
|  | } | 
|  |  | 
|  | /* Since we have a higher gain curve | 
|  | * override min power */ | 
|  | chinfo[pier].min_pwr = pd->pd_pwr[0]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Parse EEPROM data */ | 
|  | static int | 
|  | ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info; | 
|  | struct ath5k_chan_pcal_info *gen_chan_info; | 
|  | u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; | 
|  | u32 offset; | 
|  | u8 i, c; | 
|  | u16 val; | 
|  | int ret; | 
|  | u8 pd_gains = 0; | 
|  |  | 
|  | /* Count how many curves we have and | 
|  | * identify them (which one of the 4 | 
|  | * available curves we have on each count). | 
|  | * Curves are stored from lower (x0) to | 
|  | * higher (x3) gain */ | 
|  | for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) { | 
|  | /* ee_x_gain[mode] is x gain mask */ | 
|  | if ((ee->ee_x_gain[mode] >> i) & 0x1) | 
|  | pdgain_idx[pd_gains++] = i; | 
|  | } | 
|  | ee->ee_pd_gains[mode] = pd_gains; | 
|  |  | 
|  | if (pd_gains == 0 || pd_gains > 2) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (mode) { | 
|  | case AR5K_EEPROM_MODE_11A: | 
|  | /* | 
|  | * Read 5GHz EEPROM channels | 
|  | */ | 
|  | offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); | 
|  | ath5k_eeprom_init_11a_pcal_freq(ah, offset); | 
|  |  | 
|  | offset += AR5K_EEPROM_GROUP2_OFFSET; | 
|  | gen_chan_info = ee->ee_pwr_cal_a; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11B: | 
|  | offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); | 
|  | if (AR5K_EEPROM_HDR_11A(ee->ee_header)) | 
|  | offset += AR5K_EEPROM_GROUP3_OFFSET; | 
|  |  | 
|  | /* NB: frequency piers parsed during mode init */ | 
|  | gen_chan_info = ee->ee_pwr_cal_b; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11G: | 
|  | offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); | 
|  | if (AR5K_EEPROM_HDR_11A(ee->ee_header)) | 
|  | offset += AR5K_EEPROM_GROUP4_OFFSET; | 
|  | else if (AR5K_EEPROM_HDR_11B(ee->ee_header)) | 
|  | offset += AR5K_EEPROM_GROUP2_OFFSET; | 
|  |  | 
|  | /* NB: frequency piers parsed during mode init */ | 
|  | gen_chan_info = ee->ee_pwr_cal_g; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ee->ee_n_piers[mode]; i++) { | 
|  | chan_pcal_info = &gen_chan_info[i].rf5112_info; | 
|  |  | 
|  | /* Power values in quarter dB | 
|  | * for the lower xpd gain curve | 
|  | * (0 dBm -> higher output power) */ | 
|  | for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) { | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff); | 
|  | chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff); | 
|  | } | 
|  |  | 
|  | /* PCDAC steps | 
|  | * corresponding to the above power | 
|  | * measurements */ | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | chan_pcal_info->pcdac_x0[1] = (val & 0x1f); | 
|  | chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f); | 
|  | chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f); | 
|  |  | 
|  | /* Power values in quarter dB | 
|  | * for the higher xpd gain curve | 
|  | * (18 dBm -> lower output power) */ | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff); | 
|  | chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff); | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | chan_pcal_info->pwr_x3[2] = (val & 0xff); | 
|  |  | 
|  | /* PCDAC steps | 
|  | * corresponding to the above power | 
|  | * measurements (fixed) */ | 
|  | chan_pcal_info->pcdac_x3[0] = 20; | 
|  | chan_pcal_info->pcdac_x3[1] = 35; | 
|  | chan_pcal_info->pcdac_x3[2] = 63; | 
|  |  | 
|  | if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) { | 
|  | chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f); | 
|  |  | 
|  | /* Last xpd0 power level is also channel maximum */ | 
|  | gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3]; | 
|  | } else { | 
|  | chan_pcal_info->pcdac_x0[0] = 1; | 
|  | gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Read power calibration for RF2413 chips | 
|  | * | 
|  | * For RF2413 we have a Power to PDDAC table (Power Detector) | 
|  | * instead of a PCDAC and 4 pd gain curves for each calibrated channel. | 
|  | * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y | 
|  | * axis and looks like an exponential function like the RF5111 curve. | 
|  | * | 
|  | * To recreate the curves we read here the points and interpolate | 
|  | * later. Note that in most cases only 2 (higher and lower) curves are | 
|  | * used (like RF5112) but vendors have the oportunity to include all | 
|  | * 4 curves on eeprom. The final curve (higher power) has an extra | 
|  | * point for better accuracy like RF5112. | 
|  | */ | 
|  |  | 
|  | /* For RF2413 power calibration data doesn't start on a fixed location and | 
|  | * if a mode is not supported, it's section is missing -not zeroed-. | 
|  | * So we need to calculate the starting offset for each section by using | 
|  | * these two functions */ | 
|  |  | 
|  | /* Return the size of each section based on the mode and the number of pd | 
|  | * gains available (maximum 4). */ | 
|  | static inline unsigned int | 
|  | ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode) | 
|  | { | 
|  | static const unsigned int pdgains_size[] = { 4, 6, 9, 12 }; | 
|  | unsigned int sz; | 
|  |  | 
|  | sz = pdgains_size[ee->ee_pd_gains[mode] - 1]; | 
|  | sz *= ee->ee_n_piers[mode]; | 
|  |  | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | /* Return the starting offset for a section based on the modes supported | 
|  | * and each section's size. */ | 
|  | static unsigned int | 
|  | ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode) | 
|  | { | 
|  | u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4); | 
|  |  | 
|  | switch(mode) { | 
|  | case AR5K_EEPROM_MODE_11G: | 
|  | if (AR5K_EEPROM_HDR_11B(ee->ee_header)) | 
|  | offset += ath5k_pdgains_size_2413(ee, | 
|  | AR5K_EEPROM_MODE_11B) + | 
|  | AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; | 
|  | /* fall through */ | 
|  | case AR5K_EEPROM_MODE_11B: | 
|  | if (AR5K_EEPROM_HDR_11A(ee->ee_header)) | 
|  | offset += ath5k_pdgains_size_2413(ee, | 
|  | AR5K_EEPROM_MODE_11A) + | 
|  | AR5K_EEPROM_N_5GHZ_CHAN / 2; | 
|  | /* fall through */ | 
|  | case AR5K_EEPROM_MODE_11A: | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | /* Convert RF2413 specific data to generic raw data | 
|  | * used by interpolation code */ | 
|  | static int | 
|  | ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode, | 
|  | struct ath5k_chan_pcal_info *chinfo) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_chan_pcal_info_rf2413 *pcinfo; | 
|  | u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; | 
|  | unsigned int pier, pdg, point; | 
|  |  | 
|  | /* Fill raw data for each calibration pier */ | 
|  | for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { | 
|  |  | 
|  | pcinfo = &chinfo[pier].rf2413_info; | 
|  |  | 
|  | /* Allocate pd_curves for this cal pier */ | 
|  | chinfo[pier].pd_curves = | 
|  | kcalloc(AR5K_EEPROM_N_PD_CURVES, | 
|  | sizeof(struct ath5k_pdgain_info), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!chinfo[pier].pd_curves) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Fill pd_curves */ | 
|  | for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { | 
|  |  | 
|  | u8 idx = pdgain_idx[pdg]; | 
|  | struct ath5k_pdgain_info *pd = | 
|  | &chinfo[pier].pd_curves[idx]; | 
|  |  | 
|  | /* One more point for the highest power | 
|  | * curve (lowest gain) */ | 
|  | if (pdg == ee->ee_pd_gains[mode] - 1) | 
|  | pd->pd_points = AR5K_EEPROM_N_PD_POINTS; | 
|  | else | 
|  | pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1; | 
|  |  | 
|  | /* Allocate pd points for this curve */ | 
|  | pd->pd_step = kcalloc(pd->pd_points, | 
|  | sizeof(u8), GFP_KERNEL); | 
|  |  | 
|  | if (!pd->pd_step) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pd->pd_pwr = kcalloc(pd->pd_points, | 
|  | sizeof(s16), GFP_KERNEL); | 
|  |  | 
|  | if (!pd->pd_pwr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Fill raw dataset | 
|  | * convert all pwr levels to | 
|  | * quarter dB for RF5112 combatibility */ | 
|  | pd->pd_step[0] = pcinfo->pddac_i[pdg]; | 
|  | pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg]; | 
|  |  | 
|  | for (point = 1; point < pd->pd_points; point++) { | 
|  |  | 
|  | pd->pd_pwr[point] = pd->pd_pwr[point - 1] + | 
|  | 2 * pcinfo->pwr[pdg][point - 1]; | 
|  |  | 
|  | pd->pd_step[point] = pd->pd_step[point - 1] + | 
|  | pcinfo->pddac[pdg][point - 1]; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Highest gain curve -> min power */ | 
|  | if (pdg == 0) | 
|  | chinfo[pier].min_pwr = pd->pd_pwr[0]; | 
|  |  | 
|  | /* Lowest gain curve -> max power */ | 
|  | if (pdg == ee->ee_pd_gains[mode] - 1) | 
|  | chinfo[pier].max_pwr = | 
|  | pd->pd_pwr[pd->pd_points - 1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Parse EEPROM data */ | 
|  | static int | 
|  | ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_chan_pcal_info_rf2413 *pcinfo; | 
|  | struct ath5k_chan_pcal_info *chinfo; | 
|  | u8 *pdgain_idx = ee->ee_pdc_to_idx[mode]; | 
|  | u32 offset; | 
|  | int idx, i, ret; | 
|  | u16 val; | 
|  | u8 pd_gains = 0; | 
|  |  | 
|  | /* Count how many curves we have and | 
|  | * identify them (which one of the 4 | 
|  | * available curves we have on each count). | 
|  | * Curves are stored from higher to | 
|  | * lower gain so we go backwards */ | 
|  | for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) { | 
|  | /* ee_x_gain[mode] is x gain mask */ | 
|  | if ((ee->ee_x_gain[mode] >> idx) & 0x1) | 
|  | pdgain_idx[pd_gains++] = idx; | 
|  |  | 
|  | } | 
|  | ee->ee_pd_gains[mode] = pd_gains; | 
|  |  | 
|  | if (pd_gains == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | offset = ath5k_cal_data_offset_2413(ee, mode); | 
|  | switch (mode) { | 
|  | case AR5K_EEPROM_MODE_11A: | 
|  | if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) | 
|  | return 0; | 
|  |  | 
|  | ath5k_eeprom_init_11a_pcal_freq(ah, offset); | 
|  | offset += AR5K_EEPROM_N_5GHZ_CHAN / 2; | 
|  | chinfo = ee->ee_pwr_cal_a; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11B: | 
|  | if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) | 
|  | return 0; | 
|  |  | 
|  | ath5k_eeprom_init_11bg_2413(ah, mode, offset); | 
|  | offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; | 
|  | chinfo = ee->ee_pwr_cal_b; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11G: | 
|  | if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) | 
|  | return 0; | 
|  |  | 
|  | ath5k_eeprom_init_11bg_2413(ah, mode, offset); | 
|  | offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; | 
|  | chinfo = ee->ee_pwr_cal_g; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ee->ee_n_piers[mode]; i++) { | 
|  | pcinfo = &chinfo[i].rf2413_info; | 
|  |  | 
|  | /* | 
|  | * Read pwr_i, pddac_i and the first | 
|  | * 2 pd points (pwr, pddac) | 
|  | */ | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pwr_i[0] = val & 0x1f; | 
|  | pcinfo->pddac_i[0] = (val >> 5) & 0x7f; | 
|  | pcinfo->pwr[0][0] = (val >> 12) & 0xf; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pddac[0][0] = val & 0x3f; | 
|  | pcinfo->pwr[0][1] = (val >> 6) & 0xf; | 
|  | pcinfo->pddac[0][1] = (val >> 10) & 0x3f; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pwr[0][2] = val & 0xf; | 
|  | pcinfo->pddac[0][2] = (val >> 4) & 0x3f; | 
|  |  | 
|  | pcinfo->pwr[0][3] = 0; | 
|  | pcinfo->pddac[0][3] = 0; | 
|  |  | 
|  | if (pd_gains > 1) { | 
|  | /* | 
|  | * Pd gain 0 is not the last pd gain | 
|  | * so it only has 2 pd points. | 
|  | * Continue wih pd gain 1. | 
|  | */ | 
|  | pcinfo->pwr_i[1] = (val >> 10) & 0x1f; | 
|  |  | 
|  | pcinfo->pddac_i[1] = (val >> 15) & 0x1; | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pddac_i[1] |= (val & 0x3F) << 1; | 
|  |  | 
|  | pcinfo->pwr[1][0] = (val >> 6) & 0xf; | 
|  | pcinfo->pddac[1][0] = (val >> 10) & 0x3f; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pwr[1][1] = val & 0xf; | 
|  | pcinfo->pddac[1][1] = (val >> 4) & 0x3f; | 
|  | pcinfo->pwr[1][2] = (val >> 10) & 0xf; | 
|  |  | 
|  | pcinfo->pddac[1][2] = (val >> 14) & 0x3; | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pddac[1][2] |= (val & 0xF) << 2; | 
|  |  | 
|  | pcinfo->pwr[1][3] = 0; | 
|  | pcinfo->pddac[1][3] = 0; | 
|  | } else if (pd_gains == 1) { | 
|  | /* | 
|  | * Pd gain 0 is the last one so | 
|  | * read the extra point. | 
|  | */ | 
|  | pcinfo->pwr[0][3] = (val >> 10) & 0xf; | 
|  |  | 
|  | pcinfo->pddac[0][3] = (val >> 14) & 0x3; | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pddac[0][3] |= (val & 0xF) << 2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Proceed with the other pd_gains | 
|  | * as above. | 
|  | */ | 
|  | if (pd_gains > 2) { | 
|  | pcinfo->pwr_i[2] = (val >> 4) & 0x1f; | 
|  | pcinfo->pddac_i[2] = (val >> 9) & 0x7f; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pwr[2][0] = (val >> 0) & 0xf; | 
|  | pcinfo->pddac[2][0] = (val >> 4) & 0x3f; | 
|  | pcinfo->pwr[2][1] = (val >> 10) & 0xf; | 
|  |  | 
|  | pcinfo->pddac[2][1] = (val >> 14) & 0x3; | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pddac[2][1] |= (val & 0xF) << 2; | 
|  |  | 
|  | pcinfo->pwr[2][2] = (val >> 4) & 0xf; | 
|  | pcinfo->pddac[2][2] = (val >> 8) & 0x3f; | 
|  |  | 
|  | pcinfo->pwr[2][3] = 0; | 
|  | pcinfo->pddac[2][3] = 0; | 
|  | } else if (pd_gains == 2) { | 
|  | pcinfo->pwr[1][3] = (val >> 4) & 0xf; | 
|  | pcinfo->pddac[1][3] = (val >> 8) & 0x3f; | 
|  | } | 
|  |  | 
|  | if (pd_gains > 3) { | 
|  | pcinfo->pwr_i[3] = (val >> 14) & 0x3; | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2; | 
|  |  | 
|  | pcinfo->pddac_i[3] = (val >> 3) & 0x7f; | 
|  | pcinfo->pwr[3][0] = (val >> 10) & 0xf; | 
|  | pcinfo->pddac[3][0] = (val >> 14) & 0x3; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pddac[3][0] |= (val & 0xF) << 2; | 
|  | pcinfo->pwr[3][1] = (val >> 4) & 0xf; | 
|  | pcinfo->pddac[3][1] = (val >> 8) & 0x3f; | 
|  |  | 
|  | pcinfo->pwr[3][2] = (val >> 14) & 0x3; | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2; | 
|  |  | 
|  | pcinfo->pddac[3][2] = (val >> 2) & 0x3f; | 
|  | pcinfo->pwr[3][3] = (val >> 8) & 0xf; | 
|  |  | 
|  | pcinfo->pddac[3][3] = (val >> 12) & 0xF; | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4; | 
|  | } else if (pd_gains == 3) { | 
|  | pcinfo->pwr[2][3] = (val >> 14) & 0x3; | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2; | 
|  |  | 
|  | pcinfo->pddac[2][3] = (val >> 2) & 0x3f; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Read per rate target power (this is the maximum tx power | 
|  | * supported by the card). This info is used when setting | 
|  | * tx power, no matter the channel. | 
|  | * | 
|  | * This also works for v5 EEPROMs. | 
|  | */ | 
|  | static int | 
|  | ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_rate_pcal_info *rate_pcal_info; | 
|  | u8 *rate_target_pwr_num; | 
|  | u32 offset; | 
|  | u16 val; | 
|  | int ret, i; | 
|  |  | 
|  | offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1); | 
|  | rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode]; | 
|  | switch (mode) { | 
|  | case AR5K_EEPROM_MODE_11A: | 
|  | offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version); | 
|  | rate_pcal_info = ee->ee_rate_tpwr_a; | 
|  | ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11B: | 
|  | offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version); | 
|  | rate_pcal_info = ee->ee_rate_tpwr_b; | 
|  | ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */ | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11G: | 
|  | offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version); | 
|  | rate_pcal_info = ee->ee_rate_tpwr_g; | 
|  | ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Different freq mask for older eeproms (<= v3.2) */ | 
|  | if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) { | 
|  | for (i = 0; i < (*rate_target_pwr_num); i++) { | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rate_pcal_info[i].freq = | 
|  | ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode); | 
|  |  | 
|  | rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f); | 
|  | rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  |  | 
|  | if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS || | 
|  | val == 0) { | 
|  | (*rate_target_pwr_num) = i; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7); | 
|  | rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f); | 
|  | rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f); | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < (*rate_target_pwr_num); i++) { | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rate_pcal_info[i].freq = | 
|  | ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); | 
|  |  | 
|  | rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f); | 
|  | rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  |  | 
|  | if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS || | 
|  | val == 0) { | 
|  | (*rate_target_pwr_num) = i; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf; | 
|  | rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f); | 
|  | rate_pcal_info[i].target_power_54 = (val & 0x3f); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read per channel calibration info from EEPROM | 
|  | * | 
|  | * This info is used to calibrate the baseband power table. Imagine | 
|  | * that for each channel there is a power curve that's hw specific | 
|  | * (depends on amplifier etc) and we try to "correct" this curve using | 
|  | * offests we pass on to phy chip (baseband -> before amplifier) so that | 
|  | * it can use accurate power values when setting tx power (takes amplifier's | 
|  | * performance on each channel into account). | 
|  | * | 
|  | * EEPROM provides us with the offsets for some pre-calibrated channels | 
|  | * and we have to interpolate to create the full table for these channels and | 
|  | * also the table for any channel. | 
|  | */ | 
|  | static int | 
|  | ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | int (*read_pcal)(struct ath5k_hw *hw, int mode); | 
|  | int mode; | 
|  | int err; | 
|  |  | 
|  | if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) && | 
|  | (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1)) | 
|  | read_pcal = ath5k_eeprom_read_pcal_info_5112; | 
|  | else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) && | 
|  | (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2)) | 
|  | read_pcal = ath5k_eeprom_read_pcal_info_2413; | 
|  | else | 
|  | read_pcal = ath5k_eeprom_read_pcal_info_5111; | 
|  |  | 
|  |  | 
|  | for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; | 
|  | mode++) { | 
|  | err = read_pcal(ah, mode); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_chan_pcal_info *chinfo; | 
|  | u8 pier, pdg; | 
|  |  | 
|  | switch (mode) { | 
|  | case AR5K_EEPROM_MODE_11A: | 
|  | if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) | 
|  | return 0; | 
|  | chinfo = ee->ee_pwr_cal_a; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11B: | 
|  | if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) | 
|  | return 0; | 
|  | chinfo = ee->ee_pwr_cal_b; | 
|  | break; | 
|  | case AR5K_EEPROM_MODE_11G: | 
|  | if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) | 
|  | return 0; | 
|  | chinfo = ee->ee_pwr_cal_g; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) { | 
|  | if (!chinfo[pier].pd_curves) | 
|  | continue; | 
|  |  | 
|  | for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) { | 
|  | struct ath5k_pdgain_info *pd = | 
|  | &chinfo[pier].pd_curves[pdg]; | 
|  |  | 
|  | if (pd != NULL) { | 
|  | kfree(pd->pd_step); | 
|  | kfree(pd->pd_pwr); | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(chinfo[pier].pd_curves); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | ath5k_eeprom_detach(struct ath5k_hw *ah) | 
|  | { | 
|  | u8 mode; | 
|  |  | 
|  | for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) | 
|  | ath5k_eeprom_free_pcal_info(ah, mode); | 
|  | } | 
|  |  | 
|  | /* Read conformance test limits used for regulatory control */ | 
|  | static int | 
|  | ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_edge_power *rep; | 
|  | unsigned int fmask, pmask; | 
|  | unsigned int ctl_mode; | 
|  | int ret, i, j; | 
|  | u32 offset; | 
|  | u16 val; | 
|  |  | 
|  | pmask = AR5K_EEPROM_POWER_M; | 
|  | fmask = AR5K_EEPROM_FREQ_M(ee->ee_version); | 
|  | offset = AR5K_EEPROM_CTL(ee->ee_version); | 
|  | ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version); | 
|  | for (i = 0; i < ee->ee_ctls; i += 2) { | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | ee->ee_ctl[i] = (val >> 8) & 0xff; | 
|  | ee->ee_ctl[i + 1] = val & 0xff; | 
|  | } | 
|  |  | 
|  | offset = AR5K_EEPROM_GROUP8_OFFSET; | 
|  | if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0) | 
|  | offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) - | 
|  | AR5K_EEPROM_GROUP5_OFFSET; | 
|  | else | 
|  | offset += AR5K_EEPROM_GROUPS_START(ee->ee_version); | 
|  |  | 
|  | rep = ee->ee_ctl_pwr; | 
|  | for(i = 0; i < ee->ee_ctls; i++) { | 
|  | switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) { | 
|  | case AR5K_CTL_11A: | 
|  | case AR5K_CTL_TURBO: | 
|  | ctl_mode = AR5K_EEPROM_MODE_11A; | 
|  | break; | 
|  | default: | 
|  | ctl_mode = AR5K_EEPROM_MODE_11G; | 
|  | break; | 
|  | } | 
|  | if (ee->ee_ctl[i] == 0) { | 
|  | if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) | 
|  | offset += 8; | 
|  | else | 
|  | offset += 7; | 
|  | rep += AR5K_EEPROM_N_EDGES; | 
|  | continue; | 
|  | } | 
|  | if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) { | 
|  | for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) { | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rep[j].freq = (val >> 8) & fmask; | 
|  | rep[j + 1].freq = val & fmask; | 
|  | } | 
|  | for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) { | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rep[j].edge = (val >> 8) & pmask; | 
|  | rep[j].flag = (val >> 14) & 1; | 
|  | rep[j + 1].edge = val & pmask; | 
|  | rep[j + 1].flag = (val >> 6) & 1; | 
|  | } | 
|  | } else { | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rep[0].freq = (val >> 9) & fmask; | 
|  | rep[1].freq = (val >> 2) & fmask; | 
|  | rep[2].freq = (val << 5) & fmask; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rep[2].freq |= (val >> 11) & 0x1f; | 
|  | rep[3].freq = (val >> 4) & fmask; | 
|  | rep[4].freq = (val << 3) & fmask; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rep[4].freq |= (val >> 13) & 0x7; | 
|  | rep[5].freq = (val >> 6) & fmask; | 
|  | rep[6].freq = (val << 1) & fmask; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rep[6].freq |= (val >> 15) & 0x1; | 
|  | rep[7].freq = (val >> 8) & fmask; | 
|  |  | 
|  | rep[0].edge = (val >> 2) & pmask; | 
|  | rep[1].edge = (val << 4) & pmask; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rep[1].edge |= (val >> 12) & 0xf; | 
|  | rep[2].edge = (val >> 6) & pmask; | 
|  | rep[3].edge = val & pmask; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rep[4].edge = (val >> 10) & pmask; | 
|  | rep[5].edge = (val >> 4) & pmask; | 
|  | rep[6].edge = (val << 2) & pmask; | 
|  |  | 
|  | AR5K_EEPROM_READ(offset++, val); | 
|  | rep[6].edge |= (val >> 14) & 0x3; | 
|  | rep[7].edge = (val >> 8) & pmask; | 
|  | } | 
|  | for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) { | 
|  | rep[j].freq = ath5k_eeprom_bin2freq(ee, | 
|  | rep[j].freq, ctl_mode); | 
|  | } | 
|  | rep += AR5K_EEPROM_N_EDGES; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | u32 offset; | 
|  | u16 val; | 
|  | int ret = 0, i; | 
|  |  | 
|  | offset = AR5K_EEPROM_CTL(ee->ee_version) + | 
|  | AR5K_EEPROM_N_CTLS(ee->ee_version); | 
|  |  | 
|  | if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) { | 
|  | /* No spur info for 5GHz */ | 
|  | ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR; | 
|  | /* 2 channels for 2GHz (2464/2420) */ | 
|  | ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1; | 
|  | ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2; | 
|  | ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR; | 
|  | } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) { | 
|  | for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { | 
|  | AR5K_EEPROM_READ(offset, val); | 
|  | ee->ee_spur_chans[i][0] = val; | 
|  | AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS, | 
|  | val); | 
|  | ee->ee_spur_chans[i][1] = val; | 
|  | offset++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize eeprom data structure | 
|  | */ | 
|  | int | 
|  | ath5k_eeprom_init(struct ath5k_hw *ah) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = ath5k_eeprom_init_header(ah); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | err = ath5k_eeprom_init_modes(ah); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | err = ath5k_eeprom_read_pcal_info(ah); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | err = ath5k_eeprom_read_ctl_info(ah); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | err = ath5k_eeprom_read_spur_chans(ah); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the MAC address from eeprom | 
|  | */ | 
|  | int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac) | 
|  | { | 
|  | u8 mac_d[ETH_ALEN] = {}; | 
|  | u32 total, offset; | 
|  | u16 data; | 
|  | int octet, ret; | 
|  |  | 
|  | ret = ath5k_hw_eeprom_read(ah, 0x20, &data); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) { | 
|  | ret = ath5k_hw_eeprom_read(ah, offset, &data); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | total += data; | 
|  | mac_d[octet + 1] = data & 0xff; | 
|  | mac_d[octet] = data >> 8; | 
|  | octet += 2; | 
|  | } | 
|  |  | 
|  | if (!total || total == 3 * 0xffff) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(mac, mac_d, ETH_ALEN); | 
|  |  | 
|  | return 0; | 
|  | } |