| /* | 
 |  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | 
 |  * | 
 |  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 
 |  * | 
 |  *  Interactivity improvements by Mike Galbraith | 
 |  *  (C) 2007 Mike Galbraith <efault@gmx.de> | 
 |  * | 
 |  *  Various enhancements by Dmitry Adamushko. | 
 |  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 
 |  * | 
 |  *  Group scheduling enhancements by Srivatsa Vaddagiri | 
 |  *  Copyright IBM Corporation, 2007 | 
 |  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 
 |  * | 
 |  *  Scaled math optimizations by Thomas Gleixner | 
 |  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 
 |  * | 
 |  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 
 |  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/latencytop.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/cpuidle.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/task_work.h> | 
 |  | 
 | #include <trace/events/sched.h> | 
 |  | 
 | #include "sched.h" | 
 |  | 
 | /* | 
 |  * Targeted preemption latency for CPU-bound tasks: | 
 |  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  * | 
 |  * NOTE: this latency value is not the same as the concept of | 
 |  * 'timeslice length' - timeslices in CFS are of variable length | 
 |  * and have no persistent notion like in traditional, time-slice | 
 |  * based scheduling concepts. | 
 |  * | 
 |  * (to see the precise effective timeslice length of your workload, | 
 |  *  run vmstat and monitor the context-switches (cs) field) | 
 |  */ | 
 | unsigned int sysctl_sched_latency = 6000000ULL; | 
 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; | 
 |  | 
 | /* | 
 |  * The initial- and re-scaling of tunables is configurable | 
 |  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) | 
 |  * | 
 |  * Options are: | 
 |  * SCHED_TUNABLESCALING_NONE - unscaled, always *1 | 
 |  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) | 
 |  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus | 
 |  */ | 
 | enum sched_tunable_scaling sysctl_sched_tunable_scaling | 
 | 	= SCHED_TUNABLESCALING_LOG; | 
 |  | 
 | /* | 
 |  * Minimal preemption granularity for CPU-bound tasks: | 
 |  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  */ | 
 | unsigned int sysctl_sched_min_granularity = 750000ULL; | 
 | unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; | 
 |  | 
 | /* | 
 |  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 
 |  */ | 
 | static unsigned int sched_nr_latency = 8; | 
 |  | 
 | /* | 
 |  * After fork, child runs first. If set to 0 (default) then | 
 |  * parent will (try to) run first. | 
 |  */ | 
 | unsigned int sysctl_sched_child_runs_first __read_mostly; | 
 |  | 
 | /* | 
 |  * SCHED_OTHER wake-up granularity. | 
 |  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | 
 |  * | 
 |  * This option delays the preemption effects of decoupled workloads | 
 |  * and reduces their over-scheduling. Synchronous workloads will still | 
 |  * have immediate wakeup/sleep latencies. | 
 |  */ | 
 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; | 
 | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; | 
 |  | 
 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | 
 |  | 
 | /* | 
 |  * The exponential sliding  window over which load is averaged for shares | 
 |  * distribution. | 
 |  * (default: 10msec) | 
 |  */ | 
 | unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; | 
 |  | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 | /* | 
 |  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool | 
 |  * each time a cfs_rq requests quota. | 
 |  * | 
 |  * Note: in the case that the slice exceeds the runtime remaining (either due | 
 |  * to consumption or the quota being specified to be smaller than the slice) | 
 |  * we will always only issue the remaining available time. | 
 |  * | 
 |  * default: 5 msec, units: microseconds | 
 |   */ | 
 | unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; | 
 | #endif | 
 |  | 
 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | 
 | { | 
 | 	lw->weight += inc; | 
 | 	lw->inv_weight = 0; | 
 | } | 
 |  | 
 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | 
 | { | 
 | 	lw->weight -= dec; | 
 | 	lw->inv_weight = 0; | 
 | } | 
 |  | 
 | static inline void update_load_set(struct load_weight *lw, unsigned long w) | 
 | { | 
 | 	lw->weight = w; | 
 | 	lw->inv_weight = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Increase the granularity value when there are more CPUs, | 
 |  * because with more CPUs the 'effective latency' as visible | 
 |  * to users decreases. But the relationship is not linear, | 
 |  * so pick a second-best guess by going with the log2 of the | 
 |  * number of CPUs. | 
 |  * | 
 |  * This idea comes from the SD scheduler of Con Kolivas: | 
 |  */ | 
 | static unsigned int get_update_sysctl_factor(void) | 
 | { | 
 | 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); | 
 | 	unsigned int factor; | 
 |  | 
 | 	switch (sysctl_sched_tunable_scaling) { | 
 | 	case SCHED_TUNABLESCALING_NONE: | 
 | 		factor = 1; | 
 | 		break; | 
 | 	case SCHED_TUNABLESCALING_LINEAR: | 
 | 		factor = cpus; | 
 | 		break; | 
 | 	case SCHED_TUNABLESCALING_LOG: | 
 | 	default: | 
 | 		factor = 1 + ilog2(cpus); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return factor; | 
 | } | 
 |  | 
 | static void update_sysctl(void) | 
 | { | 
 | 	unsigned int factor = get_update_sysctl_factor(); | 
 |  | 
 | #define SET_SYSCTL(name) \ | 
 | 	(sysctl_##name = (factor) * normalized_sysctl_##name) | 
 | 	SET_SYSCTL(sched_min_granularity); | 
 | 	SET_SYSCTL(sched_latency); | 
 | 	SET_SYSCTL(sched_wakeup_granularity); | 
 | #undef SET_SYSCTL | 
 | } | 
 |  | 
 | void sched_init_granularity(void) | 
 | { | 
 | 	update_sysctl(); | 
 | } | 
 |  | 
 | #define WMULT_CONST	(~0U) | 
 | #define WMULT_SHIFT	32 | 
 |  | 
 | static void __update_inv_weight(struct load_weight *lw) | 
 | { | 
 | 	unsigned long w; | 
 |  | 
 | 	if (likely(lw->inv_weight)) | 
 | 		return; | 
 |  | 
 | 	w = scale_load_down(lw->weight); | 
 |  | 
 | 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) | 
 | 		lw->inv_weight = 1; | 
 | 	else if (unlikely(!w)) | 
 | 		lw->inv_weight = WMULT_CONST; | 
 | 	else | 
 | 		lw->inv_weight = WMULT_CONST / w; | 
 | } | 
 |  | 
 | /* | 
 |  * delta_exec * weight / lw.weight | 
 |  *   OR | 
 |  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT | 
 |  * | 
 |  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case | 
 |  * we're guaranteed shift stays positive because inv_weight is guaranteed to | 
 |  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. | 
 |  * | 
 |  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus | 
 |  * weight/lw.weight <= 1, and therefore our shift will also be positive. | 
 |  */ | 
 | static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) | 
 | { | 
 | 	u64 fact = scale_load_down(weight); | 
 | 	int shift = WMULT_SHIFT; | 
 |  | 
 | 	__update_inv_weight(lw); | 
 |  | 
 | 	if (unlikely(fact >> 32)) { | 
 | 		while (fact >> 32) { | 
 | 			fact >>= 1; | 
 | 			shift--; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* hint to use a 32x32->64 mul */ | 
 | 	fact = (u64)(u32)fact * lw->inv_weight; | 
 |  | 
 | 	while (fact >> 32) { | 
 | 		fact >>= 1; | 
 | 		shift--; | 
 | 	} | 
 |  | 
 | 	return mul_u64_u32_shr(delta_exec, fact, shift); | 
 | } | 
 |  | 
 |  | 
 | const struct sched_class fair_sched_class; | 
 |  | 
 | /************************************************************** | 
 |  * CFS operations on generic schedulable entities: | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 |  | 
 | /* cpu runqueue to which this cfs_rq is attached */ | 
 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_rq->rq; | 
 | } | 
 |  | 
 | /* An entity is a task if it doesn't "own" a runqueue */ | 
 | #define entity_is_task(se)	(!se->my_q) | 
 |  | 
 | static inline struct task_struct *task_of(struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	WARN_ON_ONCE(!entity_is_task(se)); | 
 | #endif | 
 | 	return container_of(se, struct task_struct, se); | 
 | } | 
 |  | 
 | /* Walk up scheduling entities hierarchy */ | 
 | #define for_each_sched_entity(se) \ | 
 | 		for (; se; se = se->parent) | 
 |  | 
 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	return p->se.cfs_rq; | 
 | } | 
 |  | 
 | /* runqueue on which this entity is (to be) queued */ | 
 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
 | { | 
 | 	return se->cfs_rq; | 
 | } | 
 |  | 
 | /* runqueue "owned" by this group */ | 
 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
 | { | 
 | 	return grp->my_q; | 
 | } | 
 |  | 
 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (!cfs_rq->on_list) { | 
 | 		/* | 
 | 		 * Ensure we either appear before our parent (if already | 
 | 		 * enqueued) or force our parent to appear after us when it is | 
 | 		 * enqueued.  The fact that we always enqueue bottom-up | 
 | 		 * reduces this to two cases. | 
 | 		 */ | 
 | 		if (cfs_rq->tg->parent && | 
 | 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { | 
 | 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list, | 
 | 				&rq_of(cfs_rq)->leaf_cfs_rq_list); | 
 | 		} else { | 
 | 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, | 
 | 				&rq_of(cfs_rq)->leaf_cfs_rq_list); | 
 | 		} | 
 |  | 
 | 		cfs_rq->on_list = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (cfs_rq->on_list) { | 
 | 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list); | 
 | 		cfs_rq->on_list = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | 
 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
 | 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | 
 |  | 
 | /* Do the two (enqueued) entities belong to the same group ? */ | 
 | static inline struct cfs_rq * | 
 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 
 | { | 
 | 	if (se->cfs_rq == pse->cfs_rq) | 
 | 		return se->cfs_rq; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
 | { | 
 | 	return se->parent; | 
 | } | 
 |  | 
 | static void | 
 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
 | { | 
 | 	int se_depth, pse_depth; | 
 |  | 
 | 	/* | 
 | 	 * preemption test can be made between sibling entities who are in the | 
 | 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | 
 | 	 * both tasks until we find their ancestors who are siblings of common | 
 | 	 * parent. | 
 | 	 */ | 
 |  | 
 | 	/* First walk up until both entities are at same depth */ | 
 | 	se_depth = (*se)->depth; | 
 | 	pse_depth = (*pse)->depth; | 
 |  | 
 | 	while (se_depth > pse_depth) { | 
 | 		se_depth--; | 
 | 		*se = parent_entity(*se); | 
 | 	} | 
 |  | 
 | 	while (pse_depth > se_depth) { | 
 | 		pse_depth--; | 
 | 		*pse = parent_entity(*pse); | 
 | 	} | 
 |  | 
 | 	while (!is_same_group(*se, *pse)) { | 
 | 		*se = parent_entity(*se); | 
 | 		*pse = parent_entity(*pse); | 
 | 	} | 
 | } | 
 |  | 
 | #else	/* !CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | static inline struct task_struct *task_of(struct sched_entity *se) | 
 | { | 
 | 	return container_of(se, struct task_struct, se); | 
 | } | 
 |  | 
 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return container_of(cfs_rq, struct rq, cfs); | 
 | } | 
 |  | 
 | #define entity_is_task(se)	1 | 
 |  | 
 | #define for_each_sched_entity(se) \ | 
 | 		for (; se; se = NULL) | 
 |  | 
 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	return &task_rq(p)->cfs; | 
 | } | 
 |  | 
 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 
 | { | 
 | 	struct task_struct *p = task_of(se); | 
 | 	struct rq *rq = task_rq(p); | 
 |  | 
 | 	return &rq->cfs; | 
 | } | 
 |  | 
 | /* runqueue "owned" by this group */ | 
 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | } | 
 |  | 
 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | } | 
 |  | 
 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 
 | 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | 
 |  | 
 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline void | 
 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 
 | { | 
 | } | 
 |  | 
 | #endif	/* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | static __always_inline | 
 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); | 
 |  | 
 | /************************************************************** | 
 |  * Scheduling class tree data structure manipulation methods: | 
 |  */ | 
 |  | 
 | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) | 
 | { | 
 | 	s64 delta = (s64)(vruntime - max_vruntime); | 
 | 	if (delta > 0) | 
 | 		max_vruntime = vruntime; | 
 |  | 
 | 	return max_vruntime; | 
 | } | 
 |  | 
 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | 
 | { | 
 | 	s64 delta = (s64)(vruntime - min_vruntime); | 
 | 	if (delta < 0) | 
 | 		min_vruntime = vruntime; | 
 |  | 
 | 	return min_vruntime; | 
 | } | 
 |  | 
 | static inline int entity_before(struct sched_entity *a, | 
 | 				struct sched_entity *b) | 
 | { | 
 | 	return (s64)(a->vruntime - b->vruntime) < 0; | 
 | } | 
 |  | 
 | static void update_min_vruntime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	u64 vruntime = cfs_rq->min_vruntime; | 
 |  | 
 | 	if (cfs_rq->curr) | 
 | 		vruntime = cfs_rq->curr->vruntime; | 
 |  | 
 | 	if (cfs_rq->rb_leftmost) { | 
 | 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | 
 | 						   struct sched_entity, | 
 | 						   run_node); | 
 |  | 
 | 		if (!cfs_rq->curr) | 
 | 			vruntime = se->vruntime; | 
 | 		else | 
 | 			vruntime = min_vruntime(vruntime, se->vruntime); | 
 | 	} | 
 |  | 
 | 	/* ensure we never gain time by being placed backwards. */ | 
 | 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); | 
 | #ifndef CONFIG_64BIT | 
 | 	smp_wmb(); | 
 | 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Enqueue an entity into the rb-tree: | 
 |  */ | 
 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct sched_entity *entry; | 
 | 	int leftmost = 1; | 
 |  | 
 | 	/* | 
 | 	 * Find the right place in the rbtree: | 
 | 	 */ | 
 | 	while (*link) { | 
 | 		parent = *link; | 
 | 		entry = rb_entry(parent, struct sched_entity, run_node); | 
 | 		/* | 
 | 		 * We dont care about collisions. Nodes with | 
 | 		 * the same key stay together. | 
 | 		 */ | 
 | 		if (entity_before(se, entry)) { | 
 | 			link = &parent->rb_left; | 
 | 		} else { | 
 | 			link = &parent->rb_right; | 
 | 			leftmost = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Maintain a cache of leftmost tree entries (it is frequently | 
 | 	 * used): | 
 | 	 */ | 
 | 	if (leftmost) | 
 | 		cfs_rq->rb_leftmost = &se->run_node; | 
 |  | 
 | 	rb_link_node(&se->run_node, parent, link); | 
 | 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | 
 | } | 
 |  | 
 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	if (cfs_rq->rb_leftmost == &se->run_node) { | 
 | 		struct rb_node *next_node; | 
 |  | 
 | 		next_node = rb_next(&se->run_node); | 
 | 		cfs_rq->rb_leftmost = next_node; | 
 | 	} | 
 |  | 
 | 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | 
 | } | 
 |  | 
 | struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rb_node *left = cfs_rq->rb_leftmost; | 
 |  | 
 | 	if (!left) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(left, struct sched_entity, run_node); | 
 | } | 
 |  | 
 | static struct sched_entity *__pick_next_entity(struct sched_entity *se) | 
 | { | 
 | 	struct rb_node *next = rb_next(&se->run_node); | 
 |  | 
 | 	if (!next) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(next, struct sched_entity, run_node); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | 
 |  | 
 | 	if (!last) | 
 | 		return NULL; | 
 |  | 
 | 	return rb_entry(last, struct sched_entity, run_node); | 
 | } | 
 |  | 
 | /************************************************************** | 
 |  * Scheduling class statistics methods: | 
 |  */ | 
 |  | 
 | int sched_proc_update_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *lenp, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
 | 	unsigned int factor = get_update_sysctl_factor(); | 
 |  | 
 | 	if (ret || !write) | 
 | 		return ret; | 
 |  | 
 | 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | 
 | 					sysctl_sched_min_granularity); | 
 |  | 
 | #define WRT_SYSCTL(name) \ | 
 | 	(normalized_sysctl_##name = sysctl_##name / (factor)) | 
 | 	WRT_SYSCTL(sched_min_granularity); | 
 | 	WRT_SYSCTL(sched_latency); | 
 | 	WRT_SYSCTL(sched_wakeup_granularity); | 
 | #undef WRT_SYSCTL | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * delta /= w | 
 |  */ | 
 | static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) | 
 | { | 
 | 	if (unlikely(se->load.weight != NICE_0_LOAD)) | 
 | 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load); | 
 |  | 
 | 	return delta; | 
 | } | 
 |  | 
 | /* | 
 |  * The idea is to set a period in which each task runs once. | 
 |  * | 
 |  * When there are too many tasks (sched_nr_latency) we have to stretch | 
 |  * this period because otherwise the slices get too small. | 
 |  * | 
 |  * p = (nr <= nl) ? l : l*nr/nl | 
 |  */ | 
 | static u64 __sched_period(unsigned long nr_running) | 
 | { | 
 | 	if (unlikely(nr_running > sched_nr_latency)) | 
 | 		return nr_running * sysctl_sched_min_granularity; | 
 | 	else | 
 | 		return sysctl_sched_latency; | 
 | } | 
 |  | 
 | /* | 
 |  * We calculate the wall-time slice from the period by taking a part | 
 |  * proportional to the weight. | 
 |  * | 
 |  * s = p*P[w/rw] | 
 |  */ | 
 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		struct load_weight *load; | 
 | 		struct load_weight lw; | 
 |  | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		load = &cfs_rq->load; | 
 |  | 
 | 		if (unlikely(!se->on_rq)) { | 
 | 			lw = cfs_rq->load; | 
 |  | 
 | 			update_load_add(&lw, se->load.weight); | 
 | 			load = &lw; | 
 | 		} | 
 | 		slice = __calc_delta(slice, se->load.weight, load); | 
 | 	} | 
 | 	return slice; | 
 | } | 
 |  | 
 | /* | 
 |  * We calculate the vruntime slice of a to-be-inserted task. | 
 |  * | 
 |  * vs = s/w | 
 |  */ | 
 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	return calc_delta_fair(sched_slice(cfs_rq, se), se); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static int select_idle_sibling(struct task_struct *p, int cpu); | 
 | static unsigned long task_h_load(struct task_struct *p); | 
 |  | 
 | /* | 
 |  * We choose a half-life close to 1 scheduling period. | 
 |  * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are | 
 |  * dependent on this value. | 
 |  */ | 
 | #define LOAD_AVG_PERIOD 32 | 
 | #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ | 
 | #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ | 
 |  | 
 | /* Give new sched_entity start runnable values to heavy its load in infant time */ | 
 | void init_entity_runnable_average(struct sched_entity *se) | 
 | { | 
 | 	struct sched_avg *sa = &se->avg; | 
 |  | 
 | 	sa->last_update_time = 0; | 
 | 	/* | 
 | 	 * sched_avg's period_contrib should be strictly less then 1024, so | 
 | 	 * we give it 1023 to make sure it is almost a period (1024us), and | 
 | 	 * will definitely be update (after enqueue). | 
 | 	 */ | 
 | 	sa->period_contrib = 1023; | 
 | 	sa->load_avg = scale_load_down(se->load.weight); | 
 | 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX; | 
 | 	/* | 
 | 	 * At this point, util_avg won't be used in select_task_rq_fair anyway | 
 | 	 */ | 
 | 	sa->util_avg = 0; | 
 | 	sa->util_sum = 0; | 
 | 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ | 
 | } | 
 |  | 
 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); | 
 | static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq); | 
 | static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force); | 
 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se); | 
 |  | 
 | /* | 
 |  * With new tasks being created, their initial util_avgs are extrapolated | 
 |  * based on the cfs_rq's current util_avg: | 
 |  * | 
 |  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight | 
 |  * | 
 |  * However, in many cases, the above util_avg does not give a desired | 
 |  * value. Moreover, the sum of the util_avgs may be divergent, such | 
 |  * as when the series is a harmonic series. | 
 |  * | 
 |  * To solve this problem, we also cap the util_avg of successive tasks to | 
 |  * only 1/2 of the left utilization budget: | 
 |  * | 
 |  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n | 
 |  * | 
 |  * where n denotes the nth task. | 
 |  * | 
 |  * For example, a simplest series from the beginning would be like: | 
 |  * | 
 |  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ... | 
 |  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... | 
 |  * | 
 |  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) | 
 |  * if util_avg > util_avg_cap. | 
 |  */ | 
 | void post_init_entity_util_avg(struct sched_entity *se) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 	struct sched_avg *sa = &se->avg; | 
 | 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; | 
 | 	u64 now = cfs_rq_clock_task(cfs_rq); | 
 | 	int tg_update; | 
 |  | 
 | 	if (cap > 0) { | 
 | 		if (cfs_rq->avg.util_avg != 0) { | 
 | 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight; | 
 | 			sa->util_avg /= (cfs_rq->avg.load_avg + 1); | 
 |  | 
 | 			if (sa->util_avg > cap) | 
 | 				sa->util_avg = cap; | 
 | 		} else { | 
 | 			sa->util_avg = cap; | 
 | 		} | 
 | 		sa->util_sum = sa->util_avg * LOAD_AVG_MAX; | 
 | 	} | 
 |  | 
 | 	if (entity_is_task(se)) { | 
 | 		struct task_struct *p = task_of(se); | 
 | 		if (p->sched_class != &fair_sched_class) { | 
 | 			/* | 
 | 			 * For !fair tasks do: | 
 | 			 * | 
 | 			update_cfs_rq_load_avg(now, cfs_rq, false); | 
 | 			attach_entity_load_avg(cfs_rq, se); | 
 | 			switched_from_fair(rq, p); | 
 | 			 * | 
 | 			 * such that the next switched_to_fair() has the | 
 | 			 * expected state. | 
 | 			 */ | 
 | 			se->avg.last_update_time = now; | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tg_update = update_cfs_rq_load_avg(now, cfs_rq, false); | 
 | 	attach_entity_load_avg(cfs_rq, se); | 
 | 	if (tg_update) | 
 | 		update_tg_load_avg(cfs_rq, false); | 
 | } | 
 |  | 
 | #else /* !CONFIG_SMP */ | 
 | void init_entity_runnable_average(struct sched_entity *se) | 
 | { | 
 | } | 
 | void post_init_entity_util_avg(struct sched_entity *se) | 
 | { | 
 | } | 
 | static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) | 
 | { | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * Update the current task's runtime statistics. | 
 |  */ | 
 | static void update_curr(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct sched_entity *curr = cfs_rq->curr; | 
 | 	u64 now = rq_clock_task(rq_of(cfs_rq)); | 
 | 	u64 delta_exec; | 
 |  | 
 | 	if (unlikely(!curr)) | 
 | 		return; | 
 |  | 
 | 	delta_exec = now - curr->exec_start; | 
 | 	if (unlikely((s64)delta_exec <= 0)) | 
 | 		return; | 
 |  | 
 | 	curr->exec_start = now; | 
 |  | 
 | 	schedstat_set(curr->statistics.exec_max, | 
 | 		      max(delta_exec, curr->statistics.exec_max)); | 
 |  | 
 | 	curr->sum_exec_runtime += delta_exec; | 
 | 	schedstat_add(cfs_rq, exec_clock, delta_exec); | 
 |  | 
 | 	curr->vruntime += calc_delta_fair(delta_exec, curr); | 
 | 	update_min_vruntime(cfs_rq); | 
 |  | 
 | 	if (entity_is_task(curr)) { | 
 | 		struct task_struct *curtask = task_of(curr); | 
 |  | 
 | 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | 
 | 		cpuacct_charge(curtask, delta_exec); | 
 | 		account_group_exec_runtime(curtask, delta_exec); | 
 | 	} | 
 |  | 
 | 	account_cfs_rq_runtime(cfs_rq, delta_exec); | 
 | } | 
 |  | 
 | static void update_curr_fair(struct rq *rq) | 
 | { | 
 | 	update_curr(cfs_rq_of(&rq->curr->se)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | static inline void | 
 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	u64 wait_start = rq_clock(rq_of(cfs_rq)); | 
 |  | 
 | 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && | 
 | 	    likely(wait_start > se->statistics.wait_start)) | 
 | 		wait_start -= se->statistics.wait_start; | 
 |  | 
 | 	se->statistics.wait_start = wait_start; | 
 | } | 
 |  | 
 | static void | 
 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	u64 delta; | 
 |  | 
 | 	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start; | 
 |  | 
 | 	if (entity_is_task(se)) { | 
 | 		p = task_of(se); | 
 | 		if (task_on_rq_migrating(p)) { | 
 | 			/* | 
 | 			 * Preserve migrating task's wait time so wait_start | 
 | 			 * time stamp can be adjusted to accumulate wait time | 
 | 			 * prior to migration. | 
 | 			 */ | 
 | 			se->statistics.wait_start = delta; | 
 | 			return; | 
 | 		} | 
 | 		trace_sched_stat_wait(p, delta); | 
 | 	} | 
 |  | 
 | 	se->statistics.wait_max = max(se->statistics.wait_max, delta); | 
 | 	se->statistics.wait_count++; | 
 | 	se->statistics.wait_sum += delta; | 
 | 	se->statistics.wait_start = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Task is being enqueued - update stats: | 
 |  */ | 
 | static inline void | 
 | update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * Are we enqueueing a waiting task? (for current tasks | 
 | 	 * a dequeue/enqueue event is a NOP) | 
 | 	 */ | 
 | 	if (se != cfs_rq->curr) | 
 | 		update_stats_wait_start(cfs_rq, se); | 
 | } | 
 |  | 
 | static inline void | 
 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
 | { | 
 | 	/* | 
 | 	 * Mark the end of the wait period if dequeueing a | 
 | 	 * waiting task: | 
 | 	 */ | 
 | 	if (se != cfs_rq->curr) | 
 | 		update_stats_wait_end(cfs_rq, se); | 
 |  | 
 | 	if (flags & DEQUEUE_SLEEP) { | 
 | 		if (entity_is_task(se)) { | 
 | 			struct task_struct *tsk = task_of(se); | 
 |  | 
 | 			if (tsk->state & TASK_INTERRUPTIBLE) | 
 | 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); | 
 | 			if (tsk->state & TASK_UNINTERRUPTIBLE) | 
 | 				se->statistics.block_start = rq_clock(rq_of(cfs_rq)); | 
 | 		} | 
 | 	} | 
 |  | 
 | } | 
 | #else | 
 | static inline void | 
 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | } | 
 |  | 
 | static inline void | 
 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | } | 
 |  | 
 | static inline void | 
 | update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | } | 
 |  | 
 | static inline void | 
 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * We are picking a new current task - update its stats: | 
 |  */ | 
 | static inline void | 
 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* | 
 | 	 * We are starting a new run period: | 
 | 	 */ | 
 | 	se->exec_start = rq_clock_task(rq_of(cfs_rq)); | 
 | } | 
 |  | 
 | /************************************************** | 
 |  * Scheduling class queueing methods: | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | /* | 
 |  * Approximate time to scan a full NUMA task in ms. The task scan period is | 
 |  * calculated based on the tasks virtual memory size and | 
 |  * numa_balancing_scan_size. | 
 |  */ | 
 | unsigned int sysctl_numa_balancing_scan_period_min = 1000; | 
 | unsigned int sysctl_numa_balancing_scan_period_max = 60000; | 
 |  | 
 | /* Portion of address space to scan in MB */ | 
 | unsigned int sysctl_numa_balancing_scan_size = 256; | 
 |  | 
 | /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ | 
 | unsigned int sysctl_numa_balancing_scan_delay = 1000; | 
 |  | 
 | static unsigned int task_nr_scan_windows(struct task_struct *p) | 
 | { | 
 | 	unsigned long rss = 0; | 
 | 	unsigned long nr_scan_pages; | 
 |  | 
 | 	/* | 
 | 	 * Calculations based on RSS as non-present and empty pages are skipped | 
 | 	 * by the PTE scanner and NUMA hinting faults should be trapped based | 
 | 	 * on resident pages | 
 | 	 */ | 
 | 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); | 
 | 	rss = get_mm_rss(p->mm); | 
 | 	if (!rss) | 
 | 		rss = nr_scan_pages; | 
 |  | 
 | 	rss = round_up(rss, nr_scan_pages); | 
 | 	return rss / nr_scan_pages; | 
 | } | 
 |  | 
 | /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ | 
 | #define MAX_SCAN_WINDOW 2560 | 
 |  | 
 | static unsigned int task_scan_min(struct task_struct *p) | 
 | { | 
 | 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); | 
 | 	unsigned int scan, floor; | 
 | 	unsigned int windows = 1; | 
 |  | 
 | 	if (scan_size < MAX_SCAN_WINDOW) | 
 | 		windows = MAX_SCAN_WINDOW / scan_size; | 
 | 	floor = 1000 / windows; | 
 |  | 
 | 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); | 
 | 	return max_t(unsigned int, floor, scan); | 
 | } | 
 |  | 
 | static unsigned int task_scan_max(struct task_struct *p) | 
 | { | 
 | 	unsigned int smin = task_scan_min(p); | 
 | 	unsigned int smax; | 
 |  | 
 | 	/* Watch for min being lower than max due to floor calculations */ | 
 | 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); | 
 | 	return max(smin, smax); | 
 | } | 
 |  | 
 | static void account_numa_enqueue(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	rq->nr_numa_running += (p->numa_preferred_nid != -1); | 
 | 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); | 
 | } | 
 |  | 
 | static void account_numa_dequeue(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	rq->nr_numa_running -= (p->numa_preferred_nid != -1); | 
 | 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); | 
 | } | 
 |  | 
 | struct numa_group { | 
 | 	atomic_t refcount; | 
 |  | 
 | 	spinlock_t lock; /* nr_tasks, tasks */ | 
 | 	int nr_tasks; | 
 | 	pid_t gid; | 
 | 	int active_nodes; | 
 |  | 
 | 	struct rcu_head rcu; | 
 | 	unsigned long total_faults; | 
 | 	unsigned long max_faults_cpu; | 
 | 	/* | 
 | 	 * Faults_cpu is used to decide whether memory should move | 
 | 	 * towards the CPU. As a consequence, these stats are weighted | 
 | 	 * more by CPU use than by memory faults. | 
 | 	 */ | 
 | 	unsigned long *faults_cpu; | 
 | 	unsigned long faults[0]; | 
 | }; | 
 |  | 
 | /* Shared or private faults. */ | 
 | #define NR_NUMA_HINT_FAULT_TYPES 2 | 
 |  | 
 | /* Memory and CPU locality */ | 
 | #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) | 
 |  | 
 | /* Averaged statistics, and temporary buffers. */ | 
 | #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) | 
 |  | 
 | pid_t task_numa_group_id(struct task_struct *p) | 
 | { | 
 | 	return p->numa_group ? p->numa_group->gid : 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The averaged statistics, shared & private, memory & cpu, | 
 |  * occupy the first half of the array. The second half of the | 
 |  * array is for current counters, which are averaged into the | 
 |  * first set by task_numa_placement. | 
 |  */ | 
 | static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) | 
 | { | 
 | 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; | 
 | } | 
 |  | 
 | static inline unsigned long task_faults(struct task_struct *p, int nid) | 
 | { | 
 | 	if (!p->numa_faults) | 
 | 		return 0; | 
 |  | 
 | 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + | 
 | 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; | 
 | } | 
 |  | 
 | static inline unsigned long group_faults(struct task_struct *p, int nid) | 
 | { | 
 | 	if (!p->numa_group) | 
 | 		return 0; | 
 |  | 
 | 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + | 
 | 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; | 
 | } | 
 |  | 
 | static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) | 
 | { | 
 | 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + | 
 | 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; | 
 | } | 
 |  | 
 | /* | 
 |  * A node triggering more than 1/3 as many NUMA faults as the maximum is | 
 |  * considered part of a numa group's pseudo-interleaving set. Migrations | 
 |  * between these nodes are slowed down, to allow things to settle down. | 
 |  */ | 
 | #define ACTIVE_NODE_FRACTION 3 | 
 |  | 
 | static bool numa_is_active_node(int nid, struct numa_group *ng) | 
 | { | 
 | 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; | 
 | } | 
 |  | 
 | /* Handle placement on systems where not all nodes are directly connected. */ | 
 | static unsigned long score_nearby_nodes(struct task_struct *p, int nid, | 
 | 					int maxdist, bool task) | 
 | { | 
 | 	unsigned long score = 0; | 
 | 	int node; | 
 |  | 
 | 	/* | 
 | 	 * All nodes are directly connected, and the same distance | 
 | 	 * from each other. No need for fancy placement algorithms. | 
 | 	 */ | 
 | 	if (sched_numa_topology_type == NUMA_DIRECT) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * This code is called for each node, introducing N^2 complexity, | 
 | 	 * which should be ok given the number of nodes rarely exceeds 8. | 
 | 	 */ | 
 | 	for_each_online_node(node) { | 
 | 		unsigned long faults; | 
 | 		int dist = node_distance(nid, node); | 
 |  | 
 | 		/* | 
 | 		 * The furthest away nodes in the system are not interesting | 
 | 		 * for placement; nid was already counted. | 
 | 		 */ | 
 | 		if (dist == sched_max_numa_distance || node == nid) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * On systems with a backplane NUMA topology, compare groups | 
 | 		 * of nodes, and move tasks towards the group with the most | 
 | 		 * memory accesses. When comparing two nodes at distance | 
 | 		 * "hoplimit", only nodes closer by than "hoplimit" are part | 
 | 		 * of each group. Skip other nodes. | 
 | 		 */ | 
 | 		if (sched_numa_topology_type == NUMA_BACKPLANE && | 
 | 					dist > maxdist) | 
 | 			continue; | 
 |  | 
 | 		/* Add up the faults from nearby nodes. */ | 
 | 		if (task) | 
 | 			faults = task_faults(p, node); | 
 | 		else | 
 | 			faults = group_faults(p, node); | 
 |  | 
 | 		/* | 
 | 		 * On systems with a glueless mesh NUMA topology, there are | 
 | 		 * no fixed "groups of nodes". Instead, nodes that are not | 
 | 		 * directly connected bounce traffic through intermediate | 
 | 		 * nodes; a numa_group can occupy any set of nodes. | 
 | 		 * The further away a node is, the less the faults count. | 
 | 		 * This seems to result in good task placement. | 
 | 		 */ | 
 | 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | 
 | 			faults *= (sched_max_numa_distance - dist); | 
 | 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE); | 
 | 		} | 
 |  | 
 | 		score += faults; | 
 | 	} | 
 |  | 
 | 	return score; | 
 | } | 
 |  | 
 | /* | 
 |  * These return the fraction of accesses done by a particular task, or | 
 |  * task group, on a particular numa node.  The group weight is given a | 
 |  * larger multiplier, in order to group tasks together that are almost | 
 |  * evenly spread out between numa nodes. | 
 |  */ | 
 | static inline unsigned long task_weight(struct task_struct *p, int nid, | 
 | 					int dist) | 
 | { | 
 | 	unsigned long faults, total_faults; | 
 |  | 
 | 	if (!p->numa_faults) | 
 | 		return 0; | 
 |  | 
 | 	total_faults = p->total_numa_faults; | 
 |  | 
 | 	if (!total_faults) | 
 | 		return 0; | 
 |  | 
 | 	faults = task_faults(p, nid); | 
 | 	faults += score_nearby_nodes(p, nid, dist, true); | 
 |  | 
 | 	return 1000 * faults / total_faults; | 
 | } | 
 |  | 
 | static inline unsigned long group_weight(struct task_struct *p, int nid, | 
 | 					 int dist) | 
 | { | 
 | 	unsigned long faults, total_faults; | 
 |  | 
 | 	if (!p->numa_group) | 
 | 		return 0; | 
 |  | 
 | 	total_faults = p->numa_group->total_faults; | 
 |  | 
 | 	if (!total_faults) | 
 | 		return 0; | 
 |  | 
 | 	faults = group_faults(p, nid); | 
 | 	faults += score_nearby_nodes(p, nid, dist, false); | 
 |  | 
 | 	return 1000 * faults / total_faults; | 
 | } | 
 |  | 
 | bool should_numa_migrate_memory(struct task_struct *p, struct page * page, | 
 | 				int src_nid, int dst_cpu) | 
 | { | 
 | 	struct numa_group *ng = p->numa_group; | 
 | 	int dst_nid = cpu_to_node(dst_cpu); | 
 | 	int last_cpupid, this_cpupid; | 
 |  | 
 | 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); | 
 |  | 
 | 	/* | 
 | 	 * Multi-stage node selection is used in conjunction with a periodic | 
 | 	 * migration fault to build a temporal task<->page relation. By using | 
 | 	 * a two-stage filter we remove short/unlikely relations. | 
 | 	 * | 
 | 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate | 
 | 	 * a task's usage of a particular page (n_p) per total usage of this | 
 | 	 * page (n_t) (in a given time-span) to a probability. | 
 | 	 * | 
 | 	 * Our periodic faults will sample this probability and getting the | 
 | 	 * same result twice in a row, given these samples are fully | 
 | 	 * independent, is then given by P(n)^2, provided our sample period | 
 | 	 * is sufficiently short compared to the usage pattern. | 
 | 	 * | 
 | 	 * This quadric squishes small probabilities, making it less likely we | 
 | 	 * act on an unlikely task<->page relation. | 
 | 	 */ | 
 | 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid); | 
 | 	if (!cpupid_pid_unset(last_cpupid) && | 
 | 				cpupid_to_nid(last_cpupid) != dst_nid) | 
 | 		return false; | 
 |  | 
 | 	/* Always allow migrate on private faults */ | 
 | 	if (cpupid_match_pid(p, last_cpupid)) | 
 | 		return true; | 
 |  | 
 | 	/* A shared fault, but p->numa_group has not been set up yet. */ | 
 | 	if (!ng) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Destination node is much more heavily used than the source | 
 | 	 * node? Allow migration. | 
 | 	 */ | 
 | 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * | 
 | 					ACTIVE_NODE_FRACTION) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Distribute memory according to CPU & memory use on each node, | 
 | 	 * with 3/4 hysteresis to avoid unnecessary memory migrations: | 
 | 	 * | 
 | 	 * faults_cpu(dst)   3   faults_cpu(src) | 
 | 	 * --------------- * - > --------------- | 
 | 	 * faults_mem(dst)   4   faults_mem(src) | 
 | 	 */ | 
 | 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > | 
 | 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; | 
 | } | 
 |  | 
 | static unsigned long weighted_cpuload(const int cpu); | 
 | static unsigned long source_load(int cpu, int type); | 
 | static unsigned long target_load(int cpu, int type); | 
 | static unsigned long capacity_of(int cpu); | 
 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg); | 
 |  | 
 | /* Cached statistics for all CPUs within a node */ | 
 | struct numa_stats { | 
 | 	unsigned long nr_running; | 
 | 	unsigned long load; | 
 |  | 
 | 	/* Total compute capacity of CPUs on a node */ | 
 | 	unsigned long compute_capacity; | 
 |  | 
 | 	/* Approximate capacity in terms of runnable tasks on a node */ | 
 | 	unsigned long task_capacity; | 
 | 	int has_free_capacity; | 
 | }; | 
 |  | 
 | /* | 
 |  * XXX borrowed from update_sg_lb_stats | 
 |  */ | 
 | static void update_numa_stats(struct numa_stats *ns, int nid) | 
 | { | 
 | 	int smt, cpu, cpus = 0; | 
 | 	unsigned long capacity; | 
 |  | 
 | 	memset(ns, 0, sizeof(*ns)); | 
 | 	for_each_cpu(cpu, cpumask_of_node(nid)) { | 
 | 		struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 		ns->nr_running += rq->nr_running; | 
 | 		ns->load += weighted_cpuload(cpu); | 
 | 		ns->compute_capacity += capacity_of(cpu); | 
 |  | 
 | 		cpus++; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we raced with hotplug and there are no CPUs left in our mask | 
 | 	 * the @ns structure is NULL'ed and task_numa_compare() will | 
 | 	 * not find this node attractive. | 
 | 	 * | 
 | 	 * We'll either bail at !has_free_capacity, or we'll detect a huge | 
 | 	 * imbalance and bail there. | 
 | 	 */ | 
 | 	if (!cpus) | 
 | 		return; | 
 |  | 
 | 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ | 
 | 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); | 
 | 	capacity = cpus / smt; /* cores */ | 
 |  | 
 | 	ns->task_capacity = min_t(unsigned, capacity, | 
 | 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); | 
 | 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity); | 
 | } | 
 |  | 
 | struct task_numa_env { | 
 | 	struct task_struct *p; | 
 |  | 
 | 	int src_cpu, src_nid; | 
 | 	int dst_cpu, dst_nid; | 
 |  | 
 | 	struct numa_stats src_stats, dst_stats; | 
 |  | 
 | 	int imbalance_pct; | 
 | 	int dist; | 
 |  | 
 | 	struct task_struct *best_task; | 
 | 	long best_imp; | 
 | 	int best_cpu; | 
 | }; | 
 |  | 
 | static void task_numa_assign(struct task_numa_env *env, | 
 | 			     struct task_struct *p, long imp) | 
 | { | 
 | 	if (env->best_task) | 
 | 		put_task_struct(env->best_task); | 
 | 	if (p) | 
 | 		get_task_struct(p); | 
 |  | 
 | 	env->best_task = p; | 
 | 	env->best_imp = imp; | 
 | 	env->best_cpu = env->dst_cpu; | 
 | } | 
 |  | 
 | static bool load_too_imbalanced(long src_load, long dst_load, | 
 | 				struct task_numa_env *env) | 
 | { | 
 | 	long imb, old_imb; | 
 | 	long orig_src_load, orig_dst_load; | 
 | 	long src_capacity, dst_capacity; | 
 |  | 
 | 	/* | 
 | 	 * The load is corrected for the CPU capacity available on each node. | 
 | 	 * | 
 | 	 * src_load        dst_load | 
 | 	 * ------------ vs --------- | 
 | 	 * src_capacity    dst_capacity | 
 | 	 */ | 
 | 	src_capacity = env->src_stats.compute_capacity; | 
 | 	dst_capacity = env->dst_stats.compute_capacity; | 
 |  | 
 | 	/* We care about the slope of the imbalance, not the direction. */ | 
 | 	if (dst_load < src_load) | 
 | 		swap(dst_load, src_load); | 
 |  | 
 | 	/* Is the difference below the threshold? */ | 
 | 	imb = dst_load * src_capacity * 100 - | 
 | 	      src_load * dst_capacity * env->imbalance_pct; | 
 | 	if (imb <= 0) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * The imbalance is above the allowed threshold. | 
 | 	 * Compare it with the old imbalance. | 
 | 	 */ | 
 | 	orig_src_load = env->src_stats.load; | 
 | 	orig_dst_load = env->dst_stats.load; | 
 |  | 
 | 	if (orig_dst_load < orig_src_load) | 
 | 		swap(orig_dst_load, orig_src_load); | 
 |  | 
 | 	old_imb = orig_dst_load * src_capacity * 100 - | 
 | 		  orig_src_load * dst_capacity * env->imbalance_pct; | 
 |  | 
 | 	/* Would this change make things worse? */ | 
 | 	return (imb > old_imb); | 
 | } | 
 |  | 
 | /* | 
 |  * This checks if the overall compute and NUMA accesses of the system would | 
 |  * be improved if the source tasks was migrated to the target dst_cpu taking | 
 |  * into account that it might be best if task running on the dst_cpu should | 
 |  * be exchanged with the source task | 
 |  */ | 
 | static void task_numa_compare(struct task_numa_env *env, | 
 | 			      long taskimp, long groupimp) | 
 | { | 
 | 	struct rq *src_rq = cpu_rq(env->src_cpu); | 
 | 	struct rq *dst_rq = cpu_rq(env->dst_cpu); | 
 | 	struct task_struct *cur; | 
 | 	long src_load, dst_load; | 
 | 	long load; | 
 | 	long imp = env->p->numa_group ? groupimp : taskimp; | 
 | 	long moveimp = imp; | 
 | 	int dist = env->dist; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	cur = task_rcu_dereference(&dst_rq->curr); | 
 | 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) | 
 | 		cur = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Because we have preemption enabled we can get migrated around and | 
 | 	 * end try selecting ourselves (current == env->p) as a swap candidate. | 
 | 	 */ | 
 | 	if (cur == env->p) | 
 | 		goto unlock; | 
 |  | 
 | 	/* | 
 | 	 * "imp" is the fault differential for the source task between the | 
 | 	 * source and destination node. Calculate the total differential for | 
 | 	 * the source task and potential destination task. The more negative | 
 | 	 * the value is, the more rmeote accesses that would be expected to | 
 | 	 * be incurred if the tasks were swapped. | 
 | 	 */ | 
 | 	if (cur) { | 
 | 		/* Skip this swap candidate if cannot move to the source cpu */ | 
 | 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) | 
 | 			goto unlock; | 
 |  | 
 | 		/* | 
 | 		 * If dst and source tasks are in the same NUMA group, or not | 
 | 		 * in any group then look only at task weights. | 
 | 		 */ | 
 | 		if (cur->numa_group == env->p->numa_group) { | 
 | 			imp = taskimp + task_weight(cur, env->src_nid, dist) - | 
 | 			      task_weight(cur, env->dst_nid, dist); | 
 | 			/* | 
 | 			 * Add some hysteresis to prevent swapping the | 
 | 			 * tasks within a group over tiny differences. | 
 | 			 */ | 
 | 			if (cur->numa_group) | 
 | 				imp -= imp/16; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Compare the group weights. If a task is all by | 
 | 			 * itself (not part of a group), use the task weight | 
 | 			 * instead. | 
 | 			 */ | 
 | 			if (cur->numa_group) | 
 | 				imp += group_weight(cur, env->src_nid, dist) - | 
 | 				       group_weight(cur, env->dst_nid, dist); | 
 | 			else | 
 | 				imp += task_weight(cur, env->src_nid, dist) - | 
 | 				       task_weight(cur, env->dst_nid, dist); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (imp <= env->best_imp && moveimp <= env->best_imp) | 
 | 		goto unlock; | 
 |  | 
 | 	if (!cur) { | 
 | 		/* Is there capacity at our destination? */ | 
 | 		if (env->src_stats.nr_running <= env->src_stats.task_capacity && | 
 | 		    !env->dst_stats.has_free_capacity) | 
 | 			goto unlock; | 
 |  | 
 | 		goto balance; | 
 | 	} | 
 |  | 
 | 	/* Balance doesn't matter much if we're running a task per cpu */ | 
 | 	if (imp > env->best_imp && src_rq->nr_running == 1 && | 
 | 			dst_rq->nr_running == 1) | 
 | 		goto assign; | 
 |  | 
 | 	/* | 
 | 	 * In the overloaded case, try and keep the load balanced. | 
 | 	 */ | 
 | balance: | 
 | 	load = task_h_load(env->p); | 
 | 	dst_load = env->dst_stats.load + load; | 
 | 	src_load = env->src_stats.load - load; | 
 |  | 
 | 	if (moveimp > imp && moveimp > env->best_imp) { | 
 | 		/* | 
 | 		 * If the improvement from just moving env->p direction is | 
 | 		 * better than swapping tasks around, check if a move is | 
 | 		 * possible. Store a slightly smaller score than moveimp, | 
 | 		 * so an actually idle CPU will win. | 
 | 		 */ | 
 | 		if (!load_too_imbalanced(src_load, dst_load, env)) { | 
 | 			imp = moveimp - 1; | 
 | 			cur = NULL; | 
 | 			goto assign; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (imp <= env->best_imp) | 
 | 		goto unlock; | 
 |  | 
 | 	if (cur) { | 
 | 		load = task_h_load(cur); | 
 | 		dst_load -= load; | 
 | 		src_load += load; | 
 | 	} | 
 |  | 
 | 	if (load_too_imbalanced(src_load, dst_load, env)) | 
 | 		goto unlock; | 
 |  | 
 | 	/* | 
 | 	 * One idle CPU per node is evaluated for a task numa move. | 
 | 	 * Call select_idle_sibling to maybe find a better one. | 
 | 	 */ | 
 | 	if (!cur) | 
 | 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); | 
 |  | 
 | assign: | 
 | 	task_numa_assign(env, cur, imp); | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void task_numa_find_cpu(struct task_numa_env *env, | 
 | 				long taskimp, long groupimp) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { | 
 | 		/* Skip this CPU if the source task cannot migrate */ | 
 | 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) | 
 | 			continue; | 
 |  | 
 | 		env->dst_cpu = cpu; | 
 | 		task_numa_compare(env, taskimp, groupimp); | 
 | 	} | 
 | } | 
 |  | 
 | /* Only move tasks to a NUMA node less busy than the current node. */ | 
 | static bool numa_has_capacity(struct task_numa_env *env) | 
 | { | 
 | 	struct numa_stats *src = &env->src_stats; | 
 | 	struct numa_stats *dst = &env->dst_stats; | 
 |  | 
 | 	if (src->has_free_capacity && !dst->has_free_capacity) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Only consider a task move if the source has a higher load | 
 | 	 * than the destination, corrected for CPU capacity on each node. | 
 | 	 * | 
 | 	 *      src->load                dst->load | 
 | 	 * --------------------- vs --------------------- | 
 | 	 * src->compute_capacity    dst->compute_capacity | 
 | 	 */ | 
 | 	if (src->load * dst->compute_capacity * env->imbalance_pct > | 
 |  | 
 | 	    dst->load * src->compute_capacity * 100) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int task_numa_migrate(struct task_struct *p) | 
 | { | 
 | 	struct task_numa_env env = { | 
 | 		.p = p, | 
 |  | 
 | 		.src_cpu = task_cpu(p), | 
 | 		.src_nid = task_node(p), | 
 |  | 
 | 		.imbalance_pct = 112, | 
 |  | 
 | 		.best_task = NULL, | 
 | 		.best_imp = 0, | 
 | 		.best_cpu = -1, | 
 | 	}; | 
 | 	struct sched_domain *sd; | 
 | 	unsigned long taskweight, groupweight; | 
 | 	int nid, ret, dist; | 
 | 	long taskimp, groupimp; | 
 |  | 
 | 	/* | 
 | 	 * Pick the lowest SD_NUMA domain, as that would have the smallest | 
 | 	 * imbalance and would be the first to start moving tasks about. | 
 | 	 * | 
 | 	 * And we want to avoid any moving of tasks about, as that would create | 
 | 	 * random movement of tasks -- counter the numa conditions we're trying | 
 | 	 * to satisfy here. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); | 
 | 	if (sd) | 
 | 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * Cpusets can break the scheduler domain tree into smaller | 
 | 	 * balance domains, some of which do not cross NUMA boundaries. | 
 | 	 * Tasks that are "trapped" in such domains cannot be migrated | 
 | 	 * elsewhere, so there is no point in (re)trying. | 
 | 	 */ | 
 | 	if (unlikely(!sd)) { | 
 | 		p->numa_preferred_nid = task_node(p); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	env.dst_nid = p->numa_preferred_nid; | 
 | 	dist = env.dist = node_distance(env.src_nid, env.dst_nid); | 
 | 	taskweight = task_weight(p, env.src_nid, dist); | 
 | 	groupweight = group_weight(p, env.src_nid, dist); | 
 | 	update_numa_stats(&env.src_stats, env.src_nid); | 
 | 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight; | 
 | 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight; | 
 | 	update_numa_stats(&env.dst_stats, env.dst_nid); | 
 |  | 
 | 	/* Try to find a spot on the preferred nid. */ | 
 | 	if (numa_has_capacity(&env)) | 
 | 		task_numa_find_cpu(&env, taskimp, groupimp); | 
 |  | 
 | 	/* | 
 | 	 * Look at other nodes in these cases: | 
 | 	 * - there is no space available on the preferred_nid | 
 | 	 * - the task is part of a numa_group that is interleaved across | 
 | 	 *   multiple NUMA nodes; in order to better consolidate the group, | 
 | 	 *   we need to check other locations. | 
 | 	 */ | 
 | 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { | 
 | 		for_each_online_node(nid) { | 
 | 			if (nid == env.src_nid || nid == p->numa_preferred_nid) | 
 | 				continue; | 
 |  | 
 | 			dist = node_distance(env.src_nid, env.dst_nid); | 
 | 			if (sched_numa_topology_type == NUMA_BACKPLANE && | 
 | 						dist != env.dist) { | 
 | 				taskweight = task_weight(p, env.src_nid, dist); | 
 | 				groupweight = group_weight(p, env.src_nid, dist); | 
 | 			} | 
 |  | 
 | 			/* Only consider nodes where both task and groups benefit */ | 
 | 			taskimp = task_weight(p, nid, dist) - taskweight; | 
 | 			groupimp = group_weight(p, nid, dist) - groupweight; | 
 | 			if (taskimp < 0 && groupimp < 0) | 
 | 				continue; | 
 |  | 
 | 			env.dist = dist; | 
 | 			env.dst_nid = nid; | 
 | 			update_numa_stats(&env.dst_stats, env.dst_nid); | 
 | 			if (numa_has_capacity(&env)) | 
 | 				task_numa_find_cpu(&env, taskimp, groupimp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the task is part of a workload that spans multiple NUMA nodes, | 
 | 	 * and is migrating into one of the workload's active nodes, remember | 
 | 	 * this node as the task's preferred numa node, so the workload can | 
 | 	 * settle down. | 
 | 	 * A task that migrated to a second choice node will be better off | 
 | 	 * trying for a better one later. Do not set the preferred node here. | 
 | 	 */ | 
 | 	if (p->numa_group) { | 
 | 		struct numa_group *ng = p->numa_group; | 
 |  | 
 | 		if (env.best_cpu == -1) | 
 | 			nid = env.src_nid; | 
 | 		else | 
 | 			nid = env.dst_nid; | 
 |  | 
 | 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) | 
 | 			sched_setnuma(p, env.dst_nid); | 
 | 	} | 
 |  | 
 | 	/* No better CPU than the current one was found. */ | 
 | 	if (env.best_cpu == -1) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* | 
 | 	 * Reset the scan period if the task is being rescheduled on an | 
 | 	 * alternative node to recheck if the tasks is now properly placed. | 
 | 	 */ | 
 | 	p->numa_scan_period = task_scan_min(p); | 
 |  | 
 | 	if (env.best_task == NULL) { | 
 | 		ret = migrate_task_to(p, env.best_cpu); | 
 | 		if (ret != 0) | 
 | 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = migrate_swap(p, env.best_task); | 
 | 	if (ret != 0) | 
 | 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); | 
 | 	put_task_struct(env.best_task); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Attempt to migrate a task to a CPU on the preferred node. */ | 
 | static void numa_migrate_preferred(struct task_struct *p) | 
 | { | 
 | 	unsigned long interval = HZ; | 
 |  | 
 | 	/* This task has no NUMA fault statistics yet */ | 
 | 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) | 
 | 		return; | 
 |  | 
 | 	/* Periodically retry migrating the task to the preferred node */ | 
 | 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); | 
 | 	p->numa_migrate_retry = jiffies + interval; | 
 |  | 
 | 	/* Success if task is already running on preferred CPU */ | 
 | 	if (task_node(p) == p->numa_preferred_nid) | 
 | 		return; | 
 |  | 
 | 	/* Otherwise, try migrate to a CPU on the preferred node */ | 
 | 	task_numa_migrate(p); | 
 | } | 
 |  | 
 | /* | 
 |  * Find out how many nodes on the workload is actively running on. Do this by | 
 |  * tracking the nodes from which NUMA hinting faults are triggered. This can | 
 |  * be different from the set of nodes where the workload's memory is currently | 
 |  * located. | 
 |  */ | 
 | static void numa_group_count_active_nodes(struct numa_group *numa_group) | 
 | { | 
 | 	unsigned long faults, max_faults = 0; | 
 | 	int nid, active_nodes = 0; | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		faults = group_faults_cpu(numa_group, nid); | 
 | 		if (faults > max_faults) | 
 | 			max_faults = faults; | 
 | 	} | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		faults = group_faults_cpu(numa_group, nid); | 
 | 		if (faults * ACTIVE_NODE_FRACTION > max_faults) | 
 | 			active_nodes++; | 
 | 	} | 
 |  | 
 | 	numa_group->max_faults_cpu = max_faults; | 
 | 	numa_group->active_nodes = active_nodes; | 
 | } | 
 |  | 
 | /* | 
 |  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS | 
 |  * increments. The more local the fault statistics are, the higher the scan | 
 |  * period will be for the next scan window. If local/(local+remote) ratio is | 
 |  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) | 
 |  * the scan period will decrease. Aim for 70% local accesses. | 
 |  */ | 
 | #define NUMA_PERIOD_SLOTS 10 | 
 | #define NUMA_PERIOD_THRESHOLD 7 | 
 |  | 
 | /* | 
 |  * Increase the scan period (slow down scanning) if the majority of | 
 |  * our memory is already on our local node, or if the majority of | 
 |  * the page accesses are shared with other processes. | 
 |  * Otherwise, decrease the scan period. | 
 |  */ | 
 | static void update_task_scan_period(struct task_struct *p, | 
 | 			unsigned long shared, unsigned long private) | 
 | { | 
 | 	unsigned int period_slot; | 
 | 	int ratio; | 
 | 	int diff; | 
 |  | 
 | 	unsigned long remote = p->numa_faults_locality[0]; | 
 | 	unsigned long local = p->numa_faults_locality[1]; | 
 |  | 
 | 	/* | 
 | 	 * If there were no record hinting faults then either the task is | 
 | 	 * completely idle or all activity is areas that are not of interest | 
 | 	 * to automatic numa balancing. Related to that, if there were failed | 
 | 	 * migration then it implies we are migrating too quickly or the local | 
 | 	 * node is overloaded. In either case, scan slower | 
 | 	 */ | 
 | 	if (local + shared == 0 || p->numa_faults_locality[2]) { | 
 | 		p->numa_scan_period = min(p->numa_scan_period_max, | 
 | 			p->numa_scan_period << 1); | 
 |  | 
 | 		p->mm->numa_next_scan = jiffies + | 
 | 			msecs_to_jiffies(p->numa_scan_period); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Prepare to scale scan period relative to the current period. | 
 | 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same | 
 | 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) | 
 | 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) | 
 | 	 */ | 
 | 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); | 
 | 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); | 
 | 	if (ratio >= NUMA_PERIOD_THRESHOLD) { | 
 | 		int slot = ratio - NUMA_PERIOD_THRESHOLD; | 
 | 		if (!slot) | 
 | 			slot = 1; | 
 | 		diff = slot * period_slot; | 
 | 	} else { | 
 | 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; | 
 |  | 
 | 		/* | 
 | 		 * Scale scan rate increases based on sharing. There is an | 
 | 		 * inverse relationship between the degree of sharing and | 
 | 		 * the adjustment made to the scanning period. Broadly | 
 | 		 * speaking the intent is that there is little point | 
 | 		 * scanning faster if shared accesses dominate as it may | 
 | 		 * simply bounce migrations uselessly | 
 | 		 */ | 
 | 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); | 
 | 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS; | 
 | 	} | 
 |  | 
 | 	p->numa_scan_period = clamp(p->numa_scan_period + diff, | 
 | 			task_scan_min(p), task_scan_max(p)); | 
 | 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | 
 | } | 
 |  | 
 | /* | 
 |  * Get the fraction of time the task has been running since the last | 
 |  * NUMA placement cycle. The scheduler keeps similar statistics, but | 
 |  * decays those on a 32ms period, which is orders of magnitude off | 
 |  * from the dozens-of-seconds NUMA balancing period. Use the scheduler | 
 |  * stats only if the task is so new there are no NUMA statistics yet. | 
 |  */ | 
 | static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) | 
 | { | 
 | 	u64 runtime, delta, now; | 
 | 	/* Use the start of this time slice to avoid calculations. */ | 
 | 	now = p->se.exec_start; | 
 | 	runtime = p->se.sum_exec_runtime; | 
 |  | 
 | 	if (p->last_task_numa_placement) { | 
 | 		delta = runtime - p->last_sum_exec_runtime; | 
 | 		*period = now - p->last_task_numa_placement; | 
 | 	} else { | 
 | 		delta = p->se.avg.load_sum / p->se.load.weight; | 
 | 		*period = LOAD_AVG_MAX; | 
 | 	} | 
 |  | 
 | 	p->last_sum_exec_runtime = runtime; | 
 | 	p->last_task_numa_placement = now; | 
 |  | 
 | 	return delta; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine the preferred nid for a task in a numa_group. This needs to | 
 |  * be done in a way that produces consistent results with group_weight, | 
 |  * otherwise workloads might not converge. | 
 |  */ | 
 | static int preferred_group_nid(struct task_struct *p, int nid) | 
 | { | 
 | 	nodemask_t nodes; | 
 | 	int dist; | 
 |  | 
 | 	/* Direct connections between all NUMA nodes. */ | 
 | 	if (sched_numa_topology_type == NUMA_DIRECT) | 
 | 		return nid; | 
 |  | 
 | 	/* | 
 | 	 * On a system with glueless mesh NUMA topology, group_weight | 
 | 	 * scores nodes according to the number of NUMA hinting faults on | 
 | 	 * both the node itself, and on nearby nodes. | 
 | 	 */ | 
 | 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { | 
 | 		unsigned long score, max_score = 0; | 
 | 		int node, max_node = nid; | 
 |  | 
 | 		dist = sched_max_numa_distance; | 
 |  | 
 | 		for_each_online_node(node) { | 
 | 			score = group_weight(p, node, dist); | 
 | 			if (score > max_score) { | 
 | 				max_score = score; | 
 | 				max_node = node; | 
 | 			} | 
 | 		} | 
 | 		return max_node; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Finding the preferred nid in a system with NUMA backplane | 
 | 	 * interconnect topology is more involved. The goal is to locate | 
 | 	 * tasks from numa_groups near each other in the system, and | 
 | 	 * untangle workloads from different sides of the system. This requires | 
 | 	 * searching down the hierarchy of node groups, recursively searching | 
 | 	 * inside the highest scoring group of nodes. The nodemask tricks | 
 | 	 * keep the complexity of the search down. | 
 | 	 */ | 
 | 	nodes = node_online_map; | 
 | 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { | 
 | 		unsigned long max_faults = 0; | 
 | 		nodemask_t max_group = NODE_MASK_NONE; | 
 | 		int a, b; | 
 |  | 
 | 		/* Are there nodes at this distance from each other? */ | 
 | 		if (!find_numa_distance(dist)) | 
 | 			continue; | 
 |  | 
 | 		for_each_node_mask(a, nodes) { | 
 | 			unsigned long faults = 0; | 
 | 			nodemask_t this_group; | 
 | 			nodes_clear(this_group); | 
 |  | 
 | 			/* Sum group's NUMA faults; includes a==b case. */ | 
 | 			for_each_node_mask(b, nodes) { | 
 | 				if (node_distance(a, b) < dist) { | 
 | 					faults += group_faults(p, b); | 
 | 					node_set(b, this_group); | 
 | 					node_clear(b, nodes); | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* Remember the top group. */ | 
 | 			if (faults > max_faults) { | 
 | 				max_faults = faults; | 
 | 				max_group = this_group; | 
 | 				/* | 
 | 				 * subtle: at the smallest distance there is | 
 | 				 * just one node left in each "group", the | 
 | 				 * winner is the preferred nid. | 
 | 				 */ | 
 | 				nid = a; | 
 | 			} | 
 | 		} | 
 | 		/* Next round, evaluate the nodes within max_group. */ | 
 | 		if (!max_faults) | 
 | 			break; | 
 | 		nodes = max_group; | 
 | 	} | 
 | 	return nid; | 
 | } | 
 |  | 
 | static void task_numa_placement(struct task_struct *p) | 
 | { | 
 | 	int seq, nid, max_nid = -1, max_group_nid = -1; | 
 | 	unsigned long max_faults = 0, max_group_faults = 0; | 
 | 	unsigned long fault_types[2] = { 0, 0 }; | 
 | 	unsigned long total_faults; | 
 | 	u64 runtime, period; | 
 | 	spinlock_t *group_lock = NULL; | 
 |  | 
 | 	/* | 
 | 	 * The p->mm->numa_scan_seq field gets updated without | 
 | 	 * exclusive access. Use READ_ONCE() here to ensure | 
 | 	 * that the field is read in a single access: | 
 | 	 */ | 
 | 	seq = READ_ONCE(p->mm->numa_scan_seq); | 
 | 	if (p->numa_scan_seq == seq) | 
 | 		return; | 
 | 	p->numa_scan_seq = seq; | 
 | 	p->numa_scan_period_max = task_scan_max(p); | 
 |  | 
 | 	total_faults = p->numa_faults_locality[0] + | 
 | 		       p->numa_faults_locality[1]; | 
 | 	runtime = numa_get_avg_runtime(p, &period); | 
 |  | 
 | 	/* If the task is part of a group prevent parallel updates to group stats */ | 
 | 	if (p->numa_group) { | 
 | 		group_lock = &p->numa_group->lock; | 
 | 		spin_lock_irq(group_lock); | 
 | 	} | 
 |  | 
 | 	/* Find the node with the highest number of faults */ | 
 | 	for_each_online_node(nid) { | 
 | 		/* Keep track of the offsets in numa_faults array */ | 
 | 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; | 
 | 		unsigned long faults = 0, group_faults = 0; | 
 | 		int priv; | 
 |  | 
 | 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { | 
 | 			long diff, f_diff, f_weight; | 
 |  | 
 | 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv); | 
 | 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); | 
 | 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); | 
 | 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); | 
 |  | 
 | 			/* Decay existing window, copy faults since last scan */ | 
 | 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; | 
 | 			fault_types[priv] += p->numa_faults[membuf_idx]; | 
 | 			p->numa_faults[membuf_idx] = 0; | 
 |  | 
 | 			/* | 
 | 			 * Normalize the faults_from, so all tasks in a group | 
 | 			 * count according to CPU use, instead of by the raw | 
 | 			 * number of faults. Tasks with little runtime have | 
 | 			 * little over-all impact on throughput, and thus their | 
 | 			 * faults are less important. | 
 | 			 */ | 
 | 			f_weight = div64_u64(runtime << 16, period + 1); | 
 | 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / | 
 | 				   (total_faults + 1); | 
 | 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2; | 
 | 			p->numa_faults[cpubuf_idx] = 0; | 
 |  | 
 | 			p->numa_faults[mem_idx] += diff; | 
 | 			p->numa_faults[cpu_idx] += f_diff; | 
 | 			faults += p->numa_faults[mem_idx]; | 
 | 			p->total_numa_faults += diff; | 
 | 			if (p->numa_group) { | 
 | 				/* | 
 | 				 * safe because we can only change our own group | 
 | 				 * | 
 | 				 * mem_idx represents the offset for a given | 
 | 				 * nid and priv in a specific region because it | 
 | 				 * is at the beginning of the numa_faults array. | 
 | 				 */ | 
 | 				p->numa_group->faults[mem_idx] += diff; | 
 | 				p->numa_group->faults_cpu[mem_idx] += f_diff; | 
 | 				p->numa_group->total_faults += diff; | 
 | 				group_faults += p->numa_group->faults[mem_idx]; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (faults > max_faults) { | 
 | 			max_faults = faults; | 
 | 			max_nid = nid; | 
 | 		} | 
 |  | 
 | 		if (group_faults > max_group_faults) { | 
 | 			max_group_faults = group_faults; | 
 | 			max_group_nid = nid; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	update_task_scan_period(p, fault_types[0], fault_types[1]); | 
 |  | 
 | 	if (p->numa_group) { | 
 | 		numa_group_count_active_nodes(p->numa_group); | 
 | 		spin_unlock_irq(group_lock); | 
 | 		max_nid = preferred_group_nid(p, max_group_nid); | 
 | 	} | 
 |  | 
 | 	if (max_faults) { | 
 | 		/* Set the new preferred node */ | 
 | 		if (max_nid != p->numa_preferred_nid) | 
 | 			sched_setnuma(p, max_nid); | 
 |  | 
 | 		if (task_node(p) != p->numa_preferred_nid) | 
 | 			numa_migrate_preferred(p); | 
 | 	} | 
 | } | 
 |  | 
 | static inline int get_numa_group(struct numa_group *grp) | 
 | { | 
 | 	return atomic_inc_not_zero(&grp->refcount); | 
 | } | 
 |  | 
 | static inline void put_numa_group(struct numa_group *grp) | 
 | { | 
 | 	if (atomic_dec_and_test(&grp->refcount)) | 
 | 		kfree_rcu(grp, rcu); | 
 | } | 
 |  | 
 | static void task_numa_group(struct task_struct *p, int cpupid, int flags, | 
 | 			int *priv) | 
 | { | 
 | 	struct numa_group *grp, *my_grp; | 
 | 	struct task_struct *tsk; | 
 | 	bool join = false; | 
 | 	int cpu = cpupid_to_cpu(cpupid); | 
 | 	int i; | 
 |  | 
 | 	if (unlikely(!p->numa_group)) { | 
 | 		unsigned int size = sizeof(struct numa_group) + | 
 | 				    4*nr_node_ids*sizeof(unsigned long); | 
 |  | 
 | 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); | 
 | 		if (!grp) | 
 | 			return; | 
 |  | 
 | 		atomic_set(&grp->refcount, 1); | 
 | 		grp->active_nodes = 1; | 
 | 		grp->max_faults_cpu = 0; | 
 | 		spin_lock_init(&grp->lock); | 
 | 		grp->gid = p->pid; | 
 | 		/* Second half of the array tracks nids where faults happen */ | 
 | 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * | 
 | 						nr_node_ids; | 
 |  | 
 | 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | 
 | 			grp->faults[i] = p->numa_faults[i]; | 
 |  | 
 | 		grp->total_faults = p->total_numa_faults; | 
 |  | 
 | 		grp->nr_tasks++; | 
 | 		rcu_assign_pointer(p->numa_group, grp); | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	tsk = READ_ONCE(cpu_rq(cpu)->curr); | 
 |  | 
 | 	if (!cpupid_match_pid(tsk, cpupid)) | 
 | 		goto no_join; | 
 |  | 
 | 	grp = rcu_dereference(tsk->numa_group); | 
 | 	if (!grp) | 
 | 		goto no_join; | 
 |  | 
 | 	my_grp = p->numa_group; | 
 | 	if (grp == my_grp) | 
 | 		goto no_join; | 
 |  | 
 | 	/* | 
 | 	 * Only join the other group if its bigger; if we're the bigger group, | 
 | 	 * the other task will join us. | 
 | 	 */ | 
 | 	if (my_grp->nr_tasks > grp->nr_tasks) | 
 | 		goto no_join; | 
 |  | 
 | 	/* | 
 | 	 * Tie-break on the grp address. | 
 | 	 */ | 
 | 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) | 
 | 		goto no_join; | 
 |  | 
 | 	/* Always join threads in the same process. */ | 
 | 	if (tsk->mm == current->mm) | 
 | 		join = true; | 
 |  | 
 | 	/* Simple filter to avoid false positives due to PID collisions */ | 
 | 	if (flags & TNF_SHARED) | 
 | 		join = true; | 
 |  | 
 | 	/* Update priv based on whether false sharing was detected */ | 
 | 	*priv = !join; | 
 |  | 
 | 	if (join && !get_numa_group(grp)) | 
 | 		goto no_join; | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (!join) | 
 | 		return; | 
 |  | 
 | 	BUG_ON(irqs_disabled()); | 
 | 	double_lock_irq(&my_grp->lock, &grp->lock); | 
 |  | 
 | 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { | 
 | 		my_grp->faults[i] -= p->numa_faults[i]; | 
 | 		grp->faults[i] += p->numa_faults[i]; | 
 | 	} | 
 | 	my_grp->total_faults -= p->total_numa_faults; | 
 | 	grp->total_faults += p->total_numa_faults; | 
 |  | 
 | 	my_grp->nr_tasks--; | 
 | 	grp->nr_tasks++; | 
 |  | 
 | 	spin_unlock(&my_grp->lock); | 
 | 	spin_unlock_irq(&grp->lock); | 
 |  | 
 | 	rcu_assign_pointer(p->numa_group, grp); | 
 |  | 
 | 	put_numa_group(my_grp); | 
 | 	return; | 
 |  | 
 | no_join: | 
 | 	rcu_read_unlock(); | 
 | 	return; | 
 | } | 
 |  | 
 | void task_numa_free(struct task_struct *p) | 
 | { | 
 | 	struct numa_group *grp = p->numa_group; | 
 | 	void *numa_faults = p->numa_faults; | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	if (grp) { | 
 | 		spin_lock_irqsave(&grp->lock, flags); | 
 | 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) | 
 | 			grp->faults[i] -= p->numa_faults[i]; | 
 | 		grp->total_faults -= p->total_numa_faults; | 
 |  | 
 | 		grp->nr_tasks--; | 
 | 		spin_unlock_irqrestore(&grp->lock, flags); | 
 | 		RCU_INIT_POINTER(p->numa_group, NULL); | 
 | 		put_numa_group(grp); | 
 | 	} | 
 |  | 
 | 	p->numa_faults = NULL; | 
 | 	kfree(numa_faults); | 
 | } | 
 |  | 
 | /* | 
 |  * Got a PROT_NONE fault for a page on @node. | 
 |  */ | 
 | void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) | 
 | { | 
 | 	struct task_struct *p = current; | 
 | 	bool migrated = flags & TNF_MIGRATED; | 
 | 	int cpu_node = task_node(current); | 
 | 	int local = !!(flags & TNF_FAULT_LOCAL); | 
 | 	struct numa_group *ng; | 
 | 	int priv; | 
 |  | 
 | 	if (!static_branch_likely(&sched_numa_balancing)) | 
 | 		return; | 
 |  | 
 | 	/* for example, ksmd faulting in a user's mm */ | 
 | 	if (!p->mm) | 
 | 		return; | 
 |  | 
 | 	/* Allocate buffer to track faults on a per-node basis */ | 
 | 	if (unlikely(!p->numa_faults)) { | 
 | 		int size = sizeof(*p->numa_faults) * | 
 | 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; | 
 |  | 
 | 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); | 
 | 		if (!p->numa_faults) | 
 | 			return; | 
 |  | 
 | 		p->total_numa_faults = 0; | 
 | 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First accesses are treated as private, otherwise consider accesses | 
 | 	 * to be private if the accessing pid has not changed | 
 | 	 */ | 
 | 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { | 
 | 		priv = 1; | 
 | 	} else { | 
 | 		priv = cpupid_match_pid(p, last_cpupid); | 
 | 		if (!priv && !(flags & TNF_NO_GROUP)) | 
 | 			task_numa_group(p, last_cpupid, flags, &priv); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If a workload spans multiple NUMA nodes, a shared fault that | 
 | 	 * occurs wholly within the set of nodes that the workload is | 
 | 	 * actively using should be counted as local. This allows the | 
 | 	 * scan rate to slow down when a workload has settled down. | 
 | 	 */ | 
 | 	ng = p->numa_group; | 
 | 	if (!priv && !local && ng && ng->active_nodes > 1 && | 
 | 				numa_is_active_node(cpu_node, ng) && | 
 | 				numa_is_active_node(mem_node, ng)) | 
 | 		local = 1; | 
 |  | 
 | 	task_numa_placement(p); | 
 |  | 
 | 	/* | 
 | 	 * Retry task to preferred node migration periodically, in case it | 
 | 	 * case it previously failed, or the scheduler moved us. | 
 | 	 */ | 
 | 	if (time_after(jiffies, p->numa_migrate_retry)) | 
 | 		numa_migrate_preferred(p); | 
 |  | 
 | 	if (migrated) | 
 | 		p->numa_pages_migrated += pages; | 
 | 	if (flags & TNF_MIGRATE_FAIL) | 
 | 		p->numa_faults_locality[2] += pages; | 
 |  | 
 | 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; | 
 | 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; | 
 | 	p->numa_faults_locality[local] += pages; | 
 | } | 
 |  | 
 | static void reset_ptenuma_scan(struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * We only did a read acquisition of the mmap sem, so | 
 | 	 * p->mm->numa_scan_seq is written to without exclusive access | 
 | 	 * and the update is not guaranteed to be atomic. That's not | 
 | 	 * much of an issue though, since this is just used for | 
 | 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not | 
 | 	 * expensive, to avoid any form of compiler optimizations: | 
 | 	 */ | 
 | 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); | 
 | 	p->mm->numa_scan_offset = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The expensive part of numa migration is done from task_work context. | 
 |  * Triggered from task_tick_numa(). | 
 |  */ | 
 | void task_numa_work(struct callback_head *work) | 
 | { | 
 | 	unsigned long migrate, next_scan, now = jiffies; | 
 | 	struct task_struct *p = current; | 
 | 	struct mm_struct *mm = p->mm; | 
 | 	u64 runtime = p->se.sum_exec_runtime; | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned long start, end; | 
 | 	unsigned long nr_pte_updates = 0; | 
 | 	long pages, virtpages; | 
 |  | 
 | 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); | 
 |  | 
 | 	work->next = work; /* protect against double add */ | 
 | 	/* | 
 | 	 * Who cares about NUMA placement when they're dying. | 
 | 	 * | 
 | 	 * NOTE: make sure not to dereference p->mm before this check, | 
 | 	 * exit_task_work() happens _after_ exit_mm() so we could be called | 
 | 	 * without p->mm even though we still had it when we enqueued this | 
 | 	 * work. | 
 | 	 */ | 
 | 	if (p->flags & PF_EXITING) | 
 | 		return; | 
 |  | 
 | 	if (!mm->numa_next_scan) { | 
 | 		mm->numa_next_scan = now + | 
 | 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enforce maximal scan/migration frequency.. | 
 | 	 */ | 
 | 	migrate = mm->numa_next_scan; | 
 | 	if (time_before(now, migrate)) | 
 | 		return; | 
 |  | 
 | 	if (p->numa_scan_period == 0) { | 
 | 		p->numa_scan_period_max = task_scan_max(p); | 
 | 		p->numa_scan_period = task_scan_min(p); | 
 | 	} | 
 |  | 
 | 	next_scan = now + msecs_to_jiffies(p->numa_scan_period); | 
 | 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Delay this task enough that another task of this mm will likely win | 
 | 	 * the next time around. | 
 | 	 */ | 
 | 	p->node_stamp += 2 * TICK_NSEC; | 
 |  | 
 | 	start = mm->numa_scan_offset; | 
 | 	pages = sysctl_numa_balancing_scan_size; | 
 | 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */ | 
 | 	virtpages = pages * 8;	   /* Scan up to this much virtual space */ | 
 | 	if (!pages) | 
 | 		return; | 
 |  | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 | 	vma = find_vma(mm, start); | 
 | 	if (!vma) { | 
 | 		reset_ptenuma_scan(p); | 
 | 		start = 0; | 
 | 		vma = mm->mmap; | 
 | 	} | 
 | 	for (; vma; vma = vma->vm_next) { | 
 | 		if (!vma_migratable(vma) || !vma_policy_mof(vma) || | 
 | 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Shared library pages mapped by multiple processes are not | 
 | 		 * migrated as it is expected they are cache replicated. Avoid | 
 | 		 * hinting faults in read-only file-backed mappings or the vdso | 
 | 		 * as migrating the pages will be of marginal benefit. | 
 | 		 */ | 
 | 		if (!vma->vm_mm || | 
 | 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Skip inaccessible VMAs to avoid any confusion between | 
 | 		 * PROT_NONE and NUMA hinting ptes | 
 | 		 */ | 
 | 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) | 
 | 			continue; | 
 |  | 
 | 		do { | 
 | 			start = max(start, vma->vm_start); | 
 | 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); | 
 | 			end = min(end, vma->vm_end); | 
 | 			nr_pte_updates = change_prot_numa(vma, start, end); | 
 |  | 
 | 			/* | 
 | 			 * Try to scan sysctl_numa_balancing_size worth of | 
 | 			 * hpages that have at least one present PTE that | 
 | 			 * is not already pte-numa. If the VMA contains | 
 | 			 * areas that are unused or already full of prot_numa | 
 | 			 * PTEs, scan up to virtpages, to skip through those | 
 | 			 * areas faster. | 
 | 			 */ | 
 | 			if (nr_pte_updates) | 
 | 				pages -= (end - start) >> PAGE_SHIFT; | 
 | 			virtpages -= (end - start) >> PAGE_SHIFT; | 
 |  | 
 | 			start = end; | 
 | 			if (pages <= 0 || virtpages <= 0) | 
 | 				goto out; | 
 |  | 
 | 			cond_resched(); | 
 | 		} while (end != vma->vm_end); | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * It is possible to reach the end of the VMA list but the last few | 
 | 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we | 
 | 	 * would find the !migratable VMA on the next scan but not reset the | 
 | 	 * scanner to the start so check it now. | 
 | 	 */ | 
 | 	if (vma) | 
 | 		mm->numa_scan_offset = start; | 
 | 	else | 
 | 		reset_ptenuma_scan(p); | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | 	/* | 
 | 	 * Make sure tasks use at least 32x as much time to run other code | 
 | 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max. | 
 | 	 * Usually update_task_scan_period slows down scanning enough; on an | 
 | 	 * overloaded system we need to limit overhead on a per task basis. | 
 | 	 */ | 
 | 	if (unlikely(p->se.sum_exec_runtime != runtime)) { | 
 | 		u64 diff = p->se.sum_exec_runtime - runtime; | 
 | 		p->node_stamp += 32 * diff; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Drive the periodic memory faults.. | 
 |  */ | 
 | void task_tick_numa(struct rq *rq, struct task_struct *curr) | 
 | { | 
 | 	struct callback_head *work = &curr->numa_work; | 
 | 	u64 period, now; | 
 |  | 
 | 	/* | 
 | 	 * We don't care about NUMA placement if we don't have memory. | 
 | 	 */ | 
 | 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Using runtime rather than walltime has the dual advantage that | 
 | 	 * we (mostly) drive the selection from busy threads and that the | 
 | 	 * task needs to have done some actual work before we bother with | 
 | 	 * NUMA placement. | 
 | 	 */ | 
 | 	now = curr->se.sum_exec_runtime; | 
 | 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; | 
 |  | 
 | 	if (now > curr->node_stamp + period) { | 
 | 		if (!curr->node_stamp) | 
 | 			curr->numa_scan_period = task_scan_min(curr); | 
 | 		curr->node_stamp += period; | 
 |  | 
 | 		if (!time_before(jiffies, curr->mm->numa_next_scan)) { | 
 | 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ | 
 | 			task_work_add(curr, work, true); | 
 | 		} | 
 | 	} | 
 | } | 
 | #else | 
 | static void task_tick_numa(struct rq *rq, struct task_struct *curr) | 
 | { | 
 | } | 
 |  | 
 | static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 |  | 
 | static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 |  | 
 | static void | 
 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	update_load_add(&cfs_rq->load, se->load.weight); | 
 | 	if (!parent_entity(se)) | 
 | 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight); | 
 | #ifdef CONFIG_SMP | 
 | 	if (entity_is_task(se)) { | 
 | 		struct rq *rq = rq_of(cfs_rq); | 
 |  | 
 | 		account_numa_enqueue(rq, task_of(se)); | 
 | 		list_add(&se->group_node, &rq->cfs_tasks); | 
 | 	} | 
 | #endif | 
 | 	cfs_rq->nr_running++; | 
 | } | 
 |  | 
 | static void | 
 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	update_load_sub(&cfs_rq->load, se->load.weight); | 
 | 	if (!parent_entity(se)) | 
 | 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); | 
 | #ifdef CONFIG_SMP | 
 | 	if (entity_is_task(se)) { | 
 | 		account_numa_dequeue(rq_of(cfs_rq), task_of(se)); | 
 | 		list_del_init(&se->group_node); | 
 | 	} | 
 | #endif | 
 | 	cfs_rq->nr_running--; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | # ifdef CONFIG_SMP | 
 | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | 
 | { | 
 | 	long tg_weight, load, shares; | 
 |  | 
 | 	/* | 
 | 	 * This really should be: cfs_rq->avg.load_avg, but instead we use | 
 | 	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up | 
 | 	 * the shares for small weight interactive tasks. | 
 | 	 */ | 
 | 	load = scale_load_down(cfs_rq->load.weight); | 
 |  | 
 | 	tg_weight = atomic_long_read(&tg->load_avg); | 
 |  | 
 | 	/* Ensure tg_weight >= load */ | 
 | 	tg_weight -= cfs_rq->tg_load_avg_contrib; | 
 | 	tg_weight += load; | 
 |  | 
 | 	shares = (tg->shares * load); | 
 | 	if (tg_weight) | 
 | 		shares /= tg_weight; | 
 |  | 
 | 	if (shares < MIN_SHARES) | 
 | 		shares = MIN_SHARES; | 
 | 	if (shares > tg->shares) | 
 | 		shares = tg->shares; | 
 |  | 
 | 	return shares; | 
 | } | 
 | # else /* CONFIG_SMP */ | 
 | static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) | 
 | { | 
 | 	return tg->shares; | 
 | } | 
 | # endif /* CONFIG_SMP */ | 
 |  | 
 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, | 
 | 			    unsigned long weight) | 
 | { | 
 | 	if (se->on_rq) { | 
 | 		/* commit outstanding execution time */ | 
 | 		if (cfs_rq->curr == se) | 
 | 			update_curr(cfs_rq); | 
 | 		account_entity_dequeue(cfs_rq, se); | 
 | 	} | 
 |  | 
 | 	update_load_set(&se->load, weight); | 
 |  | 
 | 	if (se->on_rq) | 
 | 		account_entity_enqueue(cfs_rq, se); | 
 | } | 
 |  | 
 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); | 
 |  | 
 | static void update_cfs_shares(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct task_group *tg; | 
 | 	struct sched_entity *se; | 
 | 	long shares; | 
 |  | 
 | 	tg = cfs_rq->tg; | 
 | 	se = tg->se[cpu_of(rq_of(cfs_rq))]; | 
 | 	if (!se || throttled_hierarchy(cfs_rq)) | 
 | 		return; | 
 | #ifndef CONFIG_SMP | 
 | 	if (likely(se->load.weight == tg->shares)) | 
 | 		return; | 
 | #endif | 
 | 	shares = calc_cfs_shares(cfs_rq, tg); | 
 |  | 
 | 	reweight_entity(cfs_rq_of(se), se, shares); | 
 | } | 
 | #else /* CONFIG_FAIR_GROUP_SCHED */ | 
 | static inline void update_cfs_shares(struct cfs_rq *cfs_rq) | 
 | { | 
 | } | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* Precomputed fixed inverse multiplies for multiplication by y^n */ | 
 | static const u32 runnable_avg_yN_inv[] = { | 
 | 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, | 
 | 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, | 
 | 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, | 
 | 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, | 
 | 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, | 
 | 	0x85aac367, 0x82cd8698, | 
 | }; | 
 |  | 
 | /* | 
 |  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent | 
 |  * over-estimates when re-combining. | 
 |  */ | 
 | static const u32 runnable_avg_yN_sum[] = { | 
 | 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, | 
 | 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, | 
 | 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, | 
 | }; | 
 |  | 
 | /* | 
 |  * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to | 
 |  * lower integers. See Documentation/scheduler/sched-avg.txt how these | 
 |  * were generated: | 
 |  */ | 
 | static const u32 __accumulated_sum_N32[] = { | 
 | 	    0, 23371, 35056, 40899, 43820, 45281, | 
 | 	46011, 46376, 46559, 46650, 46696, 46719, | 
 | }; | 
 |  | 
 | /* | 
 |  * Approximate: | 
 |  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period) | 
 |  */ | 
 | static __always_inline u64 decay_load(u64 val, u64 n) | 
 | { | 
 | 	unsigned int local_n; | 
 |  | 
 | 	if (!n) | 
 | 		return val; | 
 | 	else if (unlikely(n > LOAD_AVG_PERIOD * 63)) | 
 | 		return 0; | 
 |  | 
 | 	/* after bounds checking we can collapse to 32-bit */ | 
 | 	local_n = n; | 
 |  | 
 | 	/* | 
 | 	 * As y^PERIOD = 1/2, we can combine | 
 | 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) | 
 | 	 * With a look-up table which covers y^n (n<PERIOD) | 
 | 	 * | 
 | 	 * To achieve constant time decay_load. | 
 | 	 */ | 
 | 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) { | 
 | 		val >>= local_n / LOAD_AVG_PERIOD; | 
 | 		local_n %= LOAD_AVG_PERIOD; | 
 | 	} | 
 |  | 
 | 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); | 
 | 	return val; | 
 | } | 
 |  | 
 | /* | 
 |  * For updates fully spanning n periods, the contribution to runnable | 
 |  * average will be: \Sum 1024*y^n | 
 |  * | 
 |  * We can compute this reasonably efficiently by combining: | 
 |  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD} | 
 |  */ | 
 | static u32 __compute_runnable_contrib(u64 n) | 
 | { | 
 | 	u32 contrib = 0; | 
 |  | 
 | 	if (likely(n <= LOAD_AVG_PERIOD)) | 
 | 		return runnable_avg_yN_sum[n]; | 
 | 	else if (unlikely(n >= LOAD_AVG_MAX_N)) | 
 | 		return LOAD_AVG_MAX; | 
 |  | 
 | 	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */ | 
 | 	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD]; | 
 | 	n %= LOAD_AVG_PERIOD; | 
 | 	contrib = decay_load(contrib, n); | 
 | 	return contrib + runnable_avg_yN_sum[n]; | 
 | } | 
 |  | 
 | #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) | 
 |  | 
 | /* | 
 |  * We can represent the historical contribution to runnable average as the | 
 |  * coefficients of a geometric series.  To do this we sub-divide our runnable | 
 |  * history into segments of approximately 1ms (1024us); label the segment that | 
 |  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. | 
 |  * | 
 |  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... | 
 |  *      p0            p1           p2 | 
 |  *     (now)       (~1ms ago)  (~2ms ago) | 
 |  * | 
 |  * Let u_i denote the fraction of p_i that the entity was runnable. | 
 |  * | 
 |  * We then designate the fractions u_i as our co-efficients, yielding the | 
 |  * following representation of historical load: | 
 |  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... | 
 |  * | 
 |  * We choose y based on the with of a reasonably scheduling period, fixing: | 
 |  *   y^32 = 0.5 | 
 |  * | 
 |  * This means that the contribution to load ~32ms ago (u_32) will be weighted | 
 |  * approximately half as much as the contribution to load within the last ms | 
 |  * (u_0). | 
 |  * | 
 |  * When a period "rolls over" and we have new u_0`, multiplying the previous | 
 |  * sum again by y is sufficient to update: | 
 |  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) | 
 |  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] | 
 |  */ | 
 | static __always_inline int | 
 | __update_load_avg(u64 now, int cpu, struct sched_avg *sa, | 
 | 		  unsigned long weight, int running, struct cfs_rq *cfs_rq) | 
 | { | 
 | 	u64 delta, scaled_delta, periods; | 
 | 	u32 contrib; | 
 | 	unsigned int delta_w, scaled_delta_w, decayed = 0; | 
 | 	unsigned long scale_freq, scale_cpu; | 
 |  | 
 | 	delta = now - sa->last_update_time; | 
 | 	/* | 
 | 	 * This should only happen when time goes backwards, which it | 
 | 	 * unfortunately does during sched clock init when we swap over to TSC. | 
 | 	 */ | 
 | 	if ((s64)delta < 0) { | 
 | 		sa->last_update_time = now; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Use 1024ns as the unit of measurement since it's a reasonable | 
 | 	 * approximation of 1us and fast to compute. | 
 | 	 */ | 
 | 	delta >>= 10; | 
 | 	if (!delta) | 
 | 		return 0; | 
 | 	sa->last_update_time = now; | 
 |  | 
 | 	scale_freq = arch_scale_freq_capacity(NULL, cpu); | 
 | 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu); | 
 |  | 
 | 	/* delta_w is the amount already accumulated against our next period */ | 
 | 	delta_w = sa->period_contrib; | 
 | 	if (delta + delta_w >= 1024) { | 
 | 		decayed = 1; | 
 |  | 
 | 		/* how much left for next period will start over, we don't know yet */ | 
 | 		sa->period_contrib = 0; | 
 |  | 
 | 		/* | 
 | 		 * Now that we know we're crossing a period boundary, figure | 
 | 		 * out how much from delta we need to complete the current | 
 | 		 * period and accrue it. | 
 | 		 */ | 
 | 		delta_w = 1024 - delta_w; | 
 | 		scaled_delta_w = cap_scale(delta_w, scale_freq); | 
 | 		if (weight) { | 
 | 			sa->load_sum += weight * scaled_delta_w; | 
 | 			if (cfs_rq) { | 
 | 				cfs_rq->runnable_load_sum += | 
 | 						weight * scaled_delta_w; | 
 | 			} | 
 | 		} | 
 | 		if (running) | 
 | 			sa->util_sum += scaled_delta_w * scale_cpu; | 
 |  | 
 | 		delta -= delta_w; | 
 |  | 
 | 		/* Figure out how many additional periods this update spans */ | 
 | 		periods = delta / 1024; | 
 | 		delta %= 1024; | 
 |  | 
 | 		sa->load_sum = decay_load(sa->load_sum, periods + 1); | 
 | 		if (cfs_rq) { | 
 | 			cfs_rq->runnable_load_sum = | 
 | 				decay_load(cfs_rq->runnable_load_sum, periods + 1); | 
 | 		} | 
 | 		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); | 
 |  | 
 | 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */ | 
 | 		contrib = __compute_runnable_contrib(periods); | 
 | 		contrib = cap_scale(contrib, scale_freq); | 
 | 		if (weight) { | 
 | 			sa->load_sum += weight * contrib; | 
 | 			if (cfs_rq) | 
 | 				cfs_rq->runnable_load_sum += weight * contrib; | 
 | 		} | 
 | 		if (running) | 
 | 			sa->util_sum += contrib * scale_cpu; | 
 | 	} | 
 |  | 
 | 	/* Remainder of delta accrued against u_0` */ | 
 | 	scaled_delta = cap_scale(delta, scale_freq); | 
 | 	if (weight) { | 
 | 		sa->load_sum += weight * scaled_delta; | 
 | 		if (cfs_rq) | 
 | 			cfs_rq->runnable_load_sum += weight * scaled_delta; | 
 | 	} | 
 | 	if (running) | 
 | 		sa->util_sum += scaled_delta * scale_cpu; | 
 |  | 
 | 	sa->period_contrib += delta; | 
 |  | 
 | 	if (decayed) { | 
 | 		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); | 
 | 		if (cfs_rq) { | 
 | 			cfs_rq->runnable_load_avg = | 
 | 				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); | 
 | 		} | 
 | 		sa->util_avg = sa->util_sum / LOAD_AVG_MAX; | 
 | 	} | 
 |  | 
 | 	return decayed; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | /* | 
 |  * Updating tg's load_avg is necessary before update_cfs_share (which is done) | 
 |  * and effective_load (which is not done because it is too costly). | 
 |  */ | 
 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) | 
 | { | 
 | 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; | 
 |  | 
 | 	/* | 
 | 	 * No need to update load_avg for root_task_group as it is not used. | 
 | 	 */ | 
 | 	if (cfs_rq->tg == &root_task_group) | 
 | 		return; | 
 |  | 
 | 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { | 
 | 		atomic_long_add(delta, &cfs_rq->tg->load_avg); | 
 | 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called within set_task_rq() right before setting a task's cpu. The | 
 |  * caller only guarantees p->pi_lock is held; no other assumptions, | 
 |  * including the state of rq->lock, should be made. | 
 |  */ | 
 | void set_task_rq_fair(struct sched_entity *se, | 
 | 		      struct cfs_rq *prev, struct cfs_rq *next) | 
 | { | 
 | 	if (!sched_feat(ATTACH_AGE_LOAD)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We are supposed to update the task to "current" time, then its up to | 
 | 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in | 
 | 	 * getting what current time is, so simply throw away the out-of-date | 
 | 	 * time. This will result in the wakee task is less decayed, but giving | 
 | 	 * the wakee more load sounds not bad. | 
 | 	 */ | 
 | 	if (se->avg.last_update_time && prev) { | 
 | 		u64 p_last_update_time; | 
 | 		u64 n_last_update_time; | 
 |  | 
 | #ifndef CONFIG_64BIT | 
 | 		u64 p_last_update_time_copy; | 
 | 		u64 n_last_update_time_copy; | 
 |  | 
 | 		do { | 
 | 			p_last_update_time_copy = prev->load_last_update_time_copy; | 
 | 			n_last_update_time_copy = next->load_last_update_time_copy; | 
 |  | 
 | 			smp_rmb(); | 
 |  | 
 | 			p_last_update_time = prev->avg.last_update_time; | 
 | 			n_last_update_time = next->avg.last_update_time; | 
 |  | 
 | 		} while (p_last_update_time != p_last_update_time_copy || | 
 | 			 n_last_update_time != n_last_update_time_copy); | 
 | #else | 
 | 		p_last_update_time = prev->avg.last_update_time; | 
 | 		n_last_update_time = next->avg.last_update_time; | 
 | #endif | 
 | 		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)), | 
 | 				  &se->avg, 0, 0, NULL); | 
 | 		se->avg.last_update_time = n_last_update_time; | 
 | 	} | 
 | } | 
 | #else /* CONFIG_FAIR_GROUP_SCHED */ | 
 | static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rq *rq = rq_of(cfs_rq); | 
 | 	int cpu = cpu_of(rq); | 
 |  | 
 | 	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) { | 
 | 		unsigned long max = rq->cpu_capacity_orig; | 
 |  | 
 | 		/* | 
 | 		 * There are a few boundary cases this might miss but it should | 
 | 		 * get called often enough that that should (hopefully) not be | 
 | 		 * a real problem -- added to that it only calls on the local | 
 | 		 * CPU, so if we enqueue remotely we'll miss an update, but | 
 | 		 * the next tick/schedule should update. | 
 | 		 * | 
 | 		 * It will not get called when we go idle, because the idle | 
 | 		 * thread is a different class (!fair), nor will the utilization | 
 | 		 * number include things like RT tasks. | 
 | 		 * | 
 | 		 * As is, the util number is not freq-invariant (we'd have to | 
 | 		 * implement arch_scale_freq_capacity() for that). | 
 | 		 * | 
 | 		 * See cpu_util(). | 
 | 		 */ | 
 | 		cpufreq_update_util(rq_clock(rq), | 
 | 				    min(cfs_rq->avg.util_avg, max), max); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Unsigned subtract and clamp on underflow. | 
 |  * | 
 |  * Explicitly do a load-store to ensure the intermediate value never hits | 
 |  * memory. This allows lockless observations without ever seeing the negative | 
 |  * values. | 
 |  */ | 
 | #define sub_positive(_ptr, _val) do {				\ | 
 | 	typeof(_ptr) ptr = (_ptr);				\ | 
 | 	typeof(*ptr) val = (_val);				\ | 
 | 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\ | 
 | 	res = var - val;					\ | 
 | 	if (res > var)						\ | 
 | 		res = 0;					\ | 
 | 	WRITE_ONCE(*ptr, res);					\ | 
 | } while (0) | 
 |  | 
 | /** | 
 |  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages | 
 |  * @now: current time, as per cfs_rq_clock_task() | 
 |  * @cfs_rq: cfs_rq to update | 
 |  * @update_freq: should we call cfs_rq_util_change() or will the call do so | 
 |  * | 
 |  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) | 
 |  * avg. The immediate corollary is that all (fair) tasks must be attached, see | 
 |  * post_init_entity_util_avg(). | 
 |  * | 
 |  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. | 
 |  * | 
 |  * Returns true if the load decayed or we removed utilization. It is expected | 
 |  * that one calls update_tg_load_avg() on this condition, but after you've | 
 |  * modified the cfs_rq avg (attach/detach), such that we propagate the new | 
 |  * avg up. | 
 |  */ | 
 | static inline int | 
 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) | 
 | { | 
 | 	struct sched_avg *sa = &cfs_rq->avg; | 
 | 	int decayed, removed_load = 0, removed_util = 0; | 
 |  | 
 | 	if (atomic_long_read(&cfs_rq->removed_load_avg)) { | 
 | 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); | 
 | 		sub_positive(&sa->load_avg, r); | 
 | 		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); | 
 | 		removed_load = 1; | 
 | 	} | 
 |  | 
 | 	if (atomic_long_read(&cfs_rq->removed_util_avg)) { | 
 | 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); | 
 | 		sub_positive(&sa->util_avg, r); | 
 | 		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); | 
 | 		removed_util = 1; | 
 | 	} | 
 |  | 
 | 	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, | 
 | 		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); | 
 |  | 
 | #ifndef CONFIG_64BIT | 
 | 	smp_wmb(); | 
 | 	cfs_rq->load_last_update_time_copy = sa->last_update_time; | 
 | #endif | 
 |  | 
 | 	if (update_freq && (decayed || removed_util)) | 
 | 		cfs_rq_util_change(cfs_rq); | 
 |  | 
 | 	return decayed || removed_load; | 
 | } | 
 |  | 
 | /* Update task and its cfs_rq load average */ | 
 | static inline void update_load_avg(struct sched_entity *se, int update_tg) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 	u64 now = cfs_rq_clock_task(cfs_rq); | 
 | 	struct rq *rq = rq_of(cfs_rq); | 
 | 	int cpu = cpu_of(rq); | 
 |  | 
 | 	/* | 
 | 	 * Track task load average for carrying it to new CPU after migrated, and | 
 | 	 * track group sched_entity load average for task_h_load calc in migration | 
 | 	 */ | 
 | 	__update_load_avg(now, cpu, &se->avg, | 
 | 			  se->on_rq * scale_load_down(se->load.weight), | 
 | 			  cfs_rq->curr == se, NULL); | 
 |  | 
 | 	if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg) | 
 | 		update_tg_load_avg(cfs_rq, 0); | 
 | } | 
 |  | 
 | /** | 
 |  * attach_entity_load_avg - attach this entity to its cfs_rq load avg | 
 |  * @cfs_rq: cfs_rq to attach to | 
 |  * @se: sched_entity to attach | 
 |  * | 
 |  * Must call update_cfs_rq_load_avg() before this, since we rely on | 
 |  * cfs_rq->avg.last_update_time being current. | 
 |  */ | 
 | static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	if (!sched_feat(ATTACH_AGE_LOAD)) | 
 | 		goto skip_aging; | 
 |  | 
 | 	/* | 
 | 	 * If we got migrated (either between CPUs or between cgroups) we'll | 
 | 	 * have aged the average right before clearing @last_update_time. | 
 | 	 * | 
 | 	 * Or we're fresh through post_init_entity_util_avg(). | 
 | 	 */ | 
 | 	if (se->avg.last_update_time) { | 
 | 		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), | 
 | 				  &se->avg, 0, 0, NULL); | 
 |  | 
 | 		/* | 
 | 		 * XXX: we could have just aged the entire load away if we've been | 
 | 		 * absent from the fair class for too long. | 
 | 		 */ | 
 | 	} | 
 |  | 
 | skip_aging: | 
 | 	se->avg.last_update_time = cfs_rq->avg.last_update_time; | 
 | 	cfs_rq->avg.load_avg += se->avg.load_avg; | 
 | 	cfs_rq->avg.load_sum += se->avg.load_sum; | 
 | 	cfs_rq->avg.util_avg += se->avg.util_avg; | 
 | 	cfs_rq->avg.util_sum += se->avg.util_sum; | 
 |  | 
 | 	cfs_rq_util_change(cfs_rq); | 
 | } | 
 |  | 
 | /** | 
 |  * detach_entity_load_avg - detach this entity from its cfs_rq load avg | 
 |  * @cfs_rq: cfs_rq to detach from | 
 |  * @se: sched_entity to detach | 
 |  * | 
 |  * Must call update_cfs_rq_load_avg() before this, since we rely on | 
 |  * cfs_rq->avg.last_update_time being current. | 
 |  */ | 
 | static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), | 
 | 			  &se->avg, se->on_rq * scale_load_down(se->load.weight), | 
 | 			  cfs_rq->curr == se, NULL); | 
 |  | 
 | 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); | 
 | 	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); | 
 | 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); | 
 | 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); | 
 |  | 
 | 	cfs_rq_util_change(cfs_rq); | 
 | } | 
 |  | 
 | /* Add the load generated by se into cfs_rq's load average */ | 
 | static inline void | 
 | enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	struct sched_avg *sa = &se->avg; | 
 | 	u64 now = cfs_rq_clock_task(cfs_rq); | 
 | 	int migrated, decayed; | 
 |  | 
 | 	migrated = !sa->last_update_time; | 
 | 	if (!migrated) { | 
 | 		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, | 
 | 			se->on_rq * scale_load_down(se->load.weight), | 
 | 			cfs_rq->curr == se, NULL); | 
 | 	} | 
 |  | 
 | 	decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated); | 
 |  | 
 | 	cfs_rq->runnable_load_avg += sa->load_avg; | 
 | 	cfs_rq->runnable_load_sum += sa->load_sum; | 
 |  | 
 | 	if (migrated) | 
 | 		attach_entity_load_avg(cfs_rq, se); | 
 |  | 
 | 	if (decayed || migrated) | 
 | 		update_tg_load_avg(cfs_rq, 0); | 
 | } | 
 |  | 
 | /* Remove the runnable load generated by se from cfs_rq's runnable load average */ | 
 | static inline void | 
 | dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	update_load_avg(se, 1); | 
 |  | 
 | 	cfs_rq->runnable_load_avg = | 
 | 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); | 
 | 	cfs_rq->runnable_load_sum = | 
 | 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0); | 
 | } | 
 |  | 
 | #ifndef CONFIG_64BIT | 
 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	u64 last_update_time_copy; | 
 | 	u64 last_update_time; | 
 |  | 
 | 	do { | 
 | 		last_update_time_copy = cfs_rq->load_last_update_time_copy; | 
 | 		smp_rmb(); | 
 | 		last_update_time = cfs_rq->avg.last_update_time; | 
 | 	} while (last_update_time != last_update_time_copy); | 
 |  | 
 | 	return last_update_time; | 
 | } | 
 | #else | 
 | static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_rq->avg.last_update_time; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Task first catches up with cfs_rq, and then subtract | 
 |  * itself from the cfs_rq (task must be off the queue now). | 
 |  */ | 
 | void remove_entity_load_avg(struct sched_entity *se) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 	u64 last_update_time; | 
 |  | 
 | 	/* | 
 | 	 * tasks cannot exit without having gone through wake_up_new_task() -> | 
 | 	 * post_init_entity_util_avg() which will have added things to the | 
 | 	 * cfs_rq, so we can remove unconditionally. | 
 | 	 * | 
 | 	 * Similarly for groups, they will have passed through | 
 | 	 * post_init_entity_util_avg() before unregister_sched_fair_group() | 
 | 	 * calls this. | 
 | 	 */ | 
 |  | 
 | 	last_update_time = cfs_rq_last_update_time(cfs_rq); | 
 |  | 
 | 	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); | 
 | 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); | 
 | 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); | 
 | } | 
 |  | 
 | static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_rq->runnable_load_avg; | 
 | } | 
 |  | 
 | static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_rq->avg.load_avg; | 
 | } | 
 |  | 
 | static int idle_balance(struct rq *this_rq); | 
 |  | 
 | #else /* CONFIG_SMP */ | 
 |  | 
 | static inline int | 
 | update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void update_load_avg(struct sched_entity *se, int not_used) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 	struct rq *rq = rq_of(cfs_rq); | 
 |  | 
 | 	cpufreq_trigger_update(rq_clock(rq)); | 
 | } | 
 |  | 
 | static inline void | 
 | enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | 
 | static inline void | 
 | dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | 
 | static inline void remove_entity_load_avg(struct sched_entity *se) {} | 
 |  | 
 | static inline void | 
 | attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | 
 | static inline void | 
 | detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} | 
 |  | 
 | static inline int idle_balance(struct rq *rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	struct task_struct *tsk = NULL; | 
 |  | 
 | 	if (entity_is_task(se)) | 
 | 		tsk = task_of(se); | 
 |  | 
 | 	if (se->statistics.sleep_start) { | 
 | 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; | 
 |  | 
 | 		if ((s64)delta < 0) | 
 | 			delta = 0; | 
 |  | 
 | 		if (unlikely(delta > se->statistics.sleep_max)) | 
 | 			se->statistics.sleep_max = delta; | 
 |  | 
 | 		se->statistics.sleep_start = 0; | 
 | 		se->statistics.sum_sleep_runtime += delta; | 
 |  | 
 | 		if (tsk) { | 
 | 			account_scheduler_latency(tsk, delta >> 10, 1); | 
 | 			trace_sched_stat_sleep(tsk, delta); | 
 | 		} | 
 | 	} | 
 | 	if (se->statistics.block_start) { | 
 | 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; | 
 |  | 
 | 		if ((s64)delta < 0) | 
 | 			delta = 0; | 
 |  | 
 | 		if (unlikely(delta > se->statistics.block_max)) | 
 | 			se->statistics.block_max = delta; | 
 |  | 
 | 		se->statistics.block_start = 0; | 
 | 		se->statistics.sum_sleep_runtime += delta; | 
 |  | 
 | 		if (tsk) { | 
 | 			if (tsk->in_iowait) { | 
 | 				se->statistics.iowait_sum += delta; | 
 | 				se->statistics.iowait_count++; | 
 | 				trace_sched_stat_iowait(tsk, delta); | 
 | 			} | 
 |  | 
 | 			trace_sched_stat_blocked(tsk, delta); | 
 |  | 
 | 			/* | 
 | 			 * Blocking time is in units of nanosecs, so shift by | 
 | 			 * 20 to get a milliseconds-range estimation of the | 
 | 			 * amount of time that the task spent sleeping: | 
 | 			 */ | 
 | 			if (unlikely(prof_on == SLEEP_PROFILING)) { | 
 | 				profile_hits(SLEEP_PROFILING, | 
 | 						(void *)get_wchan(tsk), | 
 | 						delta >> 20); | 
 | 			} | 
 | 			account_scheduler_latency(tsk, delta >> 10, 0); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | 	s64 d = se->vruntime - cfs_rq->min_vruntime; | 
 |  | 
 | 	if (d < 0) | 
 | 		d = -d; | 
 |  | 
 | 	if (d > 3*sysctl_sched_latency) | 
 | 		schedstat_inc(cfs_rq, nr_spread_over); | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | 
 | { | 
 | 	u64 vruntime = cfs_rq->min_vruntime; | 
 |  | 
 | 	/* | 
 | 	 * The 'current' period is already promised to the current tasks, | 
 | 	 * however the extra weight of the new task will slow them down a | 
 | 	 * little, place the new task so that it fits in the slot that | 
 | 	 * stays open at the end. | 
 | 	 */ | 
 | 	if (initial && sched_feat(START_DEBIT)) | 
 | 		vruntime += sched_vslice(cfs_rq, se); | 
 |  | 
 | 	/* sleeps up to a single latency don't count. */ | 
 | 	if (!initial) { | 
 | 		unsigned long thresh = sysctl_sched_latency; | 
 |  | 
 | 		/* | 
 | 		 * Halve their sleep time's effect, to allow | 
 | 		 * for a gentler effect of sleepers: | 
 | 		 */ | 
 | 		if (sched_feat(GENTLE_FAIR_SLEEPERS)) | 
 | 			thresh >>= 1; | 
 |  | 
 | 		vruntime -= thresh; | 
 | 	} | 
 |  | 
 | 	/* ensure we never gain time by being placed backwards. */ | 
 | 	se->vruntime = max_vruntime(se->vruntime, vruntime); | 
 | } | 
 |  | 
 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq); | 
 |  | 
 | static inline void check_schedstat_required(void) | 
 | { | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	if (schedstat_enabled()) | 
 | 		return; | 
 |  | 
 | 	/* Force schedstat enabled if a dependent tracepoint is active */ | 
 | 	if (trace_sched_stat_wait_enabled()    || | 
 | 			trace_sched_stat_sleep_enabled()   || | 
 | 			trace_sched_stat_iowait_enabled()  || | 
 | 			trace_sched_stat_blocked_enabled() || | 
 | 			trace_sched_stat_runtime_enabled())  { | 
 | 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " | 
 | 			     "stat_blocked and stat_runtime require the " | 
 | 			     "kernel parameter schedstats=enabled or " | 
 | 			     "kernel.sched_schedstats=1\n"); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * MIGRATION | 
 |  * | 
 |  *	dequeue | 
 |  *	  update_curr() | 
 |  *	    update_min_vruntime() | 
 |  *	  vruntime -= min_vruntime | 
 |  * | 
 |  *	enqueue | 
 |  *	  update_curr() | 
 |  *	    update_min_vruntime() | 
 |  *	  vruntime += min_vruntime | 
 |  * | 
 |  * this way the vruntime transition between RQs is done when both | 
 |  * min_vruntime are up-to-date. | 
 |  * | 
 |  * WAKEUP (remote) | 
 |  * | 
 |  *	->migrate_task_rq_fair() (p->state == TASK_WAKING) | 
 |  *	  vruntime -= min_vruntime | 
 |  * | 
 |  *	enqueue | 
 |  *	  update_curr() | 
 |  *	    update_min_vruntime() | 
 |  *	  vruntime += min_vruntime | 
 |  * | 
 |  * this way we don't have the most up-to-date min_vruntime on the originating | 
 |  * CPU and an up-to-date min_vruntime on the destination CPU. | 
 |  */ | 
 |  | 
 | static void | 
 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
 | { | 
 | 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); | 
 | 	bool curr = cfs_rq->curr == se; | 
 |  | 
 | 	/* | 
 | 	 * If we're the current task, we must renormalise before calling | 
 | 	 * update_curr(). | 
 | 	 */ | 
 | 	if (renorm && curr) | 
 | 		se->vruntime += cfs_rq->min_vruntime; | 
 |  | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | 	/* | 
 | 	 * Otherwise, renormalise after, such that we're placed at the current | 
 | 	 * moment in time, instead of some random moment in the past. Being | 
 | 	 * placed in the past could significantly boost this task to the | 
 | 	 * fairness detriment of existing tasks. | 
 | 	 */ | 
 | 	if (renorm && !curr) | 
 | 		se->vruntime += cfs_rq->min_vruntime; | 
 |  | 
 | 	enqueue_entity_load_avg(cfs_rq, se); | 
 | 	account_entity_enqueue(cfs_rq, se); | 
 | 	update_cfs_shares(cfs_rq); | 
 |  | 
 | 	if (flags & ENQUEUE_WAKEUP) { | 
 | 		place_entity(cfs_rq, se, 0); | 
 | 		if (schedstat_enabled()) | 
 | 			enqueue_sleeper(cfs_rq, se); | 
 | 	} | 
 |  | 
 | 	check_schedstat_required(); | 
 | 	if (schedstat_enabled()) { | 
 | 		update_stats_enqueue(cfs_rq, se); | 
 | 		check_spread(cfs_rq, se); | 
 | 	} | 
 | 	if (!curr) | 
 | 		__enqueue_entity(cfs_rq, se); | 
 | 	se->on_rq = 1; | 
 |  | 
 | 	if (cfs_rq->nr_running == 1) { | 
 | 		list_add_leaf_cfs_rq(cfs_rq); | 
 | 		check_enqueue_throttle(cfs_rq); | 
 | 	} | 
 | } | 
 |  | 
 | static void __clear_buddies_last(struct sched_entity *se) | 
 | { | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 		if (cfs_rq->last != se) | 
 | 			break; | 
 |  | 
 | 		cfs_rq->last = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void __clear_buddies_next(struct sched_entity *se) | 
 | { | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 		if (cfs_rq->next != se) | 
 | 			break; | 
 |  | 
 | 		cfs_rq->next = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void __clear_buddies_skip(struct sched_entity *se) | 
 | { | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 		if (cfs_rq->skip != se) | 
 | 			break; | 
 |  | 
 | 		cfs_rq->skip = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	if (cfs_rq->last == se) | 
 | 		__clear_buddies_last(se); | 
 |  | 
 | 	if (cfs_rq->next == se) | 
 | 		__clear_buddies_next(se); | 
 |  | 
 | 	if (cfs_rq->skip == se) | 
 | 		__clear_buddies_skip(se); | 
 | } | 
 |  | 
 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); | 
 |  | 
 | static void | 
 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 
 | { | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 | 	dequeue_entity_load_avg(cfs_rq, se); | 
 |  | 
 | 	if (schedstat_enabled()) | 
 | 		update_stats_dequeue(cfs_rq, se, flags); | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	if (se != cfs_rq->curr) | 
 | 		__dequeue_entity(cfs_rq, se); | 
 | 	se->on_rq = 0; | 
 | 	account_entity_dequeue(cfs_rq, se); | 
 |  | 
 | 	/* | 
 | 	 * Normalize the entity after updating the min_vruntime because the | 
 | 	 * update can refer to the ->curr item and we need to reflect this | 
 | 	 * movement in our normalized position. | 
 | 	 */ | 
 | 	if (!(flags & DEQUEUE_SLEEP)) | 
 | 		se->vruntime -= cfs_rq->min_vruntime; | 
 |  | 
 | 	/* return excess runtime on last dequeue */ | 
 | 	return_cfs_rq_runtime(cfs_rq); | 
 |  | 
 | 	update_min_vruntime(cfs_rq); | 
 | 	update_cfs_shares(cfs_rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Preempt the current task with a newly woken task if needed: | 
 |  */ | 
 | static void | 
 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
 | { | 
 | 	unsigned long ideal_runtime, delta_exec; | 
 | 	struct sched_entity *se; | 
 | 	s64 delta; | 
 |  | 
 | 	ideal_runtime = sched_slice(cfs_rq, curr); | 
 | 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | 
 | 	if (delta_exec > ideal_runtime) { | 
 | 		resched_curr(rq_of(cfs_rq)); | 
 | 		/* | 
 | 		 * The current task ran long enough, ensure it doesn't get | 
 | 		 * re-elected due to buddy favours. | 
 | 		 */ | 
 | 		clear_buddies(cfs_rq, curr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ensure that a task that missed wakeup preemption by a | 
 | 	 * narrow margin doesn't have to wait for a full slice. | 
 | 	 * This also mitigates buddy induced latencies under load. | 
 | 	 */ | 
 | 	if (delta_exec < sysctl_sched_min_granularity) | 
 | 		return; | 
 |  | 
 | 	se = __pick_first_entity(cfs_rq); | 
 | 	delta = curr->vruntime - se->vruntime; | 
 |  | 
 | 	if (delta < 0) | 
 | 		return; | 
 |  | 
 | 	if (delta > ideal_runtime) | 
 | 		resched_curr(rq_of(cfs_rq)); | 
 | } | 
 |  | 
 | static void | 
 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 
 | { | 
 | 	/* 'current' is not kept within the tree. */ | 
 | 	if (se->on_rq) { | 
 | 		/* | 
 | 		 * Any task has to be enqueued before it get to execute on | 
 | 		 * a CPU. So account for the time it spent waiting on the | 
 | 		 * runqueue. | 
 | 		 */ | 
 | 		if (schedstat_enabled()) | 
 | 			update_stats_wait_end(cfs_rq, se); | 
 | 		__dequeue_entity(cfs_rq, se); | 
 | 		update_load_avg(se, 1); | 
 | 	} | 
 |  | 
 | 	update_stats_curr_start(cfs_rq, se); | 
 | 	cfs_rq->curr = se; | 
 | #ifdef CONFIG_SCHEDSTATS | 
 | 	/* | 
 | 	 * Track our maximum slice length, if the CPU's load is at | 
 | 	 * least twice that of our own weight (i.e. dont track it | 
 | 	 * when there are only lesser-weight tasks around): | 
 | 	 */ | 
 | 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | 
 | 		se->statistics.slice_max = max(se->statistics.slice_max, | 
 | 			se->sum_exec_runtime - se->prev_sum_exec_runtime); | 
 | 	} | 
 | #endif | 
 | 	se->prev_sum_exec_runtime = se->sum_exec_runtime; | 
 | } | 
 |  | 
 | static int | 
 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | 
 |  | 
 | /* | 
 |  * Pick the next process, keeping these things in mind, in this order: | 
 |  * 1) keep things fair between processes/task groups | 
 |  * 2) pick the "next" process, since someone really wants that to run | 
 |  * 3) pick the "last" process, for cache locality | 
 |  * 4) do not run the "skip" process, if something else is available | 
 |  */ | 
 | static struct sched_entity * | 
 | pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 
 | { | 
 | 	struct sched_entity *left = __pick_first_entity(cfs_rq); | 
 | 	struct sched_entity *se; | 
 |  | 
 | 	/* | 
 | 	 * If curr is set we have to see if its left of the leftmost entity | 
 | 	 * still in the tree, provided there was anything in the tree at all. | 
 | 	 */ | 
 | 	if (!left || (curr && entity_before(curr, left))) | 
 | 		left = curr; | 
 |  | 
 | 	se = left; /* ideally we run the leftmost entity */ | 
 |  | 
 | 	/* | 
 | 	 * Avoid running the skip buddy, if running something else can | 
 | 	 * be done without getting too unfair. | 
 | 	 */ | 
 | 	if (cfs_rq->skip == se) { | 
 | 		struct sched_entity *second; | 
 |  | 
 | 		if (se == curr) { | 
 | 			second = __pick_first_entity(cfs_rq); | 
 | 		} else { | 
 | 			second = __pick_next_entity(se); | 
 | 			if (!second || (curr && entity_before(curr, second))) | 
 | 				second = curr; | 
 | 		} | 
 |  | 
 | 		if (second && wakeup_preempt_entity(second, left) < 1) | 
 | 			se = second; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Prefer last buddy, try to return the CPU to a preempted task. | 
 | 	 */ | 
 | 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) | 
 | 		se = cfs_rq->last; | 
 |  | 
 | 	/* | 
 | 	 * Someone really wants this to run. If it's not unfair, run it. | 
 | 	 */ | 
 | 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) | 
 | 		se = cfs_rq->next; | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	return se; | 
 | } | 
 |  | 
 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); | 
 |  | 
 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | 
 | { | 
 | 	/* | 
 | 	 * If still on the runqueue then deactivate_task() | 
 | 	 * was not called and update_curr() has to be done: | 
 | 	 */ | 
 | 	if (prev->on_rq) | 
 | 		update_curr(cfs_rq); | 
 |  | 
 | 	/* throttle cfs_rqs exceeding runtime */ | 
 | 	check_cfs_rq_runtime(cfs_rq); | 
 |  | 
 | 	if (schedstat_enabled()) { | 
 | 		check_spread(cfs_rq, prev); | 
 | 		if (prev->on_rq) | 
 | 			update_stats_wait_start(cfs_rq, prev); | 
 | 	} | 
 |  | 
 | 	if (prev->on_rq) { | 
 | 		/* Put 'current' back into the tree. */ | 
 | 		__enqueue_entity(cfs_rq, prev); | 
 | 		/* in !on_rq case, update occurred at dequeue */ | 
 | 		update_load_avg(prev, 0); | 
 | 	} | 
 | 	cfs_rq->curr = NULL; | 
 | } | 
 |  | 
 | static void | 
 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | 
 | { | 
 | 	/* | 
 | 	 * Update run-time statistics of the 'current'. | 
 | 	 */ | 
 | 	update_curr(cfs_rq); | 
 |  | 
 | 	/* | 
 | 	 * Ensure that runnable average is periodically updated. | 
 | 	 */ | 
 | 	update_load_avg(curr, 1); | 
 | 	update_cfs_shares(cfs_rq); | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | 	/* | 
 | 	 * queued ticks are scheduled to match the slice, so don't bother | 
 | 	 * validating it and just reschedule. | 
 | 	 */ | 
 | 	if (queued) { | 
 | 		resched_curr(rq_of(cfs_rq)); | 
 | 		return; | 
 | 	} | 
 | 	/* | 
 | 	 * don't let the period tick interfere with the hrtick preemption | 
 | 	 */ | 
 | 	if (!sched_feat(DOUBLE_TICK) && | 
 | 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	if (cfs_rq->nr_running > 1) | 
 | 		check_preempt_tick(cfs_rq, curr); | 
 | } | 
 |  | 
 |  | 
 | /************************************************** | 
 |  * CFS bandwidth control machinery | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_CFS_BANDWIDTH | 
 |  | 
 | #ifdef HAVE_JUMP_LABEL | 
 | static struct static_key __cfs_bandwidth_used; | 
 |  | 
 | static inline bool cfs_bandwidth_used(void) | 
 | { | 
 | 	return static_key_false(&__cfs_bandwidth_used); | 
 | } | 
 |  | 
 | void cfs_bandwidth_usage_inc(void) | 
 | { | 
 | 	static_key_slow_inc(&__cfs_bandwidth_used); | 
 | } | 
 |  | 
 | void cfs_bandwidth_usage_dec(void) | 
 | { | 
 | 	static_key_slow_dec(&__cfs_bandwidth_used); | 
 | } | 
 | #else /* HAVE_JUMP_LABEL */ | 
 | static bool cfs_bandwidth_used(void) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | void cfs_bandwidth_usage_inc(void) {} | 
 | void cfs_bandwidth_usage_dec(void) {} | 
 | #endif /* HAVE_JUMP_LABEL */ | 
 |  | 
 | /* | 
 |  * default period for cfs group bandwidth. | 
 |  * default: 0.1s, units: nanoseconds | 
 |  */ | 
 | static inline u64 default_cfs_period(void) | 
 | { | 
 | 	return 100000000ULL; | 
 | } | 
 |  | 
 | static inline u64 sched_cfs_bandwidth_slice(void) | 
 | { | 
 | 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; | 
 | } | 
 |  | 
 | /* | 
 |  * Replenish runtime according to assigned quota and update expiration time. | 
 |  * We use sched_clock_cpu directly instead of rq->clock to avoid adding | 
 |  * additional synchronization around rq->lock. | 
 |  * | 
 |  * requires cfs_b->lock | 
 |  */ | 
 | void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	u64 now; | 
 |  | 
 | 	if (cfs_b->quota == RUNTIME_INF) | 
 | 		return; | 
 |  | 
 | 	now = sched_clock_cpu(smp_processor_id()); | 
 | 	cfs_b->runtime = cfs_b->quota; | 
 | 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); | 
 | } | 
 |  | 
 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | 
 | { | 
 | 	return &tg->cfs_bandwidth; | 
 | } | 
 |  | 
 | /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ | 
 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (unlikely(cfs_rq->throttle_count)) | 
 | 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; | 
 |  | 
 | 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; | 
 | } | 
 |  | 
 | /* returns 0 on failure to allocate runtime */ | 
 | static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct task_group *tg = cfs_rq->tg; | 
 | 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); | 
 | 	u64 amount = 0, min_amount, expires; | 
 |  | 
 | 	/* note: this is a positive sum as runtime_remaining <= 0 */ | 
 | 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; | 
 |  | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	if (cfs_b->quota == RUNTIME_INF) | 
 | 		amount = min_amount; | 
 | 	else { | 
 | 		start_cfs_bandwidth(cfs_b); | 
 |  | 
 | 		if (cfs_b->runtime > 0) { | 
 | 			amount = min(cfs_b->runtime, min_amount); | 
 | 			cfs_b->runtime -= amount; | 
 | 			cfs_b->idle = 0; | 
 | 		} | 
 | 	} | 
 | 	expires = cfs_b->runtime_expires; | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 |  | 
 | 	cfs_rq->runtime_remaining += amount; | 
 | 	/* | 
 | 	 * we may have advanced our local expiration to account for allowed | 
 | 	 * spread between our sched_clock and the one on which runtime was | 
 | 	 * issued. | 
 | 	 */ | 
 | 	if ((s64)(expires - cfs_rq->runtime_expires) > 0) | 
 | 		cfs_rq->runtime_expires = expires; | 
 |  | 
 | 	return cfs_rq->runtime_remaining > 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Note: This depends on the synchronization provided by sched_clock and the | 
 |  * fact that rq->clock snapshots this value. | 
 |  */ | 
 | static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
 |  | 
 | 	/* if the deadline is ahead of our clock, nothing to do */ | 
 | 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) | 
 | 		return; | 
 |  | 
 | 	if (cfs_rq->runtime_remaining < 0) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If the local deadline has passed we have to consider the | 
 | 	 * possibility that our sched_clock is 'fast' and the global deadline | 
 | 	 * has not truly expired. | 
 | 	 * | 
 | 	 * Fortunately we can check determine whether this the case by checking | 
 | 	 * whether the global deadline has advanced. It is valid to compare | 
 | 	 * cfs_b->runtime_expires without any locks since we only care about | 
 | 	 * exact equality, so a partial write will still work. | 
 | 	 */ | 
 |  | 
 | 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { | 
 | 		/* extend local deadline, drift is bounded above by 2 ticks */ | 
 | 		cfs_rq->runtime_expires += TICK_NSEC; | 
 | 	} else { | 
 | 		/* global deadline is ahead, expiration has passed */ | 
 | 		cfs_rq->runtime_remaining = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) | 
 | { | 
 | 	/* dock delta_exec before expiring quota (as it could span periods) */ | 
 | 	cfs_rq->runtime_remaining -= delta_exec; | 
 | 	expire_cfs_rq_runtime(cfs_rq); | 
 |  | 
 | 	if (likely(cfs_rq->runtime_remaining > 0)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * if we're unable to extend our runtime we resched so that the active | 
 | 	 * hierarchy can be throttled | 
 | 	 */ | 
 | 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) | 
 | 		resched_curr(rq_of(cfs_rq)); | 
 | } | 
 |  | 
 | static __always_inline | 
 | void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) | 
 | { | 
 | 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) | 
 | 		return; | 
 |  | 
 | 	__account_cfs_rq_runtime(cfs_rq, delta_exec); | 
 | } | 
 |  | 
 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_bandwidth_used() && cfs_rq->throttled; | 
 | } | 
 |  | 
 | /* check whether cfs_rq, or any parent, is throttled */ | 
 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return cfs_bandwidth_used() && cfs_rq->throttle_count; | 
 | } | 
 |  | 
 | /* | 
 |  * Ensure that neither of the group entities corresponding to src_cpu or | 
 |  * dest_cpu are members of a throttled hierarchy when performing group | 
 |  * load-balance operations. | 
 |  */ | 
 | static inline int throttled_lb_pair(struct task_group *tg, | 
 | 				    int src_cpu, int dest_cpu) | 
 | { | 
 | 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq; | 
 |  | 
 | 	src_cfs_rq = tg->cfs_rq[src_cpu]; | 
 | 	dest_cfs_rq = tg->cfs_rq[dest_cpu]; | 
 |  | 
 | 	return throttled_hierarchy(src_cfs_rq) || | 
 | 	       throttled_hierarchy(dest_cfs_rq); | 
 | } | 
 |  | 
 | /* updated child weight may affect parent so we have to do this bottom up */ | 
 | static int tg_unthrottle_up(struct task_group *tg, void *data) | 
 | { | 
 | 	struct rq *rq = data; | 
 | 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
 |  | 
 | 	cfs_rq->throttle_count--; | 
 | 	if (!cfs_rq->throttle_count) { | 
 | 		/* adjust cfs_rq_clock_task() */ | 
 | 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - | 
 | 					     cfs_rq->throttled_clock_task; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tg_throttle_down(struct task_group *tg, void *data) | 
 | { | 
 | 	struct rq *rq = data; | 
 | 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; | 
 |  | 
 | 	/* group is entering throttled state, stop time */ | 
 | 	if (!cfs_rq->throttle_count) | 
 | 		cfs_rq->throttled_clock_task = rq_clock_task(rq); | 
 | 	cfs_rq->throttle_count++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void throttle_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rq *rq = rq_of(cfs_rq); | 
 | 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
 | 	struct sched_entity *se; | 
 | 	long task_delta, dequeue = 1; | 
 | 	bool empty; | 
 |  | 
 | 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; | 
 |  | 
 | 	/* freeze hierarchy runnable averages while throttled */ | 
 | 	rcu_read_lock(); | 
 | 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	task_delta = cfs_rq->h_nr_running; | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *qcfs_rq = cfs_rq_of(se); | 
 | 		/* throttled entity or throttle-on-deactivate */ | 
 | 		if (!se->on_rq) | 
 | 			break; | 
 |  | 
 | 		if (dequeue) | 
 | 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); | 
 | 		qcfs_rq->h_nr_running -= task_delta; | 
 |  | 
 | 		if (qcfs_rq->load.weight) | 
 | 			dequeue = 0; | 
 | 	} | 
 |  | 
 | 	if (!se) | 
 | 		sub_nr_running(rq, task_delta); | 
 |  | 
 | 	cfs_rq->throttled = 1; | 
 | 	cfs_rq->throttled_clock = rq_clock(rq); | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	empty = list_empty(&cfs_b->throttled_cfs_rq); | 
 |  | 
 | 	/* | 
 | 	 * Add to the _head_ of the list, so that an already-started | 
 | 	 * distribute_cfs_runtime will not see us | 
 | 	 */ | 
 | 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); | 
 |  | 
 | 	/* | 
 | 	 * If we're the first throttled task, make sure the bandwidth | 
 | 	 * timer is running. | 
 | 	 */ | 
 | 	if (empty) | 
 | 		start_cfs_bandwidth(cfs_b); | 
 |  | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 | } | 
 |  | 
 | void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rq *rq = rq_of(cfs_rq); | 
 | 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
 | 	struct sched_entity *se; | 
 | 	int enqueue = 1; | 
 | 	long task_delta; | 
 |  | 
 | 	se = cfs_rq->tg->se[cpu_of(rq)]; | 
 |  | 
 | 	cfs_rq->throttled = 0; | 
 |  | 
 | 	update_rq_clock(rq); | 
 |  | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; | 
 | 	list_del_rcu(&cfs_rq->throttled_list); | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 |  | 
 | 	/* update hierarchical throttle state */ | 
 | 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); | 
 |  | 
 | 	if (!cfs_rq->load.weight) | 
 | 		return; | 
 |  | 
 | 	task_delta = cfs_rq->h_nr_running; | 
 | 	for_each_sched_entity(se) { | 
 | 		if (se->on_rq) | 
 | 			enqueue = 0; | 
 |  | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		if (enqueue) | 
 | 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); | 
 | 		cfs_rq->h_nr_running += task_delta; | 
 |  | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!se) | 
 | 		add_nr_running(rq, task_delta); | 
 |  | 
 | 	/* determine whether we need to wake up potentially idle cpu */ | 
 | 	if (rq->curr == rq->idle && rq->cfs.nr_running) | 
 | 		resched_curr(rq); | 
 | } | 
 |  | 
 | static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, | 
 | 		u64 remaining, u64 expires) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	u64 runtime; | 
 | 	u64 starting_runtime = remaining; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, | 
 | 				throttled_list) { | 
 | 		struct rq *rq = rq_of(cfs_rq); | 
 |  | 
 | 		raw_spin_lock(&rq->lock); | 
 | 		if (!cfs_rq_throttled(cfs_rq)) | 
 | 			goto next; | 
 |  | 
 | 		runtime = -cfs_rq->runtime_remaining + 1; | 
 | 		if (runtime > remaining) | 
 | 			runtime = remaining; | 
 | 		remaining -= runtime; | 
 |  | 
 | 		cfs_rq->runtime_remaining += runtime; | 
 | 		cfs_rq->runtime_expires = expires; | 
 |  | 
 | 		/* we check whether we're throttled above */ | 
 | 		if (cfs_rq->runtime_remaining > 0) | 
 | 			unthrottle_cfs_rq(cfs_rq); | 
 |  | 
 | next: | 
 | 		raw_spin_unlock(&rq->lock); | 
 |  | 
 | 		if (!remaining) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return starting_runtime - remaining; | 
 | } | 
 |  | 
 | /* | 
 |  * Responsible for refilling a task_group's bandwidth and unthrottling its | 
 |  * cfs_rqs as appropriate. If there has been no activity within the last | 
 |  * period the timer is deactivated until scheduling resumes; cfs_b->idle is | 
 |  * used to track this state. | 
 |  */ | 
 | static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) | 
 | { | 
 | 	u64 runtime, runtime_expires; | 
 | 	int throttled; | 
 |  | 
 | 	/* no need to continue the timer with no bandwidth constraint */ | 
 | 	if (cfs_b->quota == RUNTIME_INF) | 
 | 		goto out_deactivate; | 
 |  | 
 | 	throttled = !list_empty(&cfs_b->throttled_cfs_rq); | 
 | 	cfs_b->nr_periods += overrun; | 
 |  | 
 | 	/* | 
 | 	 * idle depends on !throttled (for the case of a large deficit), and if | 
 | 	 * we're going inactive then everything else can be deferred | 
 | 	 */ | 
 | 	if (cfs_b->idle && !throttled) | 
 | 		goto out_deactivate; | 
 |  | 
 | 	__refill_cfs_bandwidth_runtime(cfs_b); | 
 |  | 
 | 	if (!throttled) { | 
 | 		/* mark as potentially idle for the upcoming period */ | 
 | 		cfs_b->idle = 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* account preceding periods in which throttling occurred */ | 
 | 	cfs_b->nr_throttled += overrun; | 
 |  | 
 | 	runtime_expires = cfs_b->runtime_expires; | 
 |  | 
 | 	/* | 
 | 	 * This check is repeated as we are holding onto the new bandwidth while | 
 | 	 * we unthrottle. This can potentially race with an unthrottled group | 
 | 	 * trying to acquire new bandwidth from the global pool. This can result | 
 | 	 * in us over-using our runtime if it is all used during this loop, but | 
 | 	 * only by limited amounts in that extreme case. | 
 | 	 */ | 
 | 	while (throttled && cfs_b->runtime > 0) { | 
 | 		runtime = cfs_b->runtime; | 
 | 		raw_spin_unlock(&cfs_b->lock); | 
 | 		/* we can't nest cfs_b->lock while distributing bandwidth */ | 
 | 		runtime = distribute_cfs_runtime(cfs_b, runtime, | 
 | 						 runtime_expires); | 
 | 		raw_spin_lock(&cfs_b->lock); | 
 |  | 
 | 		throttled = !list_empty(&cfs_b->throttled_cfs_rq); | 
 |  | 
 | 		cfs_b->runtime -= min(runtime, cfs_b->runtime); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * While we are ensured activity in the period following an | 
 | 	 * unthrottle, this also covers the case in which the new bandwidth is | 
 | 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the | 
 | 	 * timer to remain active while there are any throttled entities.) | 
 | 	 */ | 
 | 	cfs_b->idle = 0; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_deactivate: | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* a cfs_rq won't donate quota below this amount */ | 
 | static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; | 
 | /* minimum remaining period time to redistribute slack quota */ | 
 | static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; | 
 | /* how long we wait to gather additional slack before distributing */ | 
 | static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; | 
 |  | 
 | /* | 
 |  * Are we near the end of the current quota period? | 
 |  * | 
 |  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the | 
 |  * hrtimer base being cleared by hrtimer_start. In the case of | 
 |  * migrate_hrtimers, base is never cleared, so we are fine. | 
 |  */ | 
 | static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) | 
 | { | 
 | 	struct hrtimer *refresh_timer = &cfs_b->period_timer; | 
 | 	u64 remaining; | 
 |  | 
 | 	/* if the call-back is running a quota refresh is already occurring */ | 
 | 	if (hrtimer_callback_running(refresh_timer)) | 
 | 		return 1; | 
 |  | 
 | 	/* is a quota refresh about to occur? */ | 
 | 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); | 
 | 	if (remaining < min_expire) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; | 
 |  | 
 | 	/* if there's a quota refresh soon don't bother with slack */ | 
 | 	if (runtime_refresh_within(cfs_b, min_left)) | 
 | 		return; | 
 |  | 
 | 	hrtimer_start(&cfs_b->slack_timer, | 
 | 			ns_to_ktime(cfs_bandwidth_slack_period), | 
 | 			HRTIMER_MODE_REL); | 
 | } | 
 |  | 
 | /* we know any runtime found here is valid as update_curr() precedes return */ | 
 | static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); | 
 | 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; | 
 |  | 
 | 	if (slack_runtime <= 0) | 
 | 		return; | 
 |  | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	if (cfs_b->quota != RUNTIME_INF && | 
 | 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) { | 
 | 		cfs_b->runtime += slack_runtime; | 
 |  | 
 | 		/* we are under rq->lock, defer unthrottling using a timer */ | 
 | 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() && | 
 | 		    !list_empty(&cfs_b->throttled_cfs_rq)) | 
 | 			start_cfs_slack_bandwidth(cfs_b); | 
 | 	} | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 |  | 
 | 	/* even if it's not valid for return we don't want to try again */ | 
 | 	cfs_rq->runtime_remaining -= slack_runtime; | 
 | } | 
 |  | 
 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (!cfs_bandwidth_used()) | 
 | 		return; | 
 |  | 
 | 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) | 
 | 		return; | 
 |  | 
 | 	__return_cfs_rq_runtime(cfs_rq); | 
 | } | 
 |  | 
 | /* | 
 |  * This is done with a timer (instead of inline with bandwidth return) since | 
 |  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. | 
 |  */ | 
 | static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); | 
 | 	u64 expires; | 
 |  | 
 | 	/* confirm we're still not at a refresh boundary */ | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { | 
 | 		raw_spin_unlock(&cfs_b->lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) | 
 | 		runtime = cfs_b->runtime; | 
 |  | 
 | 	expires = cfs_b->runtime_expires; | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 |  | 
 | 	if (!runtime) | 
 | 		return; | 
 |  | 
 | 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires); | 
 |  | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	if (expires == cfs_b->runtime_expires) | 
 | 		cfs_b->runtime -= min(runtime, cfs_b->runtime); | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * When a group wakes up we want to make sure that its quota is not already | 
 |  * expired/exceeded, otherwise it may be allowed to steal additional ticks of | 
 |  * runtime as update_curr() throttling can not not trigger until it's on-rq. | 
 |  */ | 
 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (!cfs_bandwidth_used()) | 
 | 		return; | 
 |  | 
 | 	/* an active group must be handled by the update_curr()->put() path */ | 
 | 	if (!cfs_rq->runtime_enabled || cfs_rq->curr) | 
 | 		return; | 
 |  | 
 | 	/* ensure the group is not already throttled */ | 
 | 	if (cfs_rq_throttled(cfs_rq)) | 
 | 		return; | 
 |  | 
 | 	/* update runtime allocation */ | 
 | 	account_cfs_rq_runtime(cfs_rq, 0); | 
 | 	if (cfs_rq->runtime_remaining <= 0) | 
 | 		throttle_cfs_rq(cfs_rq); | 
 | } | 
 |  | 
 | static void sync_throttle(struct task_group *tg, int cpu) | 
 | { | 
 | 	struct cfs_rq *pcfs_rq, *cfs_rq; | 
 |  | 
 | 	if (!cfs_bandwidth_used()) | 
 | 		return; | 
 |  | 
 | 	if (!tg->parent) | 
 | 		return; | 
 |  | 
 | 	cfs_rq = tg->cfs_rq[cpu]; | 
 | 	pcfs_rq = tg->parent->cfs_rq[cpu]; | 
 |  | 
 | 	cfs_rq->throttle_count = pcfs_rq->throttle_count; | 
 | 	pcfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); | 
 | } | 
 |  | 
 | /* conditionally throttle active cfs_rq's from put_prev_entity() */ | 
 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	if (!cfs_bandwidth_used()) | 
 | 		return false; | 
 |  | 
 | 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * it's possible for a throttled entity to be forced into a running | 
 | 	 * state (e.g. set_curr_task), in this case we're finished. | 
 | 	 */ | 
 | 	if (cfs_rq_throttled(cfs_rq)) | 
 | 		return true; | 
 |  | 
 | 	throttle_cfs_rq(cfs_rq); | 
 | 	return true; | 
 | } | 
 |  | 
 | static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) | 
 | { | 
 | 	struct cfs_bandwidth *cfs_b = | 
 | 		container_of(timer, struct cfs_bandwidth, slack_timer); | 
 |  | 
 | 	do_sched_cfs_slack_timer(cfs_b); | 
 |  | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) | 
 | { | 
 | 	struct cfs_bandwidth *cfs_b = | 
 | 		container_of(timer, struct cfs_bandwidth, period_timer); | 
 | 	int overrun; | 
 | 	int idle = 0; | 
 |  | 
 | 	raw_spin_lock(&cfs_b->lock); | 
 | 	for (;;) { | 
 | 		overrun = hrtimer_forward_now(timer, cfs_b->period); | 
 | 		if (!overrun) | 
 | 			break; | 
 |  | 
 | 		idle = do_sched_cfs_period_timer(cfs_b, overrun); | 
 | 	} | 
 | 	if (idle) | 
 | 		cfs_b->period_active = 0; | 
 | 	raw_spin_unlock(&cfs_b->lock); | 
 |  | 
 | 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 
 | } | 
 |  | 
 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	raw_spin_lock_init(&cfs_b->lock); | 
 | 	cfs_b->runtime = 0; | 
 | 	cfs_b->quota = RUNTIME_INF; | 
 | 	cfs_b->period = ns_to_ktime(default_cfs_period()); | 
 |  | 
 | 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); | 
 | 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); | 
 | 	cfs_b->period_timer.function = sched_cfs_period_timer; | 
 | 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
 | 	cfs_b->slack_timer.function = sched_cfs_slack_timer; | 
 | } | 
 |  | 
 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	cfs_rq->runtime_enabled = 0; | 
 | 	INIT_LIST_HEAD(&cfs_rq->throttled_list); | 
 | } | 
 |  | 
 | void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	lockdep_assert_held(&cfs_b->lock); | 
 |  | 
 | 	if (!cfs_b->period_active) { | 
 | 		cfs_b->period_active = 1; | 
 | 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); | 
 | 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); | 
 | 	} | 
 | } | 
 |  | 
 | static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) | 
 | { | 
 | 	/* init_cfs_bandwidth() was not called */ | 
 | 	if (!cfs_b->throttled_cfs_rq.next) | 
 | 		return; | 
 |  | 
 | 	hrtimer_cancel(&cfs_b->period_timer); | 
 | 	hrtimer_cancel(&cfs_b->slack_timer); | 
 | } | 
 |  | 
 | static void __maybe_unused update_runtime_enabled(struct rq *rq) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	for_each_leaf_cfs_rq(rq, cfs_rq) { | 
 | 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; | 
 |  | 
 | 		raw_spin_lock(&cfs_b->lock); | 
 | 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; | 
 | 		raw_spin_unlock(&cfs_b->lock); | 
 | 	} | 
 | } | 
 |  | 
 | static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	for_each_leaf_cfs_rq(rq, cfs_rq) { | 
 | 		if (!cfs_rq->runtime_enabled) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * clock_task is not advancing so we just need to make sure | 
 | 		 * there's some valid quota amount | 
 | 		 */ | 
 | 		cfs_rq->runtime_remaining = 1; | 
 | 		/* | 
 | 		 * Offline rq is schedulable till cpu is completely disabled | 
 | 		 * in take_cpu_down(), so we prevent new cfs throttling here. | 
 | 		 */ | 
 | 		cfs_rq->runtime_enabled = 0; | 
 |  | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			unthrottle_cfs_rq(cfs_rq); | 
 | 	} | 
 | } | 
 |  | 
 | #else /* CONFIG_CFS_BANDWIDTH */ | 
 | static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return rq_clock_task(rq_of(cfs_rq)); | 
 | } | 
 |  | 
 | static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} | 
 | static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } | 
 | static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} | 
 | static inline void sync_throttle(struct task_group *tg, int cpu) {} | 
 | static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
 |  | 
 | static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int throttled_lb_pair(struct task_group *tg, | 
 | 				    int src_cpu, int dest_cpu) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} | 
 | #endif | 
 |  | 
 | static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} | 
 | static inline void update_runtime_enabled(struct rq *rq) {} | 
 | static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} | 
 |  | 
 | #endif /* CONFIG_CFS_BANDWIDTH */ | 
 |  | 
 | /************************************************** | 
 |  * CFS operations on tasks: | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_SCHED_HRTICK | 
 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 |  | 
 | 	WARN_ON(task_rq(p) != rq); | 
 |  | 
 | 	if (cfs_rq->nr_running > 1) { | 
 | 		u64 slice = sched_slice(cfs_rq, se); | 
 | 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 
 | 		s64 delta = slice - ran; | 
 |  | 
 | 		if (delta < 0) { | 
 | 			if (rq->curr == p) | 
 | 				resched_curr(rq); | 
 | 			return; | 
 | 		} | 
 | 		hrtick_start(rq, delta); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * called from enqueue/dequeue and updates the hrtick when the | 
 |  * current task is from our class and nr_running is low enough | 
 |  * to matter. | 
 |  */ | 
 | static void hrtick_update(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 |  | 
 | 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) | 
 | 		return; | 
 |  | 
 | 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | 
 | 		hrtick_start_fair(rq, curr); | 
 | } | 
 | #else /* !CONFIG_SCHED_HRTICK */ | 
 | static inline void | 
 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | } | 
 |  | 
 | static inline void hrtick_update(struct rq *rq) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * The enqueue_task method is called before nr_running is | 
 |  * increased. Here we update the fair scheduling stats and | 
 |  * then put the task into the rbtree: | 
 |  */ | 
 | static void | 
 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &p->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		if (se->on_rq) | 
 | 			break; | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		enqueue_entity(cfs_rq, se, flags); | 
 |  | 
 | 		/* | 
 | 		 * end evaluation on encountering a throttled cfs_rq | 
 | 		 * | 
 | 		 * note: in the case of encountering a throttled cfs_rq we will | 
 | 		 * post the final h_nr_running increment below. | 
 | 		 */ | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			break; | 
 | 		cfs_rq->h_nr_running++; | 
 |  | 
 | 		flags = ENQUEUE_WAKEUP; | 
 | 	} | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		cfs_rq->h_nr_running++; | 
 |  | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			break; | 
 |  | 
 | 		update_load_avg(se, 1); | 
 | 		update_cfs_shares(cfs_rq); | 
 | 	} | 
 |  | 
 | 	if (!se) | 
 | 		add_nr_running(rq, 1); | 
 |  | 
 | 	hrtick_update(rq); | 
 | } | 
 |  | 
 | static void set_next_buddy(struct sched_entity *se); | 
 |  | 
 | /* | 
 |  * The dequeue_task method is called before nr_running is | 
 |  * decreased. We remove the task from the rbtree and | 
 |  * update the fair scheduling stats: | 
 |  */ | 
 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &p->se; | 
 | 	int task_sleep = flags & DEQUEUE_SLEEP; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		dequeue_entity(cfs_rq, se, flags); | 
 |  | 
 | 		/* | 
 | 		 * end evaluation on encountering a throttled cfs_rq | 
 | 		 * | 
 | 		 * note: in the case of encountering a throttled cfs_rq we will | 
 | 		 * post the final h_nr_running decrement below. | 
 | 		*/ | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			break; | 
 | 		cfs_rq->h_nr_running--; | 
 |  | 
 | 		/* Don't dequeue parent if it has other entities besides us */ | 
 | 		if (cfs_rq->load.weight) { | 
 | 			/* Avoid re-evaluating load for this entity: */ | 
 | 			se = parent_entity(se); | 
 | 			/* | 
 | 			 * Bias pick_next to pick a task from this cfs_rq, as | 
 | 			 * p is sleeping when it is within its sched_slice. | 
 | 			 */ | 
 | 			if (task_sleep && se && !throttled_hierarchy(cfs_rq)) | 
 | 				set_next_buddy(se); | 
 | 			break; | 
 | 		} | 
 | 		flags |= DEQUEUE_SLEEP; | 
 | 	} | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		cfs_rq->h_nr_running--; | 
 |  | 
 | 		if (cfs_rq_throttled(cfs_rq)) | 
 | 			break; | 
 |  | 
 | 		update_load_avg(se, 1); | 
 | 		update_cfs_shares(cfs_rq); | 
 | 	} | 
 |  | 
 | 	if (!se) | 
 | 		sub_nr_running(rq, 1); | 
 |  | 
 | 	hrtick_update(rq); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | /* | 
 |  * per rq 'load' arrray crap; XXX kill this. | 
 |  */ | 
 |  | 
 | /* | 
 |  * The exact cpuload calculated at every tick would be: | 
 |  * | 
 |  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load | 
 |  * | 
 |  * If a cpu misses updates for n ticks (as it was idle) and update gets | 
 |  * called on the n+1-th tick when cpu may be busy, then we have: | 
 |  * | 
 |  *   load_n   = (1 - 1/2^i)^n * load_0 | 
 |  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load | 
 |  * | 
 |  * decay_load_missed() below does efficient calculation of | 
 |  * | 
 |  *   load' = (1 - 1/2^i)^n * load | 
 |  * | 
 |  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. | 
 |  * This allows us to precompute the above in said factors, thereby allowing the | 
 |  * reduction of an arbitrary n in O(log_2 n) steps. (See also | 
 |  * fixed_power_int()) | 
 |  * | 
 |  * The calculation is approximated on a 128 point scale. | 
 |  */ | 
 | #define DEGRADE_SHIFT		7 | 
 |  | 
 | static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; | 
 | static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { | 
 | 	{   0,   0,  0,  0,  0,  0, 0, 0 }, | 
 | 	{  64,  32,  8,  0,  0,  0, 0, 0 }, | 
 | 	{  96,  72, 40, 12,  1,  0, 0, 0 }, | 
 | 	{ 112,  98, 75, 43, 15,  1, 0, 0 }, | 
 | 	{ 120, 112, 98, 76, 45, 16, 2, 0 } | 
 | }; | 
 |  | 
 | /* | 
 |  * Update cpu_load for any missed ticks, due to tickless idle. The backlog | 
 |  * would be when CPU is idle and so we just decay the old load without | 
 |  * adding any new load. | 
 |  */ | 
 | static unsigned long | 
 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) | 
 | { | 
 | 	int j = 0; | 
 |  | 
 | 	if (!missed_updates) | 
 | 		return load; | 
 |  | 
 | 	if (missed_updates >= degrade_zero_ticks[idx]) | 
 | 		return 0; | 
 |  | 
 | 	if (idx == 1) | 
 | 		return load >> missed_updates; | 
 |  | 
 | 	while (missed_updates) { | 
 | 		if (missed_updates % 2) | 
 | 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; | 
 |  | 
 | 		missed_updates >>= 1; | 
 | 		j++; | 
 | 	} | 
 | 	return load; | 
 | } | 
 | #endif /* CONFIG_NO_HZ_COMMON */ | 
 |  | 
 | /** | 
 |  * __cpu_load_update - update the rq->cpu_load[] statistics | 
 |  * @this_rq: The rq to update statistics for | 
 |  * @this_load: The current load | 
 |  * @pending_updates: The number of missed updates | 
 |  * | 
 |  * Update rq->cpu_load[] statistics. This function is usually called every | 
 |  * scheduler tick (TICK_NSEC). | 
 |  * | 
 |  * This function computes a decaying average: | 
 |  * | 
 |  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load | 
 |  * | 
 |  * Because of NOHZ it might not get called on every tick which gives need for | 
 |  * the @pending_updates argument. | 
 |  * | 
 |  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 | 
 |  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load | 
 |  *             = A * (A * load[i]_n-2 + B) + B | 
 |  *             = A * (A * (A * load[i]_n-3 + B) + B) + B | 
 |  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B | 
 |  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B | 
 |  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B | 
 |  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load | 
 |  * | 
 |  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as | 
 |  * any change in load would have resulted in the tick being turned back on. | 
 |  * | 
 |  * For regular NOHZ, this reduces to: | 
 |  * | 
 |  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0 | 
 |  * | 
 |  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra | 
 |  * term. | 
 |  */ | 
 | static void cpu_load_update(struct rq *this_rq, unsigned long this_load, | 
 | 			    unsigned long pending_updates) | 
 | { | 
 | 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; | 
 | 	int i, scale; | 
 |  | 
 | 	this_rq->nr_load_updates++; | 
 |  | 
 | 	/* Update our load: */ | 
 | 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ | 
 | 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | 
 | 		unsigned long old_load, new_load; | 
 |  | 
 | 		/* scale is effectively 1 << i now, and >> i divides by scale */ | 
 |  | 
 | 		old_load = this_rq->cpu_load[i]; | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | 		old_load = decay_load_missed(old_load, pending_updates - 1, i); | 
 | 		if (tickless_load) { | 
 | 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); | 
 | 			/* | 
 | 			 * old_load can never be a negative value because a | 
 | 			 * decayed tickless_load cannot be greater than the | 
 | 			 * original tickless_load. | 
 | 			 */ | 
 | 			old_load += tickless_load; | 
 | 		} | 
 | #endif | 
 | 		new_load = this_load; | 
 | 		/* | 
 | 		 * Round up the averaging division if load is increasing. This | 
 | 		 * prevents us from getting stuck on 9 if the load is 10, for | 
 | 		 * example. | 
 | 		 */ | 
 | 		if (new_load > old_load) | 
 | 			new_load += scale - 1; | 
 |  | 
 | 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; | 
 | 	} | 
 |  | 
 | 	sched_avg_update(this_rq); | 
 | } | 
 |  | 
 | /* Used instead of source_load when we know the type == 0 */ | 
 | static unsigned long weighted_cpuload(const int cpu) | 
 | { | 
 | 	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | /* | 
 |  * There is no sane way to deal with nohz on smp when using jiffies because the | 
 |  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading | 
 |  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. | 
 |  * | 
 |  * Therefore we need to avoid the delta approach from the regular tick when | 
 |  * possible since that would seriously skew the load calculation. This is why we | 
 |  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on | 
 |  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle | 
 |  * loop exit, nohz_idle_balance, nohz full exit...) | 
 |  * | 
 |  * This means we might still be one tick off for nohz periods. | 
 |  */ | 
 |  | 
 | static void cpu_load_update_nohz(struct rq *this_rq, | 
 | 				 unsigned long curr_jiffies, | 
 | 				 unsigned long load) | 
 | { | 
 | 	unsigned long pending_updates; | 
 |  | 
 | 	pending_updates = curr_jiffies - this_rq->last_load_update_tick; | 
 | 	if (pending_updates) { | 
 | 		this_rq->last_load_update_tick = curr_jiffies; | 
 | 		/* | 
 | 		 * In the regular NOHZ case, we were idle, this means load 0. | 
 | 		 * In the NOHZ_FULL case, we were non-idle, we should consider | 
 | 		 * its weighted load. | 
 | 		 */ | 
 | 		cpu_load_update(this_rq, load, pending_updates); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called from nohz_idle_balance() to update the load ratings before doing the | 
 |  * idle balance. | 
 |  */ | 
 | static void cpu_load_update_idle(struct rq *this_rq) | 
 | { | 
 | 	/* | 
 | 	 * bail if there's load or we're actually up-to-date. | 
 | 	 */ | 
 | 	if (weighted_cpuload(cpu_of(this_rq))) | 
 | 		return; | 
 |  | 
 | 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Record CPU load on nohz entry so we know the tickless load to account | 
 |  * on nohz exit. cpu_load[0] happens then to be updated more frequently | 
 |  * than other cpu_load[idx] but it should be fine as cpu_load readers | 
 |  * shouldn't rely into synchronized cpu_load[*] updates. | 
 |  */ | 
 | void cpu_load_update_nohz_start(void) | 
 | { | 
 | 	struct rq *this_rq = this_rq(); | 
 |  | 
 | 	/* | 
 | 	 * This is all lockless but should be fine. If weighted_cpuload changes | 
 | 	 * concurrently we'll exit nohz. And cpu_load write can race with | 
 | 	 * cpu_load_update_idle() but both updater would be writing the same. | 
 | 	 */ | 
 | 	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq)); | 
 | } | 
 |  | 
 | /* | 
 |  * Account the tickless load in the end of a nohz frame. | 
 |  */ | 
 | void cpu_load_update_nohz_stop(void) | 
 | { | 
 | 	unsigned long curr_jiffies = READ_ONCE(jiffies); | 
 | 	struct rq *this_rq = this_rq(); | 
 | 	unsigned long load; | 
 |  | 
 | 	if (curr_jiffies == this_rq->last_load_update_tick) | 
 | 		return; | 
 |  | 
 | 	load = weighted_cpuload(cpu_of(this_rq)); | 
 | 	raw_spin_lock(&this_rq->lock); | 
 | 	update_rq_clock(this_rq); | 
 | 	cpu_load_update_nohz(this_rq, curr_jiffies, load); | 
 | 	raw_spin_unlock(&this_rq->lock); | 
 | } | 
 | #else /* !CONFIG_NO_HZ_COMMON */ | 
 | static inline void cpu_load_update_nohz(struct rq *this_rq, | 
 | 					unsigned long curr_jiffies, | 
 | 					unsigned long load) { } | 
 | #endif /* CONFIG_NO_HZ_COMMON */ | 
 |  | 
 | static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) | 
 | { | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | 	/* See the mess around cpu_load_update_nohz(). */ | 
 | 	this_rq->last_load_update_tick = READ_ONCE(jiffies); | 
 | #endif | 
 | 	cpu_load_update(this_rq, load, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from scheduler_tick() | 
 |  */ | 
 | void cpu_load_update_active(struct rq *this_rq) | 
 | { | 
 | 	unsigned long load = weighted_cpuload(cpu_of(this_rq)); | 
 |  | 
 | 	if (tick_nohz_tick_stopped()) | 
 | 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); | 
 | 	else | 
 | 		cpu_load_update_periodic(this_rq, load); | 
 | } | 
 |  | 
 | /* | 
 |  * Return a low guess at the load of a migration-source cpu weighted | 
 |  * according to the scheduling class and "nice" value. | 
 |  * | 
 |  * We want to under-estimate the load of migration sources, to | 
 |  * balance conservatively. | 
 |  */ | 
 | static unsigned long source_load(int cpu, int type) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long total = weighted_cpuload(cpu); | 
 |  | 
 | 	if (type == 0 || !sched_feat(LB_BIAS)) | 
 | 		return total; | 
 |  | 
 | 	return min(rq->cpu_load[type-1], total); | 
 | } | 
 |  | 
 | /* | 
 |  * Return a high guess at the load of a migration-target cpu weighted | 
 |  * according to the scheduling class and "nice" value. | 
 |  */ | 
 | static unsigned long target_load(int cpu, int type) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long total = weighted_cpuload(cpu); | 
 |  | 
 | 	if (type == 0 || !sched_feat(LB_BIAS)) | 
 | 		return total; | 
 |  | 
 | 	return max(rq->cpu_load[type-1], total); | 
 | } | 
 |  | 
 | static unsigned long capacity_of(int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->cpu_capacity; | 
 | } | 
 |  | 
 | static unsigned long capacity_orig_of(int cpu) | 
 | { | 
 | 	return cpu_rq(cpu)->cpu_capacity_orig; | 
 | } | 
 |  | 
 | static unsigned long cpu_avg_load_per_task(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); | 
 | 	unsigned long load_avg = weighted_cpuload(cpu); | 
 |  | 
 | 	if (nr_running) | 
 | 		return load_avg / nr_running; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | /* | 
 |  * effective_load() calculates the load change as seen from the root_task_group | 
 |  * | 
 |  * Adding load to a group doesn't make a group heavier, but can cause movement | 
 |  * of group shares between cpus. Assuming the shares were perfectly aligned one | 
 |  * can calculate the shift in shares. | 
 |  * | 
 |  * Calculate the effective load difference if @wl is added (subtracted) to @tg | 
 |  * on this @cpu and results in a total addition (subtraction) of @wg to the | 
 |  * total group weight. | 
 |  * | 
 |  * Given a runqueue weight distribution (rw_i) we can compute a shares | 
 |  * distribution (s_i) using: | 
 |  * | 
 |  *   s_i = rw_i / \Sum rw_j						(1) | 
 |  * | 
 |  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and | 
 |  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting | 
 |  * shares distribution (s_i): | 
 |  * | 
 |  *   rw_i = {   2,   4,   1,   0 } | 
 |  *   s_i  = { 2/7, 4/7, 1/7,   0 } | 
 |  * | 
 |  * As per wake_affine() we're interested in the load of two CPUs (the CPU the | 
 |  * task used to run on and the CPU the waker is running on), we need to | 
 |  * compute the effect of waking a task on either CPU and, in case of a sync | 
 |  * wakeup, compute the effect of the current task going to sleep. | 
 |  * | 
 |  * So for a change of @wl to the local @cpu with an overall group weight change | 
 |  * of @wl we can compute the new shares distribution (s'_i) using: | 
 |  * | 
 |  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2) | 
 |  * | 
 |  * Suppose we're interested in CPUs 0 and 1, and want to compute the load | 
 |  * differences in waking a task to CPU 0. The additional task changes the | 
 |  * weight and shares distributions like: | 
 |  * | 
 |  *   rw'_i = {   3,   4,   1,   0 } | 
 |  *   s'_i  = { 3/8, 4/8, 1/8,   0 } | 
 |  * | 
 |  * We can then compute the difference in effective weight by using: | 
 |  * | 
 |  *   dw_i = S * (s'_i - s_i)						(3) | 
 |  * | 
 |  * Where 'S' is the group weight as seen by its parent. | 
 |  * | 
 |  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) | 
 |  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - | 
 |  * 4/7) times the weight of the group. | 
 |  */ | 
 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) | 
 | { | 
 | 	struct sched_entity *se = tg->se[cpu]; | 
 |  | 
 | 	if (!tg->parent)	/* the trivial, non-cgroup case */ | 
 | 		return wl; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *cfs_rq = se->my_q; | 
 | 		long W, w = cfs_rq_load_avg(cfs_rq); | 
 |  | 
 | 		tg = cfs_rq->tg; | 
 |  | 
 | 		/* | 
 | 		 * W = @wg + \Sum rw_j | 
 | 		 */ | 
 | 		W = wg + atomic_long_read(&tg->load_avg); | 
 |  | 
 | 		/* Ensure \Sum rw_j >= rw_i */ | 
 | 		W -= cfs_rq->tg_load_avg_contrib; | 
 | 		W += w; | 
 |  | 
 | 		/* | 
 | 		 * w = rw_i + @wl | 
 | 		 */ | 
 | 		w += wl; | 
 |  | 
 | 		/* | 
 | 		 * wl = S * s'_i; see (2) | 
 | 		 */ | 
 | 		if (W > 0 && w < W) | 
 | 			wl = (w * (long)tg->shares) / W; | 
 | 		else | 
 | 			wl = tg->shares; | 
 |  | 
 | 		/* | 
 | 		 * Per the above, wl is the new se->load.weight value; since | 
 | 		 * those are clipped to [MIN_SHARES, ...) do so now. See | 
 | 		 * calc_cfs_shares(). | 
 | 		 */ | 
 | 		if (wl < MIN_SHARES) | 
 | 			wl = MIN_SHARES; | 
 |  | 
 | 		/* | 
 | 		 * wl = dw_i = S * (s'_i - s_i); see (3) | 
 | 		 */ | 
 | 		wl -= se->avg.load_avg; | 
 |  | 
 | 		/* | 
 | 		 * Recursively apply this logic to all parent groups to compute | 
 | 		 * the final effective load change on the root group. Since | 
 | 		 * only the @tg group gets extra weight, all parent groups can | 
 | 		 * only redistribute existing shares. @wl is the shift in shares | 
 | 		 * resulting from this level per the above. | 
 | 		 */ | 
 | 		wg = 0; | 
 | 	} | 
 |  | 
 | 	return wl; | 
 | } | 
 | #else | 
 |  | 
 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) | 
 | { | 
 | 	return wl; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void record_wakee(struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * Only decay a single time; tasks that have less then 1 wakeup per | 
 | 	 * jiffy will not have built up many flips. | 
 | 	 */ | 
 | 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { | 
 | 		current->wakee_flips >>= 1; | 
 | 		current->wakee_flip_decay_ts = jiffies; | 
 | 	} | 
 |  | 
 | 	if (current->last_wakee != p) { | 
 | 		current->last_wakee = p; | 
 | 		current->wakee_flips++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Detect M:N waker/wakee relationships via a switching-frequency heuristic. | 
 |  * | 
 |  * A waker of many should wake a different task than the one last awakened | 
 |  * at a frequency roughly N times higher than one of its wakees. | 
 |  * | 
 |  * In order to determine whether we should let the load spread vs consolidating | 
 |  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one | 
 |  * partner, and a factor of lls_size higher frequency in the other. | 
 |  * | 
 |  * With both conditions met, we can be relatively sure that the relationship is | 
 |  * non-monogamous, with partner count exceeding socket size. | 
 |  * | 
 |  * Waker/wakee being client/server, worker/dispatcher, interrupt source or | 
 |  * whatever is irrelevant, spread criteria is apparent partner count exceeds | 
 |  * socket size. | 
 |  */ | 
 | static int wake_wide(struct task_struct *p) | 
 | { | 
 | 	unsigned int master = current->wakee_flips; | 
 | 	unsigned int slave = p->wakee_flips; | 
 | 	int factor = this_cpu_read(sd_llc_size); | 
 |  | 
 | 	if (master < slave) | 
 | 		swap(master, slave); | 
 | 	if (slave < factor || master < slave * factor) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | 
 | { | 
 | 	s64 this_load, load; | 
 | 	s64 this_eff_load, prev_eff_load; | 
 | 	int idx, this_cpu, prev_cpu; | 
 | 	struct task_group *tg; | 
 | 	unsigned long weight; | 
 | 	int balanced; | 
 |  | 
 | 	idx	  = sd->wake_idx; | 
 | 	this_cpu  = smp_processor_id(); | 
 | 	prev_cpu  = task_cpu(p); | 
 | 	load	  = source_load(prev_cpu, idx); | 
 | 	this_load = target_load(this_cpu, idx); | 
 |  | 
 | 	/* | 
 | 	 * If sync wakeup then subtract the (maximum possible) | 
 | 	 * effect of the currently running task from the load | 
 | 	 * of the current CPU: | 
 | 	 */ | 
 | 	if (sync) { | 
 | 		tg = task_group(current); | 
 | 		weight = current->se.avg.load_avg; | 
 |  | 
 | 		this_load += effective_load(tg, this_cpu, -weight, -weight); | 
 | 		load += effective_load(tg, prev_cpu, 0, -weight); | 
 | 	} | 
 |  | 
 | 	tg = task_group(p); | 
 | 	weight = p->se.avg.load_avg; | 
 |  | 
 | 	/* | 
 | 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle | 
 | 	 * due to the sync cause above having dropped this_load to 0, we'll | 
 | 	 * always have an imbalance, but there's really nothing you can do | 
 | 	 * about that, so that's good too. | 
 | 	 * | 
 | 	 * Otherwise check if either cpus are near enough in load to allow this | 
 | 	 * task to be woken on this_cpu. | 
 | 	 */ | 
 | 	this_eff_load = 100; | 
 | 	this_eff_load *= capacity_of(prev_cpu); | 
 |  | 
 | 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; | 
 | 	prev_eff_load *= capacity_of(this_cpu); | 
 |  | 
 | 	if (this_load > 0) { | 
 | 		this_eff_load *= this_load + | 
 | 			effective_load(tg, this_cpu, weight, weight); | 
 |  | 
 | 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); | 
 | 	} | 
 |  | 
 | 	balanced = this_eff_load <= prev_eff_load; | 
 |  | 
 | 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); | 
 |  | 
 | 	if (!balanced) | 
 | 		return 0; | 
 |  | 
 | 	schedstat_inc(sd, ttwu_move_affine); | 
 | 	schedstat_inc(p, se.statistics.nr_wakeups_affine); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * find_idlest_group finds and returns the least busy CPU group within the | 
 |  * domain. | 
 |  */ | 
 | static struct sched_group * | 
 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | 
 | 		  int this_cpu, int sd_flag) | 
 | { | 
 | 	struct sched_group *idlest = NULL, *group = sd->groups; | 
 | 	unsigned long min_load = ULONG_MAX, this_load = 0; | 
 | 	int load_idx = sd->forkexec_idx; | 
 | 	int imbalance = 100 + (sd->imbalance_pct-100)/2; | 
 |  | 
 | 	if (sd_flag & SD_BALANCE_WAKE) | 
 | 		load_idx = sd->wake_idx; | 
 |  | 
 | 	do { | 
 | 		unsigned long load, avg_load; | 
 | 		int local_group; | 
 | 		int i; | 
 |  | 
 | 		/* Skip over this group if it has no CPUs allowed */ | 
 | 		if (!cpumask_intersects(sched_group_cpus(group), | 
 | 					tsk_cpus_allowed(p))) | 
 | 			continue; | 
 |  | 
 | 		local_group = cpumask_test_cpu(this_cpu, | 
 | 					       sched_group_cpus(group)); | 
 |  | 
 | 		/* Tally up the load of all CPUs in the group */ | 
 | 		avg_load = 0; | 
 |  | 
 | 		for_each_cpu(i, sched_group_cpus(group)) { | 
 | 			/* Bias balancing toward cpus of our domain */ | 
 | 			if (local_group) | 
 | 				load = source_load(i, load_idx); | 
 | 			else | 
 | 				load = target_load(i, load_idx); | 
 |  | 
 | 			avg_load += load; | 
 | 		} | 
 |  | 
 | 		/* Adjust by relative CPU capacity of the group */ | 
 | 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; | 
 |  | 
 | 		if (local_group) { | 
 | 			this_load = avg_load; | 
 | 		} else if (avg_load < min_load) { | 
 | 			min_load = avg_load; | 
 | 			idlest = group; | 
 | 		} | 
 | 	} while (group = group->next, group != sd->groups); | 
 |  | 
 | 	if (!idlest || 100*this_load < imbalance*min_load) | 
 | 		return NULL; | 
 | 	return idlest; | 
 | } | 
 |  | 
 | /* | 
 |  * find_idlest_cpu - find the idlest cpu among the cpus in group. | 
 |  */ | 
 | static int | 
 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | 
 | { | 
 | 	unsigned long load, min_load = ULONG_MAX; | 
 | 	unsigned int min_exit_latency = UINT_MAX; | 
 | 	u64 latest_idle_timestamp = 0; | 
 | 	int least_loaded_cpu = this_cpu; | 
 | 	int shallowest_idle_cpu = -1; | 
 | 	int i; | 
 |  | 
 | 	/* Traverse only the allowed CPUs */ | 
 | 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { | 
 | 		if (idle_cpu(i)) { | 
 | 			struct rq *rq = cpu_rq(i); | 
 | 			struct cpuidle_state *idle = idle_get_state(rq); | 
 | 			if (idle && idle->exit_latency < min_exit_latency) { | 
 | 				/* | 
 | 				 * We give priority to a CPU whose idle state | 
 | 				 * has the smallest exit latency irrespective | 
 | 				 * of any idle timestamp. | 
 | 				 */ | 
 | 				min_exit_latency = idle->exit_latency; | 
 | 				latest_idle_timestamp = rq->idle_stamp; | 
 | 				shallowest_idle_cpu = i; | 
 | 			} else if ((!idle || idle->exit_latency == min_exit_latency) && | 
 | 				   rq->idle_stamp > latest_idle_timestamp) { | 
 | 				/* | 
 | 				 * If equal or no active idle state, then | 
 | 				 * the most recently idled CPU might have | 
 | 				 * a warmer cache. | 
 | 				 */ | 
 | 				latest_idle_timestamp = rq->idle_stamp; | 
 | 				shallowest_idle_cpu = i; | 
 | 			} | 
 | 		} else if (shallowest_idle_cpu == -1) { | 
 | 			load = weighted_cpuload(i); | 
 | 			if (load < min_load || (load == min_load && i == this_cpu)) { | 
 | 				min_load = load; | 
 | 				least_loaded_cpu = i; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; | 
 | } | 
 |  | 
 | /* | 
 |  * Try and locate an idle CPU in the sched_domain. | 
 |  */ | 
 | static int select_idle_sibling(struct task_struct *p, int target) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	struct sched_group *sg; | 
 | 	int i = task_cpu(p); | 
 |  | 
 | 	if (idle_cpu(target)) | 
 | 		return target; | 
 |  | 
 | 	/* | 
 | 	 * If the prevous cpu is cache affine and idle, don't be stupid. | 
 | 	 */ | 
 | 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) | 
 | 		return i; | 
 |  | 
 | 	/* | 
 | 	 * Otherwise, iterate the domains and find an eligible idle cpu. | 
 | 	 * | 
 | 	 * A completely idle sched group at higher domains is more | 
 | 	 * desirable than an idle group at a lower level, because lower | 
 | 	 * domains have smaller groups and usually share hardware | 
 | 	 * resources which causes tasks to contend on them, e.g. x86 | 
 | 	 * hyperthread siblings in the lowest domain (SMT) can contend | 
 | 	 * on the shared cpu pipeline. | 
 | 	 * | 
 | 	 * However, while we prefer idle groups at higher domains | 
 | 	 * finding an idle cpu at the lowest domain is still better than | 
 | 	 * returning 'target', which we've already established, isn't | 
 | 	 * idle. | 
 | 	 */ | 
 | 	sd = rcu_dereference(per_cpu(sd_llc, target)); | 
 | 	for_each_lower_domain(sd) { | 
 | 		sg = sd->groups; | 
 | 		do { | 
 | 			if (!cpumask_intersects(sched_group_cpus(sg), | 
 | 						tsk_cpus_allowed(p))) | 
 | 				goto next; | 
 |  | 
 | 			/* Ensure the entire group is idle */ | 
 | 			for_each_cpu(i, sched_group_cpus(sg)) { | 
 | 				if (i == target || !idle_cpu(i)) | 
 | 					goto next; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * It doesn't matter which cpu we pick, the | 
 | 			 * whole group is idle. | 
 | 			 */ | 
 | 			target = cpumask_first_and(sched_group_cpus(sg), | 
 | 					tsk_cpus_allowed(p)); | 
 | 			goto done; | 
 | next: | 
 | 			sg = sg->next; | 
 | 		} while (sg != sd->groups); | 
 | 	} | 
 | done: | 
 | 	return target; | 
 | } | 
 |  | 
 | /* | 
 |  * cpu_util returns the amount of capacity of a CPU that is used by CFS | 
 |  * tasks. The unit of the return value must be the one of capacity so we can | 
 |  * compare the utilization with the capacity of the CPU that is available for | 
 |  * CFS task (ie cpu_capacity). | 
 |  * | 
 |  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the | 
 |  * recent utilization of currently non-runnable tasks on a CPU. It represents | 
 |  * the amount of utilization of a CPU in the range [0..capacity_orig] where | 
 |  * capacity_orig is the cpu_capacity available at the highest frequency | 
 |  * (arch_scale_freq_capacity()). | 
 |  * The utilization of a CPU converges towards a sum equal to or less than the | 
 |  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is | 
 |  * the running time on this CPU scaled by capacity_curr. | 
 |  * | 
 |  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even | 
 |  * higher than capacity_orig because of unfortunate rounding in | 
 |  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until | 
 |  * the average stabilizes with the new running time. We need to check that the | 
 |  * utilization stays within the range of [0..capacity_orig] and cap it if | 
 |  * necessary. Without utilization capping, a group could be seen as overloaded | 
 |  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of | 
 |  * available capacity. We allow utilization to overshoot capacity_curr (but not | 
 |  * capacity_orig) as it useful for predicting the capacity required after task | 
 |  * migrations (scheduler-driven DVFS). | 
 |  */ | 
 | static int cpu_util(int cpu) | 
 | { | 
 | 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; | 
 | 	unsigned long capacity = capacity_orig_of(cpu); | 
 |  | 
 | 	return (util >= capacity) ? capacity : util; | 
 | } | 
 |  | 
 | /* | 
 |  * select_task_rq_fair: Select target runqueue for the waking task in domains | 
 |  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, | 
 |  * SD_BALANCE_FORK, or SD_BALANCE_EXEC. | 
 |  * | 
 |  * Balances load by selecting the idlest cpu in the idlest group, or under | 
 |  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. | 
 |  * | 
 |  * Returns the target cpu number. | 
 |  * | 
 |  * preempt must be disabled. | 
 |  */ | 
 | static int | 
 | select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) | 
 | { | 
 | 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | 
 | 	int cpu = smp_processor_id(); | 
 | 	int new_cpu = prev_cpu; | 
 | 	int want_affine = 0; | 
 | 	int sync = wake_flags & WF_SYNC; | 
 |  | 
 | 	if (sd_flag & SD_BALANCE_WAKE) { | 
 | 		record_wakee(p); | 
 | 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); | 
 | 	} | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(cpu, tmp) { | 
 | 		if (!(tmp->flags & SD_LOAD_BALANCE)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * If both cpu and prev_cpu are part of this domain, | 
 | 		 * cpu is a valid SD_WAKE_AFFINE target. | 
 | 		 */ | 
 | 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | 
 | 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | 
 | 			affine_sd = tmp; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (tmp->flags & sd_flag) | 
 | 			sd = tmp; | 
 | 		else if (!want_affine) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (affine_sd) { | 
 | 		sd = NULL; /* Prefer wake_affine over balance flags */ | 
 | 		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) | 
 | 			new_cpu = cpu; | 
 | 	} | 
 |  | 
 | 	if (!sd) { | 
 | 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ | 
 | 			new_cpu = select_idle_sibling(p, new_cpu); | 
 |  | 
 | 	} else while (sd) { | 
 | 		struct sched_group *group; | 
 | 		int weight; | 
 |  | 
 | 		if (!(sd->flags & sd_flag)) { | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		group = find_idlest_group(sd, p, cpu, sd_flag); | 
 | 		if (!group) { | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		new_cpu = find_idlest_cpu(group, p, cpu); | 
 | 		if (new_cpu == -1 || new_cpu == cpu) { | 
 | 			/* Now try balancing at a lower domain level of cpu */ | 
 | 			sd = sd->child; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Now try balancing at a lower domain level of new_cpu */ | 
 | 		cpu = new_cpu; | 
 | 		weight = sd->span_weight; | 
 | 		sd = NULL; | 
 | 		for_each_domain(cpu, tmp) { | 
 | 			if (weight <= tmp->span_weight) | 
 | 				break; | 
 | 			if (tmp->flags & sd_flag) | 
 | 				sd = tmp; | 
 | 		} | 
 | 		/* while loop will break here if sd == NULL */ | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return new_cpu; | 
 | } | 
 |  | 
 | /* | 
 |  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and | 
 |  * cfs_rq_of(p) references at time of call are still valid and identify the | 
 |  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. | 
 |  */ | 
 | static void migrate_task_rq_fair(struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * As blocked tasks retain absolute vruntime the migration needs to | 
 | 	 * deal with this by subtracting the old and adding the new | 
 | 	 * min_vruntime -- the latter is done by enqueue_entity() when placing | 
 | 	 * the task on the new runqueue. | 
 | 	 */ | 
 | 	if (p->state == TASK_WAKING) { | 
 | 		struct sched_entity *se = &p->se; | 
 | 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 		u64 min_vruntime; | 
 |  | 
 | #ifndef CONFIG_64BIT | 
 | 		u64 min_vruntime_copy; | 
 |  | 
 | 		do { | 
 | 			min_vruntime_copy = cfs_rq->min_vruntime_copy; | 
 | 			smp_rmb(); | 
 | 			min_vruntime = cfs_rq->min_vruntime; | 
 | 		} while (min_vruntime != min_vruntime_copy); | 
 | #else | 
 | 		min_vruntime = cfs_rq->min_vruntime; | 
 | #endif | 
 |  | 
 | 		se->vruntime -= min_vruntime; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We are supposed to update the task to "current" time, then its up to date | 
 | 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting | 
 | 	 * what current time is, so simply throw away the out-of-date time. This | 
 | 	 * will result in the wakee task is less decayed, but giving the wakee more | 
 | 	 * load sounds not bad. | 
 | 	 */ | 
 | 	remove_entity_load_avg(&p->se); | 
 |  | 
 | 	/* Tell new CPU we are migrated */ | 
 | 	p->se.avg.last_update_time = 0; | 
 |  | 
 | 	/* We have migrated, no longer consider this task hot */ | 
 | 	p->se.exec_start = 0; | 
 | } | 
 |  | 
 | static void task_dead_fair(struct task_struct *p) | 
 | { | 
 | 	remove_entity_load_avg(&p->se); | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | static unsigned long | 
 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | 
 | { | 
 | 	unsigned long gran = sysctl_sched_wakeup_granularity; | 
 |  | 
 | 	/* | 
 | 	 * Since its curr running now, convert the gran from real-time | 
 | 	 * to virtual-time in his units. | 
 | 	 * | 
 | 	 * By using 'se' instead of 'curr' we penalize light tasks, so | 
 | 	 * they get preempted easier. That is, if 'se' < 'curr' then | 
 | 	 * the resulting gran will be larger, therefore penalizing the | 
 | 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will | 
 | 	 * be smaller, again penalizing the lighter task. | 
 | 	 * | 
 | 	 * This is especially important for buddies when the leftmost | 
 | 	 * task is higher priority than the buddy. | 
 | 	 */ | 
 | 	return calc_delta_fair(gran, se); | 
 | } | 
 |  | 
 | /* | 
 |  * Should 'se' preempt 'curr'. | 
 |  * | 
 |  *             |s1 | 
 |  *        |s2 | 
 |  *   |s3 | 
 |  *         g | 
 |  *      |<--->|c | 
 |  * | 
 |  *  w(c, s1) = -1 | 
 |  *  w(c, s2) =  0 | 
 |  *  w(c, s3) =  1 | 
 |  * | 
 |  */ | 
 | static int | 
 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | 
 | { | 
 | 	s64 gran, vdiff = curr->vruntime - se->vruntime; | 
 |  | 
 | 	if (vdiff <= 0) | 
 | 		return -1; | 
 |  | 
 | 	gran = wakeup_gran(curr, se); | 
 | 	if (vdiff > gran) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void set_last_buddy(struct sched_entity *se) | 
 | { | 
 | 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | 
 | 		return; | 
 |  | 
 | 	for_each_sched_entity(se) | 
 | 		cfs_rq_of(se)->last = se; | 
 | } | 
 |  | 
 | static void set_next_buddy(struct sched_entity *se) | 
 | { | 
 | 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) | 
 | 		return; | 
 |  | 
 | 	for_each_sched_entity(se) | 
 | 		cfs_rq_of(se)->next = se; | 
 | } | 
 |  | 
 | static void set_skip_buddy(struct sched_entity *se) | 
 | { | 
 | 	for_each_sched_entity(se) | 
 | 		cfs_rq_of(se)->skip = se; | 
 | } | 
 |  | 
 | /* | 
 |  * Preempt the current task with a newly woken task if needed: | 
 |  */ | 
 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	struct sched_entity *se = &curr->se, *pse = &p->se; | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
 | 	int scale = cfs_rq->nr_running >= sched_nr_latency; | 
 | 	int next_buddy_marked = 0; | 
 |  | 
 | 	if (unlikely(se == pse)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * This is possible from callers such as attach_tasks(), in which we | 
 | 	 * unconditionally check_prempt_curr() after an enqueue (which may have | 
 | 	 * lead to a throttle).  This both saves work and prevents false | 
 | 	 * next-buddy nomination below. | 
 | 	 */ | 
 | 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) | 
 | 		return; | 
 |  | 
 | 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { | 
 | 		set_next_buddy(pse); | 
 | 		next_buddy_marked = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can come here with TIF_NEED_RESCHED already set from new task | 
 | 	 * wake up path. | 
 | 	 * | 
 | 	 * Note: this also catches the edge-case of curr being in a throttled | 
 | 	 * group (e.g. via set_curr_task), since update_curr() (in the | 
 | 	 * enqueue of curr) will have resulted in resched being set.  This | 
 | 	 * prevents us from potentially nominating it as a false LAST_BUDDY | 
 | 	 * below. | 
 | 	 */ | 
 | 	if (test_tsk_need_resched(curr)) | 
 | 		return; | 
 |  | 
 | 	/* Idle tasks are by definition preempted by non-idle tasks. */ | 
 | 	if (unlikely(curr->policy == SCHED_IDLE) && | 
 | 	    likely(p->policy != SCHED_IDLE)) | 
 | 		goto preempt; | 
 |  | 
 | 	/* | 
 | 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption | 
 | 	 * is driven by the tick): | 
 | 	 */ | 
 | 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) | 
 | 		return; | 
 |  | 
 | 	find_matching_se(&se, &pse); | 
 | 	update_curr(cfs_rq_of(se)); | 
 | 	BUG_ON(!pse); | 
 | 	if (wakeup_preempt_entity(se, pse) == 1) { | 
 | 		/* | 
 | 		 * Bias pick_next to pick the sched entity that is | 
 | 		 * triggering this preemption. | 
 | 		 */ | 
 | 		if (!next_buddy_marked) | 
 | 			set_next_buddy(pse); | 
 | 		goto preempt; | 
 | 	} | 
 |  | 
 | 	return; | 
 |  | 
 | preempt: | 
 | 	resched_curr(rq); | 
 | 	/* | 
 | 	 * Only set the backward buddy when the current task is still | 
 | 	 * on the rq. This can happen when a wakeup gets interleaved | 
 | 	 * with schedule on the ->pre_schedule() or idle_balance() | 
 | 	 * point, either of which can * drop the rq lock. | 
 | 	 * | 
 | 	 * Also, during early boot the idle thread is in the fair class, | 
 | 	 * for obvious reasons its a bad idea to schedule back to it. | 
 | 	 */ | 
 | 	if (unlikely(!se->on_rq || curr == rq->idle)) | 
 | 		return; | 
 |  | 
 | 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) | 
 | 		set_last_buddy(se); | 
 | } | 
 |  | 
 | static struct task_struct * | 
 | pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = &rq->cfs; | 
 | 	struct sched_entity *se; | 
 | 	struct task_struct *p; | 
 | 	int new_tasks; | 
 |  | 
 | again: | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	if (!cfs_rq->nr_running) | 
 | 		goto idle; | 
 |  | 
 | 	if (prev->sched_class != &fair_sched_class) | 
 | 		goto simple; | 
 |  | 
 | 	/* | 
 | 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather | 
 | 	 * likely that a next task is from the same cgroup as the current. | 
 | 	 * | 
 | 	 * Therefore attempt to avoid putting and setting the entire cgroup | 
 | 	 * hierarchy, only change the part that actually changes. | 
 | 	 */ | 
 |  | 
 | 	do { | 
 | 		struct sched_entity *curr = cfs_rq->curr; | 
 |  | 
 | 		/* | 
 | 		 * Since we got here without doing put_prev_entity() we also | 
 | 		 * have to consider cfs_rq->curr. If it is still a runnable | 
 | 		 * entity, update_curr() will update its vruntime, otherwise | 
 | 		 * forget we've ever seen it. | 
 | 		 */ | 
 | 		if (curr) { | 
 | 			if (curr->on_rq) | 
 | 				update_curr(cfs_rq); | 
 | 			else | 
 | 				curr = NULL; | 
 |  | 
 | 			/* | 
 | 			 * This call to check_cfs_rq_runtime() will do the | 
 | 			 * throttle and dequeue its entity in the parent(s). | 
 | 			 * Therefore the 'simple' nr_running test will indeed | 
 | 			 * be correct. | 
 | 			 */ | 
 | 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) | 
 | 				goto simple; | 
 | 		} | 
 |  | 
 | 		se = pick_next_entity(cfs_rq, curr); | 
 | 		cfs_rq = group_cfs_rq(se); | 
 | 	} while (cfs_rq); | 
 |  | 
 | 	p = task_of(se); | 
 |  | 
 | 	/* | 
 | 	 * Since we haven't yet done put_prev_entity and if the selected task | 
 | 	 * is a different task than we started out with, try and touch the | 
 | 	 * least amount of cfs_rqs. | 
 | 	 */ | 
 | 	if (prev != p) { | 
 | 		struct sched_entity *pse = &prev->se; | 
 |  | 
 | 		while (!(cfs_rq = is_same_group(se, pse))) { | 
 | 			int se_depth = se->depth; | 
 | 			int pse_depth = pse->depth; | 
 |  | 
 | 			if (se_depth <= pse_depth) { | 
 | 				put_prev_entity(cfs_rq_of(pse), pse); | 
 | 				pse = parent_entity(pse); | 
 | 			} | 
 | 			if (se_depth >= pse_depth) { | 
 | 				set_next_entity(cfs_rq_of(se), se); | 
 | 				se = parent_entity(se); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		put_prev_entity(cfs_rq, pse); | 
 | 		set_next_entity(cfs_rq, se); | 
 | 	} | 
 |  | 
 | 	if (hrtick_enabled(rq)) | 
 | 		hrtick_start_fair(rq, p); | 
 |  | 
 | 	return p; | 
 | simple: | 
 | 	cfs_rq = &rq->cfs; | 
 | #endif | 
 |  | 
 | 	if (!cfs_rq->nr_running) | 
 | 		goto idle; | 
 |  | 
 | 	put_prev_task(rq, prev); | 
 |  | 
 | 	do { | 
 | 		se = pick_next_entity(cfs_rq, NULL); | 
 | 		set_next_entity(cfs_rq, se); | 
 | 		cfs_rq = group_cfs_rq(se); | 
 | 	} while (cfs_rq); | 
 |  | 
 | 	p = task_of(se); | 
 |  | 
 | 	if (hrtick_enabled(rq)) | 
 | 		hrtick_start_fair(rq, p); | 
 |  | 
 | 	return p; | 
 |  | 
 | idle: | 
 | 	/* | 
 | 	 * This is OK, because current is on_cpu, which avoids it being picked | 
 | 	 * for load-balance and preemption/IRQs are still disabled avoiding | 
 | 	 * further scheduler activity on it and we're being very careful to | 
 | 	 * re-start the picking loop. | 
 | 	 */ | 
 | 	lockdep_unpin_lock(&rq->lock, cookie); | 
 | 	new_tasks = idle_balance(rq); | 
 | 	lockdep_repin_lock(&rq->lock, cookie); | 
 | 	/* | 
 | 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is | 
 | 	 * possible for any higher priority task to appear. In that case we | 
 | 	 * must re-start the pick_next_entity() loop. | 
 | 	 */ | 
 | 	if (new_tasks < 0) | 
 | 		return RETRY_TASK; | 
 |  | 
 | 	if (new_tasks > 0) | 
 | 		goto again; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Account for a descheduled task: | 
 |  */ | 
 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | 
 | { | 
 | 	struct sched_entity *se = &prev->se; | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		put_prev_entity(cfs_rq, se); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * sched_yield() is very simple | 
 |  * | 
 |  * The magic of dealing with the ->skip buddy is in pick_next_entity. | 
 |  */ | 
 | static void yield_task_fair(struct rq *rq) | 
 | { | 
 | 	struct task_struct *curr = rq->curr; | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 
 | 	struct sched_entity *se = &curr->se; | 
 |  | 
 | 	/* | 
 | 	 * Are we the only task in the tree? | 
 | 	 */ | 
 | 	if (unlikely(rq->nr_running == 1)) | 
 | 		return; | 
 |  | 
 | 	clear_buddies(cfs_rq, se); | 
 |  | 
 | 	if (curr->policy != SCHED_BATCH) { | 
 | 		update_rq_clock(rq); | 
 | 		/* | 
 | 		 * Update run-time statistics of the 'current'. | 
 | 		 */ | 
 | 		update_curr(cfs_rq); | 
 | 		/* | 
 | 		 * Tell update_rq_clock() that we've just updated, | 
 | 		 * so we don't do microscopic update in schedule() | 
 | 		 * and double the fastpath cost. | 
 | 		 */ | 
 | 		rq_clock_skip_update(rq, true); | 
 | 	} | 
 |  | 
 | 	set_skip_buddy(se); | 
 | } | 
 |  | 
 | static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 |  | 
 | 	/* throttled hierarchies are not runnable */ | 
 | 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) | 
 | 		return false; | 
 |  | 
 | 	/* Tell the scheduler that we'd really like pse to run next. */ | 
 | 	set_next_buddy(se); | 
 |  | 
 | 	yield_task_fair(rq); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /************************************************** | 
 |  * Fair scheduling class load-balancing methods. | 
 |  * | 
 |  * BASICS | 
 |  * | 
 |  * The purpose of load-balancing is to achieve the same basic fairness the | 
 |  * per-cpu scheduler provides, namely provide a proportional amount of compute | 
 |  * time to each task. This is expressed in the following equation: | 
 |  * | 
 |  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1) | 
 |  * | 
 |  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight | 
 |  * W_i,0 is defined as: | 
 |  * | 
 |  *   W_i,0 = \Sum_j w_i,j                                             (2) | 
 |  * | 
 |  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight | 
 |  * is derived from the nice value as per sched_prio_to_weight[]. | 
 |  * | 
 |  * The weight average is an exponential decay average of the instantaneous | 
 |  * weight: | 
 |  * | 
 |  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3) | 
 |  * | 
 |  * C_i is the compute capacity of cpu i, typically it is the | 
 |  * fraction of 'recent' time available for SCHED_OTHER task execution. But it | 
 |  * can also include other factors [XXX]. | 
 |  * | 
 |  * To achieve this balance we define a measure of imbalance which follows | 
 |  * directly from (1): | 
 |  * | 
 |  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4) | 
 |  * | 
 |  * We them move tasks around to minimize the imbalance. In the continuous | 
 |  * function space it is obvious this converges, in the discrete case we get | 
 |  * a few fun cases generally called infeasible weight scenarios. | 
 |  * | 
 |  * [XXX expand on: | 
 |  *     - infeasible weights; | 
 |  *     - local vs global optima in the discrete case. ] | 
 |  * | 
 |  * | 
 |  * SCHED DOMAINS | 
 |  * | 
 |  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) | 
 |  * for all i,j solution, we create a tree of cpus that follows the hardware | 
 |  * topology where each level pairs two lower groups (or better). This results | 
 |  * in O(log n) layers. Furthermore we reduce the number of cpus going up the | 
 |  * tree to only the first of the previous level and we decrease the frequency | 
 |  * of load-balance at each level inv. proportional to the number of cpus in | 
 |  * the groups. | 
 |  * | 
 |  * This yields: | 
 |  * | 
 |  *     log_2 n     1     n | 
 |  *   \Sum       { --- * --- * 2^i } = O(n)                            (5) | 
 |  *     i = 0      2^i   2^i | 
 |  *                               `- size of each group | 
 |  *         |         |     `- number of cpus doing load-balance | 
 |  *         |         `- freq | 
 |  *         `- sum over all levels | 
 |  * | 
 |  * Coupled with a limit on how many tasks we can migrate every balance pass, | 
 |  * this makes (5) the runtime complexity of the balancer. | 
 |  * | 
 |  * An important property here is that each CPU is still (indirectly) connected | 
 |  * to every other cpu in at most O(log n) steps: | 
 |  * | 
 |  * The adjacency matrix of the resulting graph is given by: | 
 |  * | 
 |  *             log_2 n      | 
 |  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6) | 
 |  *             k = 0 | 
 |  * | 
 |  * And you'll find that: | 
 |  * | 
 |  *   A^(log_2 n)_i,j != 0  for all i,j                                (7) | 
 |  * | 
 |  * Showing there's indeed a path between every cpu in at most O(log n) steps. | 
 |  * The task movement gives a factor of O(m), giving a convergence complexity | 
 |  * of: | 
 |  * | 
 |  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8) | 
 |  * | 
 |  * | 
 |  * WORK CONSERVING | 
 |  * | 
 |  * In order to avoid CPUs going idle while there's still work to do, new idle | 
 |  * balancing is more aggressive and has the newly idle cpu iterate up the domain | 
 |  * tree itself instead of relying on other CPUs to bring it work. | 
 |  * | 
 |  * This adds some complexity to both (5) and (8) but it reduces the total idle | 
 |  * time. | 
 |  * | 
 |  * [XXX more?] | 
 |  * | 
 |  * | 
 |  * CGROUPS | 
 |  * | 
 |  * Cgroups make a horror show out of (2), instead of a simple sum we get: | 
 |  * | 
 |  *                                s_k,i | 
 |  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9) | 
 |  *                                 S_k | 
 |  * | 
 |  * Where | 
 |  * | 
 |  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10) | 
 |  * | 
 |  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. | 
 |  * | 
 |  * The big problem is S_k, its a global sum needed to compute a local (W_i) | 
 |  * property. | 
 |  * | 
 |  * [XXX write more on how we solve this.. _after_ merging pjt's patches that | 
 |  *      rewrite all of this once again.] | 
 |  */  | 
 |  | 
 | static unsigned long __read_mostly max_load_balance_interval = HZ/10; | 
 |  | 
 | enum fbq_type { regular, remote, all }; | 
 |  | 
 | #define LBF_ALL_PINNED	0x01 | 
 | #define LBF_NEED_BREAK	0x02 | 
 | #define LBF_DST_PINNED  0x04 | 
 | #define LBF_SOME_PINNED	0x08 | 
 |  | 
 | struct lb_env { | 
 | 	struct sched_domain	*sd; | 
 |  | 
 | 	struct rq		*src_rq; | 
 | 	int			src_cpu; | 
 |  | 
 | 	int			dst_cpu; | 
 | 	struct rq		*dst_rq; | 
 |  | 
 | 	struct cpumask		*dst_grpmask; | 
 | 	int			new_dst_cpu; | 
 | 	enum cpu_idle_type	idle; | 
 | 	long			imbalance; | 
 | 	/* The set of CPUs under consideration for load-balancing */ | 
 | 	struct cpumask		*cpus; | 
 |  | 
 | 	unsigned int		flags; | 
 |  | 
 | 	unsigned int		loop; | 
 | 	unsigned int		loop_break; | 
 | 	unsigned int		loop_max; | 
 |  | 
 | 	enum fbq_type		fbq_type; | 
 | 	struct list_head	tasks; | 
 | }; | 
 |  | 
 | /* | 
 |  * Is this task likely cache-hot: | 
 |  */ | 
 | static int task_hot(struct task_struct *p, struct lb_env *env) | 
 | { | 
 | 	s64 delta; | 
 |  | 
 | 	lockdep_assert_held(&env->src_rq->lock); | 
 |  | 
 | 	if (p->sched_class != &fair_sched_class) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(p->policy == SCHED_IDLE)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Buddy candidates are cache hot: | 
 | 	 */ | 
 | 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && | 
 | 			(&p->se == cfs_rq_of(&p->se)->next || | 
 | 			 &p->se == cfs_rq_of(&p->se)->last)) | 
 | 		return 1; | 
 |  | 
 | 	if (sysctl_sched_migration_cost == -1) | 
 | 		return 1; | 
 | 	if (sysctl_sched_migration_cost == 0) | 
 | 		return 0; | 
 |  | 
 | 	delta = rq_clock_task(env->src_rq) - p->se.exec_start; | 
 |  | 
 | 	return delta < (s64)sysctl_sched_migration_cost; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | /* | 
 |  * Returns 1, if task migration degrades locality | 
 |  * Returns 0, if task migration improves locality i.e migration preferred. | 
 |  * Returns -1, if task migration is not affected by locality. | 
 |  */ | 
 | static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) | 
 | { | 
 | 	struct numa_group *numa_group = rcu_dereference(p->numa_group); | 
 | 	unsigned long src_faults, dst_faults; | 
 | 	int src_nid, dst_nid; | 
 |  | 
 | 	if (!static_branch_likely(&sched_numa_balancing)) | 
 | 		return -1; | 
 |  | 
 | 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) | 
 | 		return -1; | 
 |  | 
 | 	src_nid = cpu_to_node(env->src_cpu); | 
 | 	dst_nid = cpu_to_node(env->dst_cpu); | 
 |  | 
 | 	if (src_nid == dst_nid) | 
 | 		return -1; | 
 |  | 
 | 	/* Migrating away from the preferred node is always bad. */ | 
 | 	if (src_nid == p->numa_preferred_nid) { | 
 | 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) | 
 | 			return 1; | 
 | 		else | 
 | 			return -1; | 
 | 	} | 
 |  | 
 | 	/* Encourage migration to the preferred node. */ | 
 | 	if (dst_nid == p->numa_preferred_nid) | 
 | 		return 0; | 
 |  | 
 | 	if (numa_group) { | 
 | 		src_faults = group_faults(p, src_nid); | 
 | 		dst_faults = group_faults(p, dst_nid); | 
 | 	} else { | 
 | 		src_faults = task_faults(p, src_nid); | 
 | 		dst_faults = task_faults(p, dst_nid); | 
 | 	} | 
 |  | 
 | 	return dst_faults < src_faults; | 
 | } | 
 |  | 
 | #else | 
 | static inline int migrate_degrades_locality(struct task_struct *p, | 
 | 					     struct lb_env *env) | 
 | { | 
 | 	return -1; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
 |  */ | 
 | static | 
 | int can_migrate_task(struct task_struct *p, struct lb_env *env) | 
 | { | 
 | 	int tsk_cache_hot; | 
 |  | 
 | 	lockdep_assert_held(&env->src_rq->lock); | 
 |  | 
 | 	/* | 
 | 	 * We do not migrate tasks that are: | 
 | 	 * 1) throttled_lb_pair, or | 
 | 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
 | 	 * 3) running (obviously), or | 
 | 	 * 4) are cache-hot on their current CPU. | 
 | 	 */ | 
 | 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) | 
 | 		return 0; | 
 |  | 
 | 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { | 
 | 		int cpu; | 
 |  | 
 | 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine); | 
 |  | 
 | 		env->flags |= LBF_SOME_PINNED; | 
 |  | 
 | 		/* | 
 | 		 * Remember if this task can be migrated to any other cpu in | 
 | 		 * our sched_group. We may want to revisit it if we couldn't | 
 | 		 * meet load balance goals by pulling other tasks on src_cpu. | 
 | 		 * | 
 | 		 * Also avoid computing new_dst_cpu if we have already computed | 
 | 		 * one in current iteration. | 
 | 		 */ | 
 | 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) | 
 | 			return 0; | 
 |  | 
 | 		/* Prevent to re-select dst_cpu via env's cpus */ | 
 | 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { | 
 | 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { | 
 | 				env->flags |= LBF_DST_PINNED; | 
 | 				env->new_dst_cpu = cpu; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Record that we found atleast one task that could run on dst_cpu */ | 
 | 	env->flags &= ~LBF_ALL_PINNED; | 
 |  | 
 | 	if (task_running(env->src_rq, p)) { | 
 | 		schedstat_inc(p, se.statistics.nr_failed_migrations_running); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Aggressive migration if: | 
 | 	 * 1) destination numa is preferred | 
 | 	 * 2) task is cache cold, or | 
 | 	 * 3) too many balance attempts have failed. | 
 | 	 */ | 
 | 	tsk_cache_hot = migrate_degrades_locality(p, env); | 
 | 	if (tsk_cache_hot == -1) | 
 | 		tsk_cache_hot = task_hot(p, env); | 
 |  | 
 | 	if (tsk_cache_hot <= 0 || | 
 | 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) { | 
 | 		if (tsk_cache_hot == 1) { | 
 | 			schedstat_inc(env->sd, lb_hot_gained[env->idle]); | 
 | 			schedstat_inc(p, se.statistics.nr_forced_migrations); | 
 | 		} | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * detach_task() -- detach the task for the migration specified in env | 
 |  */ | 
 | static void detach_task(struct task_struct *p, struct lb_env *env) | 
 | { | 
 | 	lockdep_assert_held(&env->src_rq->lock); | 
 |  | 
 | 	p->on_rq = TASK_ON_RQ_MIGRATING; | 
 | 	deactivate_task(env->src_rq, p, 0); | 
 | 	set_task_cpu(p, env->dst_cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as | 
 |  * part of active balancing operations within "domain". | 
 |  * | 
 |  * Returns a task if successful and NULL otherwise. | 
 |  */ | 
 | static struct task_struct *detach_one_task(struct lb_env *env) | 
 | { | 
 | 	struct task_struct *p, *n; | 
 |  | 
 | 	lockdep_assert_held(&env->src_rq->lock); | 
 |  | 
 | 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { | 
 | 		if (!can_migrate_task(p, env)) | 
 | 			continue; | 
 |  | 
 | 		detach_task(p, env); | 
 |  | 
 | 		/* | 
 | 		 * Right now, this is only the second place where | 
 | 		 * lb_gained[env->idle] is updated (other is detach_tasks) | 
 | 		 * so we can safely collect stats here rather than | 
 | 		 * inside detach_tasks(). | 
 | 		 */ | 
 | 		schedstat_inc(env->sd, lb_gained[env->idle]); | 
 | 		return p; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static const unsigned int sched_nr_migrate_break = 32; | 
 |  | 
 | /* | 
 |  * detach_tasks() -- tries to detach up to imbalance weighted load from | 
 |  * busiest_rq, as part of a balancing operation within domain "sd". | 
 |  * | 
 |  * Returns number of detached tasks if successful and 0 otherwise. | 
 |  */ | 
 | static int detach_tasks(struct lb_env *env) | 
 | { | 
 | 	struct list_head *tasks = &env->src_rq->cfs_tasks; | 
 | 	struct task_struct *p; | 
 | 	unsigned long load; | 
 | 	int detached = 0; | 
 |  | 
 | 	lockdep_assert_held(&env->src_rq->lock); | 
 |  | 
 | 	if (env->imbalance <= 0) | 
 | 		return 0; | 
 |  | 
 | 	while (!list_empty(tasks)) { | 
 | 		/* | 
 | 		 * We don't want to steal all, otherwise we may be treated likewise, | 
 | 		 * which could at worst lead to a livelock crash. | 
 | 		 */ | 
 | 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) | 
 | 			break; | 
 |  | 
 | 		p = list_first_entry(tasks, struct task_struct, se.group_node); | 
 |  | 
 | 		env->loop++; | 
 | 		/* We've more or less seen every task there is, call it quits */ | 
 | 		if (env->loop > env->loop_max) | 
 | 			break; | 
 |  | 
 | 		/* take a breather every nr_migrate tasks */ | 
 | 		if (env->loop > env->loop_break) { | 
 | 			env->loop_break += sched_nr_migrate_break; | 
 | 			env->flags |= LBF_NEED_BREAK; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!can_migrate_task(p, env)) | 
 | 			goto next; | 
 |  | 
 | 		load = task_h_load(p); | 
 |  | 
 | 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) | 
 | 			goto next; | 
 |  | 
 | 		if ((load / 2) > env->imbalance) | 
 | 			goto next; | 
 |  | 
 | 		detach_task(p, env); | 
 | 		list_add(&p->se.group_node, &env->tasks); | 
 |  | 
 | 		detached++; | 
 | 		env->imbalance -= load; | 
 |  | 
 | #ifdef CONFIG_PREEMPT | 
 | 		/* | 
 | 		 * NEWIDLE balancing is a source of latency, so preemptible | 
 | 		 * kernels will stop after the first task is detached to minimize | 
 | 		 * the critical section. | 
 | 		 */ | 
 | 		if (env->idle == CPU_NEWLY_IDLE) | 
 | 			break; | 
 | #endif | 
 |  | 
 | 		/* | 
 | 		 * We only want to steal up to the prescribed amount of | 
 | 		 * weighted load. | 
 | 		 */ | 
 | 		if (env->imbalance <= 0) | 
 | 			break; | 
 |  | 
 | 		continue; | 
 | next: | 
 | 		list_move_tail(&p->se.group_node, tasks); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Right now, this is one of only two places we collect this stat | 
 | 	 * so we can safely collect detach_one_task() stats here rather | 
 | 	 * than inside detach_one_task(). | 
 | 	 */ | 
 | 	schedstat_add(env->sd, lb_gained[env->idle], detached); | 
 |  | 
 | 	return detached; | 
 | } | 
 |  | 
 | /* | 
 |  * attach_task() -- attach the task detached by detach_task() to its new rq. | 
 |  */ | 
 | static void attach_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	lockdep_assert_held(&rq->lock); | 
 |  | 
 | 	BUG_ON(task_rq(p) != rq); | 
 | 	activate_task(rq, p, 0); | 
 | 	p->on_rq = TASK_ON_RQ_QUEUED; | 
 | 	check_preempt_curr(rq, p, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * attach_one_task() -- attaches the task returned from detach_one_task() to | 
 |  * its new rq. | 
 |  */ | 
 | static void attach_one_task(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	attach_task(rq, p); | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their | 
 |  * new rq. | 
 |  */ | 
 | static void attach_tasks(struct lb_env *env) | 
 | { | 
 | 	struct list_head *tasks = &env->tasks; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	raw_spin_lock(&env->dst_rq->lock); | 
 |  | 
 | 	while (!list_empty(tasks)) { | 
 | 		p = list_first_entry(tasks, struct task_struct, se.group_node); | 
 | 		list_del_init(&p->se.group_node); | 
 |  | 
 | 		attach_task(env->dst_rq, p); | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock(&env->dst_rq->lock); | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void update_blocked_averages(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 	update_rq_clock(rq); | 
 |  | 
 | 	/* | 
 | 	 * Iterates the task_group tree in a bottom up fashion, see | 
 | 	 * list_add_leaf_cfs_rq() for details. | 
 | 	 */ | 
 | 	for_each_leaf_cfs_rq(rq, cfs_rq) { | 
 | 		/* throttled entities do not contribute to load */ | 
 | 		if (throttled_hierarchy(cfs_rq)) | 
 | 			continue; | 
 |  | 
 | 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true)) | 
 | 			update_tg_load_avg(cfs_rq, 0); | 
 | 	} | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Compute the hierarchical load factor for cfs_rq and all its ascendants. | 
 |  * This needs to be done in a top-down fashion because the load of a child | 
 |  * group is a fraction of its parents load. | 
 |  */ | 
 | static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	struct rq *rq = rq_of(cfs_rq); | 
 | 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; | 
 | 	unsigned long now = jiffies; | 
 | 	unsigned long load; | 
 |  | 
 | 	if (cfs_rq->last_h_load_update == now) | 
 | 		return; | 
 |  | 
 | 	cfs_rq->h_load_next = NULL; | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		cfs_rq->h_load_next = se; | 
 | 		if (cfs_rq->last_h_load_update == now) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!se) { | 
 | 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); | 
 | 		cfs_rq->last_h_load_update = now; | 
 | 	} | 
 |  | 
 | 	while ((se = cfs_rq->h_load_next) != NULL) { | 
 | 		load = cfs_rq->h_load; | 
 | 		load = div64_ul(load * se->avg.load_avg, | 
 | 			cfs_rq_load_avg(cfs_rq) + 1); | 
 | 		cfs_rq = group_cfs_rq(se); | 
 | 		cfs_rq->h_load = load; | 
 | 		cfs_rq->last_h_load_update = now; | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long task_h_load(struct task_struct *p) | 
 | { | 
 | 	struct cfs_rq *cfs_rq = task_cfs_rq(p); | 
 |  | 
 | 	update_cfs_rq_h_load(cfs_rq); | 
 | 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, | 
 | 			cfs_rq_load_avg(cfs_rq) + 1); | 
 | } | 
 | #else | 
 | static inline void update_blocked_averages(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	struct cfs_rq *cfs_rq = &rq->cfs; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 	update_rq_clock(rq); | 
 | 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true); | 
 | 	raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | } | 
 |  | 
 | static unsigned long task_h_load(struct task_struct *p) | 
 | { | 
 | 	return p->se.avg.load_avg; | 
 | } | 
 | #endif | 
 |  | 
 | /********** Helpers for find_busiest_group ************************/ | 
 |  | 
 | enum group_type { | 
 | 	group_other = 0, | 
 | 	group_imbalanced, | 
 | 	group_overloaded, | 
 | }; | 
 |  | 
 | /* | 
 |  * sg_lb_stats - stats of a sched_group required for load_balancing | 
 |  */ | 
 | struct sg_lb_stats { | 
 | 	unsigned long avg_load; /*Avg load across the CPUs of the group */ | 
 | 	unsigned long group_load; /* Total load over the CPUs of the group */ | 
 | 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */ | 
 | 	unsigned long load_per_task; | 
 | 	unsigned long group_capacity; | 
 | 	unsigned long group_util; /* Total utilization of the group */ | 
 | 	unsigned int sum_nr_running; /* Nr tasks running in the group */ | 
 | 	unsigned int idle_cpus; | 
 | 	unsigned int group_weight; | 
 | 	enum group_type group_type; | 
 | 	int group_no_capacity; | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | 	unsigned int nr_numa_running; | 
 | 	unsigned int nr_preferred_running; | 
 | #endif | 
 | }; | 
 |  | 
 | /* | 
 |  * sd_lb_stats - Structure to store the statistics of a sched_domain | 
 |  *		 during load balancing. | 
 |  */ | 
 | struct sd_lb_stats { | 
 | 	struct sched_group *busiest;	/* Busiest group in this sd */ | 
 | 	struct sched_group *local;	/* Local group in this sd */ | 
 | 	unsigned long total_load;	/* Total load of all groups in sd */ | 
 | 	unsigned long total_capacity;	/* Total capacity of all groups in sd */ | 
 | 	unsigned long avg_load;	/* Average load across all groups in sd */ | 
 |  | 
 | 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ | 
 | 	struct sg_lb_stats local_stat;	/* Statistics of the local group */ | 
 | }; | 
 |  | 
 | static inline void init_sd_lb_stats(struct sd_lb_stats *sds) | 
 | { | 
 | 	/* | 
 | 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing | 
 | 	 * local_stat because update_sg_lb_stats() does a full clear/assignment. | 
 | 	 * We must however clear busiest_stat::avg_load because | 
 | 	 * update_sd_pick_busiest() reads this before assignment. | 
 | 	 */ | 
 | 	*sds = (struct sd_lb_stats){ | 
 | 		.busiest = NULL, | 
 | 		.local = NULL, | 
 | 		.total_load = 0UL, | 
 | 		.total_capacity = 0UL, | 
 | 		.busiest_stat = { | 
 | 			.avg_load = 0UL, | 
 | 			.sum_nr_running = 0, | 
 | 			.group_type = group_other, | 
 | 		}, | 
 | 	}; | 
 | } | 
 |  | 
 | /** | 
 |  * get_sd_load_idx - Obtain the load index for a given sched domain. | 
 |  * @sd: The sched_domain whose load_idx is to be obtained. | 
 |  * @idle: The idle status of the CPU for whose sd load_idx is obtained. | 
 |  * | 
 |  * Return: The load index. | 
 |  */ | 
 | static inline int get_sd_load_idx(struct sched_domain *sd, | 
 | 					enum cpu_idle_type idle) | 
 | { | 
 | 	int load_idx; | 
 |  | 
 | 	switch (idle) { | 
 | 	case CPU_NOT_IDLE: | 
 | 		load_idx = sd->busy_idx; | 
 | 		break; | 
 |  | 
 | 	case CPU_NEWLY_IDLE: | 
 | 		load_idx = sd->newidle_idx; | 
 | 		break; | 
 | 	default: | 
 | 		load_idx = sd->idle_idx; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return load_idx; | 
 | } | 
 |  | 
 | static unsigned long scale_rt_capacity(int cpu) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 | 	u64 total, used, age_stamp, avg; | 
 | 	s64 delta; | 
 |  | 
 | 	/* | 
 | 	 * Since we're reading these variables without serialization make sure | 
 | 	 * we read them once before doing sanity checks on them. | 
 | 	 */ | 
 | 	age_stamp = READ_ONCE(rq->age_stamp); | 
 | 	avg = READ_ONCE(rq->rt_avg); | 
 | 	delta = __rq_clock_broken(rq) - age_stamp; | 
 |  | 
 | 	if (unlikely(delta < 0)) | 
 | 		delta = 0; | 
 |  | 
 | 	total = sched_avg_period() + delta; | 
 |  | 
 | 	used = div_u64(avg, total); | 
 |  | 
 | 	if (likely(used < SCHED_CAPACITY_SCALE)) | 
 | 		return SCHED_CAPACITY_SCALE - used; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void update_cpu_capacity(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); | 
 | 	struct sched_group *sdg = sd->groups; | 
 |  | 
 | 	cpu_rq(cpu)->cpu_capacity_orig = capacity; | 
 |  | 
 | 	capacity *= scale_rt_capacity(cpu); | 
 | 	capacity >>= SCHED_CAPACITY_SHIFT; | 
 |  | 
 | 	if (!capacity) | 
 | 		capacity = 1; | 
 |  | 
 | 	cpu_rq(cpu)->cpu_capacity = capacity; | 
 | 	sdg->sgc->capacity = capacity; | 
 | } | 
 |  | 
 | void update_group_capacity(struct sched_domain *sd, int cpu) | 
 | { | 
 | 	struct sched_domain *child = sd->child; | 
 | 	struct sched_group *group, *sdg = sd->groups; | 
 | 	unsigned long capacity; | 
 | 	unsigned long interval; | 
 |  | 
 | 	interval = msecs_to_jiffies(sd->balance_interval); | 
 | 	interval = clamp(interval, 1UL, max_load_balance_interval); | 
 | 	sdg->sgc->next_update = jiffies + interval; | 
 |  | 
 | 	if (!child) { | 
 | 		update_cpu_capacity(sd, cpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	capacity = 0; | 
 |  | 
 | 	if (child->flags & SD_OVERLAP) { | 
 | 		/* | 
 | 		 * SD_OVERLAP domains cannot assume that child groups | 
 | 		 * span the current group. | 
 | 		 */ | 
 |  | 
 | 		for_each_cpu(cpu, sched_group_cpus(sdg)) { | 
 | 			struct sched_group_capacity *sgc; | 
 | 			struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 			/* | 
 | 			 * build_sched_domains() -> init_sched_groups_capacity() | 
 | 			 * gets here before we've attached the domains to the | 
 | 			 * runqueues. | 
 | 			 * | 
 | 			 * Use capacity_of(), which is set irrespective of domains | 
 | 			 * in update_cpu_capacity(). | 
 | 			 * | 
 | 			 * This avoids capacity from being 0 and | 
 | 			 * causing divide-by-zero issues on boot. | 
 | 			 */ | 
 | 			if (unlikely(!rq->sd)) { | 
 | 				capacity += capacity_of(cpu); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			sgc = rq->sd->groups->sgc; | 
 | 			capacity += sgc->capacity; | 
 | 		} | 
 | 	} else  { | 
 | 		/* | 
 | 		 * !SD_OVERLAP domains can assume that child groups | 
 | 		 * span the current group. | 
 | 		 */  | 
 |  | 
 | 		group = child->groups; | 
 | 		do { | 
 | 			capacity += group->sgc->capacity; | 
 | 			group = group->next; | 
 | 		} while (group != child->groups); | 
 | 	} | 
 |  | 
 | 	sdg->sgc->capacity = capacity; | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether the capacity of the rq has been noticeably reduced by side | 
 |  * activity. The imbalance_pct is used for the threshold. | 
 |  * Return true is the capacity is reduced | 
 |  */ | 
 | static inline int | 
 | check_cpu_capacity(struct rq *rq, struct sched_domain *sd) | 
 | { | 
 | 	return ((rq->cpu_capacity * sd->imbalance_pct) < | 
 | 				(rq->cpu_capacity_orig * 100)); | 
 | } | 
 |  | 
 | /* | 
 |  * Group imbalance indicates (and tries to solve) the problem where balancing | 
 |  * groups is inadequate due to tsk_cpus_allowed() constraints. | 
 |  * | 
 |  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a | 
 |  * cpumask covering 1 cpu of the first group and 3 cpus of the second group. | 
 |  * Something like: | 
 |  * | 
 |  * 	{ 0 1 2 3 } { 4 5 6 7 } | 
 |  * 	        *     * * * | 
 |  * | 
 |  * If we were to balance group-wise we'd place two tasks in the first group and | 
 |  * two tasks in the second group. Clearly this is undesired as it will overload | 
 |  * cpu 3 and leave one of the cpus in the second group unused. | 
 |  * | 
 |  * The current solution to this issue is detecting the skew in the first group | 
 |  * by noticing the lower domain failed to reach balance and had difficulty | 
 |  * moving tasks due to affinity constraints. | 
 |  * | 
 |  * When this is so detected; this group becomes a candidate for busiest; see | 
 |  * update_sd_pick_busiest(). And calculate_imbalance() and | 
 |  * find_busiest_group() avoid some of the usual balance conditions to allow it | 
 |  * to create an effective group imbalance. | 
 |  * | 
 |  * This is a somewhat tricky proposition since the next run might not find the | 
 |  * group imbalance and decide the groups need to be balanced again. A most | 
 |  * subtle and fragile situation. | 
 |  */ | 
 |  | 
 | static inline int sg_imbalanced(struct sched_group *group) | 
 | { | 
 | 	return group->sgc->imbalance; | 
 | } | 
 |  | 
 | /* | 
 |  * group_has_capacity returns true if the group has spare capacity that could | 
 |  * be used by some tasks. | 
 |  * We consider that a group has spare capacity if the  * number of task is | 
 |  * smaller than the number of CPUs or if the utilization is lower than the | 
 |  * available capacity for CFS tasks. | 
 |  * For the latter, we use a threshold to stabilize the state, to take into | 
 |  * account the variance of the tasks' load and to return true if the available | 
 |  * capacity in meaningful for the load balancer. | 
 |  * As an example, an available capacity of 1% can appear but it doesn't make | 
 |  * any benefit for the load balance. | 
 |  */ | 
 | static inline bool | 
 | group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) | 
 | { | 
 | 	if (sgs->sum_nr_running < sgs->group_weight) | 
 | 		return true; | 
 |  | 
 | 	if ((sgs->group_capacity * 100) > | 
 | 			(sgs->group_util * env->sd->imbalance_pct)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  *  group_is_overloaded returns true if the group has more tasks than it can | 
 |  *  handle. | 
 |  *  group_is_overloaded is not equals to !group_has_capacity because a group | 
 |  *  with the exact right number of tasks, has no more spare capacity but is not | 
 |  *  overloaded so both group_has_capacity and group_is_overloaded return | 
 |  *  false. | 
 |  */ | 
 | static inline bool | 
 | group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) | 
 | { | 
 | 	if (sgs->sum_nr_running <= sgs->group_weight) | 
 | 		return false; | 
 |  | 
 | 	if ((sgs->group_capacity * 100) < | 
 | 			(sgs->group_util * env->sd->imbalance_pct)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline enum | 
 | group_type group_classify(struct sched_group *group, | 
 | 			  struct sg_lb_stats *sgs) | 
 | { | 
 | 	if (sgs->group_no_capacity) | 
 | 		return group_overloaded; | 
 |  | 
 | 	if (sg_imbalanced(group)) | 
 | 		return group_imbalanced; | 
 |  | 
 | 	return group_other; | 
 | } | 
 |  | 
 | /** | 
 |  * update_sg_lb_stats - Update sched_group's statistics for load balancing. | 
 |  * @env: The load balancing environment. | 
 |  * @group: sched_group whose statistics are to be updated. | 
 |  * @load_idx: Load index of sched_domain of this_cpu for load calc. | 
 |  * @local_group: Does group contain this_cpu. | 
 |  * @sgs: variable to hold the statistics for this group. | 
 |  * @overload: Indicate more than one runnable task for any CPU. | 
 |  */ | 
 | static inline void update_sg_lb_stats(struct lb_env *env, | 
 | 			struct sched_group *group, int load_idx, | 
 | 			int local_group, struct sg_lb_stats *sgs, | 
 | 			bool *overload) | 
 | { | 
 | 	unsigned long load; | 
 | 	int i, nr_running; | 
 |  | 
 | 	memset(sgs, 0, sizeof(*sgs)); | 
 |  | 
 | 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { | 
 | 		struct rq *rq = cpu_rq(i); | 
 |  | 
 | 		/* Bias balancing toward cpus of our domain */ | 
 | 		if (local_group) | 
 | 			load = target_load(i, load_idx); | 
 | 		else | 
 | 			load = source_load(i, load_idx); | 
 |  | 
 | 		sgs->group_load += load; | 
 | 		sgs->group_util += cpu_util(i); | 
 | 		sgs->sum_nr_running += rq->cfs.h_nr_running; | 
 |  | 
 | 		nr_running = rq->nr_running; | 
 | 		if (nr_running > 1) | 
 | 			*overload = true; | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | 		sgs->nr_numa_running += rq->nr_numa_running; | 
 | 		sgs->nr_preferred_running += rq->nr_preferred_running; | 
 | #endif | 
 | 		sgs->sum_weighted_load += weighted_cpuload(i); | 
 | 		/* | 
 | 		 * No need to call idle_cpu() if nr_running is not 0 | 
 | 		 */ | 
 | 		if (!nr_running && idle_cpu(i)) | 
 | 			sgs->idle_cpus++; | 
 | 	} | 
 |  | 
 | 	/* Adjust by relative CPU capacity of the group */ | 
 | 	sgs->group_capacity = group->sgc->capacity; | 
 | 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; | 
 |  | 
 | 	if (sgs->sum_nr_running) | 
 | 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; | 
 |  | 
 | 	sgs->group_weight = group->group_weight; | 
 |  | 
 | 	sgs->group_no_capacity = group_is_overloaded(env, sgs); | 
 | 	sgs->group_type = group_classify(group, sgs); | 
 | } | 
 |  | 
 | /** | 
 |  * update_sd_pick_busiest - return 1 on busiest group | 
 |  * @env: The load balancing environment. | 
 |  * @sds: sched_domain statistics | 
 |  * @sg: sched_group candidate to be checked for being the busiest | 
 |  * @sgs: sched_group statistics | 
 |  * | 
 |  * Determine if @sg is a busier group than the previously selected | 
 |  * busiest group. | 
 |  * | 
 |  * Return: %true if @sg is a busier group than the previously selected | 
 |  * busiest group. %false otherwise. | 
 |  */ | 
 | static bool update_sd_pick_busiest(struct lb_env *env, | 
 | 				   struct sd_lb_stats *sds, | 
 | 				   struct sched_group *sg, | 
 | 				   struct sg_lb_stats *sgs) | 
 | { | 
 | 	struct sg_lb_stats *busiest = &sds->busiest_stat; | 
 |  | 
 | 	if (sgs->group_type > busiest->group_type) | 
 | 		return true; | 
 |  | 
 | 	if (sgs->group_type < busiest->group_type) | 
 | 		return false; | 
 |  | 
 | 	if (sgs->avg_load <= busiest->avg_load) | 
 | 		return false; | 
 |  | 
 | 	/* This is the busiest node in its class. */ | 
 | 	if (!(env->sd->flags & SD_ASYM_PACKING)) | 
 | 		return true; | 
 |  | 
 | 	/* No ASYM_PACKING if target cpu is already busy */ | 
 | 	if (env->idle == CPU_NOT_IDLE) | 
 | 		return true; | 
 | 	/* | 
 | 	 * ASYM_PACKING needs to move all the work to the lowest | 
 | 	 * numbered CPUs in the group, therefore mark all groups | 
 | 	 * higher than ourself as busy. | 
 | 	 */ | 
 | 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { | 
 | 		if (!sds->busiest) | 
 | 			return true; | 
 |  | 
 | 		/* Prefer to move from highest possible cpu's work */ | 
 | 		if (group_first_cpu(sds->busiest) < group_first_cpu(sg)) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | 
 | { | 
 | 	if (sgs->sum_nr_running > sgs->nr_numa_running) | 
 | 		return regular; | 
 | 	if (sgs->sum_nr_running > sgs->nr_preferred_running) | 
 | 		return remote; | 
 | 	return all; | 
 | } | 
 |  | 
 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | 
 | { | 
 | 	if (rq->nr_running > rq->nr_numa_running) | 
 | 		return regular; | 
 | 	if (rq->nr_running > rq->nr_preferred_running) | 
 | 		return remote; | 
 | 	return all; | 
 | } | 
 | #else | 
 | static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) | 
 | { | 
 | 	return all; | 
 | } | 
 |  | 
 | static inline enum fbq_type fbq_classify_rq(struct rq *rq) | 
 | { | 
 | 	return regular; | 
 | } | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 |  | 
 | /** | 
 |  * update_sd_lb_stats - Update sched_domain's statistics for load balancing. | 
 |  * @env: The load balancing environment. | 
 |  * @sds: variable to hold the statistics for this sched_domain. | 
 |  */ | 
 | static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) | 
 | { | 
 | 	struct sched_domain *child = env->sd->child; | 
 | 	struct sched_group *sg = env->sd->groups; | 
 | 	struct sg_lb_stats tmp_sgs; | 
 | 	int load_idx, prefer_sibling = 0; | 
 | 	bool overload = false; | 
 |  | 
 | 	if (child && child->flags & SD_PREFER_SIBLING) | 
 | 		prefer_sibling = 1; | 
 |  | 
 | 	load_idx = get_sd_load_idx(env->sd, env->idle); | 
 |  | 
 | 	do { | 
 | 		struct sg_lb_stats *sgs = &tmp_sgs; | 
 | 		int local_group; | 
 |  | 
 | 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); | 
 | 		if (local_group) { | 
 | 			sds->local = sg; | 
 | 			sgs = &sds->local_stat; | 
 |  | 
 | 			if (env->idle != CPU_NEWLY_IDLE || | 
 | 			    time_after_eq(jiffies, sg->sgc->next_update)) | 
 | 				update_group_capacity(env->sd, env->dst_cpu); | 
 | 		} | 
 |  | 
 | 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs, | 
 | 						&overload); | 
 |  | 
 | 		if (local_group) | 
 | 			goto next_group; | 
 |  | 
 | 		/* | 
 | 		 * In case the child domain prefers tasks go to siblings | 
 | 		 * first, lower the sg capacity so that we'll try | 
 | 		 * and move all the excess tasks away. We lower the capacity | 
 | 		 * of a group only if the local group has the capacity to fit | 
 | 		 * these excess tasks. The extra check prevents the case where | 
 | 		 * you always pull from the heaviest group when it is already | 
 | 		 * under-utilized (possible with a large weight task outweighs | 
 | 		 * the tasks on the system). | 
 | 		 */ | 
 | 		if (prefer_sibling && sds->local && | 
 | 		    group_has_capacity(env, &sds->local_stat) && | 
 | 		    (sgs->sum_nr_running > 1)) { | 
 | 			sgs->group_no_capacity = 1; | 
 | 			sgs->group_type = group_classify(sg, sgs); | 
 | 		} | 
 |  | 
 | 		if (update_sd_pick_busiest(env, sds, sg, sgs)) { | 
 | 			sds->busiest = sg; | 
 | 			sds->busiest_stat = *sgs; | 
 | 		} | 
 |  | 
 | next_group: | 
 | 		/* Now, start updating sd_lb_stats */ | 
 | 		sds->total_load += sgs->group_load; | 
 | 		sds->total_capacity += sgs->group_capacity; | 
 |  | 
 | 		sg = sg->next; | 
 | 	} while (sg != env->sd->groups); | 
 |  | 
 | 	if (env->sd->flags & SD_NUMA) | 
 | 		env->fbq_type = fbq_classify_group(&sds->busiest_stat); | 
 |  | 
 | 	if (!env->sd->parent) { | 
 | 		/* update overload indicator if we are at root domain */ | 
 | 		if (env->dst_rq->rd->overload != overload) | 
 | 			env->dst_rq->rd->overload = overload; | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * check_asym_packing - Check to see if the group is packed into the | 
 |  *			sched doman. | 
 |  * | 
 |  * This is primarily intended to used at the sibling level.  Some | 
 |  * cores like POWER7 prefer to use lower numbered SMT threads.  In the | 
 |  * case of POWER7, it can move to lower SMT modes only when higher | 
 |  * threads are idle.  When in lower SMT modes, the threads will | 
 |  * perform better since they share less core resources.  Hence when we | 
 |  * have idle threads, we want them to be the higher ones. | 
 |  * | 
 |  * This packing function is run on idle threads.  It checks to see if | 
 |  * the busiest CPU in this domain (core in the P7 case) has a higher | 
 |  * CPU number than the packing function is being run on.  Here we are | 
 |  * assuming lower CPU number will be equivalent to lower a SMT thread | 
 |  * number. | 
 |  * | 
 |  * Return: 1 when packing is required and a task should be moved to | 
 |  * this CPU.  The amount of the imbalance is returned in *imbalance. | 
 |  * | 
 |  * @env: The load balancing environment. | 
 |  * @sds: Statistics of the sched_domain which is to be packed | 
 |  */ | 
 | static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) | 
 | { | 
 | 	int busiest_cpu; | 
 |  | 
 | 	if (!(env->sd->flags & SD_ASYM_PACKING)) | 
 | 		return 0; | 
 |  | 
 | 	if (env->idle == CPU_NOT_IDLE) | 
 | 		return 0; | 
 |  | 
 | 	if (!sds->busiest) | 
 | 		return 0; | 
 |  | 
 | 	busiest_cpu = group_first_cpu(sds->busiest); | 
 | 	if (env->dst_cpu > busiest_cpu) | 
 | 		return 0; | 
 |  | 
 | 	env->imbalance = DIV_ROUND_CLOSEST( | 
 | 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, | 
 | 		SCHED_CAPACITY_SCALE); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * fix_small_imbalance - Calculate the minor imbalance that exists | 
 |  *			amongst the groups of a sched_domain, during | 
 |  *			load balancing. | 
 |  * @env: The load balancing environment. | 
 |  * @sds: Statistics of the sched_domain whose imbalance is to be calculated. | 
 |  */ | 
 | static inline | 
 | void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) | 
 | { | 
 | 	unsigned long tmp, capa_now = 0, capa_move = 0; | 
 | 	unsigned int imbn = 2; | 
 | 	unsigned long scaled_busy_load_per_task; | 
 | 	struct sg_lb_stats *local, *busiest; | 
 |  | 
 | 	local = &sds->local_stat; | 
 | 	busiest = &sds->busiest_stat; | 
 |  | 
 | 	if (!local->sum_nr_running) | 
 | 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); | 
 | 	else if (busiest->load_per_task > local->load_per_task) | 
 | 		imbn = 1; | 
 |  | 
 | 	scaled_busy_load_per_task = | 
 | 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) / | 
 | 		busiest->group_capacity; | 
 |  | 
 | 	if (busiest->avg_load + scaled_busy_load_per_task >= | 
 | 	    local->avg_load + (scaled_busy_load_per_task * imbn)) { | 
 | 		env->imbalance = busiest->load_per_task; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * OK, we don't have enough imbalance to justify moving tasks, | 
 | 	 * however we may be able to increase total CPU capacity used by | 
 | 	 * moving them. | 
 | 	 */ | 
 |  | 
 | 	capa_now += busiest->group_capacity * | 
 | 			min(busiest->load_per_task, busiest->avg_load); | 
 | 	capa_now += local->group_capacity * | 
 | 			min(local->load_per_task, local->avg_load); | 
 | 	capa_now /= SCHED_CAPACITY_SCALE; | 
 |  | 
 | 	/* Amount of load we'd subtract */ | 
 | 	if (busiest->avg_load > scaled_busy_load_per_task) { | 
 | 		capa_move += busiest->group_capacity * | 
 | 			    min(busiest->load_per_task, | 
 | 				busiest->avg_load - scaled_busy_load_per_task); | 
 | 	} | 
 |  | 
 | 	/* Amount of load we'd add */ | 
 | 	if (busiest->avg_load * busiest->group_capacity < | 
 | 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) { | 
 | 		tmp = (busiest->avg_load * busiest->group_capacity) / | 
 | 		      local->group_capacity; | 
 | 	} else { | 
 | 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / | 
 | 		      local->group_capacity; | 
 | 	} | 
 | 	capa_move += local->group_capacity * | 
 | 		    min(local->load_per_task, local->avg_load + tmp); | 
 | 	capa_move /= SCHED_CAPACITY_SCALE; | 
 |  | 
 | 	/* Move if we gain throughput */ | 
 | 	if (capa_move > capa_now) | 
 | 		env->imbalance = busiest->load_per_task; | 
 | } | 
 |  | 
 | /** | 
 |  * calculate_imbalance - Calculate the amount of imbalance present within the | 
 |  *			 groups of a given sched_domain during load balance. | 
 |  * @env: load balance environment | 
 |  * @sds: statistics of the sched_domain whose imbalance is to be calculated. | 
 |  */ | 
 | static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) | 
 | { | 
 | 	unsigned long max_pull, load_above_capacity = ~0UL; | 
 | 	struct sg_lb_stats *local, *busiest; | 
 |  | 
 | 	local = &sds->local_stat; | 
 | 	busiest = &sds->busiest_stat; | 
 |  | 
 | 	if (busiest->group_type == group_imbalanced) { | 
 | 		/* | 
 | 		 * In the group_imb case we cannot rely on group-wide averages | 
 | 		 * to ensure cpu-load equilibrium, look at wider averages. XXX | 
 | 		 */ | 
 | 		busiest->load_per_task = | 
 | 			min(busiest->load_per_task, sds->avg_load); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Avg load of busiest sg can be less and avg load of local sg can | 
 | 	 * be greater than avg load across all sgs of sd because avg load | 
 | 	 * factors in sg capacity and sgs with smaller group_type are | 
 | 	 * skipped when updating the busiest sg: | 
 | 	 */ | 
 | 	if (busiest->avg_load <= sds->avg_load || | 
 | 	    local->avg_load >= sds->avg_load) { | 
 | 		env->imbalance = 0; | 
 | 		return fix_small_imbalance(env, sds); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there aren't any idle cpus, avoid creating some. | 
 | 	 */ | 
 | 	if (busiest->group_type == group_overloaded && | 
 | 	    local->group_type   == group_overloaded) { | 
 | 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; | 
 | 		if (load_above_capacity > busiest->group_capacity) { | 
 | 			load_above_capacity -= busiest->group_capacity; | 
 | 			load_above_capacity *= NICE_0_LOAD; | 
 | 			load_above_capacity /= busiest->group_capacity; | 
 | 		} else | 
 | 			load_above_capacity = ~0UL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're trying to get all the cpus to the average_load, so we don't | 
 | 	 * want to push ourselves above the average load, nor do we wish to | 
 | 	 * reduce the max loaded cpu below the average load. At the same time, | 
 | 	 * we also don't want to reduce the group load below the group | 
 | 	 * capacity. Thus we look for the minimum possible imbalance. | 
 | 	 */ | 
 | 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); | 
 |  | 
 | 	/* How much load to actually move to equalise the imbalance */ | 
 | 	env->imbalance = min( | 
 | 		max_pull * busiest->group_capacity, | 
 | 		(sds->avg_load - local->avg_load) * local->group_capacity | 
 | 	) / SCHED_CAPACITY_SCALE; | 
 |  | 
 | 	/* | 
 | 	 * if *imbalance is less than the average load per runnable task | 
 | 	 * there is no guarantee that any tasks will be moved so we'll have | 
 | 	 * a think about bumping its value to force at least one task to be | 
 | 	 * moved | 
 | 	 */ | 
 | 	if (env->imbalance < busiest->load_per_task) | 
 | 		return fix_small_imbalance(env, sds); | 
 | } | 
 |  | 
 | /******* find_busiest_group() helpers end here *********************/ | 
 |  | 
 | /** | 
 |  * find_busiest_group - Returns the busiest group within the sched_domain | 
 |  * if there is an imbalance. | 
 |  * | 
 |  * Also calculates the amount of weighted load which should be moved | 
 |  * to restore balance. | 
 |  * | 
 |  * @env: The load balancing environment. | 
 |  * | 
 |  * Return:	- The busiest group if imbalance exists. | 
 |  */ | 
 | static struct sched_group *find_busiest_group(struct lb_env *env) | 
 | { | 
 | 	struct sg_lb_stats *local, *busiest; | 
 | 	struct sd_lb_stats sds; | 
 |  | 
 | 	init_sd_lb_stats(&sds); | 
 |  | 
 | 	/* | 
 | 	 * Compute the various statistics relavent for load balancing at | 
 | 	 * this level. | 
 | 	 */ | 
 | 	update_sd_lb_stats(env, &sds); | 
 | 	local = &sds.local_stat; | 
 | 	busiest = &sds.busiest_stat; | 
 |  | 
 | 	/* ASYM feature bypasses nice load balance check */ | 
 | 	if (check_asym_packing(env, &sds)) | 
 | 		return sds.busiest; | 
 |  | 
 | 	/* There is no busy sibling group to pull tasks from */ | 
 | 	if (!sds.busiest || busiest->sum_nr_running == 0) | 
 | 		goto out_balanced; | 
 |  | 
 | 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) | 
 | 						/ sds.total_capacity; | 
 |  | 
 | 	/* | 
 | 	 * If the busiest group is imbalanced the below checks don't | 
 | 	 * work because they assume all things are equal, which typically | 
 | 	 * isn't true due to cpus_allowed constraints and the like. | 
 | 	 */ | 
 | 	if (busiest->group_type == group_imbalanced) | 
 | 		goto force_balance; | 
 |  | 
 | 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ | 
 | 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && | 
 | 	    busiest->group_no_capacity) | 
 | 		goto force_balance; | 
 |  | 
 | 	/* | 
 | 	 * If the local group is busier than the selected busiest group | 
 | 	 * don't try and pull any tasks. | 
 | 	 */ | 
 | 	if (local->avg_load >= busiest->avg_load) | 
 | 		goto out_balanced; | 
 |  | 
 | 	/* | 
 | 	 * Don't pull any tasks if this group is already above the domain | 
 | 	 * average load. | 
 | 	 */ | 
 | 	if (local->avg_load >= sds.avg_load) | 
 | 		goto out_balanced; | 
 |  | 
 | 	if (env->idle == CPU_IDLE) { | 
 | 		/* | 
 | 		 * This cpu is idle. If the busiest group is not overloaded | 
 | 		 * and there is no imbalance between this and busiest group | 
 | 		 * wrt idle cpus, it is balanced. The imbalance becomes | 
 | 		 * significant if the diff is greater than 1 otherwise we | 
 | 		 * might end up to just move the imbalance on another group | 
 | 		 */ | 
 | 		if ((busiest->group_type != group_overloaded) && | 
 | 				(local->idle_cpus <= (busiest->idle_cpus + 1))) | 
 | 			goto out_balanced; | 
 | 	} else { | 
 | 		/* | 
 | 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use | 
 | 		 * imbalance_pct to be conservative. | 
 | 		 */ | 
 | 		if (100 * busiest->avg_load <= | 
 | 				env->sd->imbalance_pct * local->avg_load) | 
 | 			goto out_balanced; | 
 | 	} | 
 |  | 
 | force_balance: | 
 | 	/* Looks like there is an imbalance. Compute it */ | 
 | 	calculate_imbalance(env, &sds); | 
 | 	return sds.busiest; | 
 |  | 
 | out_balanced: | 
 | 	env->imbalance = 0; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
 |  */ | 
 | static struct rq *find_busiest_queue(struct lb_env *env, | 
 | 				     struct sched_group *group) | 
 | { | 
 | 	struct rq *busiest = NULL, *rq; | 
 | 	unsigned long busiest_load = 0, busiest_capacity = 1; | 
 | 	int i; | 
 |  | 
 | 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { | 
 | 		unsigned long capacity, wl; | 
 | 		enum fbq_type rt; | 
 |  | 
 | 		rq = cpu_rq(i); | 
 | 		rt = fbq_classify_rq(rq); | 
 |  | 
 | 		/* | 
 | 		 * We classify groups/runqueues into three groups: | 
 | 		 *  - regular: there are !numa tasks | 
 | 		 *  - remote:  there are numa tasks that run on the 'wrong' node | 
 | 		 *  - all:     there is no distinction | 
 | 		 * | 
 | 		 * In order to avoid migrating ideally placed numa tasks, | 
 | 		 * ignore those when there's better options. | 
 | 		 * | 
 | 		 * If we ignore the actual busiest queue to migrate another | 
 | 		 * task, the next balance pass can still reduce the busiest | 
 | 		 * queue by moving tasks around inside the node. | 
 | 		 * | 
 | 		 * If we cannot move enough load due to this classification | 
 | 		 * the next pass will adjust the group classification and | 
 | 		 * allow migration of more tasks. | 
 | 		 * | 
 | 		 * Both cases only affect the total convergence complexity. | 
 | 		 */ | 
 | 		if (rt > env->fbq_type) | 
 | 			continue; | 
 |  | 
 | 		capacity = capacity_of(i); | 
 |  | 
 | 		wl = weighted_cpuload(i); | 
 |  | 
 | 		/* | 
 | 		 * When comparing with imbalance, use weighted_cpuload() | 
 | 		 * which is not scaled with the cpu capacity. | 
 | 		 */ | 
 |  | 
 | 		if (rq->nr_running == 1 && wl > env->imbalance && | 
 | 		    !check_cpu_capacity(rq, env->sd)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * For the load comparisons with the other cpu's, consider | 
 | 		 * the weighted_cpuload() scaled with the cpu capacity, so | 
 | 		 * that the load can be moved away from the cpu that is | 
 | 		 * potentially running at a lower capacity. | 
 | 		 * | 
 | 		 * Thus we're looking for max(wl_i / capacity_i), crosswise | 
 | 		 * multiplication to rid ourselves of the division works out | 
 | 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is | 
 | 		 * our previous maximum. | 
 | 		 */ | 
 | 		if (wl * busiest_capacity > busiest_load * capacity) { | 
 | 			busiest_load = wl; | 
 | 			busiest_capacity = capacity; | 
 | 			busiest = rq; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return busiest; | 
 | } | 
 |  | 
 | /* | 
 |  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
 |  * so long as it is large enough. | 
 |  */ | 
 | #define MAX_PINNED_INTERVAL	512 | 
 |  | 
 | /* Working cpumask for load_balance and load_balance_newidle. */ | 
 | DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); | 
 |  | 
 | static int need_active_balance(struct lb_env *env) | 
 | { | 
 | 	struct sched_domain *sd = env->sd; | 
 |  | 
 | 	if (env->idle == CPU_NEWLY_IDLE) { | 
 |  | 
 | 		/* | 
 | 		 * ASYM_PACKING needs to force migrate tasks from busy but | 
 | 		 * higher numbered CPUs in order to pack all tasks in the | 
 | 		 * lowest numbered CPUs. | 
 | 		 */ | 
 | 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. | 
 | 	 * It's worth migrating the task if the src_cpu's capacity is reduced | 
 | 	 * because of other sched_class or IRQs if more capacity stays | 
 | 	 * available on dst_cpu. | 
 | 	 */ | 
 | 	if ((env->idle != CPU_NOT_IDLE) && | 
 | 	    (env->src_rq->cfs.h_nr_running == 1)) { | 
 | 		if ((check_cpu_capacity(env->src_rq, sd)) && | 
 | 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); | 
 | } | 
 |  | 
 | static int active_load_balance_cpu_stop(void *data); | 
 |  | 
 | static int should_we_balance(struct lb_env *env) | 
 | { | 
 | 	struct sched_group *sg = env->sd->groups; | 
 | 	struct cpumask *sg_cpus, *sg_mask; | 
 | 	int cpu, balance_cpu = -1; | 
 |  | 
 | 	/* | 
 | 	 * In the newly idle case, we will allow all the cpu's | 
 | 	 * to do the newly idle load balance. | 
 | 	 */ | 
 | 	if (env->idle == CPU_NEWLY_IDLE) | 
 | 		return 1; | 
 |  | 
 | 	sg_cpus = sched_group_cpus(sg); | 
 | 	sg_mask = sched_group_mask(sg); | 
 | 	/* Try to find first idle cpu */ | 
 | 	for_each_cpu_and(cpu, sg_cpus, env->cpus) { | 
 | 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) | 
 | 			continue; | 
 |  | 
 | 		balance_cpu = cpu; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (balance_cpu == -1) | 
 | 		balance_cpu = group_balance_cpu(sg); | 
 |  | 
 | 	/* | 
 | 	 * First idle cpu or the first cpu(busiest) in this sched group | 
 | 	 * is eligible for doing load balancing at this and above domains. | 
 | 	 */ | 
 | 	return balance_cpu == env->dst_cpu; | 
 | } | 
 |  | 
 | /* | 
 |  * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
 |  * tasks if there is an imbalance. | 
 |  */ | 
 | static int load_balance(int this_cpu, struct rq *this_rq, | 
 | 			struct sched_domain *sd, enum cpu_idle_type idle, | 
 | 			int *continue_balancing) | 
 | { | 
 | 	int ld_moved, cur_ld_moved, active_balance = 0; | 
 | 	struct sched_domain *sd_parent = sd->parent; | 
 | 	struct sched_group *group; | 
 | 	struct rq *busiest; | 
 | 	unsigned long flags; | 
 | 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); | 
 |  | 
 | 	struct lb_env env = { | 
 | 		.sd		= sd, | 
 | 		.dst_cpu	= this_cpu, | 
 | 		.dst_rq		= this_rq, | 
 | 		.dst_grpmask    = sched_group_cpus(sd->groups), | 
 | 		.idle		= idle, | 
 | 		.loop_break	= sched_nr_migrate_break, | 
 | 		.cpus		= cpus, | 
 | 		.fbq_type	= all, | 
 | 		.tasks		= LIST_HEAD_INIT(env.tasks), | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * For NEWLY_IDLE load_balancing, we don't need to consider | 
 | 	 * other cpus in our group | 
 | 	 */ | 
 | 	if (idle == CPU_NEWLY_IDLE) | 
 | 		env.dst_grpmask = NULL; | 
 |  | 
 | 	cpumask_copy(cpus, cpu_active_mask); | 
 |  | 
 | 	schedstat_inc(sd, lb_count[idle]); | 
 |  | 
 | redo: | 
 | 	if (!should_we_balance(&env)) { | 
 | 		*continue_balancing = 0; | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	group = find_busiest_group(&env); | 
 | 	if (!group) { | 
 | 		schedstat_inc(sd, lb_nobusyg[idle]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	busiest = find_busiest_queue(&env, group); | 
 | 	if (!busiest) { | 
 | 		schedstat_inc(sd, lb_nobusyq[idle]); | 
 | 		goto out_balanced; | 
 | 	} | 
 |  | 
 | 	BUG_ON(busiest == env.dst_rq); | 
 |  | 
 | 	schedstat_add(sd, lb_imbalance[idle], env.imbalance); | 
 |  | 
 | 	env.src_cpu = busiest->cpu; | 
 | 	env.src_rq = busiest; | 
 |  | 
 | 	ld_moved = 0; | 
 | 	if (busiest->nr_running > 1) { | 
 | 		/* | 
 | 		 * Attempt to move tasks. If find_busiest_group has found | 
 | 		 * an imbalance but busiest->nr_running <= 1, the group is | 
 | 		 * still unbalanced. ld_moved simply stays zero, so it is | 
 | 		 * correctly treated as an imbalance. | 
 | 		 */ | 
 | 		env.flags |= LBF_ALL_PINNED; | 
 | 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running); | 
 |  | 
 | more_balance: | 
 | 		raw_spin_lock_irqsave(&busiest->lock, flags); | 
 |  | 
 | 		/* | 
 | 		 * cur_ld_moved - load moved in current iteration | 
 | 		 * ld_moved     - cumulative load moved across iterations | 
 | 		 */ | 
 | 		cur_ld_moved = detach_tasks(&env); | 
 |  | 
 | 		/* | 
 | 		 * We've detached some tasks from busiest_rq. Every | 
 | 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely | 
 | 		 * unlock busiest->lock, and we are able to be sure | 
 | 		 * that nobody can manipulate the tasks in parallel. | 
 | 		 * See task_rq_lock() family for the details. | 
 | 		 */ | 
 |  | 
 | 		raw_spin_unlock(&busiest->lock); | 
 |  | 
 | 		if (cur_ld_moved) { | 
 | 			attach_tasks(&env); | 
 | 			ld_moved += cur_ld_moved; | 
 | 		} | 
 |  | 
 | 		local_irq_restore(flags); | 
 |  | 
 | 		if (env.flags & LBF_NEED_BREAK) { | 
 | 			env.flags &= ~LBF_NEED_BREAK; | 
 | 			goto more_balance; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to | 
 | 		 * us and move them to an alternate dst_cpu in our sched_group | 
 | 		 * where they can run. The upper limit on how many times we | 
 | 		 * iterate on same src_cpu is dependent on number of cpus in our | 
 | 		 * sched_group. | 
 | 		 * | 
 | 		 * This changes load balance semantics a bit on who can move | 
 | 		 * load to a given_cpu. In addition to the given_cpu itself | 
 | 		 * (or a ilb_cpu acting on its behalf where given_cpu is | 
 | 		 * nohz-idle), we now have balance_cpu in a position to move | 
 | 		 * load to given_cpu. In rare situations, this may cause | 
 | 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding | 
 | 		 * _independently_ and at _same_ time to move some load to | 
 | 		 * given_cpu) causing exceess load to be moved to given_cpu. | 
 | 		 * This however should not happen so much in practice and | 
 | 		 * moreover subsequent load balance cycles should correct the | 
 | 		 * excess load moved. | 
 | 		 */ | 
 | 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { | 
 |  | 
 | 			/* Prevent to re-select dst_cpu via env's cpus */ | 
 | 			cpumask_clear_cpu(env.dst_cpu, env.cpus); | 
 |  | 
 | 			env.dst_rq	 = cpu_rq(env.new_dst_cpu); | 
 | 			env.dst_cpu	 = env.new_dst_cpu; | 
 | 			env.flags	&= ~LBF_DST_PINNED; | 
 | 			env.loop	 = 0; | 
 | 			env.loop_break	 = sched_nr_migrate_break; | 
 |  | 
 | 			/* | 
 | 			 * Go back to "more_balance" rather than "redo" since we | 
 | 			 * need to continue with same src_cpu. | 
 | 			 */ | 
 | 			goto more_balance; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We failed to reach balance because of affinity. | 
 | 		 */ | 
 | 		if (sd_parent) { | 
 | 			int *group_imbalance = &sd_parent->groups->sgc->imbalance; | 
 |  | 
 | 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) | 
 | 				*group_imbalance = 1; | 
 | 		} | 
 |  | 
 | 		/* All tasks on this runqueue were pinned by CPU affinity */ | 
 | 		if (unlikely(env.flags & LBF_ALL_PINNED)) { | 
 | 			cpumask_clear_cpu(cpu_of(busiest), cpus); | 
 | 			if (!cpumask_empty(cpus)) { | 
 | 				env.loop = 0; | 
 | 				env.loop_break = sched_nr_migrate_break; | 
 | 				goto redo; | 
 | 			} | 
 | 			goto out_all_pinned; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!ld_moved) { | 
 | 		schedstat_inc(sd, lb_failed[idle]); | 
 | 		/* | 
 | 		 * Increment the failure counter only on periodic balance. | 
 | 		 * We do not want newidle balance, which can be very | 
 | 		 * frequent, pollute the failure counter causing | 
 | 		 * excessive cache_hot migrations and active balances. | 
 | 		 */ | 
 | 		if (idle != CPU_NEWLY_IDLE) | 
 | 			sd->nr_balance_failed++; | 
 |  | 
 | 		if (need_active_balance(&env)) { | 
 | 			raw_spin_lock_irqsave(&busiest->lock, flags); | 
 |  | 
 | 			/* don't kick the active_load_balance_cpu_stop, | 
 | 			 * if the curr task on busiest cpu can't be | 
 | 			 * moved to this_cpu | 
 | 			 */ | 
 | 			if (!cpumask_test_cpu(this_cpu, | 
 | 					tsk_cpus_allowed(busiest->curr))) { | 
 | 				raw_spin_unlock_irqrestore(&busiest->lock, | 
 | 							    flags); | 
 | 				env.flags |= LBF_ALL_PINNED; | 
 | 				goto out_one_pinned; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * ->active_balance synchronizes accesses to | 
 | 			 * ->active_balance_work.  Once set, it's cleared | 
 | 			 * only after active load balance is finished. | 
 | 			 */ | 
 | 			if (!busiest->active_balance) { | 
 | 				busiest->active_balance = 1; | 
 | 				busiest->push_cpu = this_cpu; | 
 | 				active_balance = 1; | 
 | 			} | 
 | 			raw_spin_unlock_irqrestore(&busiest->lock, flags); | 
 |  | 
 | 			if (active_balance) { | 
 | 				stop_one_cpu_nowait(cpu_of(busiest), | 
 | 					active_load_balance_cpu_stop, busiest, | 
 | 					&busiest->active_balance_work); | 
 | 			} | 
 |  | 
 | 			/* We've kicked active balancing, force task migration. */ | 
 | 			sd->nr_balance_failed = sd->cache_nice_tries+1; | 
 | 		} | 
 | 	} else | 
 | 		sd->nr_balance_failed = 0; | 
 |  | 
 | 	if (likely(!active_balance)) { | 
 | 		/* We were unbalanced, so reset the balancing interval */ | 
 | 		sd->balance_interval = sd->min_interval; | 
 | 	} else { | 
 | 		/* | 
 | 		 * If we've begun active balancing, start to back off. This | 
 | 		 * case may not be covered by the all_pinned logic if there | 
 | 		 * is only 1 task on the busy runqueue (because we don't call | 
 | 		 * detach_tasks). | 
 | 		 */ | 
 | 		if (sd->balance_interval < sd->max_interval) | 
 | 			sd->balance_interval *= 2; | 
 | 	} | 
 |  | 
 | 	goto out; | 
 |  | 
 | out_balanced: | 
 | 	/* | 
 | 	 * We reach balance although we may have faced some affinity | 
 | 	 * constraints. Clear the imbalance flag if it was set. | 
 | 	 */ | 
 | 	if (sd_parent) { | 
 | 		int *group_imbalance = &sd_parent->groups->sgc->imbalance; | 
 |  | 
 | 		if (*group_imbalance) | 
 | 			*group_imbalance = 0; | 
 | 	} | 
 |  | 
 | out_all_pinned: | 
 | 	/* | 
 | 	 * We reach balance because all tasks are pinned at this level so | 
 | 	 * we can't migrate them. Let the imbalance flag set so parent level | 
 | 	 * can try to migrate them. | 
 | 	 */ | 
 | 	schedstat_inc(sd, lb_balanced[idle]); | 
 |  | 
 | 	sd->nr_balance_failed = 0; | 
 |  | 
 | out_one_pinned: | 
 | 	/* tune up the balancing interval */ | 
 | 	if (((env.flags & LBF_ALL_PINNED) && | 
 | 			sd->balance_interval < MAX_PINNED_INTERVAL) || | 
 | 			(sd->balance_interval < sd->max_interval)) | 
 | 		sd->balance_interval *= 2; | 
 |  | 
 | 	ld_moved = 0; | 
 | out: | 
 | 	return ld_moved; | 
 | } | 
 |  | 
 | static inline unsigned long | 
 | get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) | 
 | { | 
 | 	unsigned long interval = sd->balance_interval; | 
 |  | 
 | 	if (cpu_busy) | 
 | 		interval *= sd->busy_factor; | 
 |  | 
 | 	/* scale ms to jiffies */ | 
 | 	interval = msecs_to_jiffies(interval); | 
 | 	interval = clamp(interval, 1UL, max_load_balance_interval); | 
 |  | 
 | 	return interval; | 
 | } | 
 |  | 
 | static inline void | 
 | update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) | 
 | { | 
 | 	unsigned long interval, next; | 
 |  | 
 | 	interval = get_sd_balance_interval(sd, cpu_busy); | 
 | 	next = sd->last_balance + interval; | 
 |  | 
 | 	if (time_after(*next_balance, next)) | 
 | 		*next_balance = next; | 
 | } | 
 |  | 
 | /* | 
 |  * idle_balance is called by schedule() if this_cpu is about to become | 
 |  * idle. Attempts to pull tasks from other CPUs. | 
 |  */ | 
 | static int idle_balance(struct rq *this_rq) | 
 | { | 
 | 	unsigned long next_balance = jiffies + HZ; | 
 | 	int this_cpu = this_rq->cpu; | 
 | 	struct sched_domain *sd; | 
 | 	int pulled_task = 0; | 
 | 	u64 curr_cost = 0; | 
 |  | 
 | 	/* | 
 | 	 * We must set idle_stamp _before_ calling idle_balance(), such that we | 
 | 	 * measure the duration of idle_balance() as idle time. | 
 | 	 */ | 
 | 	this_rq->idle_stamp = rq_clock(this_rq); | 
 |  | 
 | 	if (this_rq->avg_idle < sysctl_sched_migration_cost || | 
 | 	    !this_rq->rd->overload) { | 
 | 		rcu_read_lock(); | 
 | 		sd = rcu_dereference_check_sched_domain(this_rq->sd); | 
 | 		if (sd) | 
 | 			update_next_balance(sd, 0, &next_balance); | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	raw_spin_unlock(&this_rq->lock); | 
 |  | 
 | 	update_blocked_averages(this_cpu); | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(this_cpu, sd) { | 
 | 		int continue_balancing = 1; | 
 | 		u64 t0, domain_cost; | 
 |  | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { | 
 | 			update_next_balance(sd, 0, &next_balance); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (sd->flags & SD_BALANCE_NEWIDLE) { | 
 | 			t0 = sched_clock_cpu(this_cpu); | 
 |  | 
 | 			pulled_task = load_balance(this_cpu, this_rq, | 
 | 						   sd, CPU_NEWLY_IDLE, | 
 | 						   &continue_balancing); | 
 |  | 
 | 			domain_cost = sched_clock_cpu(this_cpu) - t0; | 
 | 			if (domain_cost > sd->max_newidle_lb_cost) | 
 | 				sd->max_newidle_lb_cost = domain_cost; | 
 |  | 
 | 			curr_cost += domain_cost; | 
 | 		} | 
 |  | 
 | 		update_next_balance(sd, 0, &next_balance); | 
 |  | 
 | 		/* | 
 | 		 * Stop searching for tasks to pull if there are | 
 | 		 * now runnable tasks on this rq. | 
 | 		 */ | 
 | 		if (pulled_task || this_rq->nr_running > 0) | 
 | 			break; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	raw_spin_lock(&this_rq->lock); | 
 |  | 
 | 	if (curr_cost > this_rq->max_idle_balance_cost) | 
 | 		this_rq->max_idle_balance_cost = curr_cost; | 
 |  | 
 | 	/* | 
 | 	 * While browsing the domains, we released the rq lock, a task could | 
 | 	 * have been enqueued in the meantime. Since we're not going idle, | 
 | 	 * pretend we pulled a task. | 
 | 	 */ | 
 | 	if (this_rq->cfs.h_nr_running && !pulled_task) | 
 | 		pulled_task = 1; | 
 |  | 
 | out: | 
 | 	/* Move the next balance forward */ | 
 | 	if (time_after(this_rq->next_balance, next_balance)) | 
 | 		this_rq->next_balance = next_balance; | 
 |  | 
 | 	/* Is there a task of a high priority class? */ | 
 | 	if (this_rq->nr_running != this_rq->cfs.h_nr_running) | 
 | 		pulled_task = -1; | 
 |  | 
 | 	if (pulled_task) | 
 | 		this_rq->idle_stamp = 0; | 
 |  | 
 | 	return pulled_task; | 
 | } | 
 |  | 
 | /* | 
 |  * active_load_balance_cpu_stop is run by cpu stopper. It pushes | 
 |  * running tasks off the busiest CPU onto idle CPUs. It requires at | 
 |  * least 1 task to be running on each physical CPU where possible, and | 
 |  * avoids physical / logical imbalances. | 
 |  */ | 
 | static int active_load_balance_cpu_stop(void *data) | 
 | { | 
 | 	struct rq *busiest_rq = data; | 
 | 	int busiest_cpu = cpu_of(busiest_rq); | 
 | 	int target_cpu = busiest_rq->push_cpu; | 
 | 	struct rq *target_rq = cpu_rq(target_cpu); | 
 | 	struct sched_domain *sd; | 
 | 	struct task_struct *p = NULL; | 
 |  | 
 | 	raw_spin_lock_irq(&busiest_rq->lock); | 
 |  | 
 | 	/* make sure the requested cpu hasn't gone down in the meantime */ | 
 | 	if (unlikely(busiest_cpu != smp_processor_id() || | 
 | 		     !busiest_rq->active_balance)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* Is there any task to move? */ | 
 | 	if (busiest_rq->nr_running <= 1) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * This condition is "impossible", if it occurs | 
 | 	 * we need to fix it. Originally reported by | 
 | 	 * Bjorn Helgaas on a 128-cpu setup. | 
 | 	 */ | 
 | 	BUG_ON(busiest_rq == target_rq); | 
 |  | 
 | 	/* Search for an sd spanning us and the target CPU. */ | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(target_cpu, sd) { | 
 | 		if ((sd->flags & SD_LOAD_BALANCE) && | 
 | 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) | 
 | 				break; | 
 | 	} | 
 |  | 
 | 	if (likely(sd)) { | 
 | 		struct lb_env env = { | 
 | 			.sd		= sd, | 
 | 			.dst_cpu	= target_cpu, | 
 | 			.dst_rq		= target_rq, | 
 | 			.src_cpu	= busiest_rq->cpu, | 
 | 			.src_rq		= busiest_rq, | 
 | 			.idle		= CPU_IDLE, | 
 | 		}; | 
 |  | 
 | 		schedstat_inc(sd, alb_count); | 
 |  | 
 | 		p = detach_one_task(&env); | 
 | 		if (p) { | 
 | 			schedstat_inc(sd, alb_pushed); | 
 | 			/* Active balancing done, reset the failure counter. */ | 
 | 			sd->nr_balance_failed = 0; | 
 | 		} else { | 
 | 			schedstat_inc(sd, alb_failed); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | out_unlock: | 
 | 	busiest_rq->active_balance = 0; | 
 | 	raw_spin_unlock(&busiest_rq->lock); | 
 |  | 
 | 	if (p) | 
 | 		attach_one_task(target_rq, p); | 
 |  | 
 | 	local_irq_enable(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int on_null_domain(struct rq *rq) | 
 | { | 
 | 	return unlikely(!rcu_dereference_sched(rq->sd)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | /* | 
 |  * idle load balancing details | 
 |  * - When one of the busy CPUs notice that there may be an idle rebalancing | 
 |  *   needed, they will kick the idle load balancer, which then does idle | 
 |  *   load balancing for all the idle CPUs. | 
 |  */ | 
 | static struct { | 
 | 	cpumask_var_t idle_cpus_mask; | 
 | 	atomic_t nr_cpus; | 
 | 	unsigned long next_balance;     /* in jiffy units */ | 
 | } nohz ____cacheline_aligned; | 
 |  | 
 | static inline int find_new_ilb(void) | 
 | { | 
 | 	int ilb = cpumask_first(nohz.idle_cpus_mask); | 
 |  | 
 | 	if (ilb < nr_cpu_ids && idle_cpu(ilb)) | 
 | 		return ilb; | 
 |  | 
 | 	return nr_cpu_ids; | 
 | } | 
 |  | 
 | /* | 
 |  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the | 
 |  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle | 
 |  * CPU (if there is one). | 
 |  */ | 
 | static void nohz_balancer_kick(void) | 
 | { | 
 | 	int ilb_cpu; | 
 |  | 
 | 	nohz.next_balance++; | 
 |  | 
 | 	ilb_cpu = find_new_ilb(); | 
 |  | 
 | 	if (ilb_cpu >= nr_cpu_ids) | 
 | 		return; | 
 |  | 
 | 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) | 
 | 		return; | 
 | 	/* | 
 | 	 * Use smp_send_reschedule() instead of resched_cpu(). | 
 | 	 * This way we generate a sched IPI on the target cpu which | 
 | 	 * is idle. And the softirq performing nohz idle load balance | 
 | 	 * will be run before returning from the IPI. | 
 | 	 */ | 
 | 	smp_send_reschedule(ilb_cpu); | 
 | 	return; | 
 | } | 
 |  | 
 | void nohz_balance_exit_idle(unsigned int cpu) | 
 | { | 
 | 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { | 
 | 		/* | 
 | 		 * Completely isolated CPUs don't ever set, so we must test. | 
 | 		 */ | 
 | 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { | 
 | 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); | 
 | 			atomic_dec(&nohz.nr_cpus); | 
 | 		} | 
 | 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void set_cpu_sd_state_busy(void) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	sd = rcu_dereference(per_cpu(sd_busy, cpu)); | 
 |  | 
 | 	if (!sd || !sd->nohz_idle) | 
 | 		goto unlock; | 
 | 	sd->nohz_idle = 0; | 
 |  | 
 | 	atomic_inc(&sd->groups->sgc->nr_busy_cpus); | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | void set_cpu_sd_state_idle(void) | 
 | { | 
 | 	struct sched_domain *sd; | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	sd = rcu_dereference(per_cpu(sd_busy, cpu)); | 
 |  | 
 | 	if (!sd || sd->nohz_idle) | 
 | 		goto unlock; | 
 | 	sd->nohz_idle = 1; | 
 |  | 
 | 	atomic_dec(&sd->groups->sgc->nr_busy_cpus); | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * This routine will record that the cpu is going idle with tick stopped. | 
 |  * This info will be used in performing idle load balancing in the future. | 
 |  */ | 
 | void nohz_balance_enter_idle(int cpu) | 
 | { | 
 | 	/* | 
 | 	 * If this cpu is going down, then nothing needs to be done. | 
 | 	 */ | 
 | 	if (!cpu_active(cpu)) | 
 | 		return; | 
 |  | 
 | 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If we're a completely isolated CPU, we don't play. | 
 | 	 */ | 
 | 	if (on_null_domain(cpu_rq(cpu))) | 
 | 		return; | 
 |  | 
 | 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask); | 
 | 	atomic_inc(&nohz.nr_cpus); | 
 | 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); | 
 | } | 
 | #endif | 
 |  | 
 | static DEFINE_SPINLOCK(balancing); | 
 |  | 
 | /* | 
 |  * Scale the max load_balance interval with the number of CPUs in the system. | 
 |  * This trades load-balance latency on larger machines for less cross talk. | 
 |  */ | 
 | void update_max_interval(void) | 
 | { | 
 | 	max_load_balance_interval = HZ*num_online_cpus()/10; | 
 | } | 
 |  | 
 | /* | 
 |  * It checks each scheduling domain to see if it is due to be balanced, | 
 |  * and initiates a balancing operation if so. | 
 |  * | 
 |  * Balancing parameters are set up in init_sched_domains. | 
 |  */ | 
 | static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) | 
 | { | 
 | 	int continue_balancing = 1; | 
 | 	int cpu = rq->cpu; | 
 | 	unsigned long interval; | 
 | 	struct sched_domain *sd; | 
 | 	/* Earliest time when we have to do rebalance again */ | 
 | 	unsigned long next_balance = jiffies + 60*HZ; | 
 | 	int update_next_balance = 0; | 
 | 	int need_serialize, need_decay = 0; | 
 | 	u64 max_cost = 0; | 
 |  | 
 | 	update_blocked_averages(cpu); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_domain(cpu, sd) { | 
 | 		/* | 
 | 		 * Decay the newidle max times here because this is a regular | 
 | 		 * visit to all the domains. Decay ~1% per second. | 
 | 		 */ | 
 | 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) { | 
 | 			sd->max_newidle_lb_cost = | 
 | 				(sd->max_newidle_lb_cost * 253) / 256; | 
 | 			sd->next_decay_max_lb_cost = jiffies + HZ; | 
 | 			need_decay = 1; | 
 | 		} | 
 | 		max_cost += sd->max_newidle_lb_cost; | 
 |  | 
 | 		if (!(sd->flags & SD_LOAD_BALANCE)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Stop the load balance at this level. There is another | 
 | 		 * CPU in our sched group which is doing load balancing more | 
 | 		 * actively. | 
 | 		 */ | 
 | 		if (!continue_balancing) { | 
 | 			if (need_decay) | 
 | 				continue; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE); | 
 |  | 
 | 		need_serialize = sd->flags & SD_SERIALIZE; | 
 | 		if (need_serialize) { | 
 | 			if (!spin_trylock(&balancing)) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		if (time_after_eq(jiffies, sd->last_balance + interval)) { | 
 | 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { | 
 | 				/* | 
 | 				 * The LBF_DST_PINNED logic could have changed | 
 | 				 * env->dst_cpu, so we can't know our idle | 
 | 				 * state even if we migrated tasks. Update it. | 
 | 				 */ | 
 | 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; | 
 | 			} | 
 | 			sd->last_balance = jiffies; | 
 | 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE); | 
 | 		} | 
 | 		if (need_serialize) | 
 | 			spin_unlock(&balancing); | 
 | out: | 
 | 		if (time_after(next_balance, sd->last_balance + interval)) { | 
 | 			next_balance = sd->last_balance + interval; | 
 | 			update_next_balance = 1; | 
 | 		} | 
 | 	} | 
 | 	if (need_decay) { | 
 | 		/* | 
 | 		 * Ensure the rq-wide value also decays but keep it at a | 
 | 		 * reasonable floor to avoid funnies with rq->avg_idle. | 
 | 		 */ | 
 | 		rq->max_idle_balance_cost = | 
 | 			max((u64)sysctl_sched_migration_cost, max_cost); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * next_balance will be updated only when there is a need. | 
 | 	 * When the cpu is attached to null domain for ex, it will not be | 
 | 	 * updated. | 
 | 	 */ | 
 | 	if (likely(update_next_balance)) { | 
 | 		rq->next_balance = next_balance; | 
 |  | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | 		/* | 
 | 		 * If this CPU has been elected to perform the nohz idle | 
 | 		 * balance. Other idle CPUs have already rebalanced with | 
 | 		 * nohz_idle_balance() and nohz.next_balance has been | 
 | 		 * updated accordingly. This CPU is now running the idle load | 
 | 		 * balance for itself and we need to update the | 
 | 		 * nohz.next_balance accordingly. | 
 | 		 */ | 
 | 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) | 
 | 			nohz.next_balance = rq->next_balance; | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | /* | 
 |  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the | 
 |  * rebalancing for all the cpus for whom scheduler ticks are stopped. | 
 |  */ | 
 | static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) | 
 | { | 
 | 	int this_cpu = this_rq->cpu; | 
 | 	struct rq *rq; | 
 | 	int balance_cpu; | 
 | 	/* Earliest time when we have to do rebalance again */ | 
 | 	unsigned long next_balance = jiffies + 60*HZ; | 
 | 	int update_next_balance = 0; | 
 |  | 
 | 	if (idle != CPU_IDLE || | 
 | 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) | 
 | 		goto end; | 
 |  | 
 | 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { | 
 | 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If this cpu gets work to do, stop the load balancing | 
 | 		 * work being done for other cpus. Next load | 
 | 		 * balancing owner will pick it up. | 
 | 		 */ | 
 | 		if (need_resched()) | 
 | 			break; | 
 |  | 
 | 		rq = cpu_rq(balance_cpu); | 
 |  | 
 | 		/* | 
 | 		 * If time for next balance is due, | 
 | 		 * do the balance. | 
 | 		 */ | 
 | 		if (time_after_eq(jiffies, rq->next_balance)) { | 
 | 			raw_spin_lock_irq(&rq->lock); | 
 | 			update_rq_clock(rq); | 
 | 			cpu_load_update_idle(rq); | 
 | 			raw_spin_unlock_irq(&rq->lock); | 
 | 			rebalance_domains(rq, CPU_IDLE); | 
 | 		} | 
 |  | 
 | 		if (time_after(next_balance, rq->next_balance)) { | 
 | 			next_balance = rq->next_balance; | 
 | 			update_next_balance = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * next_balance will be updated only when there is a need. | 
 | 	 * When the CPU is attached to null domain for ex, it will not be | 
 | 	 * updated. | 
 | 	 */ | 
 | 	if (likely(update_next_balance)) | 
 | 		nohz.next_balance = next_balance; | 
 | end: | 
 | 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); | 
 | } | 
 |  | 
 | /* | 
 |  * Current heuristic for kicking the idle load balancer in the presence | 
 |  * of an idle cpu in the system. | 
 |  *   - This rq has more than one task. | 
 |  *   - This rq has at least one CFS task and the capacity of the CPU is | 
 |  *     significantly reduced because of RT tasks or IRQs. | 
 |  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has | 
 |  *     multiple busy cpu. | 
 |  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler | 
 |  *     domain span are idle. | 
 |  */ | 
 | static inline bool nohz_kick_needed(struct rq *rq) | 
 | { | 
 | 	unsigned long now = jiffies; | 
 | 	struct sched_domain *sd; | 
 | 	struct sched_group_capacity *sgc; | 
 | 	int nr_busy, cpu = rq->cpu; | 
 | 	bool kick = false; | 
 |  | 
 | 	if (unlikely(rq->idle_balance)) | 
 | 		return false; | 
 |  | 
 |        /* | 
 | 	* We may be recently in ticked or tickless idle mode. At the first | 
 | 	* busy tick after returning from idle, we will update the busy stats. | 
 | 	*/ | 
 | 	set_cpu_sd_state_busy(); | 
 | 	nohz_balance_exit_idle(cpu); | 
 |  | 
 | 	/* | 
 | 	 * None are in tickless mode and hence no need for NOHZ idle load | 
 | 	 * balancing. | 
 | 	 */ | 
 | 	if (likely(!atomic_read(&nohz.nr_cpus))) | 
 | 		return false; | 
 |  | 
 | 	if (time_before(now, nohz.next_balance)) | 
 | 		return false; | 
 |  | 
 | 	if (rq->nr_running >= 2) | 
 | 		return true; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	sd = rcu_dereference(per_cpu(sd_busy, cpu)); | 
 | 	if (sd) { | 
 | 		sgc = sd->groups->sgc; | 
 | 		nr_busy = atomic_read(&sgc->nr_busy_cpus); | 
 |  | 
 | 		if (nr_busy > 1) { | 
 | 			kick = true; | 
 | 			goto unlock; | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	sd = rcu_dereference(rq->sd); | 
 | 	if (sd) { | 
 | 		if ((rq->cfs.h_nr_running >= 1) && | 
 | 				check_cpu_capacity(rq, sd)) { | 
 | 			kick = true; | 
 | 			goto unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	sd = rcu_dereference(per_cpu(sd_asym, cpu)); | 
 | 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask, | 
 | 				  sched_domain_span(sd)) < cpu)) { | 
 | 		kick = true; | 
 | 		goto unlock; | 
 | 	} | 
 |  | 
 | unlock: | 
 | 	rcu_read_unlock(); | 
 | 	return kick; | 
 | } | 
 | #else | 
 | static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } | 
 | #endif | 
 |  | 
 | /* | 
 |  * run_rebalance_domains is triggered when needed from the scheduler tick. | 
 |  * Also triggered for nohz idle balancing (with nohz_balancing_kick set). | 
 |  */ | 
 | static void run_rebalance_domains(struct softirq_action *h) | 
 | { | 
 | 	struct rq *this_rq = this_rq(); | 
 | 	enum cpu_idle_type idle = this_rq->idle_balance ? | 
 | 						CPU_IDLE : CPU_NOT_IDLE; | 
 |  | 
 | 	/* | 
 | 	 * If this cpu has a pending nohz_balance_kick, then do the | 
 | 	 * balancing on behalf of the other idle cpus whose ticks are | 
 | 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to | 
 | 	 * give the idle cpus a chance to load balance. Else we may | 
 | 	 * load balance only within the local sched_domain hierarchy | 
 | 	 * and abort nohz_idle_balance altogether if we pull some load. | 
 | 	 */ | 
 | 	nohz_idle_balance(this_rq, idle); | 
 | 	rebalance_domains(this_rq, idle); | 
 | } | 
 |  | 
 | /* | 
 |  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 
 |  */ | 
 | void trigger_load_balance(struct rq *rq) | 
 | { | 
 | 	/* Don't need to rebalance while attached to NULL domain */ | 
 | 	if (unlikely(on_null_domain(rq))) | 
 | 		return; | 
 |  | 
 | 	if (time_after_eq(jiffies, rq->next_balance)) | 
 | 		raise_softirq(SCHED_SOFTIRQ); | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | 	if (nohz_kick_needed(rq)) | 
 | 		nohz_balancer_kick(); | 
 | #endif | 
 | } | 
 |  | 
 | static void rq_online_fair(struct rq *rq) | 
 | { | 
 | 	update_sysctl(); | 
 |  | 
 | 	update_runtime_enabled(rq); | 
 | } | 
 |  | 
 | static void rq_offline_fair(struct rq *rq) | 
 | { | 
 | 	update_sysctl(); | 
 |  | 
 | 	/* Ensure any throttled groups are reachable by pick_next_task */ | 
 | 	unthrottle_offline_cfs_rqs(rq); | 
 | } | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * scheduler tick hitting a task of our scheduling class: | 
 |  */ | 
 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &curr->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		cfs_rq = cfs_rq_of(se); | 
 | 		entity_tick(cfs_rq, se, queued); | 
 | 	} | 
 |  | 
 | 	if (static_branch_unlikely(&sched_numa_balancing)) | 
 | 		task_tick_numa(rq, curr); | 
 | } | 
 |  | 
 | /* | 
 |  * called on fork with the child task as argument from the parent's context | 
 |  *  - child not yet on the tasklist | 
 |  *  - preemption disabled | 
 |  */ | 
 | static void task_fork_fair(struct task_struct *p) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct sched_entity *se = &p->se, *curr; | 
 | 	struct rq *rq = this_rq(); | 
 |  | 
 | 	raw_spin_lock(&rq->lock); | 
 | 	update_rq_clock(rq); | 
 |  | 
 | 	cfs_rq = task_cfs_rq(current); | 
 | 	curr = cfs_rq->curr; | 
 | 	if (curr) { | 
 | 		update_curr(cfs_rq); | 
 | 		se->vruntime = curr->vruntime; | 
 | 	} | 
 | 	place_entity(cfs_rq, se, 1); | 
 |  | 
 | 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { | 
 | 		/* | 
 | 		 * Upon rescheduling, sched_class::put_prev_task() will place | 
 | 		 * 'current' within the tree based on its new key value. | 
 | 		 */ | 
 | 		swap(curr->vruntime, se->vruntime); | 
 | 		resched_curr(rq); | 
 | 	} | 
 |  | 
 | 	se->vruntime -= cfs_rq->min_vruntime; | 
 | 	raw_spin_unlock(&rq->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Priority of the task has changed. Check to see if we preempt | 
 |  * the current task. | 
 |  */ | 
 | static void | 
 | prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) | 
 | { | 
 | 	if (!task_on_rq_queued(p)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Reschedule if we are currently running on this runqueue and | 
 | 	 * our priority decreased, or if we are not currently running on | 
 | 	 * this runqueue and our priority is higher than the current's | 
 | 	 */ | 
 | 	if (rq->curr == p) { | 
 | 		if (p->prio > oldprio) | 
 | 			resched_curr(rq); | 
 | 	} else | 
 | 		check_preempt_curr(rq, p, 0); | 
 | } | 
 |  | 
 | static inline bool vruntime_normalized(struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 |  | 
 | 	/* | 
 | 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, | 
 | 	 * the dequeue_entity(.flags=0) will already have normalized the | 
 | 	 * vruntime. | 
 | 	 */ | 
 | 	if (p->on_rq) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * When !on_rq, vruntime of the task has usually NOT been normalized. | 
 | 	 * But there are some cases where it has already been normalized: | 
 | 	 * | 
 | 	 * - A forked child which is waiting for being woken up by | 
 | 	 *   wake_up_new_task(). | 
 | 	 * - A task which has been woken up by try_to_wake_up() and | 
 | 	 *   waiting for actually being woken up by sched_ttwu_pending(). | 
 | 	 */ | 
 | 	if (!se->sum_exec_runtime || p->state == TASK_WAKING) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void detach_task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 	u64 now = cfs_rq_clock_task(cfs_rq); | 
 | 	int tg_update; | 
 |  | 
 | 	if (!vruntime_normalized(p)) { | 
 | 		/* | 
 | 		 * Fix up our vruntime so that the current sleep doesn't | 
 | 		 * cause 'unlimited' sleep bonus. | 
 | 		 */ | 
 | 		place_entity(cfs_rq, se, 0); | 
 | 		se->vruntime -= cfs_rq->min_vruntime; | 
 | 	} | 
 |  | 
 | 	/* Catch up with the cfs_rq and remove our load when we leave */ | 
 | 	tg_update = update_cfs_rq_load_avg(now, cfs_rq, false); | 
 | 	detach_entity_load_avg(cfs_rq, se); | 
 | 	if (tg_update) | 
 | 		update_tg_load_avg(cfs_rq, false); | 
 | } | 
 |  | 
 | static void attach_task_cfs_rq(struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 | 	struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 | 	u64 now = cfs_rq_clock_task(cfs_rq); | 
 | 	int tg_update; | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	/* | 
 | 	 * Since the real-depth could have been changed (only FAIR | 
 | 	 * class maintain depth value), reset depth properly. | 
 | 	 */ | 
 | 	se->depth = se->parent ? se->parent->depth + 1 : 0; | 
 | #endif | 
 |  | 
 | 	/* Synchronize task with its cfs_rq */ | 
 | 	tg_update = update_cfs_rq_load_avg(now, cfs_rq, false); | 
 | 	attach_entity_load_avg(cfs_rq, se); | 
 | 	if (tg_update) | 
 | 		update_tg_load_avg(cfs_rq, false); | 
 |  | 
 | 	if (!vruntime_normalized(p)) | 
 | 		se->vruntime += cfs_rq->min_vruntime; | 
 | } | 
 |  | 
 | static void switched_from_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	detach_task_cfs_rq(p); | 
 | } | 
 |  | 
 | static void switched_to_fair(struct rq *rq, struct task_struct *p) | 
 | { | 
 | 	attach_task_cfs_rq(p); | 
 |  | 
 | 	if (task_on_rq_queued(p)) { | 
 | 		/* | 
 | 		 * We were most likely switched from sched_rt, so | 
 | 		 * kick off the schedule if running, otherwise just see | 
 | 		 * if we can still preempt the current task. | 
 | 		 */ | 
 | 		if (rq->curr == p) | 
 | 			resched_curr(rq); | 
 | 		else | 
 | 			check_preempt_curr(rq, p, 0); | 
 | 	} | 
 | } | 
 |  | 
 | /* Account for a task changing its policy or group. | 
 |  * | 
 |  * This routine is mostly called to set cfs_rq->curr field when a task | 
 |  * migrates between groups/classes. | 
 |  */ | 
 | static void set_curr_task_fair(struct rq *rq) | 
 | { | 
 | 	struct sched_entity *se = &rq->curr->se; | 
 |  | 
 | 	for_each_sched_entity(se) { | 
 | 		struct cfs_rq *cfs_rq = cfs_rq_of(se); | 
 |  | 
 | 		set_next_entity(cfs_rq, se); | 
 | 		/* ensure bandwidth has been allocated on our new cfs_rq */ | 
 | 		account_cfs_rq_runtime(cfs_rq, 0); | 
 | 	} | 
 | } | 
 |  | 
 | void init_cfs_rq(struct cfs_rq *cfs_rq) | 
 | { | 
 | 	cfs_rq->tasks_timeline = RB_ROOT; | 
 | 	cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | 
 | #ifndef CONFIG_64BIT | 
 | 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; | 
 | #endif | 
 | #ifdef CONFIG_SMP | 
 | 	atomic_long_set(&cfs_rq->removed_load_avg, 0); | 
 | 	atomic_long_set(&cfs_rq->removed_util_avg, 0); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | static void task_set_group_fair(struct task_struct *p) | 
 | { | 
 | 	struct sched_entity *se = &p->se; | 
 |  | 
 | 	set_task_rq(p, task_cpu(p)); | 
 | 	se->depth = se->parent ? se->parent->depth + 1 : 0; | 
 | } | 
 |  | 
 | static void task_move_group_fair(struct task_struct *p) | 
 | { | 
 | 	detach_task_cfs_rq(p); | 
 | 	set_task_rq(p, task_cpu(p)); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* Tell se's cfs_rq has been changed -- migrated */ | 
 | 	p->se.avg.last_update_time = 0; | 
 | #endif | 
 | 	attach_task_cfs_rq(p); | 
 | } | 
 |  | 
 | static void task_change_group_fair(struct task_struct *p, int type) | 
 | { | 
 | 	switch (type) { | 
 | 	case TASK_SET_GROUP: | 
 | 		task_set_group_fair(p); | 
 | 		break; | 
 |  | 
 | 	case TASK_MOVE_GROUP: | 
 | 		task_move_group_fair(p); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | void free_fair_sched_group(struct task_group *tg) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		if (tg->cfs_rq) | 
 | 			kfree(tg->cfs_rq[i]); | 
 | 		if (tg->se) | 
 | 			kfree(tg->se[i]); | 
 | 	} | 
 |  | 
 | 	kfree(tg->cfs_rq); | 
 | 	kfree(tg->se); | 
 | } | 
 |  | 
 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	struct sched_entity *se; | 
 | 	struct cfs_rq *cfs_rq; | 
 | 	struct rq *rq; | 
 | 	int i; | 
 |  | 
 | 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | 
 | 	if (!tg->cfs_rq) | 
 | 		goto err; | 
 | 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | 
 | 	if (!tg->se) | 
 | 		goto err; | 
 |  | 
 | 	tg->shares = NICE_0_LOAD; | 
 |  | 
 | 	init_cfs_bandwidth(tg_cfs_bandwidth(tg)); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		rq = cpu_rq(i); | 
 |  | 
 | 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | 
 | 				      GFP_KERNEL, cpu_to_node(i)); | 
 | 		if (!cfs_rq) | 
 | 			goto err; | 
 |  | 
 | 		se = kzalloc_node(sizeof(struct sched_entity), | 
 | 				  GFP_KERNEL, cpu_to_node(i)); | 
 | 		if (!se) | 
 | 			goto err_free_rq; | 
 |  | 
 | 		init_cfs_rq(cfs_rq); | 
 | 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); | 
 | 		init_entity_runnable_average(se); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 |  | 
 | err_free_rq: | 
 | 	kfree(cfs_rq); | 
 | err: | 
 | 	return 0; | 
 | } | 
 |  | 
 | void online_fair_sched_group(struct task_group *tg) | 
 | { | 
 | 	struct sched_entity *se; | 
 | 	struct rq *rq; | 
 | 	int i; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		rq = cpu_rq(i); | 
 | 		se = tg->se[i]; | 
 |  | 
 | 		raw_spin_lock_irq(&rq->lock); | 
 | 		post_init_entity_util_avg(se); | 
 | 		sync_throttle(tg, i); | 
 | 		raw_spin_unlock_irq(&rq->lock); | 
 | 	} | 
 | } | 
 |  | 
 | void unregister_fair_sched_group(struct task_group *tg) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct rq *rq; | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		if (tg->se[cpu]) | 
 | 			remove_entity_load_avg(tg->se[cpu]); | 
 |  | 
 | 		/* | 
 | 		 * Only empty task groups can be destroyed; so we can speculatively | 
 | 		 * check on_list without danger of it being re-added. | 
 | 		 */ | 
 | 		if (!tg->cfs_rq[cpu]->on_list) | 
 | 			continue; | 
 |  | 
 | 		rq = cpu_rq(cpu); | 
 |  | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 | 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | 	} | 
 | } | 
 |  | 
 | void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 
 | 			struct sched_entity *se, int cpu, | 
 | 			struct sched_entity *parent) | 
 | { | 
 | 	struct rq *rq = cpu_rq(cpu); | 
 |  | 
 | 	cfs_rq->tg = tg; | 
 | 	cfs_rq->rq = rq; | 
 | 	init_cfs_rq_runtime(cfs_rq); | 
 |  | 
 | 	tg->cfs_rq[cpu] = cfs_rq; | 
 | 	tg->se[cpu] = se; | 
 |  | 
 | 	/* se could be NULL for root_task_group */ | 
 | 	if (!se) | 
 | 		return; | 
 |  | 
 | 	if (!parent) { | 
 | 		se->cfs_rq = &rq->cfs; | 
 | 		se->depth = 0; | 
 | 	} else { | 
 | 		se->cfs_rq = parent->my_q; | 
 | 		se->depth = parent->depth + 1; | 
 | 	} | 
 |  | 
 | 	se->my_q = cfs_rq; | 
 | 	/* guarantee group entities always have weight */ | 
 | 	update_load_set(&se->load, NICE_0_LOAD); | 
 | 	se->parent = parent; | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(shares_mutex); | 
 |  | 
 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | 
 | { | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * We can't change the weight of the root cgroup. | 
 | 	 */ | 
 | 	if (!tg->se[0]) | 
 | 		return -EINVAL; | 
 |  | 
 | 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); | 
 |  | 
 | 	mutex_lock(&shares_mutex); | 
 | 	if (tg->shares == shares) | 
 | 		goto done; | 
 |  | 
 | 	tg->shares = shares; | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct rq *rq = cpu_rq(i); | 
 | 		struct sched_entity *se; | 
 |  | 
 | 		se = tg->se[i]; | 
 | 		/* Propagate contribution to hierarchy */ | 
 | 		raw_spin_lock_irqsave(&rq->lock, flags); | 
 |  | 
 | 		/* Possible calls to update_curr() need rq clock */ | 
 | 		update_rq_clock(rq); | 
 | 		for_each_sched_entity(se) | 
 | 			update_cfs_shares(group_cfs_rq(se)); | 
 | 		raw_spin_unlock_irqrestore(&rq->lock, flags); | 
 | 	} | 
 |  | 
 | done: | 
 | 	mutex_unlock(&shares_mutex); | 
 | 	return 0; | 
 | } | 
 | #else /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 | void free_fair_sched_group(struct task_group *tg) { } | 
 |  | 
 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | void online_fair_sched_group(struct task_group *tg) { } | 
 |  | 
 | void unregister_fair_sched_group(struct task_group *tg) { } | 
 |  | 
 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
 |  | 
 |  | 
 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) | 
 | { | 
 | 	struct sched_entity *se = &task->se; | 
 | 	unsigned int rr_interval = 0; | 
 |  | 
 | 	/* | 
 | 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | 
 | 	 * idle runqueue: | 
 | 	 */ | 
 | 	if (rq->cfs.load.weight) | 
 | 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); | 
 |  | 
 | 	return rr_interval; | 
 | } | 
 |  | 
 | /* | 
 |  * All the scheduling class methods: | 
 |  */ | 
 | const struct sched_class fair_sched_class = { | 
 | 	.next			= &idle_sched_class, | 
 | 	.enqueue_task		= enqueue_task_fair, | 
 | 	.dequeue_task		= dequeue_task_fair, | 
 | 	.yield_task		= yield_task_fair, | 
 | 	.yield_to_task		= yield_to_task_fair, | 
 |  | 
 | 	.check_preempt_curr	= check_preempt_wakeup, | 
 |  | 
 | 	.pick_next_task		= pick_next_task_fair, | 
 | 	.put_prev_task		= put_prev_task_fair, | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	.select_task_rq		= select_task_rq_fair, | 
 | 	.migrate_task_rq	= migrate_task_rq_fair, | 
 |  | 
 | 	.rq_online		= rq_online_fair, | 
 | 	.rq_offline		= rq_offline_fair, | 
 |  | 
 | 	.task_dead		= task_dead_fair, | 
 | 	.set_cpus_allowed	= set_cpus_allowed_common, | 
 | #endif | 
 |  | 
 | 	.set_curr_task          = set_curr_task_fair, | 
 | 	.task_tick		= task_tick_fair, | 
 | 	.task_fork		= task_fork_fair, | 
 |  | 
 | 	.prio_changed		= prio_changed_fair, | 
 | 	.switched_from		= switched_from_fair, | 
 | 	.switched_to		= switched_to_fair, | 
 |  | 
 | 	.get_rr_interval	= get_rr_interval_fair, | 
 |  | 
 | 	.update_curr		= update_curr_fair, | 
 |  | 
 | #ifdef CONFIG_FAIR_GROUP_SCHED | 
 | 	.task_change_group	= task_change_group_fair, | 
 | #endif | 
 | }; | 
 |  | 
 | #ifdef CONFIG_SCHED_DEBUG | 
 | void print_cfs_stats(struct seq_file *m, int cpu) | 
 | { | 
 | 	struct cfs_rq *cfs_rq; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | 
 | 		print_cfs_rq(m, cpu, cfs_rq); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | void show_numa_stats(struct task_struct *p, struct seq_file *m) | 
 | { | 
 | 	int node; | 
 | 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		if (p->numa_faults) { | 
 | 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; | 
 | 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; | 
 | 		} | 
 | 		if (p->numa_group) { | 
 | 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], | 
 | 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; | 
 | 		} | 
 | 		print_numa_stats(m, node, tsf, tpf, gsf, gpf); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 | #endif /* CONFIG_SCHED_DEBUG */ | 
 |  | 
 | __init void init_sched_fair_class(void) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | 
 |  | 
 | #ifdef CONFIG_NO_HZ_COMMON | 
 | 	nohz.next_balance = jiffies; | 
 | 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); | 
 | #endif | 
 | #endif /* SMP */ | 
 |  | 
 | } |