|  | /*  KVM paravirtual clock driver. A clocksource implementation | 
|  | Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/kvm_para.h> | 
|  | #include <asm/pvclock.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/apic.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | #include <asm/x86_init.h> | 
|  | #include <asm/reboot.h> | 
|  |  | 
|  | static int kvmclock = 1; | 
|  | static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME; | 
|  | static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK; | 
|  |  | 
|  | static int parse_no_kvmclock(char *arg) | 
|  | { | 
|  | kvmclock = 0; | 
|  | return 0; | 
|  | } | 
|  | early_param("no-kvmclock", parse_no_kvmclock); | 
|  |  | 
|  | /* The hypervisor will put information about time periodically here */ | 
|  | static struct pvclock_vsyscall_time_info *hv_clock; | 
|  | static struct pvclock_wall_clock wall_clock; | 
|  |  | 
|  | /* | 
|  | * The wallclock is the time of day when we booted. Since then, some time may | 
|  | * have elapsed since the hypervisor wrote the data. So we try to account for | 
|  | * that with system time | 
|  | */ | 
|  | static void kvm_get_wallclock(struct timespec *now) | 
|  | { | 
|  | struct pvclock_vcpu_time_info *vcpu_time; | 
|  | int low, high; | 
|  | int cpu; | 
|  |  | 
|  | low = (int)__pa_symbol(&wall_clock); | 
|  | high = ((u64)__pa_symbol(&wall_clock) >> 32); | 
|  |  | 
|  | native_write_msr(msr_kvm_wall_clock, low, high); | 
|  |  | 
|  | cpu = get_cpu(); | 
|  |  | 
|  | vcpu_time = &hv_clock[cpu].pvti; | 
|  | pvclock_read_wallclock(&wall_clock, vcpu_time, now); | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | static int kvm_set_wallclock(const struct timespec *now) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static cycle_t kvm_clock_read(void) | 
|  | { | 
|  | struct pvclock_vcpu_time_info *src; | 
|  | cycle_t ret; | 
|  | int cpu; | 
|  |  | 
|  | preempt_disable_notrace(); | 
|  | cpu = smp_processor_id(); | 
|  | src = &hv_clock[cpu].pvti; | 
|  | ret = pvclock_clocksource_read(src); | 
|  | preempt_enable_notrace(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static cycle_t kvm_clock_get_cycles(struct clocksource *cs) | 
|  | { | 
|  | return kvm_clock_read(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we don't do that, there is the possibility that the guest | 
|  | * will calibrate under heavy load - thus, getting a lower lpj - | 
|  | * and execute the delays themselves without load. This is wrong, | 
|  | * because no delay loop can finish beforehand. | 
|  | * Any heuristics is subject to fail, because ultimately, a large | 
|  | * poll of guests can be running and trouble each other. So we preset | 
|  | * lpj here | 
|  | */ | 
|  | static unsigned long kvm_get_tsc_khz(void) | 
|  | { | 
|  | struct pvclock_vcpu_time_info *src; | 
|  | int cpu; | 
|  | unsigned long tsc_khz; | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | src = &hv_clock[cpu].pvti; | 
|  | tsc_khz = pvclock_tsc_khz(src); | 
|  | put_cpu(); | 
|  | return tsc_khz; | 
|  | } | 
|  |  | 
|  | static void kvm_get_preset_lpj(void) | 
|  | { | 
|  | unsigned long khz; | 
|  | u64 lpj; | 
|  |  | 
|  | khz = kvm_get_tsc_khz(); | 
|  |  | 
|  | lpj = ((u64)khz * 1000); | 
|  | do_div(lpj, HZ); | 
|  | preset_lpj = lpj; | 
|  | } | 
|  |  | 
|  | bool kvm_check_and_clear_guest_paused(void) | 
|  | { | 
|  | bool ret = false; | 
|  | struct pvclock_vcpu_time_info *src; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | if (!hv_clock) | 
|  | return ret; | 
|  |  | 
|  | src = &hv_clock[cpu].pvti; | 
|  | if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) { | 
|  | src->flags &= ~PVCLOCK_GUEST_STOPPED; | 
|  | pvclock_touch_watchdogs(); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct clocksource kvm_clock = { | 
|  | .name = "kvm-clock", | 
|  | .read = kvm_clock_get_cycles, | 
|  | .rating = 400, | 
|  | .mask = CLOCKSOURCE_MASK(64), | 
|  | .flags = CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | }; | 
|  |  | 
|  | int kvm_register_clock(char *txt) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | int low, high, ret; | 
|  | struct pvclock_vcpu_time_info *src; | 
|  |  | 
|  | if (!hv_clock) | 
|  | return 0; | 
|  |  | 
|  | src = &hv_clock[cpu].pvti; | 
|  | low = (int)slow_virt_to_phys(src) | 1; | 
|  | high = ((u64)slow_virt_to_phys(src) >> 32); | 
|  | ret = native_write_msr_safe(msr_kvm_system_time, low, high); | 
|  | printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n", | 
|  | cpu, high, low, txt); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void kvm_save_sched_clock_state(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void kvm_restore_sched_clock_state(void) | 
|  | { | 
|  | kvm_register_clock("primary cpu clock, resume"); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | static void kvm_setup_secondary_clock(void) | 
|  | { | 
|  | /* | 
|  | * Now that the first cpu already had this clocksource initialized, | 
|  | * we shouldn't fail. | 
|  | */ | 
|  | WARN_ON(kvm_register_clock("secondary cpu clock")); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * After the clock is registered, the host will keep writing to the | 
|  | * registered memory location. If the guest happens to shutdown, this memory | 
|  | * won't be valid. In cases like kexec, in which you install a new kernel, this | 
|  | * means a random memory location will be kept being written. So before any | 
|  | * kind of shutdown from our side, we unregister the clock by writting anything | 
|  | * that does not have the 'enable' bit set in the msr | 
|  | */ | 
|  | #ifdef CONFIG_KEXEC | 
|  | static void kvm_crash_shutdown(struct pt_regs *regs) | 
|  | { | 
|  | native_write_msr(msr_kvm_system_time, 0, 0); | 
|  | kvm_disable_steal_time(); | 
|  | native_machine_crash_shutdown(regs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void kvm_shutdown(void) | 
|  | { | 
|  | native_write_msr(msr_kvm_system_time, 0, 0); | 
|  | kvm_disable_steal_time(); | 
|  | native_machine_shutdown(); | 
|  | } | 
|  |  | 
|  | void __init kvmclock_init(void) | 
|  | { | 
|  | struct pvclock_vcpu_time_info *vcpu_time; | 
|  | unsigned long mem; | 
|  | int size, cpu; | 
|  | u8 flags; | 
|  |  | 
|  | size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS); | 
|  |  | 
|  | if (!kvm_para_available()) | 
|  | return; | 
|  |  | 
|  | if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) { | 
|  | msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW; | 
|  | msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW; | 
|  | } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE))) | 
|  | return; | 
|  |  | 
|  | printk(KERN_INFO "kvm-clock: Using msrs %x and %x", | 
|  | msr_kvm_system_time, msr_kvm_wall_clock); | 
|  |  | 
|  | mem = memblock_alloc(size, PAGE_SIZE); | 
|  | if (!mem) | 
|  | return; | 
|  | hv_clock = __va(mem); | 
|  | memset(hv_clock, 0, size); | 
|  |  | 
|  | if (kvm_register_clock("primary cpu clock")) { | 
|  | hv_clock = NULL; | 
|  | memblock_free(mem, size); | 
|  | return; | 
|  | } | 
|  | pv_time_ops.sched_clock = kvm_clock_read; | 
|  | x86_platform.calibrate_tsc = kvm_get_tsc_khz; | 
|  | x86_platform.get_wallclock = kvm_get_wallclock; | 
|  | x86_platform.set_wallclock = kvm_set_wallclock; | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | x86_cpuinit.early_percpu_clock_init = | 
|  | kvm_setup_secondary_clock; | 
|  | #endif | 
|  | x86_platform.save_sched_clock_state = kvm_save_sched_clock_state; | 
|  | x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state; | 
|  | machine_ops.shutdown  = kvm_shutdown; | 
|  | #ifdef CONFIG_KEXEC | 
|  | machine_ops.crash_shutdown  = kvm_crash_shutdown; | 
|  | #endif | 
|  | kvm_get_preset_lpj(); | 
|  | clocksource_register_hz(&kvm_clock, NSEC_PER_SEC); | 
|  | pv_info.name = "KVM"; | 
|  |  | 
|  | if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT)) | 
|  | pvclock_set_flags(~0); | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | vcpu_time = &hv_clock[cpu].pvti; | 
|  | flags = pvclock_read_flags(vcpu_time); | 
|  | if (flags & PVCLOCK_COUNTS_FROM_ZERO) | 
|  | set_sched_clock_stable(); | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | int __init kvm_setup_vsyscall_timeinfo(void) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | int cpu; | 
|  | int ret; | 
|  | u8 flags; | 
|  | struct pvclock_vcpu_time_info *vcpu_time; | 
|  | unsigned int size; | 
|  |  | 
|  | if (!hv_clock) | 
|  | return 0; | 
|  |  | 
|  | size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS); | 
|  |  | 
|  | cpu = get_cpu(); | 
|  |  | 
|  | vcpu_time = &hv_clock[cpu].pvti; | 
|  | flags = pvclock_read_flags(vcpu_time); | 
|  |  | 
|  | if (!(flags & PVCLOCK_TSC_STABLE_BIT)) { | 
|  | put_cpu(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if ((ret = pvclock_init_vsyscall(hv_clock, size))) { | 
|  | put_cpu(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | put_cpu(); | 
|  |  | 
|  | kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK; | 
|  | #endif | 
|  | return 0; | 
|  | } |