|  | /* | 
|  | *  linux/arch/arm/mm/mmu.c | 
|  | * | 
|  | *  Copyright (C) 1995-2005 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sizes.h> | 
|  |  | 
|  | #include <asm/cp15.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/cachetype.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/smp_plat.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/highmem.h> | 
|  | #include <asm/system_info.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/procinfo.h> | 
|  | #include <asm/memory.h> | 
|  |  | 
|  | #include <asm/mach/arch.h> | 
|  | #include <asm/mach/map.h> | 
|  | #include <asm/mach/pci.h> | 
|  |  | 
|  | #include "mm.h" | 
|  | #include "tcm.h" | 
|  |  | 
|  | /* | 
|  | * empty_zero_page is a special page that is used for | 
|  | * zero-initialized data and COW. | 
|  | */ | 
|  | struct page *empty_zero_page; | 
|  | EXPORT_SYMBOL(empty_zero_page); | 
|  |  | 
|  | /* | 
|  | * The pmd table for the upper-most set of pages. | 
|  | */ | 
|  | pmd_t *top_pmd; | 
|  |  | 
|  | #define CPOLICY_UNCACHED	0 | 
|  | #define CPOLICY_BUFFERED	1 | 
|  | #define CPOLICY_WRITETHROUGH	2 | 
|  | #define CPOLICY_WRITEBACK	3 | 
|  | #define CPOLICY_WRITEALLOC	4 | 
|  |  | 
|  | static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; | 
|  | static unsigned int ecc_mask __initdata = 0; | 
|  | pgprot_t pgprot_user; | 
|  | pgprot_t pgprot_kernel; | 
|  | pgprot_t pgprot_hyp_device; | 
|  | pgprot_t pgprot_s2; | 
|  | pgprot_t pgprot_s2_device; | 
|  |  | 
|  | EXPORT_SYMBOL(pgprot_user); | 
|  | EXPORT_SYMBOL(pgprot_kernel); | 
|  |  | 
|  | struct cachepolicy { | 
|  | const char	policy[16]; | 
|  | unsigned int	cr_mask; | 
|  | pmdval_t	pmd; | 
|  | pteval_t	pte; | 
|  | pteval_t	pte_s2; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | #define s2_policy(policy)	policy | 
|  | #else | 
|  | #define s2_policy(policy)	0 | 
|  | #endif | 
|  |  | 
|  | static struct cachepolicy cache_policies[] __initdata = { | 
|  | { | 
|  | .policy		= "uncached", | 
|  | .cr_mask	= CR_W|CR_C, | 
|  | .pmd		= PMD_SECT_UNCACHED, | 
|  | .pte		= L_PTE_MT_UNCACHED, | 
|  | .pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED), | 
|  | }, { | 
|  | .policy		= "buffered", | 
|  | .cr_mask	= CR_C, | 
|  | .pmd		= PMD_SECT_BUFFERED, | 
|  | .pte		= L_PTE_MT_BUFFERABLE, | 
|  | .pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED), | 
|  | }, { | 
|  | .policy		= "writethrough", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WT, | 
|  | .pte		= L_PTE_MT_WRITETHROUGH, | 
|  | .pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH), | 
|  | }, { | 
|  | .policy		= "writeback", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WB, | 
|  | .pte		= L_PTE_MT_WRITEBACK, | 
|  | .pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK), | 
|  | }, { | 
|  | .policy		= "writealloc", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WBWA, | 
|  | .pte		= L_PTE_MT_WRITEALLOC, | 
|  | .pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK), | 
|  | } | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_CPU_CP15 | 
|  | /* | 
|  | * These are useful for identifying cache coherency | 
|  | * problems by allowing the cache or the cache and | 
|  | * writebuffer to be turned off.  (Note: the write | 
|  | * buffer should not be on and the cache off). | 
|  | */ | 
|  | static int __init early_cachepolicy(char *p) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { | 
|  | int len = strlen(cache_policies[i].policy); | 
|  |  | 
|  | if (memcmp(p, cache_policies[i].policy, len) == 0) { | 
|  | cachepolicy = i; | 
|  | cr_alignment &= ~cache_policies[i].cr_mask; | 
|  | cr_no_alignment &= ~cache_policies[i].cr_mask; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == ARRAY_SIZE(cache_policies)) | 
|  | printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); | 
|  | /* | 
|  | * This restriction is partly to do with the way we boot; it is | 
|  | * unpredictable to have memory mapped using two different sets of | 
|  | * memory attributes (shared, type, and cache attribs).  We can not | 
|  | * change these attributes once the initial assembly has setup the | 
|  | * page tables. | 
|  | */ | 
|  | if (cpu_architecture() >= CPU_ARCH_ARMv6) { | 
|  | printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n"); | 
|  | cachepolicy = CPOLICY_WRITEBACK; | 
|  | } | 
|  | flush_cache_all(); | 
|  | set_cr(cr_alignment); | 
|  | return 0; | 
|  | } | 
|  | early_param("cachepolicy", early_cachepolicy); | 
|  |  | 
|  | static int __init early_nocache(char *__unused) | 
|  | { | 
|  | char *p = "buffered"; | 
|  | printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); | 
|  | early_cachepolicy(p); | 
|  | return 0; | 
|  | } | 
|  | early_param("nocache", early_nocache); | 
|  |  | 
|  | static int __init early_nowrite(char *__unused) | 
|  | { | 
|  | char *p = "uncached"; | 
|  | printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); | 
|  | early_cachepolicy(p); | 
|  | return 0; | 
|  | } | 
|  | early_param("nowb", early_nowrite); | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | static int __init early_ecc(char *p) | 
|  | { | 
|  | if (memcmp(p, "on", 2) == 0) | 
|  | ecc_mask = PMD_PROTECTION; | 
|  | else if (memcmp(p, "off", 3) == 0) | 
|  | ecc_mask = 0; | 
|  | return 0; | 
|  | } | 
|  | early_param("ecc", early_ecc); | 
|  | #endif | 
|  |  | 
|  | static int __init noalign_setup(char *__unused) | 
|  | { | 
|  | cr_alignment &= ~CR_A; | 
|  | cr_no_alignment &= ~CR_A; | 
|  | set_cr(cr_alignment); | 
|  | return 1; | 
|  | } | 
|  | __setup("noalign", noalign_setup); | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | void adjust_cr(unsigned long mask, unsigned long set) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | mask &= ~CR_A; | 
|  |  | 
|  | set &= mask; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cr_no_alignment = (cr_no_alignment & ~mask) | set; | 
|  | cr_alignment = (cr_alignment & ~mask) | set; | 
|  |  | 
|  | set_cr((get_cr() & ~mask) | set); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #else /* ifdef CONFIG_CPU_CP15 */ | 
|  |  | 
|  | static int __init early_cachepolicy(char *p) | 
|  | { | 
|  | pr_warning("cachepolicy kernel parameter not supported without cp15\n"); | 
|  | } | 
|  | early_param("cachepolicy", early_cachepolicy); | 
|  |  | 
|  | static int __init noalign_setup(char *__unused) | 
|  | { | 
|  | pr_warning("noalign kernel parameter not supported without cp15\n"); | 
|  | } | 
|  | __setup("noalign", noalign_setup); | 
|  |  | 
|  | #endif /* ifdef CONFIG_CPU_CP15 / else */ | 
|  |  | 
|  | #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN | 
|  | #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE | 
|  | #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE | 
|  |  | 
|  | static struct mem_type mem_types[] = { | 
|  | [MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | | 
|  | L_PTE_SHARED, | 
|  | .prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) | | 
|  | s2_policy(L_PTE_S2_MT_DEV_SHARED) | | 
|  | L_PTE_SHARED, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_DEVICE_CACHED] = {	  /* ioremap_cached */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_DEVICE_WC] = {	/* ioremap_wc */ | 
|  | .prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PROT_SECT_DEVICE, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_UNCACHED] = { | 
|  | .prot_pte	= PROT_PTE_DEVICE, | 
|  | .prot_l1	= PMD_TYPE_TABLE, | 
|  | .prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN, | 
|  | .domain		= DOMAIN_IO, | 
|  | }, | 
|  | [MT_CACHECLEAN] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | [MT_MINICLEAN] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | #endif | 
|  | [MT_LOW_VECTORS] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_RDONLY, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_USER, | 
|  | }, | 
|  | [MT_HIGH_VECTORS] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_USER | L_PTE_RDONLY, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_USER, | 
|  | }, | 
|  | [MT_MEMORY_RWX] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RW] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_XN, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_ROM] = { | 
|  | .prot_sect = PMD_TYPE_SECT, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RWX_NONCACHED] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_MT_BUFFERABLE, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RW_DTCM] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_XN, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RWX_ITCM] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_RW_SO] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_MT_UNCACHED | L_PTE_XN, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | | 
|  | PMD_SECT_UNCACHED | PMD_SECT_XN, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MEMORY_DMA_READY] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_XN, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | const struct mem_type *get_mem_type(unsigned int type) | 
|  | { | 
|  | return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(get_mem_type); | 
|  |  | 
|  | #define PTE_SET_FN(_name, pteop) \ | 
|  | static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \ | 
|  | void *data) \ | 
|  | { \ | 
|  | pte_t pte = pteop(*ptep); \ | 
|  | \ | 
|  | set_pte_ext(ptep, pte, 0); \ | 
|  | return 0; \ | 
|  | } \ | 
|  |  | 
|  | #define SET_MEMORY_FN(_name, callback) \ | 
|  | int set_memory_##_name(unsigned long addr, int numpages) \ | 
|  | { \ | 
|  | unsigned long start = addr; \ | 
|  | unsigned long size = PAGE_SIZE*numpages; \ | 
|  | unsigned end = start + size; \ | 
|  | \ | 
|  | if (start < MODULES_VADDR || start >= MODULES_END) \ | 
|  | return -EINVAL;\ | 
|  | \ | 
|  | if (end < MODULES_VADDR || end >= MODULES_END) \ | 
|  | return -EINVAL; \ | 
|  | \ | 
|  | apply_to_page_range(&init_mm, start, size, callback, NULL); \ | 
|  | flush_tlb_kernel_range(start, end); \ | 
|  | return 0;\ | 
|  | } | 
|  |  | 
|  | PTE_SET_FN(ro, pte_wrprotect) | 
|  | PTE_SET_FN(rw, pte_mkwrite) | 
|  | PTE_SET_FN(x, pte_mkexec) | 
|  | PTE_SET_FN(nx, pte_mknexec) | 
|  |  | 
|  | SET_MEMORY_FN(ro, pte_set_ro) | 
|  | SET_MEMORY_FN(rw, pte_set_rw) | 
|  | SET_MEMORY_FN(x, pte_set_x) | 
|  | SET_MEMORY_FN(nx, pte_set_nx) | 
|  |  | 
|  | /* | 
|  | * Adjust the PMD section entries according to the CPU in use. | 
|  | */ | 
|  | static void __init build_mem_type_table(void) | 
|  | { | 
|  | struct cachepolicy *cp; | 
|  | unsigned int cr = get_cr(); | 
|  | pteval_t user_pgprot, kern_pgprot, vecs_pgprot; | 
|  | pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot; | 
|  | int cpu_arch = cpu_architecture(); | 
|  | int i; | 
|  |  | 
|  | if (cpu_arch < CPU_ARCH_ARMv6) { | 
|  | #if defined(CONFIG_CPU_DCACHE_DISABLE) | 
|  | if (cachepolicy > CPOLICY_BUFFERED) | 
|  | cachepolicy = CPOLICY_BUFFERED; | 
|  | #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) | 
|  | if (cachepolicy > CPOLICY_WRITETHROUGH) | 
|  | cachepolicy = CPOLICY_WRITETHROUGH; | 
|  | #endif | 
|  | } | 
|  | if (cpu_arch < CPU_ARCH_ARMv5) { | 
|  | if (cachepolicy >= CPOLICY_WRITEALLOC) | 
|  | cachepolicy = CPOLICY_WRITEBACK; | 
|  | ecc_mask = 0; | 
|  | } | 
|  | if (is_smp()) | 
|  | cachepolicy = CPOLICY_WRITEALLOC; | 
|  |  | 
|  | /* | 
|  | * Strip out features not present on earlier architectures. | 
|  | * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those | 
|  | * without extended page tables don't have the 'Shared' bit. | 
|  | */ | 
|  | if (cpu_arch < CPU_ARCH_ARMv5) | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
|  | mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); | 
|  | if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
|  | mem_types[i].prot_sect &= ~PMD_SECT_S; | 
|  |  | 
|  | /* | 
|  | * ARMv5 and lower, bit 4 must be set for page tables (was: cache | 
|  | * "update-able on write" bit on ARM610).  However, Xscale and | 
|  | * Xscale3 require this bit to be cleared. | 
|  | */ | 
|  | if (cpu_is_xscale() || cpu_is_xsc3()) { | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | mem_types[i].prot_sect &= ~PMD_BIT4; | 
|  | mem_types[i].prot_l1 &= ~PMD_BIT4; | 
|  | } | 
|  | } else if (cpu_arch < CPU_ARCH_ARMv6) { | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | if (mem_types[i].prot_l1) | 
|  | mem_types[i].prot_l1 |= PMD_BIT4; | 
|  | if (mem_types[i].prot_sect) | 
|  | mem_types[i].prot_sect |= PMD_BIT4; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark the device areas according to the CPU/architecture. | 
|  | */ | 
|  | if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { | 
|  | if (!cpu_is_xsc3()) { | 
|  | /* | 
|  | * Mark device regions on ARMv6+ as execute-never | 
|  | * to prevent speculative instruction fetches. | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; | 
|  | mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; | 
|  |  | 
|  | /* Also setup NX memory mapping */ | 
|  | mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; | 
|  | } | 
|  | if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { | 
|  | /* | 
|  | * For ARMv7 with TEX remapping, | 
|  | * - shared device is SXCB=1100 | 
|  | * - nonshared device is SXCB=0100 | 
|  | * - write combine device mem is SXCB=0001 | 
|  | * (Uncached Normal memory) | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; | 
|  | } else if (cpu_is_xsc3()) { | 
|  | /* | 
|  | * For Xscale3, | 
|  | * - shared device is TEXCB=00101 | 
|  | * - nonshared device is TEXCB=01000 | 
|  | * - write combine device mem is TEXCB=00100 | 
|  | * (Inner/Outer Uncacheable in xsc3 parlance) | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); | 
|  | } else { | 
|  | /* | 
|  | * For ARMv6 and ARMv7 without TEX remapping, | 
|  | * - shared device is TEXCB=00001 | 
|  | * - nonshared device is TEXCB=01000 | 
|  | * - write combine device mem is TEXCB=00100 | 
|  | * (Uncached Normal in ARMv6 parlance). | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; | 
|  | mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * On others, write combining is "Uncached/Buffered" | 
|  | */ | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now deal with the memory-type mappings | 
|  | */ | 
|  | cp = &cache_policies[cachepolicy]; | 
|  | vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; | 
|  | s2_pgprot = cp->pte_s2; | 
|  | hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte; | 
|  | s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2; | 
|  |  | 
|  | /* | 
|  | * ARMv6 and above have extended page tables. | 
|  | */ | 
|  | if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * Mark cache clean areas and XIP ROM read only | 
|  | * from SVC mode and no access from userspace. | 
|  | */ | 
|  | mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | #endif | 
|  |  | 
|  | if (is_smp()) { | 
|  | /* | 
|  | * Mark memory with the "shared" attribute | 
|  | * for SMP systems | 
|  | */ | 
|  | user_pgprot |= L_PTE_SHARED; | 
|  | kern_pgprot |= L_PTE_SHARED; | 
|  | vecs_pgprot |= L_PTE_SHARED; | 
|  | s2_pgprot |= L_PTE_SHARED; | 
|  | mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Non-cacheable Normal - intended for memory areas that must | 
|  | * not cause dirty cache line writebacks when used | 
|  | */ | 
|  | if (cpu_arch >= CPU_ARCH_ARMv6) { | 
|  | if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { | 
|  | /* Non-cacheable Normal is XCB = 001 */ | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= | 
|  | PMD_SECT_BUFFERED; | 
|  | } else { | 
|  | /* For both ARMv6 and non-TEX-remapping ARMv7 */ | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= | 
|  | PMD_SECT_TEX(1); | 
|  | } | 
|  | } else { | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * Do not generate access flag faults for the kernel mappings. | 
|  | */ | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | mem_types[i].prot_pte |= PTE_EXT_AF; | 
|  | if (mem_types[i].prot_sect) | 
|  | mem_types[i].prot_sect |= PMD_SECT_AF; | 
|  | } | 
|  | kern_pgprot |= PTE_EXT_AF; | 
|  | vecs_pgprot |= PTE_EXT_AF; | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | pteval_t v = pgprot_val(protection_map[i]); | 
|  | protection_map[i] = __pgprot(v | user_pgprot); | 
|  | } | 
|  |  | 
|  | mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; | 
|  | mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; | 
|  |  | 
|  | pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); | 
|  | pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | | 
|  | L_PTE_DIRTY | kern_pgprot); | 
|  | pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot); | 
|  | pgprot_s2_device  = __pgprot(s2_device_pgprot); | 
|  | pgprot_hyp_device  = __pgprot(hyp_device_pgprot); | 
|  |  | 
|  | mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; | 
|  | mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; | 
|  | mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; | 
|  | mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; | 
|  | mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; | 
|  | mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; | 
|  | mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; | 
|  | mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; | 
|  | mem_types[MT_ROM].prot_sect |= cp->pmd; | 
|  |  | 
|  | switch (cp->pmd) { | 
|  | case PMD_SECT_WT: | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; | 
|  | break; | 
|  | case PMD_SECT_WB: | 
|  | case PMD_SECT_WBWA: | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; | 
|  | break; | 
|  | } | 
|  | pr_info("Memory policy: %sData cache %s\n", | 
|  | ecc_mask ? "ECC enabled, " : "", cp->policy); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | struct mem_type *t = &mem_types[i]; | 
|  | if (t->prot_l1) | 
|  | t->prot_l1 |= PMD_DOMAIN(t->domain); | 
|  | if (t->prot_sect) | 
|  | t->prot_sect |= PMD_DOMAIN(t->domain); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE | 
|  | pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | 
|  | unsigned long size, pgprot_t vma_prot) | 
|  | { | 
|  | if (!pfn_valid(pfn)) | 
|  | return pgprot_noncached(vma_prot); | 
|  | else if (file->f_flags & O_SYNC) | 
|  | return pgprot_writecombine(vma_prot); | 
|  | return vma_prot; | 
|  | } | 
|  | EXPORT_SYMBOL(phys_mem_access_prot); | 
|  | #endif | 
|  |  | 
|  | #define vectors_base()	(vectors_high() ? 0xffff0000 : 0) | 
|  |  | 
|  | static void __init *early_alloc_aligned(unsigned long sz, unsigned long align) | 
|  | { | 
|  | void *ptr = __va(memblock_alloc(sz, align)); | 
|  | memset(ptr, 0, sz); | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static void __init *early_alloc(unsigned long sz) | 
|  | { | 
|  | return early_alloc_aligned(sz, sz); | 
|  | } | 
|  |  | 
|  | static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot) | 
|  | { | 
|  | if (pmd_none(*pmd)) { | 
|  | pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); | 
|  | __pmd_populate(pmd, __pa(pte), prot); | 
|  | } | 
|  | BUG_ON(pmd_bad(*pmd)); | 
|  | return pte_offset_kernel(pmd, addr); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, unsigned long pfn, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1); | 
|  | do { | 
|  | set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0); | 
|  | pfn++; | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | } | 
|  |  | 
|  | static void __init __map_init_section(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, phys_addr_t phys, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | pmd_t *p = pmd; | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * In classic MMU format, puds and pmds are folded in to | 
|  | * the pgds. pmd_offset gives the PGD entry. PGDs refer to a | 
|  | * group of L1 entries making up one logical pointer to | 
|  | * an L2 table (2MB), where as PMDs refer to the individual | 
|  | * L1 entries (1MB). Hence increment to get the correct | 
|  | * offset for odd 1MB sections. | 
|  | * (See arch/arm/include/asm/pgtable-2level.h) | 
|  | */ | 
|  | if (addr & SECTION_SIZE) | 
|  | pmd++; | 
|  | #endif | 
|  | do { | 
|  | *pmd = __pmd(phys | type->prot_sect); | 
|  | phys += SECTION_SIZE; | 
|  | } while (pmd++, addr += SECTION_SIZE, addr != end); | 
|  |  | 
|  | flush_pmd_entry(p); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, | 
|  | unsigned long end, phys_addr_t phys, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | pmd_t *pmd = pmd_offset(pud, addr); | 
|  | unsigned long next; | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * With LPAE, we must loop over to map | 
|  | * all the pmds for the given range. | 
|  | */ | 
|  | next = pmd_addr_end(addr, end); | 
|  |  | 
|  | /* | 
|  | * Try a section mapping - addr, next and phys must all be | 
|  | * aligned to a section boundary. | 
|  | */ | 
|  | if (type->prot_sect && | 
|  | ((addr | next | phys) & ~SECTION_MASK) == 0) { | 
|  | __map_init_section(pmd, addr, next, phys, type); | 
|  | } else { | 
|  | alloc_init_pte(pmd, addr, next, | 
|  | __phys_to_pfn(phys), type); | 
|  | } | 
|  |  | 
|  | phys += next - addr; | 
|  |  | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr, | 
|  | unsigned long end, phys_addr_t phys, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | pud_t *pud = pud_offset(pgd, addr); | 
|  | unsigned long next; | 
|  |  | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | alloc_init_pmd(pud, addr, next, phys, type); | 
|  | phys += next - addr; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | static void __init create_36bit_mapping(struct map_desc *md, | 
|  | const struct mem_type *type) | 
|  | { | 
|  | unsigned long addr, length, end; | 
|  | phys_addr_t phys; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | addr = md->virtual; | 
|  | phys = __pfn_to_phys(md->pfn); | 
|  | length = PAGE_ALIGN(md->length); | 
|  |  | 
|  | if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { | 
|  | printk(KERN_ERR "MM: CPU does not support supersection " | 
|  | "mapping for 0x%08llx at 0x%08lx\n", | 
|  | (long long)__pfn_to_phys((u64)md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* N.B.	ARMv6 supersections are only defined to work with domain 0. | 
|  | *	Since domain assignments can in fact be arbitrary, the | 
|  | *	'domain == 0' check below is required to insure that ARMv6 | 
|  | *	supersections are only allocated for domain 0 regardless | 
|  | *	of the actual domain assignments in use. | 
|  | */ | 
|  | if (type->domain) { | 
|  | printk(KERN_ERR "MM: invalid domain in supersection " | 
|  | "mapping for 0x%08llx at 0x%08lx\n", | 
|  | (long long)__pfn_to_phys((u64)md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { | 
|  | printk(KERN_ERR "MM: cannot create mapping for 0x%08llx" | 
|  | " at 0x%08lx invalid alignment\n", | 
|  | (long long)__pfn_to_phys((u64)md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shift bits [35:32] of address into bits [23:20] of PMD | 
|  | * (See ARMv6 spec). | 
|  | */ | 
|  | phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | end = addr + length; | 
|  | do { | 
|  | pud_t *pud = pud_offset(pgd, addr); | 
|  | pmd_t *pmd = pmd_offset(pud, addr); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 16; i++) | 
|  | *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER); | 
|  |  | 
|  | addr += SUPERSECTION_SIZE; | 
|  | phys += SUPERSECTION_SIZE; | 
|  | pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; | 
|  | } while (addr != end); | 
|  | } | 
|  | #endif	/* !CONFIG_ARM_LPAE */ | 
|  |  | 
|  | /* | 
|  | * Create the page directory entries and any necessary | 
|  | * page tables for the mapping specified by `md'.  We | 
|  | * are able to cope here with varying sizes and address | 
|  | * offsets, and we take full advantage of sections and | 
|  | * supersections. | 
|  | */ | 
|  | static void __init create_mapping(struct map_desc *md) | 
|  | { | 
|  | unsigned long addr, length, end; | 
|  | phys_addr_t phys; | 
|  | const struct mem_type *type; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { | 
|  | printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx" | 
|  | " at 0x%08lx in user region\n", | 
|  | (long long)__pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((md->type == MT_DEVICE || md->type == MT_ROM) && | 
|  | md->virtual >= PAGE_OFFSET && | 
|  | (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { | 
|  | printk(KERN_WARNING "BUG: mapping for 0x%08llx" | 
|  | " at 0x%08lx out of vmalloc space\n", | 
|  | (long long)__pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | } | 
|  |  | 
|  | type = &mem_types[md->type]; | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * Catch 36-bit addresses | 
|  | */ | 
|  | if (md->pfn >= 0x100000) { | 
|  | create_36bit_mapping(md, type); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | addr = md->virtual & PAGE_MASK; | 
|  | phys = __pfn_to_phys(md->pfn); | 
|  | length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); | 
|  |  | 
|  | if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { | 
|  | printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not " | 
|  | "be mapped using pages, ignoring.\n", | 
|  | (long long)__pfn_to_phys(md->pfn), addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pgd = pgd_offset_k(addr); | 
|  | end = addr + length; | 
|  | do { | 
|  | unsigned long next = pgd_addr_end(addr, end); | 
|  |  | 
|  | alloc_init_pud(pgd, addr, next, phys, type); | 
|  |  | 
|  | phys += next - addr; | 
|  | addr = next; | 
|  | } while (pgd++, addr != end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the architecture specific mappings | 
|  | */ | 
|  | void __init iotable_init(struct map_desc *io_desc, int nr) | 
|  | { | 
|  | struct map_desc *md; | 
|  | struct vm_struct *vm; | 
|  | struct static_vm *svm; | 
|  |  | 
|  | if (!nr) | 
|  | return; | 
|  |  | 
|  | svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm)); | 
|  |  | 
|  | for (md = io_desc; nr; md++, nr--) { | 
|  | create_mapping(md); | 
|  |  | 
|  | vm = &svm->vm; | 
|  | vm->addr = (void *)(md->virtual & PAGE_MASK); | 
|  | vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); | 
|  | vm->phys_addr = __pfn_to_phys(md->pfn); | 
|  | vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; | 
|  | vm->flags |= VM_ARM_MTYPE(md->type); | 
|  | vm->caller = iotable_init; | 
|  | add_static_vm_early(svm++); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init vm_reserve_area_early(unsigned long addr, unsigned long size, | 
|  | void *caller) | 
|  | { | 
|  | struct vm_struct *vm; | 
|  | struct static_vm *svm; | 
|  |  | 
|  | svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm)); | 
|  |  | 
|  | vm = &svm->vm; | 
|  | vm->addr = (void *)addr; | 
|  | vm->size = size; | 
|  | vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; | 
|  | vm->caller = caller; | 
|  | add_static_vm_early(svm); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  |  | 
|  | /* | 
|  | * The Linux PMD is made of two consecutive section entries covering 2MB | 
|  | * (see definition in include/asm/pgtable-2level.h).  However a call to | 
|  | * create_mapping() may optimize static mappings by using individual | 
|  | * 1MB section mappings.  This leaves the actual PMD potentially half | 
|  | * initialized if the top or bottom section entry isn't used, leaving it | 
|  | * open to problems if a subsequent ioremap() or vmalloc() tries to use | 
|  | * the virtual space left free by that unused section entry. | 
|  | * | 
|  | * Let's avoid the issue by inserting dummy vm entries covering the unused | 
|  | * PMD halves once the static mappings are in place. | 
|  | */ | 
|  |  | 
|  | static void __init pmd_empty_section_gap(unsigned long addr) | 
|  | { | 
|  | vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); | 
|  | } | 
|  |  | 
|  | static void __init fill_pmd_gaps(void) | 
|  | { | 
|  | struct static_vm *svm; | 
|  | struct vm_struct *vm; | 
|  | unsigned long addr, next = 0; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | list_for_each_entry(svm, &static_vmlist, list) { | 
|  | vm = &svm->vm; | 
|  | addr = (unsigned long)vm->addr; | 
|  | if (addr < next) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Check if this vm starts on an odd section boundary. | 
|  | * If so and the first section entry for this PMD is free | 
|  | * then we block the corresponding virtual address. | 
|  | */ | 
|  | if ((addr & ~PMD_MASK) == SECTION_SIZE) { | 
|  | pmd = pmd_off_k(addr); | 
|  | if (pmd_none(*pmd)) | 
|  | pmd_empty_section_gap(addr & PMD_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Then check if this vm ends on an odd section boundary. | 
|  | * If so and the second section entry for this PMD is empty | 
|  | * then we block the corresponding virtual address. | 
|  | */ | 
|  | addr += vm->size; | 
|  | if ((addr & ~PMD_MASK) == SECTION_SIZE) { | 
|  | pmd = pmd_off_k(addr) + 1; | 
|  | if (pmd_none(*pmd)) | 
|  | pmd_empty_section_gap(addr); | 
|  | } | 
|  |  | 
|  | /* no need to look at any vm entry until we hit the next PMD */ | 
|  | next = (addr + PMD_SIZE - 1) & PMD_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define fill_pmd_gaps() do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) | 
|  | static void __init pci_reserve_io(void) | 
|  | { | 
|  | struct static_vm *svm; | 
|  |  | 
|  | svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); | 
|  | if (svm) | 
|  | return; | 
|  |  | 
|  | vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); | 
|  | } | 
|  | #else | 
|  | #define pci_reserve_io() do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_LL | 
|  | void __init debug_ll_io_init(void) | 
|  | { | 
|  | struct map_desc map; | 
|  |  | 
|  | debug_ll_addr(&map.pfn, &map.virtual); | 
|  | if (!map.pfn || !map.virtual) | 
|  | return; | 
|  | map.pfn = __phys_to_pfn(map.pfn); | 
|  | map.virtual &= PAGE_MASK; | 
|  | map.length = PAGE_SIZE; | 
|  | map.type = MT_DEVICE; | 
|  | iotable_init(&map, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void * __initdata vmalloc_min = | 
|  | (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); | 
|  |  | 
|  | /* | 
|  | * vmalloc=size forces the vmalloc area to be exactly 'size' | 
|  | * bytes. This can be used to increase (or decrease) the vmalloc | 
|  | * area - the default is 240m. | 
|  | */ | 
|  | static int __init early_vmalloc(char *arg) | 
|  | { | 
|  | unsigned long vmalloc_reserve = memparse(arg, NULL); | 
|  |  | 
|  | if (vmalloc_reserve < SZ_16M) { | 
|  | vmalloc_reserve = SZ_16M; | 
|  | printk(KERN_WARNING | 
|  | "vmalloc area too small, limiting to %luMB\n", | 
|  | vmalloc_reserve >> 20); | 
|  | } | 
|  |  | 
|  | if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { | 
|  | vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); | 
|  | printk(KERN_WARNING | 
|  | "vmalloc area is too big, limiting to %luMB\n", | 
|  | vmalloc_reserve >> 20); | 
|  | } | 
|  |  | 
|  | vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); | 
|  | return 0; | 
|  | } | 
|  | early_param("vmalloc", early_vmalloc); | 
|  |  | 
|  | phys_addr_t arm_lowmem_limit __initdata = 0; | 
|  |  | 
|  | void __init sanity_check_meminfo(void) | 
|  | { | 
|  | phys_addr_t memblock_limit = 0; | 
|  | int i, j, highmem = 0; | 
|  | phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1; | 
|  |  | 
|  | for (i = 0, j = 0; i < meminfo.nr_banks; i++) { | 
|  | struct membank *bank = &meminfo.bank[j]; | 
|  | phys_addr_t size_limit; | 
|  |  | 
|  | *bank = meminfo.bank[i]; | 
|  | size_limit = bank->size; | 
|  |  | 
|  | if (bank->start >= vmalloc_limit) | 
|  | highmem = 1; | 
|  | else | 
|  | size_limit = vmalloc_limit - bank->start; | 
|  |  | 
|  | bank->highmem = highmem; | 
|  |  | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | /* | 
|  | * Split those memory banks which are partially overlapping | 
|  | * the vmalloc area greatly simplifying things later. | 
|  | */ | 
|  | if (!highmem && bank->size > size_limit) { | 
|  | if (meminfo.nr_banks >= NR_BANKS) { | 
|  | printk(KERN_CRIT "NR_BANKS too low, " | 
|  | "ignoring high memory\n"); | 
|  | } else { | 
|  | memmove(bank + 1, bank, | 
|  | (meminfo.nr_banks - i) * sizeof(*bank)); | 
|  | meminfo.nr_banks++; | 
|  | i++; | 
|  | bank[1].size -= size_limit; | 
|  | bank[1].start = vmalloc_limit; | 
|  | bank[1].highmem = highmem = 1; | 
|  | j++; | 
|  | } | 
|  | bank->size = size_limit; | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * Highmem banks not allowed with !CONFIG_HIGHMEM. | 
|  | */ | 
|  | if (highmem) { | 
|  | printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx " | 
|  | "(!CONFIG_HIGHMEM).\n", | 
|  | (unsigned long long)bank->start, | 
|  | (unsigned long long)bank->start + bank->size - 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether this memory bank would partially overlap | 
|  | * the vmalloc area. | 
|  | */ | 
|  | if (bank->size > size_limit) { | 
|  | printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx " | 
|  | "to -%.8llx (vmalloc region overlap).\n", | 
|  | (unsigned long long)bank->start, | 
|  | (unsigned long long)bank->start + bank->size - 1, | 
|  | (unsigned long long)bank->start + size_limit - 1); | 
|  | bank->size = size_limit; | 
|  | } | 
|  | #endif | 
|  | if (!bank->highmem) { | 
|  | phys_addr_t bank_end = bank->start + bank->size; | 
|  |  | 
|  | if (bank_end > arm_lowmem_limit) | 
|  | arm_lowmem_limit = bank_end; | 
|  |  | 
|  | /* | 
|  | * Find the first non-section-aligned page, and point | 
|  | * memblock_limit at it. This relies on rounding the | 
|  | * limit down to be section-aligned, which happens at | 
|  | * the end of this function. | 
|  | * | 
|  | * With this algorithm, the start or end of almost any | 
|  | * bank can be non-section-aligned. The only exception | 
|  | * is that the start of the bank 0 must be section- | 
|  | * aligned, since otherwise memory would need to be | 
|  | * allocated when mapping the start of bank 0, which | 
|  | * occurs before any free memory is mapped. | 
|  | */ | 
|  | if (!memblock_limit) { | 
|  | if (!IS_ALIGNED(bank->start, SECTION_SIZE)) | 
|  | memblock_limit = bank->start; | 
|  | else if (!IS_ALIGNED(bank_end, SECTION_SIZE)) | 
|  | memblock_limit = bank_end; | 
|  | } | 
|  | } | 
|  | j++; | 
|  | } | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | if (highmem) { | 
|  | const char *reason = NULL; | 
|  |  | 
|  | if (cache_is_vipt_aliasing()) { | 
|  | /* | 
|  | * Interactions between kmap and other mappings | 
|  | * make highmem support with aliasing VIPT caches | 
|  | * rather difficult. | 
|  | */ | 
|  | reason = "with VIPT aliasing cache"; | 
|  | } | 
|  | if (reason) { | 
|  | printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n", | 
|  | reason); | 
|  | while (j > 0 && meminfo.bank[j - 1].highmem) | 
|  | j--; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | meminfo.nr_banks = j; | 
|  | high_memory = __va(arm_lowmem_limit - 1) + 1; | 
|  |  | 
|  | /* | 
|  | * Round the memblock limit down to a section size.  This | 
|  | * helps to ensure that we will allocate memory from the | 
|  | * last full section, which should be mapped. | 
|  | */ | 
|  | if (memblock_limit) | 
|  | memblock_limit = round_down(memblock_limit, SECTION_SIZE); | 
|  | if (!memblock_limit) | 
|  | memblock_limit = arm_lowmem_limit; | 
|  |  | 
|  | memblock_set_current_limit(memblock_limit); | 
|  | } | 
|  |  | 
|  | static inline void prepare_page_table(void) | 
|  | { | 
|  | unsigned long addr; | 
|  | phys_addr_t end; | 
|  |  | 
|  | /* | 
|  | * Clear out all the mappings below the kernel image. | 
|  | */ | 
|  | for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | #ifdef CONFIG_XIP_KERNEL | 
|  | /* The XIP kernel is mapped in the module area -- skip over it */ | 
|  | addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK; | 
|  | #endif | 
|  | for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | /* | 
|  | * Find the end of the first block of lowmem. | 
|  | */ | 
|  | end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; | 
|  | if (end >= arm_lowmem_limit) | 
|  | end = arm_lowmem_limit; | 
|  |  | 
|  | /* | 
|  | * Clear out all the kernel space mappings, except for the first | 
|  | * memory bank, up to the vmalloc region. | 
|  | */ | 
|  | for (addr = __phys_to_virt(end); | 
|  | addr < VMALLOC_START; addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | /* the first page is reserved for pgd */ | 
|  | #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \ | 
|  | PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) | 
|  | #else | 
|  | #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t)) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Reserve the special regions of memory | 
|  | */ | 
|  | void __init arm_mm_memblock_reserve(void) | 
|  | { | 
|  | /* | 
|  | * Reserve the page tables.  These are already in use, | 
|  | * and can only be in node 0. | 
|  | */ | 
|  | memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); | 
|  |  | 
|  | #ifdef CONFIG_SA1111 | 
|  | /* | 
|  | * Because of the SA1111 DMA bug, we want to preserve our | 
|  | * precious DMA-able memory... | 
|  | */ | 
|  | memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the device mappings.  Since we clear out the page tables for all | 
|  | * mappings above VMALLOC_START, we will remove any debug device mappings. | 
|  | * This means you have to be careful how you debug this function, or any | 
|  | * called function.  This means you can't use any function or debugging | 
|  | * method which may touch any device, otherwise the kernel _will_ crash. | 
|  | */ | 
|  | static void __init devicemaps_init(const struct machine_desc *mdesc) | 
|  | { | 
|  | struct map_desc map; | 
|  | unsigned long addr; | 
|  | void *vectors; | 
|  |  | 
|  | /* | 
|  | * Allocate the vector page early. | 
|  | */ | 
|  | vectors = early_alloc(PAGE_SIZE * 2); | 
|  |  | 
|  | early_trap_init(vectors); | 
|  |  | 
|  | for (addr = VMALLOC_START; addr; addr += PMD_SIZE) | 
|  | pmd_clear(pmd_off_k(addr)); | 
|  |  | 
|  | /* | 
|  | * Map the kernel if it is XIP. | 
|  | * It is always first in the modulearea. | 
|  | */ | 
|  | #ifdef CONFIG_XIP_KERNEL | 
|  | map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); | 
|  | map.virtual = MODULES_VADDR; | 
|  | map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK; | 
|  | map.type = MT_ROM; | 
|  | create_mapping(&map); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Map the cache flushing regions. | 
|  | */ | 
|  | #ifdef FLUSH_BASE | 
|  | map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); | 
|  | map.virtual = FLUSH_BASE; | 
|  | map.length = SZ_1M; | 
|  | map.type = MT_CACHECLEAN; | 
|  | create_mapping(&map); | 
|  | #endif | 
|  | #ifdef FLUSH_BASE_MINICACHE | 
|  | map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); | 
|  | map.virtual = FLUSH_BASE_MINICACHE; | 
|  | map.length = SZ_1M; | 
|  | map.type = MT_MINICLEAN; | 
|  | create_mapping(&map); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Create a mapping for the machine vectors at the high-vectors | 
|  | * location (0xffff0000).  If we aren't using high-vectors, also | 
|  | * create a mapping at the low-vectors virtual address. | 
|  | */ | 
|  | map.pfn = __phys_to_pfn(virt_to_phys(vectors)); | 
|  | map.virtual = 0xffff0000; | 
|  | map.length = PAGE_SIZE; | 
|  | #ifdef CONFIG_KUSER_HELPERS | 
|  | map.type = MT_HIGH_VECTORS; | 
|  | #else | 
|  | map.type = MT_LOW_VECTORS; | 
|  | #endif | 
|  | create_mapping(&map); | 
|  |  | 
|  | if (!vectors_high()) { | 
|  | map.virtual = 0; | 
|  | map.length = PAGE_SIZE * 2; | 
|  | map.type = MT_LOW_VECTORS; | 
|  | create_mapping(&map); | 
|  | } | 
|  |  | 
|  | /* Now create a kernel read-only mapping */ | 
|  | map.pfn += 1; | 
|  | map.virtual = 0xffff0000 + PAGE_SIZE; | 
|  | map.length = PAGE_SIZE; | 
|  | map.type = MT_LOW_VECTORS; | 
|  | create_mapping(&map); | 
|  |  | 
|  | /* | 
|  | * Ask the machine support to map in the statically mapped devices. | 
|  | */ | 
|  | if (mdesc->map_io) | 
|  | mdesc->map_io(); | 
|  | else | 
|  | debug_ll_io_init(); | 
|  | fill_pmd_gaps(); | 
|  |  | 
|  | /* Reserve fixed i/o space in VMALLOC region */ | 
|  | pci_reserve_io(); | 
|  |  | 
|  | /* | 
|  | * Finally flush the caches and tlb to ensure that we're in a | 
|  | * consistent state wrt the writebuffer.  This also ensures that | 
|  | * any write-allocated cache lines in the vector page are written | 
|  | * back.  After this point, we can start to touch devices again. | 
|  | */ | 
|  | local_flush_tlb_all(); | 
|  | flush_cache_all(); | 
|  | } | 
|  |  | 
|  | static void __init kmap_init(void) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), | 
|  | PKMAP_BASE, _PAGE_KERNEL_TABLE); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __init map_lowmem(void) | 
|  | { | 
|  | struct memblock_region *reg; | 
|  | unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE); | 
|  | unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); | 
|  |  | 
|  | /* Map all the lowmem memory banks. */ | 
|  | for_each_memblock(memory, reg) { | 
|  | phys_addr_t start = reg->base; | 
|  | phys_addr_t end = start + reg->size; | 
|  | struct map_desc map; | 
|  |  | 
|  | if (end > arm_lowmem_limit) | 
|  | end = arm_lowmem_limit; | 
|  | if (start >= end) | 
|  | break; | 
|  |  | 
|  | if (end < kernel_x_start || start >= kernel_x_end) { | 
|  | map.pfn = __phys_to_pfn(start); | 
|  | map.virtual = __phys_to_virt(start); | 
|  | map.length = end - start; | 
|  | map.type = MT_MEMORY_RWX; | 
|  |  | 
|  | create_mapping(&map); | 
|  | } else { | 
|  | /* This better cover the entire kernel */ | 
|  | if (start < kernel_x_start) { | 
|  | map.pfn = __phys_to_pfn(start); | 
|  | map.virtual = __phys_to_virt(start); | 
|  | map.length = kernel_x_start - start; | 
|  | map.type = MT_MEMORY_RW; | 
|  |  | 
|  | create_mapping(&map); | 
|  | } | 
|  |  | 
|  | map.pfn = __phys_to_pfn(kernel_x_start); | 
|  | map.virtual = __phys_to_virt(kernel_x_start); | 
|  | map.length = kernel_x_end - kernel_x_start; | 
|  | map.type = MT_MEMORY_RWX; | 
|  |  | 
|  | create_mapping(&map); | 
|  |  | 
|  | if (kernel_x_end < end) { | 
|  | map.pfn = __phys_to_pfn(kernel_x_end); | 
|  | map.virtual = __phys_to_virt(kernel_x_end); | 
|  | map.length = end - kernel_x_end; | 
|  | map.type = MT_MEMORY_RW; | 
|  |  | 
|  | create_mapping(&map); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * early_paging_init() recreates boot time page table setup, allowing machines | 
|  | * to switch over to a high (>4G) address space on LPAE systems | 
|  | */ | 
|  | void __init early_paging_init(const struct machine_desc *mdesc, | 
|  | struct proc_info_list *procinfo) | 
|  | { | 
|  | pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags; | 
|  | unsigned long map_start, map_end; | 
|  | pgd_t *pgd0, *pgdk; | 
|  | pud_t *pud0, *pudk, *pud_start; | 
|  | pmd_t *pmd0, *pmdk; | 
|  | phys_addr_t phys; | 
|  | int i; | 
|  |  | 
|  | if (!(mdesc->init_meminfo)) | 
|  | return; | 
|  |  | 
|  | /* remap kernel code and data */ | 
|  | map_start = init_mm.start_code; | 
|  | map_end   = init_mm.brk; | 
|  |  | 
|  | /* get a handle on things... */ | 
|  | pgd0 = pgd_offset_k(0); | 
|  | pud_start = pud0 = pud_offset(pgd0, 0); | 
|  | pmd0 = pmd_offset(pud0, 0); | 
|  |  | 
|  | pgdk = pgd_offset_k(map_start); | 
|  | pudk = pud_offset(pgdk, map_start); | 
|  | pmdk = pmd_offset(pudk, map_start); | 
|  |  | 
|  | mdesc->init_meminfo(); | 
|  |  | 
|  | /* Run the patch stub to update the constants */ | 
|  | fixup_pv_table(&__pv_table_begin, | 
|  | (&__pv_table_end - &__pv_table_begin) << 2); | 
|  |  | 
|  | /* | 
|  | * Cache cleaning operations for self-modifying code | 
|  | * We should clean the entries by MVA but running a | 
|  | * for loop over every pv_table entry pointer would | 
|  | * just complicate the code. | 
|  | */ | 
|  | flush_cache_louis(); | 
|  | dsb(); | 
|  | isb(); | 
|  |  | 
|  | /* remap level 1 table */ | 
|  | for (i = 0; i < PTRS_PER_PGD; pud0++, i++) { | 
|  | set_pud(pud0, | 
|  | __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER)); | 
|  | pmd0 += PTRS_PER_PMD; | 
|  | } | 
|  |  | 
|  | /* remap pmds for kernel mapping */ | 
|  | phys = __pa(map_start) & PMD_MASK; | 
|  | do { | 
|  | *pmdk++ = __pmd(phys | pmdprot); | 
|  | phys += PMD_SIZE; | 
|  | } while (phys < map_end); | 
|  |  | 
|  | flush_cache_all(); | 
|  | cpu_switch_mm(pgd0, &init_mm); | 
|  | cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET); | 
|  | local_flush_bp_all(); | 
|  | local_flush_tlb_all(); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | void __init early_paging_init(const struct machine_desc *mdesc, | 
|  | struct proc_info_list *procinfo) | 
|  | { | 
|  | if (mdesc->init_meminfo) | 
|  | mdesc->init_meminfo(); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * paging_init() sets up the page tables, initialises the zone memory | 
|  | * maps, and sets up the zero page, bad page and bad page tables. | 
|  | */ | 
|  | void __init paging_init(const struct machine_desc *mdesc) | 
|  | { | 
|  | void *zero_page; | 
|  |  | 
|  | build_mem_type_table(); | 
|  | prepare_page_table(); | 
|  | map_lowmem(); | 
|  | dma_contiguous_remap(); | 
|  | devicemaps_init(mdesc); | 
|  | kmap_init(); | 
|  | tcm_init(); | 
|  |  | 
|  | top_pmd = pmd_off_k(0xffff0000); | 
|  |  | 
|  | /* allocate the zero page. */ | 
|  | zero_page = early_alloc(PAGE_SIZE); | 
|  |  | 
|  | bootmem_init(); | 
|  |  | 
|  | empty_zero_page = virt_to_page(zero_page); | 
|  | __flush_dcache_page(NULL, empty_zero_page); | 
|  | } |