| /**************************************************************************** | 
 |  * Driver for Solarflare network controllers and boards | 
 |  * Copyright 2005-2006 Fen Systems Ltd. | 
 |  * Copyright 2005-2013 Solarflare Communications Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 as published | 
 |  * by the Free Software Foundation, incorporated herein by reference. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/tcp.h> | 
 | #include <linux/in.h> | 
 | #include <linux/ethtool.h> | 
 | #include <linux/topology.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/aer.h> | 
 | #include <linux/interrupt.h> | 
 | #include "net_driver.h" | 
 | #include "efx.h" | 
 | #include "nic.h" | 
 | #include "selftest.h" | 
 |  | 
 | #include "mcdi.h" | 
 | #include "workarounds.h" | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Type name strings | 
 |  * | 
 |  ************************************************************************** | 
 |  */ | 
 |  | 
 | /* Loopback mode names (see LOOPBACK_MODE()) */ | 
 | const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; | 
 | const char *const efx_loopback_mode_names[] = { | 
 | 	[LOOPBACK_NONE]		= "NONE", | 
 | 	[LOOPBACK_DATA]		= "DATAPATH", | 
 | 	[LOOPBACK_GMAC]		= "GMAC", | 
 | 	[LOOPBACK_XGMII]	= "XGMII", | 
 | 	[LOOPBACK_XGXS]		= "XGXS", | 
 | 	[LOOPBACK_XAUI]		= "XAUI", | 
 | 	[LOOPBACK_GMII]		= "GMII", | 
 | 	[LOOPBACK_SGMII]	= "SGMII", | 
 | 	[LOOPBACK_XGBR]		= "XGBR", | 
 | 	[LOOPBACK_XFI]		= "XFI", | 
 | 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR", | 
 | 	[LOOPBACK_GMII_FAR]	= "GMII_FAR", | 
 | 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR", | 
 | 	[LOOPBACK_XFI_FAR]	= "XFI_FAR", | 
 | 	[LOOPBACK_GPHY]		= "GPHY", | 
 | 	[LOOPBACK_PHYXS]	= "PHYXS", | 
 | 	[LOOPBACK_PCS]		= "PCS", | 
 | 	[LOOPBACK_PMAPMD]	= "PMA/PMD", | 
 | 	[LOOPBACK_XPORT]	= "XPORT", | 
 | 	[LOOPBACK_XGMII_WS]	= "XGMII_WS", | 
 | 	[LOOPBACK_XAUI_WS]	= "XAUI_WS", | 
 | 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR", | 
 | 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", | 
 | 	[LOOPBACK_GMII_WS]	= "GMII_WS", | 
 | 	[LOOPBACK_XFI_WS]	= "XFI_WS", | 
 | 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR", | 
 | 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS", | 
 | }; | 
 |  | 
 | const unsigned int efx_reset_type_max = RESET_TYPE_MAX; | 
 | const char *const efx_reset_type_names[] = { | 
 | 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE", | 
 | 	[RESET_TYPE_ALL]                = "ALL", | 
 | 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL", | 
 | 	[RESET_TYPE_WORLD]              = "WORLD", | 
 | 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", | 
 | 	[RESET_TYPE_DISABLE]            = "DISABLE", | 
 | 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG", | 
 | 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR", | 
 | 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY", | 
 | 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR", | 
 | 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP", | 
 | 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE", | 
 | 	[RESET_TYPE_MC_BIST]		= "MC_BIST", | 
 | }; | 
 |  | 
 | /* Reset workqueue. If any NIC has a hardware failure then a reset will be | 
 |  * queued onto this work queue. This is not a per-nic work queue, because | 
 |  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. | 
 |  */ | 
 | static struct workqueue_struct *reset_workqueue; | 
 |  | 
 | /* How often and how many times to poll for a reset while waiting for a | 
 |  * BIST that another function started to complete. | 
 |  */ | 
 | #define BIST_WAIT_DELAY_MS	100 | 
 | #define BIST_WAIT_DELAY_COUNT	100 | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Configurable values | 
 |  * | 
 |  *************************************************************************/ | 
 |  | 
 | /* | 
 |  * Use separate channels for TX and RX events | 
 |  * | 
 |  * Set this to 1 to use separate channels for TX and RX. It allows us | 
 |  * to control interrupt affinity separately for TX and RX. | 
 |  * | 
 |  * This is only used in MSI-X interrupt mode | 
 |  */ | 
 | static bool separate_tx_channels; | 
 | module_param(separate_tx_channels, bool, 0444); | 
 | MODULE_PARM_DESC(separate_tx_channels, | 
 | 		 "Use separate channels for TX and RX"); | 
 |  | 
 | /* This is the weight assigned to each of the (per-channel) virtual | 
 |  * NAPI devices. | 
 |  */ | 
 | static int napi_weight = 64; | 
 |  | 
 | /* This is the time (in jiffies) between invocations of the hardware | 
 |  * monitor. | 
 |  * On Falcon-based NICs, this will: | 
 |  * - Check the on-board hardware monitor; | 
 |  * - Poll the link state and reconfigure the hardware as necessary. | 
 |  * On Siena-based NICs for power systems with EEH support, this will give EEH a | 
 |  * chance to start. | 
 |  */ | 
 | static unsigned int efx_monitor_interval = 1 * HZ; | 
 |  | 
 | /* Initial interrupt moderation settings.  They can be modified after | 
 |  * module load with ethtool. | 
 |  * | 
 |  * The default for RX should strike a balance between increasing the | 
 |  * round-trip latency and reducing overhead. | 
 |  */ | 
 | static unsigned int rx_irq_mod_usec = 60; | 
 |  | 
 | /* Initial interrupt moderation settings.  They can be modified after | 
 |  * module load with ethtool. | 
 |  * | 
 |  * This default is chosen to ensure that a 10G link does not go idle | 
 |  * while a TX queue is stopped after it has become full.  A queue is | 
 |  * restarted when it drops below half full.  The time this takes (assuming | 
 |  * worst case 3 descriptors per packet and 1024 descriptors) is | 
 |  *   512 / 3 * 1.2 = 205 usec. | 
 |  */ | 
 | static unsigned int tx_irq_mod_usec = 150; | 
 |  | 
 | /* This is the first interrupt mode to try out of: | 
 |  * 0 => MSI-X | 
 |  * 1 => MSI | 
 |  * 2 => legacy | 
 |  */ | 
 | static unsigned int interrupt_mode; | 
 |  | 
 | /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), | 
 |  * i.e. the number of CPUs among which we may distribute simultaneous | 
 |  * interrupt handling. | 
 |  * | 
 |  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. | 
 |  * The default (0) means to assign an interrupt to each core. | 
 |  */ | 
 | static unsigned int rss_cpus; | 
 | module_param(rss_cpus, uint, 0444); | 
 | MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); | 
 |  | 
 | static bool phy_flash_cfg; | 
 | module_param(phy_flash_cfg, bool, 0644); | 
 | MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); | 
 |  | 
 | static unsigned irq_adapt_low_thresh = 8000; | 
 | module_param(irq_adapt_low_thresh, uint, 0644); | 
 | MODULE_PARM_DESC(irq_adapt_low_thresh, | 
 | 		 "Threshold score for reducing IRQ moderation"); | 
 |  | 
 | static unsigned irq_adapt_high_thresh = 16000; | 
 | module_param(irq_adapt_high_thresh, uint, 0644); | 
 | MODULE_PARM_DESC(irq_adapt_high_thresh, | 
 | 		 "Threshold score for increasing IRQ moderation"); | 
 |  | 
 | static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | | 
 | 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | | 
 | 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | | 
 | 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW); | 
 | module_param(debug, uint, 0); | 
 | MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Utility functions and prototypes | 
 |  * | 
 |  *************************************************************************/ | 
 |  | 
 | static int efx_soft_enable_interrupts(struct efx_nic *efx); | 
 | static void efx_soft_disable_interrupts(struct efx_nic *efx); | 
 | static void efx_remove_channel(struct efx_channel *channel); | 
 | static void efx_remove_channels(struct efx_nic *efx); | 
 | static const struct efx_channel_type efx_default_channel_type; | 
 | static void efx_remove_port(struct efx_nic *efx); | 
 | static void efx_init_napi_channel(struct efx_channel *channel); | 
 | static void efx_fini_napi(struct efx_nic *efx); | 
 | static void efx_fini_napi_channel(struct efx_channel *channel); | 
 | static void efx_fini_struct(struct efx_nic *efx); | 
 | static void efx_start_all(struct efx_nic *efx); | 
 | static void efx_stop_all(struct efx_nic *efx); | 
 |  | 
 | #define EFX_ASSERT_RESET_SERIALISED(efx)		\ | 
 | 	do {						\ | 
 | 		if ((efx->state == STATE_READY) ||	\ | 
 | 		    (efx->state == STATE_RECOVERY) ||	\ | 
 | 		    (efx->state == STATE_DISABLED))	\ | 
 | 			ASSERT_RTNL();			\ | 
 | 	} while (0) | 
 |  | 
 | static int efx_check_disabled(struct efx_nic *efx) | 
 | { | 
 | 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { | 
 | 		netif_err(efx, drv, efx->net_dev, | 
 | 			  "device is disabled due to earlier errors\n"); | 
 | 		return -EIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Event queue processing | 
 |  * | 
 |  *************************************************************************/ | 
 |  | 
 | /* Process channel's event queue | 
 |  * | 
 |  * This function is responsible for processing the event queue of a | 
 |  * single channel.  The caller must guarantee that this function will | 
 |  * never be concurrently called more than once on the same channel, | 
 |  * though different channels may be being processed concurrently. | 
 |  */ | 
 | static int efx_process_channel(struct efx_channel *channel, int budget) | 
 | { | 
 | 	int spent; | 
 |  | 
 | 	if (unlikely(!channel->enabled)) | 
 | 		return 0; | 
 |  | 
 | 	spent = efx_nic_process_eventq(channel, budget); | 
 | 	if (spent && efx_channel_has_rx_queue(channel)) { | 
 | 		struct efx_rx_queue *rx_queue = | 
 | 			efx_channel_get_rx_queue(channel); | 
 |  | 
 | 		efx_rx_flush_packet(channel); | 
 | 		efx_fast_push_rx_descriptors(rx_queue, true); | 
 | 	} | 
 |  | 
 | 	return spent; | 
 | } | 
 |  | 
 | /* NAPI poll handler | 
 |  * | 
 |  * NAPI guarantees serialisation of polls of the same device, which | 
 |  * provides the guarantee required by efx_process_channel(). | 
 |  */ | 
 | static int efx_poll(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct efx_channel *channel = | 
 | 		container_of(napi, struct efx_channel, napi_str); | 
 | 	struct efx_nic *efx = channel->efx; | 
 | 	int spent; | 
 |  | 
 | 	netif_vdbg(efx, intr, efx->net_dev, | 
 | 		   "channel %d NAPI poll executing on CPU %d\n", | 
 | 		   channel->channel, raw_smp_processor_id()); | 
 |  | 
 | 	spent = efx_process_channel(channel, budget); | 
 |  | 
 | 	if (spent < budget) { | 
 | 		if (efx_channel_has_rx_queue(channel) && | 
 | 		    efx->irq_rx_adaptive && | 
 | 		    unlikely(++channel->irq_count == 1000)) { | 
 | 			if (unlikely(channel->irq_mod_score < | 
 | 				     irq_adapt_low_thresh)) { | 
 | 				if (channel->irq_moderation > 1) { | 
 | 					channel->irq_moderation -= 1; | 
 | 					efx->type->push_irq_moderation(channel); | 
 | 				} | 
 | 			} else if (unlikely(channel->irq_mod_score > | 
 | 					    irq_adapt_high_thresh)) { | 
 | 				if (channel->irq_moderation < | 
 | 				    efx->irq_rx_moderation) { | 
 | 					channel->irq_moderation += 1; | 
 | 					efx->type->push_irq_moderation(channel); | 
 | 				} | 
 | 			} | 
 | 			channel->irq_count = 0; | 
 | 			channel->irq_mod_score = 0; | 
 | 		} | 
 |  | 
 | 		efx_filter_rfs_expire(channel); | 
 |  | 
 | 		/* There is no race here; although napi_disable() will | 
 | 		 * only wait for napi_complete(), this isn't a problem | 
 | 		 * since efx_nic_eventq_read_ack() will have no effect if | 
 | 		 * interrupts have already been disabled. | 
 | 		 */ | 
 | 		napi_complete(napi); | 
 | 		efx_nic_eventq_read_ack(channel); | 
 | 	} | 
 |  | 
 | 	return spent; | 
 | } | 
 |  | 
 | /* Create event queue | 
 |  * Event queue memory allocations are done only once.  If the channel | 
 |  * is reset, the memory buffer will be reused; this guards against | 
 |  * errors during channel reset and also simplifies interrupt handling. | 
 |  */ | 
 | static int efx_probe_eventq(struct efx_channel *channel) | 
 | { | 
 | 	struct efx_nic *efx = channel->efx; | 
 | 	unsigned long entries; | 
 |  | 
 | 	netif_dbg(efx, probe, efx->net_dev, | 
 | 		  "chan %d create event queue\n", channel->channel); | 
 |  | 
 | 	/* Build an event queue with room for one event per tx and rx buffer, | 
 | 	 * plus some extra for link state events and MCDI completions. */ | 
 | 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); | 
 | 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); | 
 | 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; | 
 |  | 
 | 	return efx_nic_probe_eventq(channel); | 
 | } | 
 |  | 
 | /* Prepare channel's event queue */ | 
 | static int efx_init_eventq(struct efx_channel *channel) | 
 | { | 
 | 	struct efx_nic *efx = channel->efx; | 
 | 	int rc; | 
 |  | 
 | 	EFX_WARN_ON_PARANOID(channel->eventq_init); | 
 |  | 
 | 	netif_dbg(efx, drv, efx->net_dev, | 
 | 		  "chan %d init event queue\n", channel->channel); | 
 |  | 
 | 	rc = efx_nic_init_eventq(channel); | 
 | 	if (rc == 0) { | 
 | 		efx->type->push_irq_moderation(channel); | 
 | 		channel->eventq_read_ptr = 0; | 
 | 		channel->eventq_init = true; | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* Enable event queue processing and NAPI */ | 
 | static void efx_start_eventq(struct efx_channel *channel) | 
 | { | 
 | 	netif_dbg(channel->efx, ifup, channel->efx->net_dev, | 
 | 		  "chan %d start event queue\n", channel->channel); | 
 |  | 
 | 	/* Make sure the NAPI handler sees the enabled flag set */ | 
 | 	channel->enabled = true; | 
 | 	smp_wmb(); | 
 |  | 
 | 	napi_enable(&channel->napi_str); | 
 | 	efx_nic_eventq_read_ack(channel); | 
 | } | 
 |  | 
 | /* Disable event queue processing and NAPI */ | 
 | static void efx_stop_eventq(struct efx_channel *channel) | 
 | { | 
 | 	if (!channel->enabled) | 
 | 		return; | 
 |  | 
 | 	napi_disable(&channel->napi_str); | 
 | 	channel->enabled = false; | 
 | } | 
 |  | 
 | static void efx_fini_eventq(struct efx_channel *channel) | 
 | { | 
 | 	if (!channel->eventq_init) | 
 | 		return; | 
 |  | 
 | 	netif_dbg(channel->efx, drv, channel->efx->net_dev, | 
 | 		  "chan %d fini event queue\n", channel->channel); | 
 |  | 
 | 	efx_nic_fini_eventq(channel); | 
 | 	channel->eventq_init = false; | 
 | } | 
 |  | 
 | static void efx_remove_eventq(struct efx_channel *channel) | 
 | { | 
 | 	netif_dbg(channel->efx, drv, channel->efx->net_dev, | 
 | 		  "chan %d remove event queue\n", channel->channel); | 
 |  | 
 | 	efx_nic_remove_eventq(channel); | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Channel handling | 
 |  * | 
 |  *************************************************************************/ | 
 |  | 
 | /* Allocate and initialise a channel structure. */ | 
 | static struct efx_channel * | 
 | efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) | 
 | { | 
 | 	struct efx_channel *channel; | 
 | 	struct efx_rx_queue *rx_queue; | 
 | 	struct efx_tx_queue *tx_queue; | 
 | 	int j; | 
 |  | 
 | 	channel = kzalloc(sizeof(*channel), GFP_KERNEL); | 
 | 	if (!channel) | 
 | 		return NULL; | 
 |  | 
 | 	channel->efx = efx; | 
 | 	channel->channel = i; | 
 | 	channel->type = &efx_default_channel_type; | 
 |  | 
 | 	for (j = 0; j < EFX_TXQ_TYPES; j++) { | 
 | 		tx_queue = &channel->tx_queue[j]; | 
 | 		tx_queue->efx = efx; | 
 | 		tx_queue->queue = i * EFX_TXQ_TYPES + j; | 
 | 		tx_queue->channel = channel; | 
 | 	} | 
 |  | 
 | 	rx_queue = &channel->rx_queue; | 
 | 	rx_queue->efx = efx; | 
 | 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, | 
 | 		    (unsigned long)rx_queue); | 
 |  | 
 | 	return channel; | 
 | } | 
 |  | 
 | /* Allocate and initialise a channel structure, copying parameters | 
 |  * (but not resources) from an old channel structure. | 
 |  */ | 
 | static struct efx_channel * | 
 | efx_copy_channel(const struct efx_channel *old_channel) | 
 | { | 
 | 	struct efx_channel *channel; | 
 | 	struct efx_rx_queue *rx_queue; | 
 | 	struct efx_tx_queue *tx_queue; | 
 | 	int j; | 
 |  | 
 | 	channel = kmalloc(sizeof(*channel), GFP_KERNEL); | 
 | 	if (!channel) | 
 | 		return NULL; | 
 |  | 
 | 	*channel = *old_channel; | 
 |  | 
 | 	channel->napi_dev = NULL; | 
 | 	memset(&channel->eventq, 0, sizeof(channel->eventq)); | 
 |  | 
 | 	for (j = 0; j < EFX_TXQ_TYPES; j++) { | 
 | 		tx_queue = &channel->tx_queue[j]; | 
 | 		if (tx_queue->channel) | 
 | 			tx_queue->channel = channel; | 
 | 		tx_queue->buffer = NULL; | 
 | 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); | 
 | 	} | 
 |  | 
 | 	rx_queue = &channel->rx_queue; | 
 | 	rx_queue->buffer = NULL; | 
 | 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); | 
 | 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, | 
 | 		    (unsigned long)rx_queue); | 
 |  | 
 | 	return channel; | 
 | } | 
 |  | 
 | static int efx_probe_channel(struct efx_channel *channel) | 
 | { | 
 | 	struct efx_tx_queue *tx_queue; | 
 | 	struct efx_rx_queue *rx_queue; | 
 | 	int rc; | 
 |  | 
 | 	netif_dbg(channel->efx, probe, channel->efx->net_dev, | 
 | 		  "creating channel %d\n", channel->channel); | 
 |  | 
 | 	rc = channel->type->pre_probe(channel); | 
 | 	if (rc) | 
 | 		goto fail; | 
 |  | 
 | 	rc = efx_probe_eventq(channel); | 
 | 	if (rc) | 
 | 		goto fail; | 
 |  | 
 | 	efx_for_each_channel_tx_queue(tx_queue, channel) { | 
 | 		rc = efx_probe_tx_queue(tx_queue); | 
 | 		if (rc) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	efx_for_each_channel_rx_queue(rx_queue, channel) { | 
 | 		rc = efx_probe_rx_queue(rx_queue); | 
 | 		if (rc) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	efx_remove_channel(channel); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void | 
 | efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) | 
 | { | 
 | 	struct efx_nic *efx = channel->efx; | 
 | 	const char *type; | 
 | 	int number; | 
 |  | 
 | 	number = channel->channel; | 
 | 	if (efx->tx_channel_offset == 0) { | 
 | 		type = ""; | 
 | 	} else if (channel->channel < efx->tx_channel_offset) { | 
 | 		type = "-rx"; | 
 | 	} else { | 
 | 		type = "-tx"; | 
 | 		number -= efx->tx_channel_offset; | 
 | 	} | 
 | 	snprintf(buf, len, "%s%s-%d", efx->name, type, number); | 
 | } | 
 |  | 
 | static void efx_set_channel_names(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 |  | 
 | 	efx_for_each_channel(channel, efx) | 
 | 		channel->type->get_name(channel, | 
 | 					efx->msi_context[channel->channel].name, | 
 | 					sizeof(efx->msi_context[0].name)); | 
 | } | 
 |  | 
 | static int efx_probe_channels(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 | 	int rc; | 
 |  | 
 | 	/* Restart special buffer allocation */ | 
 | 	efx->next_buffer_table = 0; | 
 |  | 
 | 	/* Probe channels in reverse, so that any 'extra' channels | 
 | 	 * use the start of the buffer table. This allows the traffic | 
 | 	 * channels to be resized without moving them or wasting the | 
 | 	 * entries before them. | 
 | 	 */ | 
 | 	efx_for_each_channel_rev(channel, efx) { | 
 | 		rc = efx_probe_channel(channel); | 
 | 		if (rc) { | 
 | 			netif_err(efx, probe, efx->net_dev, | 
 | 				  "failed to create channel %d\n", | 
 | 				  channel->channel); | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 | 	efx_set_channel_names(efx); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	efx_remove_channels(efx); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* Channels are shutdown and reinitialised whilst the NIC is running | 
 |  * to propagate configuration changes (mtu, checksum offload), or | 
 |  * to clear hardware error conditions | 
 |  */ | 
 | static void efx_start_datapath(struct efx_nic *efx) | 
 | { | 
 | 	bool old_rx_scatter = efx->rx_scatter; | 
 | 	struct efx_tx_queue *tx_queue; | 
 | 	struct efx_rx_queue *rx_queue; | 
 | 	struct efx_channel *channel; | 
 | 	size_t rx_buf_len; | 
 |  | 
 | 	/* Calculate the rx buffer allocation parameters required to | 
 | 	 * support the current MTU, including padding for header | 
 | 	 * alignment and overruns. | 
 | 	 */ | 
 | 	efx->rx_dma_len = (efx->rx_prefix_size + | 
 | 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + | 
 | 			   efx->type->rx_buffer_padding); | 
 | 	rx_buf_len = (sizeof(struct efx_rx_page_state) + | 
 | 		      efx->rx_ip_align + efx->rx_dma_len); | 
 | 	if (rx_buf_len <= PAGE_SIZE) { | 
 | 		efx->rx_scatter = efx->type->always_rx_scatter; | 
 | 		efx->rx_buffer_order = 0; | 
 | 	} else if (efx->type->can_rx_scatter) { | 
 | 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); | 
 | 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + | 
 | 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, | 
 | 				       EFX_RX_BUF_ALIGNMENT) > | 
 | 			     PAGE_SIZE); | 
 | 		efx->rx_scatter = true; | 
 | 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; | 
 | 		efx->rx_buffer_order = 0; | 
 | 	} else { | 
 | 		efx->rx_scatter = false; | 
 | 		efx->rx_buffer_order = get_order(rx_buf_len); | 
 | 	} | 
 |  | 
 | 	efx_rx_config_page_split(efx); | 
 | 	if (efx->rx_buffer_order) | 
 | 		netif_dbg(efx, drv, efx->net_dev, | 
 | 			  "RX buf len=%u; page order=%u batch=%u\n", | 
 | 			  efx->rx_dma_len, efx->rx_buffer_order, | 
 | 			  efx->rx_pages_per_batch); | 
 | 	else | 
 | 		netif_dbg(efx, drv, efx->net_dev, | 
 | 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n", | 
 | 			  efx->rx_dma_len, efx->rx_page_buf_step, | 
 | 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch); | 
 |  | 
 | 	/* RX filters may also have scatter-enabled flags */ | 
 | 	if (efx->rx_scatter != old_rx_scatter) | 
 | 		efx->type->filter_update_rx_scatter(efx); | 
 |  | 
 | 	/* We must keep at least one descriptor in a TX ring empty. | 
 | 	 * We could avoid this when the queue size does not exactly | 
 | 	 * match the hardware ring size, but it's not that important. | 
 | 	 * Therefore we stop the queue when one more skb might fill | 
 | 	 * the ring completely.  We wake it when half way back to | 
 | 	 * empty. | 
 | 	 */ | 
 | 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); | 
 | 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2; | 
 |  | 
 | 	/* Initialise the channels */ | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		efx_for_each_channel_tx_queue(tx_queue, channel) { | 
 | 			efx_init_tx_queue(tx_queue); | 
 | 			atomic_inc(&efx->active_queues); | 
 | 		} | 
 |  | 
 | 		efx_for_each_channel_rx_queue(rx_queue, channel) { | 
 | 			efx_init_rx_queue(rx_queue); | 
 | 			atomic_inc(&efx->active_queues); | 
 | 			efx_stop_eventq(channel); | 
 | 			efx_fast_push_rx_descriptors(rx_queue, false); | 
 | 			efx_start_eventq(channel); | 
 | 		} | 
 |  | 
 | 		WARN_ON(channel->rx_pkt_n_frags); | 
 | 	} | 
 |  | 
 | 	efx_ptp_start_datapath(efx); | 
 |  | 
 | 	if (netif_device_present(efx->net_dev)) | 
 | 		netif_tx_wake_all_queues(efx->net_dev); | 
 | } | 
 |  | 
 | static void efx_stop_datapath(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 | 	struct efx_tx_queue *tx_queue; | 
 | 	struct efx_rx_queue *rx_queue; | 
 | 	int rc; | 
 |  | 
 | 	EFX_ASSERT_RESET_SERIALISED(efx); | 
 | 	BUG_ON(efx->port_enabled); | 
 |  | 
 | 	efx_ptp_stop_datapath(efx); | 
 |  | 
 | 	/* Stop RX refill */ | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		efx_for_each_channel_rx_queue(rx_queue, channel) | 
 | 			rx_queue->refill_enabled = false; | 
 | 	} | 
 |  | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		/* RX packet processing is pipelined, so wait for the | 
 | 		 * NAPI handler to complete.  At least event queue 0 | 
 | 		 * might be kept active by non-data events, so don't | 
 | 		 * use napi_synchronize() but actually disable NAPI | 
 | 		 * temporarily. | 
 | 		 */ | 
 | 		if (efx_channel_has_rx_queue(channel)) { | 
 | 			efx_stop_eventq(channel); | 
 | 			efx_start_eventq(channel); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc = efx->type->fini_dmaq(efx); | 
 | 	if (rc && EFX_WORKAROUND_7803(efx)) { | 
 | 		/* Schedule a reset to recover from the flush failure. The | 
 | 		 * descriptor caches reference memory we're about to free, | 
 | 		 * but falcon_reconfigure_mac_wrapper() won't reconnect | 
 | 		 * the MACs because of the pending reset. | 
 | 		 */ | 
 | 		netif_err(efx, drv, efx->net_dev, | 
 | 			  "Resetting to recover from flush failure\n"); | 
 | 		efx_schedule_reset(efx, RESET_TYPE_ALL); | 
 | 	} else if (rc) { | 
 | 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); | 
 | 	} else { | 
 | 		netif_dbg(efx, drv, efx->net_dev, | 
 | 			  "successfully flushed all queues\n"); | 
 | 	} | 
 |  | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		efx_for_each_channel_rx_queue(rx_queue, channel) | 
 | 			efx_fini_rx_queue(rx_queue); | 
 | 		efx_for_each_possible_channel_tx_queue(tx_queue, channel) | 
 | 			efx_fini_tx_queue(tx_queue); | 
 | 	} | 
 | } | 
 |  | 
 | static void efx_remove_channel(struct efx_channel *channel) | 
 | { | 
 | 	struct efx_tx_queue *tx_queue; | 
 | 	struct efx_rx_queue *rx_queue; | 
 |  | 
 | 	netif_dbg(channel->efx, drv, channel->efx->net_dev, | 
 | 		  "destroy chan %d\n", channel->channel); | 
 |  | 
 | 	efx_for_each_channel_rx_queue(rx_queue, channel) | 
 | 		efx_remove_rx_queue(rx_queue); | 
 | 	efx_for_each_possible_channel_tx_queue(tx_queue, channel) | 
 | 		efx_remove_tx_queue(tx_queue); | 
 | 	efx_remove_eventq(channel); | 
 | 	channel->type->post_remove(channel); | 
 | } | 
 |  | 
 | static void efx_remove_channels(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 |  | 
 | 	efx_for_each_channel(channel, efx) | 
 | 		efx_remove_channel(channel); | 
 | } | 
 |  | 
 | int | 
 | efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) | 
 | { | 
 | 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; | 
 | 	u32 old_rxq_entries, old_txq_entries; | 
 | 	unsigned i, next_buffer_table = 0; | 
 | 	int rc, rc2; | 
 |  | 
 | 	rc = efx_check_disabled(efx); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* Not all channels should be reallocated. We must avoid | 
 | 	 * reallocating their buffer table entries. | 
 | 	 */ | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		struct efx_rx_queue *rx_queue; | 
 | 		struct efx_tx_queue *tx_queue; | 
 |  | 
 | 		if (channel->type->copy) | 
 | 			continue; | 
 | 		next_buffer_table = max(next_buffer_table, | 
 | 					channel->eventq.index + | 
 | 					channel->eventq.entries); | 
 | 		efx_for_each_channel_rx_queue(rx_queue, channel) | 
 | 			next_buffer_table = max(next_buffer_table, | 
 | 						rx_queue->rxd.index + | 
 | 						rx_queue->rxd.entries); | 
 | 		efx_for_each_channel_tx_queue(tx_queue, channel) | 
 | 			next_buffer_table = max(next_buffer_table, | 
 | 						tx_queue->txd.index + | 
 | 						tx_queue->txd.entries); | 
 | 	} | 
 |  | 
 | 	efx_device_detach_sync(efx); | 
 | 	efx_stop_all(efx); | 
 | 	efx_soft_disable_interrupts(efx); | 
 |  | 
 | 	/* Clone channels (where possible) */ | 
 | 	memset(other_channel, 0, sizeof(other_channel)); | 
 | 	for (i = 0; i < efx->n_channels; i++) { | 
 | 		channel = efx->channel[i]; | 
 | 		if (channel->type->copy) | 
 | 			channel = channel->type->copy(channel); | 
 | 		if (!channel) { | 
 | 			rc = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		other_channel[i] = channel; | 
 | 	} | 
 |  | 
 | 	/* Swap entry counts and channel pointers */ | 
 | 	old_rxq_entries = efx->rxq_entries; | 
 | 	old_txq_entries = efx->txq_entries; | 
 | 	efx->rxq_entries = rxq_entries; | 
 | 	efx->txq_entries = txq_entries; | 
 | 	for (i = 0; i < efx->n_channels; i++) { | 
 | 		channel = efx->channel[i]; | 
 | 		efx->channel[i] = other_channel[i]; | 
 | 		other_channel[i] = channel; | 
 | 	} | 
 |  | 
 | 	/* Restart buffer table allocation */ | 
 | 	efx->next_buffer_table = next_buffer_table; | 
 |  | 
 | 	for (i = 0; i < efx->n_channels; i++) { | 
 | 		channel = efx->channel[i]; | 
 | 		if (!channel->type->copy) | 
 | 			continue; | 
 | 		rc = efx_probe_channel(channel); | 
 | 		if (rc) | 
 | 			goto rollback; | 
 | 		efx_init_napi_channel(efx->channel[i]); | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* Destroy unused channel structures */ | 
 | 	for (i = 0; i < efx->n_channels; i++) { | 
 | 		channel = other_channel[i]; | 
 | 		if (channel && channel->type->copy) { | 
 | 			efx_fini_napi_channel(channel); | 
 | 			efx_remove_channel(channel); | 
 | 			kfree(channel); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc2 = efx_soft_enable_interrupts(efx); | 
 | 	if (rc2) { | 
 | 		rc = rc ? rc : rc2; | 
 | 		netif_err(efx, drv, efx->net_dev, | 
 | 			  "unable to restart interrupts on channel reallocation\n"); | 
 | 		efx_schedule_reset(efx, RESET_TYPE_DISABLE); | 
 | 	} else { | 
 | 		efx_start_all(efx); | 
 | 		netif_device_attach(efx->net_dev); | 
 | 	} | 
 | 	return rc; | 
 |  | 
 | rollback: | 
 | 	/* Swap back */ | 
 | 	efx->rxq_entries = old_rxq_entries; | 
 | 	efx->txq_entries = old_txq_entries; | 
 | 	for (i = 0; i < efx->n_channels; i++) { | 
 | 		channel = efx->channel[i]; | 
 | 		efx->channel[i] = other_channel[i]; | 
 | 		other_channel[i] = channel; | 
 | 	} | 
 | 	goto out; | 
 | } | 
 |  | 
 | void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) | 
 | { | 
 | 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); | 
 | } | 
 |  | 
 | static const struct efx_channel_type efx_default_channel_type = { | 
 | 	.pre_probe		= efx_channel_dummy_op_int, | 
 | 	.post_remove		= efx_channel_dummy_op_void, | 
 | 	.get_name		= efx_get_channel_name, | 
 | 	.copy			= efx_copy_channel, | 
 | 	.keep_eventq		= false, | 
 | }; | 
 |  | 
 | int efx_channel_dummy_op_int(struct efx_channel *channel) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void efx_channel_dummy_op_void(struct efx_channel *channel) | 
 | { | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Port handling | 
 |  * | 
 |  **************************************************************************/ | 
 |  | 
 | /* This ensures that the kernel is kept informed (via | 
 |  * netif_carrier_on/off) of the link status, and also maintains the | 
 |  * link status's stop on the port's TX queue. | 
 |  */ | 
 | void efx_link_status_changed(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_link_state *link_state = &efx->link_state; | 
 |  | 
 | 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure | 
 | 	 * that no events are triggered between unregister_netdev() and the | 
 | 	 * driver unloading. A more general condition is that NETDEV_CHANGE | 
 | 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */ | 
 | 	if (!netif_running(efx->net_dev)) | 
 | 		return; | 
 |  | 
 | 	if (link_state->up != netif_carrier_ok(efx->net_dev)) { | 
 | 		efx->n_link_state_changes++; | 
 |  | 
 | 		if (link_state->up) | 
 | 			netif_carrier_on(efx->net_dev); | 
 | 		else | 
 | 			netif_carrier_off(efx->net_dev); | 
 | 	} | 
 |  | 
 | 	/* Status message for kernel log */ | 
 | 	if (link_state->up) | 
 | 		netif_info(efx, link, efx->net_dev, | 
 | 			   "link up at %uMbps %s-duplex (MTU %d)\n", | 
 | 			   link_state->speed, link_state->fd ? "full" : "half", | 
 | 			   efx->net_dev->mtu); | 
 | 	else | 
 | 		netif_info(efx, link, efx->net_dev, "link down\n"); | 
 | } | 
 |  | 
 | void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) | 
 | { | 
 | 	efx->link_advertising = advertising; | 
 | 	if (advertising) { | 
 | 		if (advertising & ADVERTISED_Pause) | 
 | 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); | 
 | 		else | 
 | 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); | 
 | 		if (advertising & ADVERTISED_Asym_Pause) | 
 | 			efx->wanted_fc ^= EFX_FC_TX; | 
 | 	} | 
 | } | 
 |  | 
 | void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) | 
 | { | 
 | 	efx->wanted_fc = wanted_fc; | 
 | 	if (efx->link_advertising) { | 
 | 		if (wanted_fc & EFX_FC_RX) | 
 | 			efx->link_advertising |= (ADVERTISED_Pause | | 
 | 						  ADVERTISED_Asym_Pause); | 
 | 		else | 
 | 			efx->link_advertising &= ~(ADVERTISED_Pause | | 
 | 						   ADVERTISED_Asym_Pause); | 
 | 		if (wanted_fc & EFX_FC_TX) | 
 | 			efx->link_advertising ^= ADVERTISED_Asym_Pause; | 
 | 	} | 
 | } | 
 |  | 
 | static void efx_fini_port(struct efx_nic *efx); | 
 |  | 
 | /* Push loopback/power/transmit disable settings to the PHY, and reconfigure | 
 |  * the MAC appropriately. All other PHY configuration changes are pushed | 
 |  * through phy_op->set_settings(), and pushed asynchronously to the MAC | 
 |  * through efx_monitor(). | 
 |  * | 
 |  * Callers must hold the mac_lock | 
 |  */ | 
 | int __efx_reconfigure_port(struct efx_nic *efx) | 
 | { | 
 | 	enum efx_phy_mode phy_mode; | 
 | 	int rc; | 
 |  | 
 | 	WARN_ON(!mutex_is_locked(&efx->mac_lock)); | 
 |  | 
 | 	/* Disable PHY transmit in mac level loopbacks */ | 
 | 	phy_mode = efx->phy_mode; | 
 | 	if (LOOPBACK_INTERNAL(efx)) | 
 | 		efx->phy_mode |= PHY_MODE_TX_DISABLED; | 
 | 	else | 
 | 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED; | 
 |  | 
 | 	rc = efx->type->reconfigure_port(efx); | 
 |  | 
 | 	if (rc) | 
 | 		efx->phy_mode = phy_mode; | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* Reinitialise the MAC to pick up new PHY settings, even if the port is | 
 |  * disabled. */ | 
 | int efx_reconfigure_port(struct efx_nic *efx) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	EFX_ASSERT_RESET_SERIALISED(efx); | 
 |  | 
 | 	mutex_lock(&efx->mac_lock); | 
 | 	rc = __efx_reconfigure_port(efx); | 
 | 	mutex_unlock(&efx->mac_lock); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* Asynchronous work item for changing MAC promiscuity and multicast | 
 |  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current | 
 |  * MAC directly. */ | 
 | static void efx_mac_work(struct work_struct *data) | 
 | { | 
 | 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); | 
 |  | 
 | 	mutex_lock(&efx->mac_lock); | 
 | 	if (efx->port_enabled) | 
 | 		efx->type->reconfigure_mac(efx); | 
 | 	mutex_unlock(&efx->mac_lock); | 
 | } | 
 |  | 
 | static int efx_probe_port(struct efx_nic *efx) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	netif_dbg(efx, probe, efx->net_dev, "create port\n"); | 
 |  | 
 | 	if (phy_flash_cfg) | 
 | 		efx->phy_mode = PHY_MODE_SPECIAL; | 
 |  | 
 | 	/* Connect up MAC/PHY operations table */ | 
 | 	rc = efx->type->probe_port(efx); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* Initialise MAC address to permanent address */ | 
 | 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int efx_init_port(struct efx_nic *efx) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	netif_dbg(efx, drv, efx->net_dev, "init port\n"); | 
 |  | 
 | 	mutex_lock(&efx->mac_lock); | 
 |  | 
 | 	rc = efx->phy_op->init(efx); | 
 | 	if (rc) | 
 | 		goto fail1; | 
 |  | 
 | 	efx->port_initialized = true; | 
 |  | 
 | 	/* Reconfigure the MAC before creating dma queues (required for | 
 | 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ | 
 | 	efx->type->reconfigure_mac(efx); | 
 |  | 
 | 	/* Ensure the PHY advertises the correct flow control settings */ | 
 | 	rc = efx->phy_op->reconfigure(efx); | 
 | 	if (rc) | 
 | 		goto fail2; | 
 |  | 
 | 	mutex_unlock(&efx->mac_lock); | 
 | 	return 0; | 
 |  | 
 | fail2: | 
 | 	efx->phy_op->fini(efx); | 
 | fail1: | 
 | 	mutex_unlock(&efx->mac_lock); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void efx_start_port(struct efx_nic *efx) | 
 | { | 
 | 	netif_dbg(efx, ifup, efx->net_dev, "start port\n"); | 
 | 	BUG_ON(efx->port_enabled); | 
 |  | 
 | 	mutex_lock(&efx->mac_lock); | 
 | 	efx->port_enabled = true; | 
 |  | 
 | 	/* Ensure MAC ingress/egress is enabled */ | 
 | 	efx->type->reconfigure_mac(efx); | 
 |  | 
 | 	mutex_unlock(&efx->mac_lock); | 
 | } | 
 |  | 
 | /* Cancel work for MAC reconfiguration, periodic hardware monitoring | 
 |  * and the async self-test, wait for them to finish and prevent them | 
 |  * being scheduled again.  This doesn't cover online resets, which | 
 |  * should only be cancelled when removing the device. | 
 |  */ | 
 | static void efx_stop_port(struct efx_nic *efx) | 
 | { | 
 | 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); | 
 |  | 
 | 	EFX_ASSERT_RESET_SERIALISED(efx); | 
 |  | 
 | 	mutex_lock(&efx->mac_lock); | 
 | 	efx->port_enabled = false; | 
 | 	mutex_unlock(&efx->mac_lock); | 
 |  | 
 | 	/* Serialise against efx_set_multicast_list() */ | 
 | 	netif_addr_lock_bh(efx->net_dev); | 
 | 	netif_addr_unlock_bh(efx->net_dev); | 
 |  | 
 | 	cancel_delayed_work_sync(&efx->monitor_work); | 
 | 	efx_selftest_async_cancel(efx); | 
 | 	cancel_work_sync(&efx->mac_work); | 
 | } | 
 |  | 
 | static void efx_fini_port(struct efx_nic *efx) | 
 | { | 
 | 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); | 
 |  | 
 | 	if (!efx->port_initialized) | 
 | 		return; | 
 |  | 
 | 	efx->phy_op->fini(efx); | 
 | 	efx->port_initialized = false; | 
 |  | 
 | 	efx->link_state.up = false; | 
 | 	efx_link_status_changed(efx); | 
 | } | 
 |  | 
 | static void efx_remove_port(struct efx_nic *efx) | 
 | { | 
 | 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); | 
 |  | 
 | 	efx->type->remove_port(efx); | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * NIC handling | 
 |  * | 
 |  **************************************************************************/ | 
 |  | 
 | static LIST_HEAD(efx_primary_list); | 
 | static LIST_HEAD(efx_unassociated_list); | 
 |  | 
 | static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) | 
 | { | 
 | 	return left->type == right->type && | 
 | 		left->vpd_sn && right->vpd_sn && | 
 | 		!strcmp(left->vpd_sn, right->vpd_sn); | 
 | } | 
 |  | 
 | static void efx_associate(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_nic *other, *next; | 
 |  | 
 | 	if (efx->primary == efx) { | 
 | 		/* Adding primary function; look for secondaries */ | 
 |  | 
 | 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); | 
 | 		list_add_tail(&efx->node, &efx_primary_list); | 
 |  | 
 | 		list_for_each_entry_safe(other, next, &efx_unassociated_list, | 
 | 					 node) { | 
 | 			if (efx_same_controller(efx, other)) { | 
 | 				list_del(&other->node); | 
 | 				netif_dbg(other, probe, other->net_dev, | 
 | 					  "moving to secondary list of %s %s\n", | 
 | 					  pci_name(efx->pci_dev), | 
 | 					  efx->net_dev->name); | 
 | 				list_add_tail(&other->node, | 
 | 					      &efx->secondary_list); | 
 | 				other->primary = efx; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* Adding secondary function; look for primary */ | 
 |  | 
 | 		list_for_each_entry(other, &efx_primary_list, node) { | 
 | 			if (efx_same_controller(efx, other)) { | 
 | 				netif_dbg(efx, probe, efx->net_dev, | 
 | 					  "adding to secondary list of %s %s\n", | 
 | 					  pci_name(other->pci_dev), | 
 | 					  other->net_dev->name); | 
 | 				list_add_tail(&efx->node, | 
 | 					      &other->secondary_list); | 
 | 				efx->primary = other; | 
 | 				return; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		netif_dbg(efx, probe, efx->net_dev, | 
 | 			  "adding to unassociated list\n"); | 
 | 		list_add_tail(&efx->node, &efx_unassociated_list); | 
 | 	} | 
 | } | 
 |  | 
 | static void efx_dissociate(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_nic *other, *next; | 
 |  | 
 | 	list_del(&efx->node); | 
 | 	efx->primary = NULL; | 
 |  | 
 | 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) { | 
 | 		list_del(&other->node); | 
 | 		netif_dbg(other, probe, other->net_dev, | 
 | 			  "moving to unassociated list\n"); | 
 | 		list_add_tail(&other->node, &efx_unassociated_list); | 
 | 		other->primary = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* This configures the PCI device to enable I/O and DMA. */ | 
 | static int efx_init_io(struct efx_nic *efx) | 
 | { | 
 | 	struct pci_dev *pci_dev = efx->pci_dev; | 
 | 	dma_addr_t dma_mask = efx->type->max_dma_mask; | 
 | 	unsigned int mem_map_size = efx->type->mem_map_size(efx); | 
 | 	int rc; | 
 |  | 
 | 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); | 
 |  | 
 | 	rc = pci_enable_device(pci_dev); | 
 | 	if (rc) { | 
 | 		netif_err(efx, probe, efx->net_dev, | 
 | 			  "failed to enable PCI device\n"); | 
 | 		goto fail1; | 
 | 	} | 
 |  | 
 | 	pci_set_master(pci_dev); | 
 |  | 
 | 	/* Set the PCI DMA mask.  Try all possibilities from our | 
 | 	 * genuine mask down to 32 bits, because some architectures | 
 | 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit | 
 | 	 * masks event though they reject 46 bit masks. | 
 | 	 */ | 
 | 	while (dma_mask > 0x7fffffffUL) { | 
 | 		if (dma_supported(&pci_dev->dev, dma_mask)) { | 
 | 			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); | 
 | 			if (rc == 0) | 
 | 				break; | 
 | 		} | 
 | 		dma_mask >>= 1; | 
 | 	} | 
 | 	if (rc) { | 
 | 		netif_err(efx, probe, efx->net_dev, | 
 | 			  "could not find a suitable DMA mask\n"); | 
 | 		goto fail2; | 
 | 	} | 
 | 	netif_dbg(efx, probe, efx->net_dev, | 
 | 		  "using DMA mask %llx\n", (unsigned long long) dma_mask); | 
 |  | 
 | 	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); | 
 | 	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); | 
 | 	if (rc) { | 
 | 		netif_err(efx, probe, efx->net_dev, | 
 | 			  "request for memory BAR failed\n"); | 
 | 		rc = -EIO; | 
 | 		goto fail3; | 
 | 	} | 
 | 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); | 
 | 	if (!efx->membase) { | 
 | 		netif_err(efx, probe, efx->net_dev, | 
 | 			  "could not map memory BAR at %llx+%x\n", | 
 | 			  (unsigned long long)efx->membase_phys, mem_map_size); | 
 | 		rc = -ENOMEM; | 
 | 		goto fail4; | 
 | 	} | 
 | 	netif_dbg(efx, probe, efx->net_dev, | 
 | 		  "memory BAR at %llx+%x (virtual %p)\n", | 
 | 		  (unsigned long long)efx->membase_phys, mem_map_size, | 
 | 		  efx->membase); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  fail4: | 
 | 	pci_release_region(efx->pci_dev, EFX_MEM_BAR); | 
 |  fail3: | 
 | 	efx->membase_phys = 0; | 
 |  fail2: | 
 | 	pci_disable_device(efx->pci_dev); | 
 |  fail1: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void efx_fini_io(struct efx_nic *efx) | 
 | { | 
 | 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); | 
 |  | 
 | 	if (efx->membase) { | 
 | 		iounmap(efx->membase); | 
 | 		efx->membase = NULL; | 
 | 	} | 
 |  | 
 | 	if (efx->membase_phys) { | 
 | 		pci_release_region(efx->pci_dev, EFX_MEM_BAR); | 
 | 		efx->membase_phys = 0; | 
 | 	} | 
 |  | 
 | 	pci_disable_device(efx->pci_dev); | 
 | } | 
 |  | 
 | static unsigned int efx_wanted_parallelism(struct efx_nic *efx) | 
 | { | 
 | 	cpumask_var_t thread_mask; | 
 | 	unsigned int count; | 
 | 	int cpu; | 
 |  | 
 | 	if (rss_cpus) { | 
 | 		count = rss_cpus; | 
 | 	} else { | 
 | 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { | 
 | 			netif_warn(efx, probe, efx->net_dev, | 
 | 				   "RSS disabled due to allocation failure\n"); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		count = 0; | 
 | 		for_each_online_cpu(cpu) { | 
 | 			if (!cpumask_test_cpu(cpu, thread_mask)) { | 
 | 				++count; | 
 | 				cpumask_or(thread_mask, thread_mask, | 
 | 					   topology_thread_cpumask(cpu)); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		free_cpumask_var(thread_mask); | 
 | 	} | 
 |  | 
 | 	/* If RSS is requested for the PF *and* VFs then we can't write RSS | 
 | 	 * table entries that are inaccessible to VFs | 
 | 	 */ | 
 | 	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 && | 
 | 	    count > efx_vf_size(efx)) { | 
 | 		netif_warn(efx, probe, efx->net_dev, | 
 | 			   "Reducing number of RSS channels from %u to %u for " | 
 | 			   "VF support. Increase vf-msix-limit to use more " | 
 | 			   "channels on the PF.\n", | 
 | 			   count, efx_vf_size(efx)); | 
 | 		count = efx_vf_size(efx); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* Probe the number and type of interrupts we are able to obtain, and | 
 |  * the resulting numbers of channels and RX queues. | 
 |  */ | 
 | static int efx_probe_interrupts(struct efx_nic *efx) | 
 | { | 
 | 	unsigned int extra_channels = 0; | 
 | 	unsigned int i, j; | 
 | 	int rc; | 
 |  | 
 | 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) | 
 | 		if (efx->extra_channel_type[i]) | 
 | 			++extra_channels; | 
 |  | 
 | 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { | 
 | 		struct msix_entry xentries[EFX_MAX_CHANNELS]; | 
 | 		unsigned int n_channels; | 
 |  | 
 | 		n_channels = efx_wanted_parallelism(efx); | 
 | 		if (separate_tx_channels) | 
 | 			n_channels *= 2; | 
 | 		n_channels += extra_channels; | 
 | 		n_channels = min(n_channels, efx->max_channels); | 
 |  | 
 | 		for (i = 0; i < n_channels; i++) | 
 | 			xentries[i].entry = i; | 
 | 		rc = pci_enable_msix_range(efx->pci_dev, | 
 | 					   xentries, 1, n_channels); | 
 | 		if (rc < 0) { | 
 | 			/* Fall back to single channel MSI */ | 
 | 			efx->interrupt_mode = EFX_INT_MODE_MSI; | 
 | 			netif_err(efx, drv, efx->net_dev, | 
 | 				  "could not enable MSI-X\n"); | 
 | 		} else if (rc < n_channels) { | 
 | 			netif_err(efx, drv, efx->net_dev, | 
 | 				  "WARNING: Insufficient MSI-X vectors" | 
 | 				  " available (%d < %u).\n", rc, n_channels); | 
 | 			netif_err(efx, drv, efx->net_dev, | 
 | 				  "WARNING: Performance may be reduced.\n"); | 
 | 			n_channels = rc; | 
 | 		} | 
 |  | 
 | 		if (rc > 0) { | 
 | 			efx->n_channels = n_channels; | 
 | 			if (n_channels > extra_channels) | 
 | 				n_channels -= extra_channels; | 
 | 			if (separate_tx_channels) { | 
 | 				efx->n_tx_channels = max(n_channels / 2, 1U); | 
 | 				efx->n_rx_channels = max(n_channels - | 
 | 							 efx->n_tx_channels, | 
 | 							 1U); | 
 | 			} else { | 
 | 				efx->n_tx_channels = n_channels; | 
 | 				efx->n_rx_channels = n_channels; | 
 | 			} | 
 | 			for (i = 0; i < efx->n_channels; i++) | 
 | 				efx_get_channel(efx, i)->irq = | 
 | 					xentries[i].vector; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Try single interrupt MSI */ | 
 | 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) { | 
 | 		efx->n_channels = 1; | 
 | 		efx->n_rx_channels = 1; | 
 | 		efx->n_tx_channels = 1; | 
 | 		rc = pci_enable_msi(efx->pci_dev); | 
 | 		if (rc == 0) { | 
 | 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; | 
 | 		} else { | 
 | 			netif_err(efx, drv, efx->net_dev, | 
 | 				  "could not enable MSI\n"); | 
 | 			efx->interrupt_mode = EFX_INT_MODE_LEGACY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Assume legacy interrupts */ | 
 | 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { | 
 | 		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); | 
 | 		efx->n_rx_channels = 1; | 
 | 		efx->n_tx_channels = 1; | 
 | 		efx->legacy_irq = efx->pci_dev->irq; | 
 | 	} | 
 |  | 
 | 	/* Assign extra channels if possible */ | 
 | 	j = efx->n_channels; | 
 | 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { | 
 | 		if (!efx->extra_channel_type[i]) | 
 | 			continue; | 
 | 		if (efx->interrupt_mode != EFX_INT_MODE_MSIX || | 
 | 		    efx->n_channels <= extra_channels) { | 
 | 			efx->extra_channel_type[i]->handle_no_channel(efx); | 
 | 		} else { | 
 | 			--j; | 
 | 			efx_get_channel(efx, j)->type = | 
 | 				efx->extra_channel_type[i]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* RSS might be usable on VFs even if it is disabled on the PF */ | 
 | 	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ? | 
 | 			   efx->n_rx_channels : efx_vf_size(efx)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int efx_soft_enable_interrupts(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel, *end_channel; | 
 | 	int rc; | 
 |  | 
 | 	BUG_ON(efx->state == STATE_DISABLED); | 
 |  | 
 | 	efx->irq_soft_enabled = true; | 
 | 	smp_wmb(); | 
 |  | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		if (!channel->type->keep_eventq) { | 
 | 			rc = efx_init_eventq(channel); | 
 | 			if (rc) | 
 | 				goto fail; | 
 | 		} | 
 | 		efx_start_eventq(channel); | 
 | 	} | 
 |  | 
 | 	efx_mcdi_mode_event(efx); | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	end_channel = channel; | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		if (channel == end_channel) | 
 | 			break; | 
 | 		efx_stop_eventq(channel); | 
 | 		if (!channel->type->keep_eventq) | 
 | 			efx_fini_eventq(channel); | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void efx_soft_disable_interrupts(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 |  | 
 | 	if (efx->state == STATE_DISABLED) | 
 | 		return; | 
 |  | 
 | 	efx_mcdi_mode_poll(efx); | 
 |  | 
 | 	efx->irq_soft_enabled = false; | 
 | 	smp_wmb(); | 
 |  | 
 | 	if (efx->legacy_irq) | 
 | 		synchronize_irq(efx->legacy_irq); | 
 |  | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		if (channel->irq) | 
 | 			synchronize_irq(channel->irq); | 
 |  | 
 | 		efx_stop_eventq(channel); | 
 | 		if (!channel->type->keep_eventq) | 
 | 			efx_fini_eventq(channel); | 
 | 	} | 
 |  | 
 | 	/* Flush the asynchronous MCDI request queue */ | 
 | 	efx_mcdi_flush_async(efx); | 
 | } | 
 |  | 
 | static int efx_enable_interrupts(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel, *end_channel; | 
 | 	int rc; | 
 |  | 
 | 	BUG_ON(efx->state == STATE_DISABLED); | 
 |  | 
 | 	if (efx->eeh_disabled_legacy_irq) { | 
 | 		enable_irq(efx->legacy_irq); | 
 | 		efx->eeh_disabled_legacy_irq = false; | 
 | 	} | 
 |  | 
 | 	efx->type->irq_enable_master(efx); | 
 |  | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		if (channel->type->keep_eventq) { | 
 | 			rc = efx_init_eventq(channel); | 
 | 			if (rc) | 
 | 				goto fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc = efx_soft_enable_interrupts(efx); | 
 | 	if (rc) | 
 | 		goto fail; | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	end_channel = channel; | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		if (channel == end_channel) | 
 | 			break; | 
 | 		if (channel->type->keep_eventq) | 
 | 			efx_fini_eventq(channel); | 
 | 	} | 
 |  | 
 | 	efx->type->irq_disable_non_ev(efx); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void efx_disable_interrupts(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 |  | 
 | 	efx_soft_disable_interrupts(efx); | 
 |  | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		if (channel->type->keep_eventq) | 
 | 			efx_fini_eventq(channel); | 
 | 	} | 
 |  | 
 | 	efx->type->irq_disable_non_ev(efx); | 
 | } | 
 |  | 
 | static void efx_remove_interrupts(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 |  | 
 | 	/* Remove MSI/MSI-X interrupts */ | 
 | 	efx_for_each_channel(channel, efx) | 
 | 		channel->irq = 0; | 
 | 	pci_disable_msi(efx->pci_dev); | 
 | 	pci_disable_msix(efx->pci_dev); | 
 |  | 
 | 	/* Remove legacy interrupt */ | 
 | 	efx->legacy_irq = 0; | 
 | } | 
 |  | 
 | static void efx_set_channels(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 | 	struct efx_tx_queue *tx_queue; | 
 |  | 
 | 	efx->tx_channel_offset = | 
 | 		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; | 
 |  | 
 | 	/* We need to mark which channels really have RX and TX | 
 | 	 * queues, and adjust the TX queue numbers if we have separate | 
 | 	 * RX-only and TX-only channels. | 
 | 	 */ | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		if (channel->channel < efx->n_rx_channels) | 
 | 			channel->rx_queue.core_index = channel->channel; | 
 | 		else | 
 | 			channel->rx_queue.core_index = -1; | 
 |  | 
 | 		efx_for_each_channel_tx_queue(tx_queue, channel) | 
 | 			tx_queue->queue -= (efx->tx_channel_offset * | 
 | 					    EFX_TXQ_TYPES); | 
 | 	} | 
 | } | 
 |  | 
 | static int efx_probe_nic(struct efx_nic *efx) | 
 | { | 
 | 	size_t i; | 
 | 	int rc; | 
 |  | 
 | 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); | 
 |  | 
 | 	/* Carry out hardware-type specific initialisation */ | 
 | 	rc = efx->type->probe(efx); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	/* Determine the number of channels and queues by trying to hook | 
 | 	 * in MSI-X interrupts. */ | 
 | 	rc = efx_probe_interrupts(efx); | 
 | 	if (rc) | 
 | 		goto fail1; | 
 |  | 
 | 	efx_set_channels(efx); | 
 |  | 
 | 	rc = efx->type->dimension_resources(efx); | 
 | 	if (rc) | 
 | 		goto fail2; | 
 |  | 
 | 	if (efx->n_channels > 1) | 
 | 		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); | 
 | 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) | 
 | 		efx->rx_indir_table[i] = | 
 | 			ethtool_rxfh_indir_default(i, efx->rss_spread); | 
 |  | 
 | 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); | 
 | 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); | 
 |  | 
 | 	/* Initialise the interrupt moderation settings */ | 
 | 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, | 
 | 				true); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail2: | 
 | 	efx_remove_interrupts(efx); | 
 | fail1: | 
 | 	efx->type->remove(efx); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void efx_remove_nic(struct efx_nic *efx) | 
 | { | 
 | 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); | 
 |  | 
 | 	efx_remove_interrupts(efx); | 
 | 	efx->type->remove(efx); | 
 | } | 
 |  | 
 | static int efx_probe_filters(struct efx_nic *efx) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	spin_lock_init(&efx->filter_lock); | 
 |  | 
 | 	rc = efx->type->filter_table_probe(efx); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | #ifdef CONFIG_RFS_ACCEL | 
 | 	if (efx->type->offload_features & NETIF_F_NTUPLE) { | 
 | 		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters, | 
 | 					   sizeof(*efx->rps_flow_id), | 
 | 					   GFP_KERNEL); | 
 | 		if (!efx->rps_flow_id) { | 
 | 			efx->type->filter_table_remove(efx); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void efx_remove_filters(struct efx_nic *efx) | 
 | { | 
 | #ifdef CONFIG_RFS_ACCEL | 
 | 	kfree(efx->rps_flow_id); | 
 | #endif | 
 | 	efx->type->filter_table_remove(efx); | 
 | } | 
 |  | 
 | static void efx_restore_filters(struct efx_nic *efx) | 
 | { | 
 | 	efx->type->filter_table_restore(efx); | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * NIC startup/shutdown | 
 |  * | 
 |  *************************************************************************/ | 
 |  | 
 | static int efx_probe_all(struct efx_nic *efx) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = efx_probe_nic(efx); | 
 | 	if (rc) { | 
 | 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); | 
 | 		goto fail1; | 
 | 	} | 
 |  | 
 | 	rc = efx_probe_port(efx); | 
 | 	if (rc) { | 
 | 		netif_err(efx, probe, efx->net_dev, "failed to create port\n"); | 
 | 		goto fail2; | 
 | 	} | 
 |  | 
 | 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); | 
 | 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { | 
 | 		rc = -EINVAL; | 
 | 		goto fail3; | 
 | 	} | 
 | 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; | 
 |  | 
 | 	rc = efx_probe_filters(efx); | 
 | 	if (rc) { | 
 | 		netif_err(efx, probe, efx->net_dev, | 
 | 			  "failed to create filter tables\n"); | 
 | 		goto fail3; | 
 | 	} | 
 |  | 
 | 	rc = efx_probe_channels(efx); | 
 | 	if (rc) | 
 | 		goto fail4; | 
 |  | 
 | 	return 0; | 
 |  | 
 |  fail4: | 
 | 	efx_remove_filters(efx); | 
 |  fail3: | 
 | 	efx_remove_port(efx); | 
 |  fail2: | 
 | 	efx_remove_nic(efx); | 
 |  fail1: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* If the interface is supposed to be running but is not, start | 
 |  * the hardware and software data path, regular activity for the port | 
 |  * (MAC statistics, link polling, etc.) and schedule the port to be | 
 |  * reconfigured.  Interrupts must already be enabled.  This function | 
 |  * is safe to call multiple times, so long as the NIC is not disabled. | 
 |  * Requires the RTNL lock. | 
 |  */ | 
 | static void efx_start_all(struct efx_nic *efx) | 
 | { | 
 | 	EFX_ASSERT_RESET_SERIALISED(efx); | 
 | 	BUG_ON(efx->state == STATE_DISABLED); | 
 |  | 
 | 	/* Check that it is appropriate to restart the interface. All | 
 | 	 * of these flags are safe to read under just the rtnl lock */ | 
 | 	if (efx->port_enabled || !netif_running(efx->net_dev)) | 
 | 		return; | 
 |  | 
 | 	efx_start_port(efx); | 
 | 	efx_start_datapath(efx); | 
 |  | 
 | 	/* Start the hardware monitor if there is one */ | 
 | 	if (efx->type->monitor != NULL) | 
 | 		queue_delayed_work(efx->workqueue, &efx->monitor_work, | 
 | 				   efx_monitor_interval); | 
 |  | 
 | 	/* If link state detection is normally event-driven, we have | 
 | 	 * to poll now because we could have missed a change | 
 | 	 */ | 
 | 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { | 
 | 		mutex_lock(&efx->mac_lock); | 
 | 		if (efx->phy_op->poll(efx)) | 
 | 			efx_link_status_changed(efx); | 
 | 		mutex_unlock(&efx->mac_lock); | 
 | 	} | 
 |  | 
 | 	efx->type->start_stats(efx); | 
 | 	efx->type->pull_stats(efx); | 
 | 	spin_lock_bh(&efx->stats_lock); | 
 | 	efx->type->update_stats(efx, NULL, NULL); | 
 | 	spin_unlock_bh(&efx->stats_lock); | 
 | } | 
 |  | 
 | /* Quiesce the hardware and software data path, and regular activity | 
 |  * for the port without bringing the link down.  Safe to call multiple | 
 |  * times with the NIC in almost any state, but interrupts should be | 
 |  * enabled.  Requires the RTNL lock. | 
 |  */ | 
 | static void efx_stop_all(struct efx_nic *efx) | 
 | { | 
 | 	EFX_ASSERT_RESET_SERIALISED(efx); | 
 |  | 
 | 	/* port_enabled can be read safely under the rtnl lock */ | 
 | 	if (!efx->port_enabled) | 
 | 		return; | 
 |  | 
 | 	/* update stats before we go down so we can accurately count | 
 | 	 * rx_nodesc_drops | 
 | 	 */ | 
 | 	efx->type->pull_stats(efx); | 
 | 	spin_lock_bh(&efx->stats_lock); | 
 | 	efx->type->update_stats(efx, NULL, NULL); | 
 | 	spin_unlock_bh(&efx->stats_lock); | 
 | 	efx->type->stop_stats(efx); | 
 | 	efx_stop_port(efx); | 
 |  | 
 | 	/* Stop the kernel transmit interface.  This is only valid if | 
 | 	 * the device is stopped or detached; otherwise the watchdog | 
 | 	 * may fire immediately. | 
 | 	 */ | 
 | 	WARN_ON(netif_running(efx->net_dev) && | 
 | 		netif_device_present(efx->net_dev)); | 
 | 	netif_tx_disable(efx->net_dev); | 
 |  | 
 | 	efx_stop_datapath(efx); | 
 | } | 
 |  | 
 | static void efx_remove_all(struct efx_nic *efx) | 
 | { | 
 | 	efx_remove_channels(efx); | 
 | 	efx_remove_filters(efx); | 
 | 	efx_remove_port(efx); | 
 | 	efx_remove_nic(efx); | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Interrupt moderation | 
 |  * | 
 |  **************************************************************************/ | 
 |  | 
 | static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns) | 
 | { | 
 | 	if (usecs == 0) | 
 | 		return 0; | 
 | 	if (usecs * 1000 < quantum_ns) | 
 | 		return 1; /* never round down to 0 */ | 
 | 	return usecs * 1000 / quantum_ns; | 
 | } | 
 |  | 
 | /* Set interrupt moderation parameters */ | 
 | int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, | 
 | 			    unsigned int rx_usecs, bool rx_adaptive, | 
 | 			    bool rx_may_override_tx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 | 	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max * | 
 | 						efx->timer_quantum_ns, | 
 | 						1000); | 
 | 	unsigned int tx_ticks; | 
 | 	unsigned int rx_ticks; | 
 |  | 
 | 	EFX_ASSERT_RESET_SERIALISED(efx); | 
 |  | 
 | 	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max) | 
 | 		return -EINVAL; | 
 |  | 
 | 	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns); | 
 | 	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns); | 
 |  | 
 | 	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && | 
 | 	    !rx_may_override_tx) { | 
 | 		netif_err(efx, drv, efx->net_dev, "Channels are shared. " | 
 | 			  "RX and TX IRQ moderation must be equal\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	efx->irq_rx_adaptive = rx_adaptive; | 
 | 	efx->irq_rx_moderation = rx_ticks; | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		if (efx_channel_has_rx_queue(channel)) | 
 | 			channel->irq_moderation = rx_ticks; | 
 | 		else if (efx_channel_has_tx_queues(channel)) | 
 | 			channel->irq_moderation = tx_ticks; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, | 
 | 			    unsigned int *rx_usecs, bool *rx_adaptive) | 
 | { | 
 | 	/* We must round up when converting ticks to microseconds | 
 | 	 * because we round down when converting the other way. | 
 | 	 */ | 
 |  | 
 | 	*rx_adaptive = efx->irq_rx_adaptive; | 
 | 	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation * | 
 | 				 efx->timer_quantum_ns, | 
 | 				 1000); | 
 |  | 
 | 	/* If channels are shared between RX and TX, so is IRQ | 
 | 	 * moderation.  Otherwise, IRQ moderation is the same for all | 
 | 	 * TX channels and is not adaptive. | 
 | 	 */ | 
 | 	if (efx->tx_channel_offset == 0) | 
 | 		*tx_usecs = *rx_usecs; | 
 | 	else | 
 | 		*tx_usecs = DIV_ROUND_UP( | 
 | 			efx->channel[efx->tx_channel_offset]->irq_moderation * | 
 | 			efx->timer_quantum_ns, | 
 | 			1000); | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Hardware monitor | 
 |  * | 
 |  **************************************************************************/ | 
 |  | 
 | /* Run periodically off the general workqueue */ | 
 | static void efx_monitor(struct work_struct *data) | 
 | { | 
 | 	struct efx_nic *efx = container_of(data, struct efx_nic, | 
 | 					   monitor_work.work); | 
 |  | 
 | 	netif_vdbg(efx, timer, efx->net_dev, | 
 | 		   "hardware monitor executing on CPU %d\n", | 
 | 		   raw_smp_processor_id()); | 
 | 	BUG_ON(efx->type->monitor == NULL); | 
 |  | 
 | 	/* If the mac_lock is already held then it is likely a port | 
 | 	 * reconfiguration is already in place, which will likely do | 
 | 	 * most of the work of monitor() anyway. */ | 
 | 	if (mutex_trylock(&efx->mac_lock)) { | 
 | 		if (efx->port_enabled) | 
 | 			efx->type->monitor(efx); | 
 | 		mutex_unlock(&efx->mac_lock); | 
 | 	} | 
 |  | 
 | 	queue_delayed_work(efx->workqueue, &efx->monitor_work, | 
 | 			   efx_monitor_interval); | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * ioctls | 
 |  * | 
 |  *************************************************************************/ | 
 |  | 
 | /* Net device ioctl | 
 |  * Context: process, rtnl_lock() held. | 
 |  */ | 
 | static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 | 	struct mii_ioctl_data *data = if_mii(ifr); | 
 |  | 
 | 	if (cmd == SIOCSHWTSTAMP) | 
 | 		return efx_ptp_set_ts_config(efx, ifr); | 
 | 	if (cmd == SIOCGHWTSTAMP) | 
 | 		return efx_ptp_get_ts_config(efx, ifr); | 
 |  | 
 | 	/* Convert phy_id from older PRTAD/DEVAD format */ | 
 | 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && | 
 | 	    (data->phy_id & 0xfc00) == 0x0400) | 
 | 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; | 
 |  | 
 | 	return mdio_mii_ioctl(&efx->mdio, data, cmd); | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * NAPI interface | 
 |  * | 
 |  **************************************************************************/ | 
 |  | 
 | static void efx_init_napi_channel(struct efx_channel *channel) | 
 | { | 
 | 	struct efx_nic *efx = channel->efx; | 
 |  | 
 | 	channel->napi_dev = efx->net_dev; | 
 | 	netif_napi_add(channel->napi_dev, &channel->napi_str, | 
 | 		       efx_poll, napi_weight); | 
 | } | 
 |  | 
 | static void efx_init_napi(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 |  | 
 | 	efx_for_each_channel(channel, efx) | 
 | 		efx_init_napi_channel(channel); | 
 | } | 
 |  | 
 | static void efx_fini_napi_channel(struct efx_channel *channel) | 
 | { | 
 | 	if (channel->napi_dev) | 
 | 		netif_napi_del(&channel->napi_str); | 
 | 	channel->napi_dev = NULL; | 
 | } | 
 |  | 
 | static void efx_fini_napi(struct efx_nic *efx) | 
 | { | 
 | 	struct efx_channel *channel; | 
 |  | 
 | 	efx_for_each_channel(channel, efx) | 
 | 		efx_fini_napi_channel(channel); | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Kernel netpoll interface | 
 |  * | 
 |  *************************************************************************/ | 
 |  | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 |  | 
 | /* Although in the common case interrupts will be disabled, this is not | 
 |  * guaranteed. However, all our work happens inside the NAPI callback, | 
 |  * so no locking is required. | 
 |  */ | 
 | static void efx_netpoll(struct net_device *net_dev) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 | 	struct efx_channel *channel; | 
 |  | 
 | 	efx_for_each_channel(channel, efx) | 
 | 		efx_schedule_channel(channel); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Kernel net device interface | 
 |  * | 
 |  *************************************************************************/ | 
 |  | 
 | /* Context: process, rtnl_lock() held. */ | 
 | static int efx_net_open(struct net_device *net_dev) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 | 	int rc; | 
 |  | 
 | 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", | 
 | 		  raw_smp_processor_id()); | 
 |  | 
 | 	rc = efx_check_disabled(efx); | 
 | 	if (rc) | 
 | 		return rc; | 
 | 	if (efx->phy_mode & PHY_MODE_SPECIAL) | 
 | 		return -EBUSY; | 
 | 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* Notify the kernel of the link state polled during driver load, | 
 | 	 * before the monitor starts running */ | 
 | 	efx_link_status_changed(efx); | 
 |  | 
 | 	efx_start_all(efx); | 
 | 	efx_selftest_async_start(efx); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Context: process, rtnl_lock() held. | 
 |  * Note that the kernel will ignore our return code; this method | 
 |  * should really be a void. | 
 |  */ | 
 | static int efx_net_stop(struct net_device *net_dev) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 |  | 
 | 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", | 
 | 		  raw_smp_processor_id()); | 
 |  | 
 | 	/* Stop the device and flush all the channels */ | 
 | 	efx_stop_all(efx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Context: process, dev_base_lock or RTNL held, non-blocking. */ | 
 | static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, | 
 | 					       struct rtnl_link_stats64 *stats) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 |  | 
 | 	spin_lock_bh(&efx->stats_lock); | 
 | 	efx->type->update_stats(efx, NULL, stats); | 
 | 	spin_unlock_bh(&efx->stats_lock); | 
 |  | 
 | 	return stats; | 
 | } | 
 |  | 
 | /* Context: netif_tx_lock held, BHs disabled. */ | 
 | static void efx_watchdog(struct net_device *net_dev) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 |  | 
 | 	netif_err(efx, tx_err, efx->net_dev, | 
 | 		  "TX stuck with port_enabled=%d: resetting channels\n", | 
 | 		  efx->port_enabled); | 
 |  | 
 | 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); | 
 | } | 
 |  | 
 |  | 
 | /* Context: process, rtnl_lock() held. */ | 
 | static int efx_change_mtu(struct net_device *net_dev, int new_mtu) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 | 	int rc; | 
 |  | 
 | 	rc = efx_check_disabled(efx); | 
 | 	if (rc) | 
 | 		return rc; | 
 | 	if (new_mtu > EFX_MAX_MTU) | 
 | 		return -EINVAL; | 
 |  | 
 | 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); | 
 |  | 
 | 	efx_device_detach_sync(efx); | 
 | 	efx_stop_all(efx); | 
 |  | 
 | 	mutex_lock(&efx->mac_lock); | 
 | 	net_dev->mtu = new_mtu; | 
 | 	efx->type->reconfigure_mac(efx); | 
 | 	mutex_unlock(&efx->mac_lock); | 
 |  | 
 | 	efx_start_all(efx); | 
 | 	netif_device_attach(efx->net_dev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int efx_set_mac_address(struct net_device *net_dev, void *data) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 | 	struct sockaddr *addr = data; | 
 | 	u8 *new_addr = addr->sa_data; | 
 |  | 
 | 	if (!is_valid_ether_addr(new_addr)) { | 
 | 		netif_err(efx, drv, efx->net_dev, | 
 | 			  "invalid ethernet MAC address requested: %pM\n", | 
 | 			  new_addr); | 
 | 		return -EADDRNOTAVAIL; | 
 | 	} | 
 |  | 
 | 	ether_addr_copy(net_dev->dev_addr, new_addr); | 
 | 	efx_sriov_mac_address_changed(efx); | 
 |  | 
 | 	/* Reconfigure the MAC */ | 
 | 	mutex_lock(&efx->mac_lock); | 
 | 	efx->type->reconfigure_mac(efx); | 
 | 	mutex_unlock(&efx->mac_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Context: netif_addr_lock held, BHs disabled. */ | 
 | static void efx_set_rx_mode(struct net_device *net_dev) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 |  | 
 | 	if (efx->port_enabled) | 
 | 		queue_work(efx->workqueue, &efx->mac_work); | 
 | 	/* Otherwise efx_start_port() will do this */ | 
 | } | 
 |  | 
 | static int efx_set_features(struct net_device *net_dev, netdev_features_t data) | 
 | { | 
 | 	struct efx_nic *efx = netdev_priv(net_dev); | 
 |  | 
 | 	/* If disabling RX n-tuple filtering, clear existing filters */ | 
 | 	if (net_dev->features & ~data & NETIF_F_NTUPLE) | 
 | 		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct net_device_ops efx_farch_netdev_ops = { | 
 | 	.ndo_open		= efx_net_open, | 
 | 	.ndo_stop		= efx_net_stop, | 
 | 	.ndo_get_stats64	= efx_net_stats, | 
 | 	.ndo_tx_timeout		= efx_watchdog, | 
 | 	.ndo_start_xmit		= efx_hard_start_xmit, | 
 | 	.ndo_validate_addr	= eth_validate_addr, | 
 | 	.ndo_do_ioctl		= efx_ioctl, | 
 | 	.ndo_change_mtu		= efx_change_mtu, | 
 | 	.ndo_set_mac_address	= efx_set_mac_address, | 
 | 	.ndo_set_rx_mode	= efx_set_rx_mode, | 
 | 	.ndo_set_features	= efx_set_features, | 
 | #ifdef CONFIG_SFC_SRIOV | 
 | 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac, | 
 | 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan, | 
 | 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk, | 
 | 	.ndo_get_vf_config	= efx_sriov_get_vf_config, | 
 | #endif | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 	.ndo_poll_controller = efx_netpoll, | 
 | #endif | 
 | 	.ndo_setup_tc		= efx_setup_tc, | 
 | #ifdef CONFIG_RFS_ACCEL | 
 | 	.ndo_rx_flow_steer	= efx_filter_rfs, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct net_device_ops efx_ef10_netdev_ops = { | 
 | 	.ndo_open		= efx_net_open, | 
 | 	.ndo_stop		= efx_net_stop, | 
 | 	.ndo_get_stats64	= efx_net_stats, | 
 | 	.ndo_tx_timeout		= efx_watchdog, | 
 | 	.ndo_start_xmit		= efx_hard_start_xmit, | 
 | 	.ndo_validate_addr	= eth_validate_addr, | 
 | 	.ndo_do_ioctl		= efx_ioctl, | 
 | 	.ndo_change_mtu		= efx_change_mtu, | 
 | 	.ndo_set_mac_address	= efx_set_mac_address, | 
 | 	.ndo_set_rx_mode	= efx_set_rx_mode, | 
 | 	.ndo_set_features	= efx_set_features, | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 	.ndo_poll_controller	= efx_netpoll, | 
 | #endif | 
 | #ifdef CONFIG_RFS_ACCEL | 
 | 	.ndo_rx_flow_steer	= efx_filter_rfs, | 
 | #endif | 
 | }; | 
 |  | 
 | static void efx_update_name(struct efx_nic *efx) | 
 | { | 
 | 	strcpy(efx->name, efx->net_dev->name); | 
 | 	efx_mtd_rename(efx); | 
 | 	efx_set_channel_names(efx); | 
 | } | 
 |  | 
 | static int efx_netdev_event(struct notifier_block *this, | 
 | 			    unsigned long event, void *ptr) | 
 | { | 
 | 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); | 
 |  | 
 | 	if ((net_dev->netdev_ops == &efx_farch_netdev_ops || | 
 | 	     net_dev->netdev_ops == &efx_ef10_netdev_ops) && | 
 | 	    event == NETDEV_CHANGENAME) | 
 | 		efx_update_name(netdev_priv(net_dev)); | 
 |  | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static struct notifier_block efx_netdev_notifier = { | 
 | 	.notifier_call = efx_netdev_event, | 
 | }; | 
 |  | 
 | static ssize_t | 
 | show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) | 
 | { | 
 | 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | 
 | 	return sprintf(buf, "%d\n", efx->phy_type); | 
 | } | 
 | static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); | 
 |  | 
 | static int efx_register_netdev(struct efx_nic *efx) | 
 | { | 
 | 	struct net_device *net_dev = efx->net_dev; | 
 | 	struct efx_channel *channel; | 
 | 	int rc; | 
 |  | 
 | 	net_dev->watchdog_timeo = 5 * HZ; | 
 | 	net_dev->irq = efx->pci_dev->irq; | 
 | 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { | 
 | 		net_dev->netdev_ops = &efx_ef10_netdev_ops; | 
 | 		net_dev->priv_flags |= IFF_UNICAST_FLT; | 
 | 	} else { | 
 | 		net_dev->netdev_ops = &efx_farch_netdev_ops; | 
 | 	} | 
 | 	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); | 
 | 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	/* Enable resets to be scheduled and check whether any were | 
 | 	 * already requested.  If so, the NIC is probably hosed so we | 
 | 	 * abort. | 
 | 	 */ | 
 | 	efx->state = STATE_READY; | 
 | 	smp_mb(); /* ensure we change state before checking reset_pending */ | 
 | 	if (efx->reset_pending) { | 
 | 		netif_err(efx, probe, efx->net_dev, | 
 | 			  "aborting probe due to scheduled reset\n"); | 
 | 		rc = -EIO; | 
 | 		goto fail_locked; | 
 | 	} | 
 |  | 
 | 	rc = dev_alloc_name(net_dev, net_dev->name); | 
 | 	if (rc < 0) | 
 | 		goto fail_locked; | 
 | 	efx_update_name(efx); | 
 |  | 
 | 	/* Always start with carrier off; PHY events will detect the link */ | 
 | 	netif_carrier_off(net_dev); | 
 |  | 
 | 	rc = register_netdevice(net_dev); | 
 | 	if (rc) | 
 | 		goto fail_locked; | 
 |  | 
 | 	efx_for_each_channel(channel, efx) { | 
 | 		struct efx_tx_queue *tx_queue; | 
 | 		efx_for_each_channel_tx_queue(tx_queue, channel) | 
 | 			efx_init_tx_queue_core_txq(tx_queue); | 
 | 	} | 
 |  | 
 | 	efx_associate(efx); | 
 |  | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); | 
 | 	if (rc) { | 
 | 		netif_err(efx, drv, efx->net_dev, | 
 | 			  "failed to init net dev attributes\n"); | 
 | 		goto fail_registered; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail_registered: | 
 | 	rtnl_lock(); | 
 | 	efx_dissociate(efx); | 
 | 	unregister_netdevice(net_dev); | 
 | fail_locked: | 
 | 	efx->state = STATE_UNINIT; | 
 | 	rtnl_unlock(); | 
 | 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void efx_unregister_netdev(struct efx_nic *efx) | 
 | { | 
 | 	if (!efx->net_dev) | 
 | 		return; | 
 |  | 
 | 	BUG_ON(netdev_priv(efx->net_dev) != efx); | 
 |  | 
 | 	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); | 
 | 	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); | 
 |  | 
 | 	rtnl_lock(); | 
 | 	unregister_netdevice(efx->net_dev); | 
 | 	efx->state = STATE_UNINIT; | 
 | 	rtnl_unlock(); | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Device reset and suspend | 
 |  * | 
 |  **************************************************************************/ | 
 |  | 
 | /* Tears down the entire software state and most of the hardware state | 
 |  * before reset.  */ | 
 | void efx_reset_down(struct efx_nic *efx, enum reset_type method) | 
 | { | 
 | 	EFX_ASSERT_RESET_SERIALISED(efx); | 
 |  | 
 | 	efx_stop_all(efx); | 
 | 	efx_disable_interrupts(efx); | 
 |  | 
 | 	mutex_lock(&efx->mac_lock); | 
 | 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) | 
 | 		efx->phy_op->fini(efx); | 
 | 	efx->type->fini(efx); | 
 | } | 
 |  | 
 | /* This function will always ensure that the locks acquired in | 
 |  * efx_reset_down() are released. A failure return code indicates | 
 |  * that we were unable to reinitialise the hardware, and the | 
 |  * driver should be disabled. If ok is false, then the rx and tx | 
 |  * engines are not restarted, pending a RESET_DISABLE. */ | 
 | int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	EFX_ASSERT_RESET_SERIALISED(efx); | 
 |  | 
 | 	rc = efx->type->init(efx); | 
 | 	if (rc) { | 
 | 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	if (!ok) | 
 | 		goto fail; | 
 |  | 
 | 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { | 
 | 		rc = efx->phy_op->init(efx); | 
 | 		if (rc) | 
 | 			goto fail; | 
 | 		if (efx->phy_op->reconfigure(efx)) | 
 | 			netif_err(efx, drv, efx->net_dev, | 
 | 				  "could not restore PHY settings\n"); | 
 | 	} | 
 |  | 
 | 	rc = efx_enable_interrupts(efx); | 
 | 	if (rc) | 
 | 		goto fail; | 
 | 	efx_restore_filters(efx); | 
 | 	efx_sriov_reset(efx); | 
 |  | 
 | 	mutex_unlock(&efx->mac_lock); | 
 |  | 
 | 	efx_start_all(efx); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	efx->port_initialized = false; | 
 |  | 
 | 	mutex_unlock(&efx->mac_lock); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* Reset the NIC using the specified method.  Note that the reset may | 
 |  * fail, in which case the card will be left in an unusable state. | 
 |  * | 
 |  * Caller must hold the rtnl_lock. | 
 |  */ | 
 | int efx_reset(struct efx_nic *efx, enum reset_type method) | 
 | { | 
 | 	int rc, rc2; | 
 | 	bool disabled; | 
 |  | 
 | 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", | 
 | 		   RESET_TYPE(method)); | 
 |  | 
 | 	efx_device_detach_sync(efx); | 
 | 	efx_reset_down(efx, method); | 
 |  | 
 | 	rc = efx->type->reset(efx, method); | 
 | 	if (rc) { | 
 | 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Clear flags for the scopes we covered.  We assume the NIC and | 
 | 	 * driver are now quiescent so that there is no race here. | 
 | 	 */ | 
 | 	efx->reset_pending &= -(1 << (method + 1)); | 
 |  | 
 | 	/* Reinitialise bus-mastering, which may have been turned off before | 
 | 	 * the reset was scheduled. This is still appropriate, even in the | 
 | 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware | 
 | 	 * can respond to requests. */ | 
 | 	pci_set_master(efx->pci_dev); | 
 |  | 
 | out: | 
 | 	/* Leave device stopped if necessary */ | 
 | 	disabled = rc || | 
 | 		method == RESET_TYPE_DISABLE || | 
 | 		method == RESET_TYPE_RECOVER_OR_DISABLE; | 
 | 	rc2 = efx_reset_up(efx, method, !disabled); | 
 | 	if (rc2) { | 
 | 		disabled = true; | 
 | 		if (!rc) | 
 | 			rc = rc2; | 
 | 	} | 
 |  | 
 | 	if (disabled) { | 
 | 		dev_close(efx->net_dev); | 
 | 		netif_err(efx, drv, efx->net_dev, "has been disabled\n"); | 
 | 		efx->state = STATE_DISABLED; | 
 | 	} else { | 
 | 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); | 
 | 		netif_device_attach(efx->net_dev); | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* Try recovery mechanisms. | 
 |  * For now only EEH is supported. | 
 |  * Returns 0 if the recovery mechanisms are unsuccessful. | 
 |  * Returns a non-zero value otherwise. | 
 |  */ | 
 | int efx_try_recovery(struct efx_nic *efx) | 
 | { | 
 | #ifdef CONFIG_EEH | 
 | 	/* A PCI error can occur and not be seen by EEH because nothing | 
 | 	 * happens on the PCI bus. In this case the driver may fail and | 
 | 	 * schedule a 'recover or reset', leading to this recovery handler. | 
 | 	 * Manually call the eeh failure check function. | 
 | 	 */ | 
 | 	struct eeh_dev *eehdev = | 
 | 		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev)); | 
 |  | 
 | 	if (eeh_dev_check_failure(eehdev)) { | 
 | 		/* The EEH mechanisms will handle the error and reset the | 
 | 		 * device if necessary. | 
 | 		 */ | 
 | 		return 1; | 
 | 	} | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void efx_wait_for_bist_end(struct efx_nic *efx) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { | 
 | 		if (efx_mcdi_poll_reboot(efx)) | 
 | 			goto out; | 
 | 		msleep(BIST_WAIT_DELAY_MS); | 
 | 	} | 
 |  | 
 | 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); | 
 | out: | 
 | 	/* Either way unset the BIST flag. If we found no reboot we probably | 
 | 	 * won't recover, but we should try. | 
 | 	 */ | 
 | 	efx->mc_bist_for_other_fn = false; | 
 | } | 
 |  | 
 | /* The worker thread exists so that code that cannot sleep can | 
 |  * schedule a reset for later. | 
 |  */ | 
 | static void efx_reset_work(struct work_struct *data) | 
 | { | 
 | 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); | 
 | 	unsigned long pending; | 
 | 	enum reset_type method; | 
 |  | 
 | 	pending = ACCESS_ONCE(efx->reset_pending); | 
 | 	method = fls(pending) - 1; | 
 |  | 
 | 	if (method == RESET_TYPE_MC_BIST) | 
 | 		efx_wait_for_bist_end(efx); | 
 |  | 
 | 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE || | 
 | 	     method == RESET_TYPE_RECOVER_OR_ALL) && | 
 | 	    efx_try_recovery(efx)) | 
 | 		return; | 
 |  | 
 | 	if (!pending) | 
 | 		return; | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	/* We checked the state in efx_schedule_reset() but it may | 
 | 	 * have changed by now.  Now that we have the RTNL lock, | 
 | 	 * it cannot change again. | 
 | 	 */ | 
 | 	if (efx->state == STATE_READY) | 
 | 		(void)efx_reset(efx, method); | 
 |  | 
 | 	rtnl_unlock(); | 
 | } | 
 |  | 
 | void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) | 
 | { | 
 | 	enum reset_type method; | 
 |  | 
 | 	if (efx->state == STATE_RECOVERY) { | 
 | 		netif_dbg(efx, drv, efx->net_dev, | 
 | 			  "recovering: skip scheduling %s reset\n", | 
 | 			  RESET_TYPE(type)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	switch (type) { | 
 | 	case RESET_TYPE_INVISIBLE: | 
 | 	case RESET_TYPE_ALL: | 
 | 	case RESET_TYPE_RECOVER_OR_ALL: | 
 | 	case RESET_TYPE_WORLD: | 
 | 	case RESET_TYPE_DISABLE: | 
 | 	case RESET_TYPE_RECOVER_OR_DISABLE: | 
 | 	case RESET_TYPE_MC_BIST: | 
 | 		method = type; | 
 | 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", | 
 | 			  RESET_TYPE(method)); | 
 | 		break; | 
 | 	default: | 
 | 		method = efx->type->map_reset_reason(type); | 
 | 		netif_dbg(efx, drv, efx->net_dev, | 
 | 			  "scheduling %s reset for %s\n", | 
 | 			  RESET_TYPE(method), RESET_TYPE(type)); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	set_bit(method, &efx->reset_pending); | 
 | 	smp_mb(); /* ensure we change reset_pending before checking state */ | 
 |  | 
 | 	/* If we're not READY then just leave the flags set as the cue | 
 | 	 * to abort probing or reschedule the reset later. | 
 | 	 */ | 
 | 	if (ACCESS_ONCE(efx->state) != STATE_READY) | 
 | 		return; | 
 |  | 
 | 	/* efx_process_channel() will no longer read events once a | 
 | 	 * reset is scheduled. So switch back to poll'd MCDI completions. */ | 
 | 	efx_mcdi_mode_poll(efx); | 
 |  | 
 | 	queue_work(reset_workqueue, &efx->reset_work); | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * List of NICs we support | 
 |  * | 
 |  **************************************************************************/ | 
 |  | 
 | /* PCI device ID table */ | 
 | static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { | 
 | 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, | 
 | 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), | 
 | 	 .driver_data = (unsigned long) &falcon_a1_nic_type}, | 
 | 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, | 
 | 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B), | 
 | 	 .driver_data = (unsigned long) &falcon_b0_nic_type}, | 
 | 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */ | 
 | 	 .driver_data = (unsigned long) &siena_a0_nic_type}, | 
 | 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */ | 
 | 	 .driver_data = (unsigned long) &siena_a0_nic_type}, | 
 | 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */ | 
 | 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, | 
 | 	{0}			/* end of list */ | 
 | }; | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Dummy PHY/MAC operations | 
 |  * | 
 |  * Can be used for some unimplemented operations | 
 |  * Needed so all function pointers are valid and do not have to be tested | 
 |  * before use | 
 |  * | 
 |  **************************************************************************/ | 
 | int efx_port_dummy_op_int(struct efx_nic *efx) | 
 | { | 
 | 	return 0; | 
 | } | 
 | void efx_port_dummy_op_void(struct efx_nic *efx) {} | 
 |  | 
 | static bool efx_port_dummy_op_poll(struct efx_nic *efx) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static const struct efx_phy_operations efx_dummy_phy_operations = { | 
 | 	.init		 = efx_port_dummy_op_int, | 
 | 	.reconfigure	 = efx_port_dummy_op_int, | 
 | 	.poll		 = efx_port_dummy_op_poll, | 
 | 	.fini		 = efx_port_dummy_op_void, | 
 | }; | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Data housekeeping | 
 |  * | 
 |  **************************************************************************/ | 
 |  | 
 | /* This zeroes out and then fills in the invariants in a struct | 
 |  * efx_nic (including all sub-structures). | 
 |  */ | 
 | static int efx_init_struct(struct efx_nic *efx, | 
 | 			   struct pci_dev *pci_dev, struct net_device *net_dev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* Initialise common structures */ | 
 | 	INIT_LIST_HEAD(&efx->node); | 
 | 	INIT_LIST_HEAD(&efx->secondary_list); | 
 | 	spin_lock_init(&efx->biu_lock); | 
 | #ifdef CONFIG_SFC_MTD | 
 | 	INIT_LIST_HEAD(&efx->mtd_list); | 
 | #endif | 
 | 	INIT_WORK(&efx->reset_work, efx_reset_work); | 
 | 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); | 
 | 	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); | 
 | 	efx->pci_dev = pci_dev; | 
 | 	efx->msg_enable = debug; | 
 | 	efx->state = STATE_UNINIT; | 
 | 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); | 
 |  | 
 | 	efx->net_dev = net_dev; | 
 | 	efx->rx_prefix_size = efx->type->rx_prefix_size; | 
 | 	efx->rx_ip_align = | 
 | 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; | 
 | 	efx->rx_packet_hash_offset = | 
 | 		efx->type->rx_hash_offset - efx->type->rx_prefix_size; | 
 | 	efx->rx_packet_ts_offset = | 
 | 		efx->type->rx_ts_offset - efx->type->rx_prefix_size; | 
 | 	spin_lock_init(&efx->stats_lock); | 
 | 	mutex_init(&efx->mac_lock); | 
 | 	efx->phy_op = &efx_dummy_phy_operations; | 
 | 	efx->mdio.dev = net_dev; | 
 | 	INIT_WORK(&efx->mac_work, efx_mac_work); | 
 | 	init_waitqueue_head(&efx->flush_wq); | 
 |  | 
 | 	for (i = 0; i < EFX_MAX_CHANNELS; i++) { | 
 | 		efx->channel[i] = efx_alloc_channel(efx, i, NULL); | 
 | 		if (!efx->channel[i]) | 
 | 			goto fail; | 
 | 		efx->msi_context[i].efx = efx; | 
 | 		efx->msi_context[i].index = i; | 
 | 	} | 
 |  | 
 | 	/* Higher numbered interrupt modes are less capable! */ | 
 | 	efx->interrupt_mode = max(efx->type->max_interrupt_mode, | 
 | 				  interrupt_mode); | 
 |  | 
 | 	/* Would be good to use the net_dev name, but we're too early */ | 
 | 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", | 
 | 		 pci_name(pci_dev)); | 
 | 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); | 
 | 	if (!efx->workqueue) | 
 | 		goto fail; | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	efx_fini_struct(efx); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void efx_fini_struct(struct efx_nic *efx) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < EFX_MAX_CHANNELS; i++) | 
 | 		kfree(efx->channel[i]); | 
 |  | 
 | 	kfree(efx->vpd_sn); | 
 |  | 
 | 	if (efx->workqueue) { | 
 | 		destroy_workqueue(efx->workqueue); | 
 | 		efx->workqueue = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * PCI interface | 
 |  * | 
 |  **************************************************************************/ | 
 |  | 
 | /* Main body of final NIC shutdown code | 
 |  * This is called only at module unload (or hotplug removal). | 
 |  */ | 
 | static void efx_pci_remove_main(struct efx_nic *efx) | 
 | { | 
 | 	/* Flush reset_work. It can no longer be scheduled since we | 
 | 	 * are not READY. | 
 | 	 */ | 
 | 	BUG_ON(efx->state == STATE_READY); | 
 | 	cancel_work_sync(&efx->reset_work); | 
 |  | 
 | 	efx_disable_interrupts(efx); | 
 | 	efx_nic_fini_interrupt(efx); | 
 | 	efx_fini_port(efx); | 
 | 	efx->type->fini(efx); | 
 | 	efx_fini_napi(efx); | 
 | 	efx_remove_all(efx); | 
 | } | 
 |  | 
 | /* Final NIC shutdown | 
 |  * This is called only at module unload (or hotplug removal). | 
 |  */ | 
 | static void efx_pci_remove(struct pci_dev *pci_dev) | 
 | { | 
 | 	struct efx_nic *efx; | 
 |  | 
 | 	efx = pci_get_drvdata(pci_dev); | 
 | 	if (!efx) | 
 | 		return; | 
 |  | 
 | 	/* Mark the NIC as fini, then stop the interface */ | 
 | 	rtnl_lock(); | 
 | 	efx_dissociate(efx); | 
 | 	dev_close(efx->net_dev); | 
 | 	efx_disable_interrupts(efx); | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	efx_sriov_fini(efx); | 
 | 	efx_unregister_netdev(efx); | 
 |  | 
 | 	efx_mtd_remove(efx); | 
 |  | 
 | 	efx_pci_remove_main(efx); | 
 |  | 
 | 	efx_fini_io(efx); | 
 | 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); | 
 |  | 
 | 	efx_fini_struct(efx); | 
 | 	free_netdev(efx->net_dev); | 
 |  | 
 | 	pci_disable_pcie_error_reporting(pci_dev); | 
 | }; | 
 |  | 
 | /* NIC VPD information | 
 |  * Called during probe to display the part number of the | 
 |  * installed NIC.  VPD is potentially very large but this should | 
 |  * always appear within the first 512 bytes. | 
 |  */ | 
 | #define SFC_VPD_LEN 512 | 
 | static void efx_probe_vpd_strings(struct efx_nic *efx) | 
 | { | 
 | 	struct pci_dev *dev = efx->pci_dev; | 
 | 	char vpd_data[SFC_VPD_LEN]; | 
 | 	ssize_t vpd_size; | 
 | 	int ro_start, ro_size, i, j; | 
 |  | 
 | 	/* Get the vpd data from the device */ | 
 | 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); | 
 | 	if (vpd_size <= 0) { | 
 | 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Get the Read only section */ | 
 | 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); | 
 | 	if (ro_start < 0) { | 
 | 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); | 
 | 	j = ro_size; | 
 | 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE; | 
 | 	if (i + j > vpd_size) | 
 | 		j = vpd_size - i; | 
 |  | 
 | 	/* Get the Part number */ | 
 | 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); | 
 | 	if (i < 0) { | 
 | 		netif_err(efx, drv, efx->net_dev, "Part number not found\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	j = pci_vpd_info_field_size(&vpd_data[i]); | 
 | 	i += PCI_VPD_INFO_FLD_HDR_SIZE; | 
 | 	if (i + j > vpd_size) { | 
 | 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	netif_info(efx, drv, efx->net_dev, | 
 | 		   "Part Number : %.*s\n", j, &vpd_data[i]); | 
 |  | 
 | 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE; | 
 | 	j = ro_size; | 
 | 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); | 
 | 	if (i < 0) { | 
 | 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	j = pci_vpd_info_field_size(&vpd_data[i]); | 
 | 	i += PCI_VPD_INFO_FLD_HDR_SIZE; | 
 | 	if (i + j > vpd_size) { | 
 | 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); | 
 | 	if (!efx->vpd_sn) | 
 | 		return; | 
 |  | 
 | 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); | 
 | } | 
 |  | 
 |  | 
 | /* Main body of NIC initialisation | 
 |  * This is called at module load (or hotplug insertion, theoretically). | 
 |  */ | 
 | static int efx_pci_probe_main(struct efx_nic *efx) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	/* Do start-of-day initialisation */ | 
 | 	rc = efx_probe_all(efx); | 
 | 	if (rc) | 
 | 		goto fail1; | 
 |  | 
 | 	efx_init_napi(efx); | 
 |  | 
 | 	rc = efx->type->init(efx); | 
 | 	if (rc) { | 
 | 		netif_err(efx, probe, efx->net_dev, | 
 | 			  "failed to initialise NIC\n"); | 
 | 		goto fail3; | 
 | 	} | 
 |  | 
 | 	rc = efx_init_port(efx); | 
 | 	if (rc) { | 
 | 		netif_err(efx, probe, efx->net_dev, | 
 | 			  "failed to initialise port\n"); | 
 | 		goto fail4; | 
 | 	} | 
 |  | 
 | 	rc = efx_nic_init_interrupt(efx); | 
 | 	if (rc) | 
 | 		goto fail5; | 
 | 	rc = efx_enable_interrupts(efx); | 
 | 	if (rc) | 
 | 		goto fail6; | 
 |  | 
 | 	return 0; | 
 |  | 
 |  fail6: | 
 | 	efx_nic_fini_interrupt(efx); | 
 |  fail5: | 
 | 	efx_fini_port(efx); | 
 |  fail4: | 
 | 	efx->type->fini(efx); | 
 |  fail3: | 
 | 	efx_fini_napi(efx); | 
 | 	efx_remove_all(efx); | 
 |  fail1: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* NIC initialisation | 
 |  * | 
 |  * This is called at module load (or hotplug insertion, | 
 |  * theoretically).  It sets up PCI mappings, resets the NIC, | 
 |  * sets up and registers the network devices with the kernel and hooks | 
 |  * the interrupt service routine.  It does not prepare the device for | 
 |  * transmission; this is left to the first time one of the network | 
 |  * interfaces is brought up (i.e. efx_net_open). | 
 |  */ | 
 | static int efx_pci_probe(struct pci_dev *pci_dev, | 
 | 			 const struct pci_device_id *entry) | 
 | { | 
 | 	struct net_device *net_dev; | 
 | 	struct efx_nic *efx; | 
 | 	int rc; | 
 |  | 
 | 	/* Allocate and initialise a struct net_device and struct efx_nic */ | 
 | 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, | 
 | 				     EFX_MAX_RX_QUEUES); | 
 | 	if (!net_dev) | 
 | 		return -ENOMEM; | 
 | 	efx = netdev_priv(net_dev); | 
 | 	efx->type = (const struct efx_nic_type *) entry->driver_data; | 
 | 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG | | 
 | 			      NETIF_F_HIGHDMA | NETIF_F_TSO | | 
 | 			      NETIF_F_RXCSUM); | 
 | 	if (efx->type->offload_features & NETIF_F_V6_CSUM) | 
 | 		net_dev->features |= NETIF_F_TSO6; | 
 | 	/* Mask for features that also apply to VLAN devices */ | 
 | 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | | 
 | 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | | 
 | 				   NETIF_F_RXCSUM); | 
 | 	/* All offloads can be toggled */ | 
 | 	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; | 
 | 	pci_set_drvdata(pci_dev, efx); | 
 | 	SET_NETDEV_DEV(net_dev, &pci_dev->dev); | 
 | 	rc = efx_init_struct(efx, pci_dev, net_dev); | 
 | 	if (rc) | 
 | 		goto fail1; | 
 |  | 
 | 	netif_info(efx, probe, efx->net_dev, | 
 | 		   "Solarflare NIC detected\n"); | 
 |  | 
 | 	efx_probe_vpd_strings(efx); | 
 |  | 
 | 	/* Set up basic I/O (BAR mappings etc) */ | 
 | 	rc = efx_init_io(efx); | 
 | 	if (rc) | 
 | 		goto fail2; | 
 |  | 
 | 	rc = efx_pci_probe_main(efx); | 
 | 	if (rc) | 
 | 		goto fail3; | 
 |  | 
 | 	rc = efx_register_netdev(efx); | 
 | 	if (rc) | 
 | 		goto fail4; | 
 |  | 
 | 	rc = efx_sriov_init(efx); | 
 | 	if (rc) | 
 | 		netif_err(efx, probe, efx->net_dev, | 
 | 			  "SR-IOV can't be enabled rc %d\n", rc); | 
 |  | 
 | 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); | 
 |  | 
 | 	/* Try to create MTDs, but allow this to fail */ | 
 | 	rtnl_lock(); | 
 | 	rc = efx_mtd_probe(efx); | 
 | 	rtnl_unlock(); | 
 | 	if (rc) | 
 | 		netif_warn(efx, probe, efx->net_dev, | 
 | 			   "failed to create MTDs (%d)\n", rc); | 
 |  | 
 | 	rc = pci_enable_pcie_error_reporting(pci_dev); | 
 | 	if (rc && rc != -EINVAL) | 
 | 		netif_warn(efx, probe, efx->net_dev, | 
 | 			   "pci_enable_pcie_error_reporting failed (%d)\n", rc); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  fail4: | 
 | 	efx_pci_remove_main(efx); | 
 |  fail3: | 
 | 	efx_fini_io(efx); | 
 |  fail2: | 
 | 	efx_fini_struct(efx); | 
 |  fail1: | 
 | 	WARN_ON(rc > 0); | 
 | 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); | 
 | 	free_netdev(net_dev); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int efx_pm_freeze(struct device *dev) | 
 | { | 
 | 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	if (efx->state != STATE_DISABLED) { | 
 | 		efx->state = STATE_UNINIT; | 
 |  | 
 | 		efx_device_detach_sync(efx); | 
 |  | 
 | 		efx_stop_all(efx); | 
 | 		efx_disable_interrupts(efx); | 
 | 	} | 
 |  | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int efx_pm_thaw(struct device *dev) | 
 | { | 
 | 	int rc; | 
 | 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	if (efx->state != STATE_DISABLED) { | 
 | 		rc = efx_enable_interrupts(efx); | 
 | 		if (rc) | 
 | 			goto fail; | 
 |  | 
 | 		mutex_lock(&efx->mac_lock); | 
 | 		efx->phy_op->reconfigure(efx); | 
 | 		mutex_unlock(&efx->mac_lock); | 
 |  | 
 | 		efx_start_all(efx); | 
 |  | 
 | 		netif_device_attach(efx->net_dev); | 
 |  | 
 | 		efx->state = STATE_READY; | 
 |  | 
 | 		efx->type->resume_wol(efx); | 
 | 	} | 
 |  | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */ | 
 | 	queue_work(reset_workqueue, &efx->reset_work); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int efx_pm_poweroff(struct device *dev) | 
 | { | 
 | 	struct pci_dev *pci_dev = to_pci_dev(dev); | 
 | 	struct efx_nic *efx = pci_get_drvdata(pci_dev); | 
 |  | 
 | 	efx->type->fini(efx); | 
 |  | 
 | 	efx->reset_pending = 0; | 
 |  | 
 | 	pci_save_state(pci_dev); | 
 | 	return pci_set_power_state(pci_dev, PCI_D3hot); | 
 | } | 
 |  | 
 | /* Used for both resume and restore */ | 
 | static int efx_pm_resume(struct device *dev) | 
 | { | 
 | 	struct pci_dev *pci_dev = to_pci_dev(dev); | 
 | 	struct efx_nic *efx = pci_get_drvdata(pci_dev); | 
 | 	int rc; | 
 |  | 
 | 	rc = pci_set_power_state(pci_dev, PCI_D0); | 
 | 	if (rc) | 
 | 		return rc; | 
 | 	pci_restore_state(pci_dev); | 
 | 	rc = pci_enable_device(pci_dev); | 
 | 	if (rc) | 
 | 		return rc; | 
 | 	pci_set_master(efx->pci_dev); | 
 | 	rc = efx->type->reset(efx, RESET_TYPE_ALL); | 
 | 	if (rc) | 
 | 		return rc; | 
 | 	rc = efx->type->init(efx); | 
 | 	if (rc) | 
 | 		return rc; | 
 | 	rc = efx_pm_thaw(dev); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int efx_pm_suspend(struct device *dev) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	efx_pm_freeze(dev); | 
 | 	rc = efx_pm_poweroff(dev); | 
 | 	if (rc) | 
 | 		efx_pm_resume(dev); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static const struct dev_pm_ops efx_pm_ops = { | 
 | 	.suspend	= efx_pm_suspend, | 
 | 	.resume		= efx_pm_resume, | 
 | 	.freeze		= efx_pm_freeze, | 
 | 	.thaw		= efx_pm_thaw, | 
 | 	.poweroff	= efx_pm_poweroff, | 
 | 	.restore	= efx_pm_resume, | 
 | }; | 
 |  | 
 | /* A PCI error affecting this device was detected. | 
 |  * At this point MMIO and DMA may be disabled. | 
 |  * Stop the software path and request a slot reset. | 
 |  */ | 
 | static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, | 
 | 					      enum pci_channel_state state) | 
 | { | 
 | 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; | 
 | 	struct efx_nic *efx = pci_get_drvdata(pdev); | 
 |  | 
 | 	if (state == pci_channel_io_perm_failure) | 
 | 		return PCI_ERS_RESULT_DISCONNECT; | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	if (efx->state != STATE_DISABLED) { | 
 | 		efx->state = STATE_RECOVERY; | 
 | 		efx->reset_pending = 0; | 
 |  | 
 | 		efx_device_detach_sync(efx); | 
 |  | 
 | 		efx_stop_all(efx); | 
 | 		efx_disable_interrupts(efx); | 
 |  | 
 | 		status = PCI_ERS_RESULT_NEED_RESET; | 
 | 	} else { | 
 | 		/* If the interface is disabled we don't want to do anything | 
 | 		 * with it. | 
 | 		 */ | 
 | 		status = PCI_ERS_RESULT_RECOVERED; | 
 | 	} | 
 |  | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	pci_disable_device(pdev); | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | /* Fake a successfull reset, which will be performed later in efx_io_resume. */ | 
 | static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) | 
 | { | 
 | 	struct efx_nic *efx = pci_get_drvdata(pdev); | 
 | 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; | 
 | 	int rc; | 
 |  | 
 | 	if (pci_enable_device(pdev)) { | 
 | 		netif_err(efx, hw, efx->net_dev, | 
 | 			  "Cannot re-enable PCI device after reset.\n"); | 
 | 		status =  PCI_ERS_RESULT_DISCONNECT; | 
 | 	} | 
 |  | 
 | 	rc = pci_cleanup_aer_uncorrect_error_status(pdev); | 
 | 	if (rc) { | 
 | 		netif_err(efx, hw, efx->net_dev, | 
 | 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); | 
 | 		/* Non-fatal error. Continue. */ | 
 | 	} | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | /* Perform the actual reset and resume I/O operations. */ | 
 | static void efx_io_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct efx_nic *efx = pci_get_drvdata(pdev); | 
 | 	int rc; | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	if (efx->state == STATE_DISABLED) | 
 | 		goto out; | 
 |  | 
 | 	rc = efx_reset(efx, RESET_TYPE_ALL); | 
 | 	if (rc) { | 
 | 		netif_err(efx, hw, efx->net_dev, | 
 | 			  "efx_reset failed after PCI error (%d)\n", rc); | 
 | 	} else { | 
 | 		efx->state = STATE_READY; | 
 | 		netif_dbg(efx, hw, efx->net_dev, | 
 | 			  "Done resetting and resuming IO after PCI error.\n"); | 
 | 	} | 
 |  | 
 | out: | 
 | 	rtnl_unlock(); | 
 | } | 
 |  | 
 | /* For simplicity and reliability, we always require a slot reset and try to | 
 |  * reset the hardware when a pci error affecting the device is detected. | 
 |  * We leave both the link_reset and mmio_enabled callback unimplemented: | 
 |  * with our request for slot reset the mmio_enabled callback will never be | 
 |  * called, and the link_reset callback is not used by AER or EEH mechanisms. | 
 |  */ | 
 | static struct pci_error_handlers efx_err_handlers = { | 
 | 	.error_detected = efx_io_error_detected, | 
 | 	.slot_reset	= efx_io_slot_reset, | 
 | 	.resume		= efx_io_resume, | 
 | }; | 
 |  | 
 | static struct pci_driver efx_pci_driver = { | 
 | 	.name		= KBUILD_MODNAME, | 
 | 	.id_table	= efx_pci_table, | 
 | 	.probe		= efx_pci_probe, | 
 | 	.remove		= efx_pci_remove, | 
 | 	.driver.pm	= &efx_pm_ops, | 
 | 	.err_handler	= &efx_err_handlers, | 
 | }; | 
 |  | 
 | /************************************************************************** | 
 |  * | 
 |  * Kernel module interface | 
 |  * | 
 |  *************************************************************************/ | 
 |  | 
 | module_param(interrupt_mode, uint, 0444); | 
 | MODULE_PARM_DESC(interrupt_mode, | 
 | 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); | 
 |  | 
 | static int __init efx_init_module(void) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); | 
 |  | 
 | 	rc = register_netdevice_notifier(&efx_netdev_notifier); | 
 | 	if (rc) | 
 | 		goto err_notifier; | 
 |  | 
 | 	rc = efx_init_sriov(); | 
 | 	if (rc) | 
 | 		goto err_sriov; | 
 |  | 
 | 	reset_workqueue = create_singlethread_workqueue("sfc_reset"); | 
 | 	if (!reset_workqueue) { | 
 | 		rc = -ENOMEM; | 
 | 		goto err_reset; | 
 | 	} | 
 |  | 
 | 	rc = pci_register_driver(&efx_pci_driver); | 
 | 	if (rc < 0) | 
 | 		goto err_pci; | 
 |  | 
 | 	return 0; | 
 |  | 
 |  err_pci: | 
 | 	destroy_workqueue(reset_workqueue); | 
 |  err_reset: | 
 | 	efx_fini_sriov(); | 
 |  err_sriov: | 
 | 	unregister_netdevice_notifier(&efx_netdev_notifier); | 
 |  err_notifier: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void __exit efx_exit_module(void) | 
 | { | 
 | 	printk(KERN_INFO "Solarflare NET driver unloading\n"); | 
 |  | 
 | 	pci_unregister_driver(&efx_pci_driver); | 
 | 	destroy_workqueue(reset_workqueue); | 
 | 	efx_fini_sriov(); | 
 | 	unregister_netdevice_notifier(&efx_netdev_notifier); | 
 |  | 
 | } | 
 |  | 
 | module_init(efx_init_module); | 
 | module_exit(efx_exit_module); | 
 |  | 
 | MODULE_AUTHOR("Solarflare Communications and " | 
 | 	      "Michael Brown <mbrown@fensystems.co.uk>"); | 
 | MODULE_DESCRIPTION("Solarflare network driver"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DEVICE_TABLE(pci, efx_pci_table); |