| /* | 
 |  * xHCI host controller driver | 
 |  * | 
 |  * Copyright (C) 2008 Intel Corp. | 
 |  * | 
 |  * Author: Sarah Sharp | 
 |  * Some code borrowed from the Linux EHCI driver. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
 |  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 |  * for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software Foundation, | 
 |  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | #include <linux/irq.h> | 
 | #include <linux/module.h> | 
 |  | 
 | #include "xhci.h" | 
 |  | 
 | #define DRIVER_AUTHOR "Sarah Sharp" | 
 | #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver" | 
 |  | 
 | /* TODO: copied from ehci-hcd.c - can this be refactored? */ | 
 | /* | 
 |  * handshake - spin reading hc until handshake completes or fails | 
 |  * @ptr: address of hc register to be read | 
 |  * @mask: bits to look at in result of read | 
 |  * @done: value of those bits when handshake succeeds | 
 |  * @usec: timeout in microseconds | 
 |  * | 
 |  * Returns negative errno, or zero on success | 
 |  * | 
 |  * Success happens when the "mask" bits have the specified value (hardware | 
 |  * handshake done).  There are two failure modes:  "usec" have passed (major | 
 |  * hardware flakeout), or the register reads as all-ones (hardware removed). | 
 |  */ | 
 | static int handshake(struct xhci_hcd *xhci, void __iomem *ptr, | 
 | 		      u32 mask, u32 done, int usec) | 
 | { | 
 | 	u32	result; | 
 |  | 
 | 	do { | 
 | 		result = xhci_readl(xhci, ptr); | 
 | 		if (result == ~(u32)0)		/* card removed */ | 
 | 			return -ENODEV; | 
 | 		result &= mask; | 
 | 		if (result == done) | 
 | 			return 0; | 
 | 		udelay(1); | 
 | 		usec--; | 
 | 	} while (usec > 0); | 
 | 	return -ETIMEDOUT; | 
 | } | 
 |  | 
 | /* | 
 |  * Force HC into halt state. | 
 |  * | 
 |  * Disable any IRQs and clear the run/stop bit. | 
 |  * HC will complete any current and actively pipelined transactions, and | 
 |  * should halt within 16 microframes of the run/stop bit being cleared. | 
 |  * Read HC Halted bit in the status register to see when the HC is finished. | 
 |  * XXX: shouldn't we set HC_STATE_HALT here somewhere? | 
 |  */ | 
 | int xhci_halt(struct xhci_hcd *xhci) | 
 | { | 
 | 	u32 halted; | 
 | 	u32 cmd; | 
 | 	u32 mask; | 
 |  | 
 | 	xhci_dbg(xhci, "// Halt the HC\n"); | 
 | 	/* Disable all interrupts from the host controller */ | 
 | 	mask = ~(XHCI_IRQS); | 
 | 	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT; | 
 | 	if (!halted) | 
 | 		mask &= ~CMD_RUN; | 
 |  | 
 | 	cmd = xhci_readl(xhci, &xhci->op_regs->command); | 
 | 	cmd &= mask; | 
 | 	xhci_writel(xhci, cmd, &xhci->op_regs->command); | 
 |  | 
 | 	return handshake(xhci, &xhci->op_regs->status, | 
 | 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); | 
 | } | 
 |  | 
 | /* | 
 |  * Reset a halted HC, and set the internal HC state to HC_STATE_HALT. | 
 |  * | 
 |  * This resets pipelines, timers, counters, state machines, etc. | 
 |  * Transactions will be terminated immediately, and operational registers | 
 |  * will be set to their defaults. | 
 |  */ | 
 | int xhci_reset(struct xhci_hcd *xhci) | 
 | { | 
 | 	u32 command; | 
 | 	u32 state; | 
 |  | 
 | 	state = xhci_readl(xhci, &xhci->op_regs->status); | 
 | 	if ((state & STS_HALT) == 0) { | 
 | 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	xhci_dbg(xhci, "// Reset the HC\n"); | 
 | 	command = xhci_readl(xhci, &xhci->op_regs->command); | 
 | 	command |= CMD_RESET; | 
 | 	xhci_writel(xhci, command, &xhci->op_regs->command); | 
 | 	/* XXX: Why does EHCI set this here?  Shouldn't other code do this? */ | 
 | 	xhci_to_hcd(xhci)->state = HC_STATE_HALT; | 
 |  | 
 | 	return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000); | 
 | } | 
 |  | 
 | /* | 
 |  * Stop the HC from processing the endpoint queues. | 
 |  */ | 
 | static void xhci_quiesce(struct xhci_hcd *xhci) | 
 | { | 
 | 	/* | 
 | 	 * Queues are per endpoint, so we need to disable an endpoint or slot. | 
 | 	 * | 
 | 	 * To disable a slot, we need to insert a disable slot command on the | 
 | 	 * command ring and ring the doorbell.  This will also free any internal | 
 | 	 * resources associated with the slot (which might not be what we want). | 
 | 	 * | 
 | 	 * A Release Endpoint command sounds better - doesn't free internal HC | 
 | 	 * memory, but removes the endpoints from the schedule and releases the | 
 | 	 * bandwidth, disables the doorbells, and clears the endpoint enable | 
 | 	 * flag.  Usually used prior to a set interface command. | 
 | 	 * | 
 | 	 * TODO: Implement after command ring code is done. | 
 | 	 */ | 
 | 	BUG_ON(!HC_IS_RUNNING(xhci_to_hcd(xhci)->state)); | 
 | 	xhci_dbg(xhci, "Finished quiescing -- code not written yet\n"); | 
 | } | 
 |  | 
 | #if 0 | 
 | /* Set up MSI-X table for entry 0 (may claim other entries later) */ | 
 | static int xhci_setup_msix(struct xhci_hcd *xhci) | 
 | { | 
 | 	int ret; | 
 | 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
 |  | 
 | 	xhci->msix_count = 0; | 
 | 	/* XXX: did I do this right?  ixgbe does kcalloc for more than one */ | 
 | 	xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL); | 
 | 	if (!xhci->msix_entries) { | 
 | 		xhci_err(xhci, "Failed to allocate MSI-X entries\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	xhci->msix_entries[0].entry = 0; | 
 |  | 
 | 	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count); | 
 | 	if (ret) { | 
 | 		xhci_err(xhci, "Failed to enable MSI-X\n"); | 
 | 		goto free_entries; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Pass the xhci pointer value as the request_irq "cookie". | 
 | 	 * If more irqs are added, this will need to be unique for each one. | 
 | 	 */ | 
 | 	ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0, | 
 | 			"xHCI", xhci_to_hcd(xhci)); | 
 | 	if (ret) { | 
 | 		xhci_err(xhci, "Failed to allocate MSI-X interrupt\n"); | 
 | 		goto disable_msix; | 
 | 	} | 
 | 	xhci_dbg(xhci, "Finished setting up MSI-X\n"); | 
 | 	return 0; | 
 |  | 
 | disable_msix: | 
 | 	pci_disable_msix(pdev); | 
 | free_entries: | 
 | 	kfree(xhci->msix_entries); | 
 | 	xhci->msix_entries = NULL; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* XXX: code duplication; can xhci_setup_msix call this? */ | 
 | /* Free any IRQs and disable MSI-X */ | 
 | static void xhci_cleanup_msix(struct xhci_hcd *xhci) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); | 
 | 	if (!xhci->msix_entries) | 
 | 		return; | 
 |  | 
 | 	free_irq(xhci->msix_entries[0].vector, xhci); | 
 | 	pci_disable_msix(pdev); | 
 | 	kfree(xhci->msix_entries); | 
 | 	xhci->msix_entries = NULL; | 
 | 	xhci_dbg(xhci, "Finished cleaning up MSI-X\n"); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Initialize memory for HCD and xHC (one-time init). | 
 |  * | 
 |  * Program the PAGESIZE register, initialize the device context array, create | 
 |  * device contexts (?), set up a command ring segment (or two?), create event | 
 |  * ring (one for now). | 
 |  */ | 
 | int xhci_init(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	int retval = 0; | 
 |  | 
 | 	xhci_dbg(xhci, "xhci_init\n"); | 
 | 	spin_lock_init(&xhci->lock); | 
 | 	retval = xhci_mem_init(xhci, GFP_KERNEL); | 
 | 	xhci_dbg(xhci, "Finished xhci_init\n"); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * Called in interrupt context when there might be work | 
 |  * queued on the event ring | 
 |  * | 
 |  * xhci->lock must be held by caller. | 
 |  */ | 
 | static void xhci_work(struct xhci_hcd *xhci) | 
 | { | 
 | 	u32 temp; | 
 | 	u64 temp_64; | 
 |  | 
 | 	/* | 
 | 	 * Clear the op reg interrupt status first, | 
 | 	 * so we can receive interrupts from other MSI-X interrupters. | 
 | 	 * Write 1 to clear the interrupt status. | 
 | 	 */ | 
 | 	temp = xhci_readl(xhci, &xhci->op_regs->status); | 
 | 	temp |= STS_EINT; | 
 | 	xhci_writel(xhci, temp, &xhci->op_regs->status); | 
 | 	/* FIXME when MSI-X is supported and there are multiple vectors */ | 
 | 	/* Clear the MSI-X event interrupt status */ | 
 |  | 
 | 	/* Acknowledge the interrupt */ | 
 | 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
 | 	temp |= 0x3; | 
 | 	xhci_writel(xhci, temp, &xhci->ir_set->irq_pending); | 
 | 	/* Flush posted writes */ | 
 | 	xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
 |  | 
 | 	/* FIXME this should be a delayed service routine that clears the EHB */ | 
 | 	xhci_handle_event(xhci); | 
 |  | 
 | 	/* Clear the event handler busy flag (RW1C); the event ring should be empty. */ | 
 | 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
 | 	xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue); | 
 | 	/* Flush posted writes -- FIXME is this necessary? */ | 
 | 	xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * xHCI spec says we can get an interrupt, and if the HC has an error condition, | 
 |  * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of | 
 |  * indicators of an event TRB error, but we check the status *first* to be safe. | 
 |  */ | 
 | irqreturn_t xhci_irq(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	u32 temp, temp2; | 
 | 	union xhci_trb *trb; | 
 |  | 
 | 	spin_lock(&xhci->lock); | 
 | 	trb = xhci->event_ring->dequeue; | 
 | 	/* Check if the xHC generated the interrupt, or the irq is shared */ | 
 | 	temp = xhci_readl(xhci, &xhci->op_regs->status); | 
 | 	temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
 | 	if (temp == 0xffffffff && temp2 == 0xffffffff) | 
 | 		goto hw_died; | 
 |  | 
 | 	if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) { | 
 | 		spin_unlock(&xhci->lock); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 | 	xhci_dbg(xhci, "op reg status = %08x\n", temp); | 
 | 	xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2); | 
 | 	xhci_dbg(xhci, "Event ring dequeue ptr:\n"); | 
 | 	xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n", | 
 | 			(unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb), | 
 | 			lower_32_bits(trb->link.segment_ptr), | 
 | 			upper_32_bits(trb->link.segment_ptr), | 
 | 			(unsigned int) trb->link.intr_target, | 
 | 			(unsigned int) trb->link.control); | 
 |  | 
 | 	if (temp & STS_FATAL) { | 
 | 		xhci_warn(xhci, "WARNING: Host System Error\n"); | 
 | 		xhci_halt(xhci); | 
 | hw_died: | 
 | 		xhci_to_hcd(xhci)->state = HC_STATE_HALT; | 
 | 		spin_unlock(&xhci->lock); | 
 | 		return -ESHUTDOWN; | 
 | 	} | 
 |  | 
 | 	xhci_work(xhci); | 
 | 	spin_unlock(&xhci->lock); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING | 
 | void xhci_event_ring_work(unsigned long arg) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int temp; | 
 | 	u64 temp_64; | 
 | 	struct xhci_hcd *xhci = (struct xhci_hcd *) arg; | 
 | 	int i, j; | 
 |  | 
 | 	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	temp = xhci_readl(xhci, &xhci->op_regs->status); | 
 | 	xhci_dbg(xhci, "op reg status = 0x%x\n", temp); | 
 | 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
 | 	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp); | 
 | 	xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled); | 
 | 	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask); | 
 | 	xhci->error_bitmask = 0; | 
 | 	xhci_dbg(xhci, "Event ring:\n"); | 
 | 	xhci_debug_segment(xhci, xhci->event_ring->deq_seg); | 
 | 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring); | 
 | 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
 | 	temp_64 &= ~ERST_PTR_MASK; | 
 | 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); | 
 | 	xhci_dbg(xhci, "Command ring:\n"); | 
 | 	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg); | 
 | 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); | 
 | 	xhci_dbg_cmd_ptrs(xhci); | 
 | 	for (i = 0; i < MAX_HC_SLOTS; ++i) { | 
 | 		if (xhci->devs[i]) { | 
 | 			for (j = 0; j < 31; ++j) { | 
 | 				if (xhci->devs[i]->ep_rings[j]) { | 
 | 					xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j); | 
 | 					xhci_debug_segment(xhci, xhci->devs[i]->ep_rings[j]->deq_seg); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (xhci->noops_submitted != NUM_TEST_NOOPS) | 
 | 		if (xhci_setup_one_noop(xhci)) | 
 | 			xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	if (!xhci->zombie) | 
 | 		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ); | 
 | 	else | 
 | 		xhci_dbg(xhci, "Quit polling the event ring.\n"); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Start the HC after it was halted. | 
 |  * | 
 |  * This function is called by the USB core when the HC driver is added. | 
 |  * Its opposite is xhci_stop(). | 
 |  * | 
 |  * xhci_init() must be called once before this function can be called. | 
 |  * Reset the HC, enable device slot contexts, program DCBAAP, and | 
 |  * set command ring pointer and event ring pointer. | 
 |  * | 
 |  * Setup MSI-X vectors and enable interrupts. | 
 |  */ | 
 | int xhci_run(struct usb_hcd *hcd) | 
 | { | 
 | 	u32 temp; | 
 | 	u64 temp_64; | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	void (*doorbell)(struct xhci_hcd *) = NULL; | 
 |  | 
 | 	hcd->uses_new_polling = 1; | 
 | 	hcd->poll_rh = 0; | 
 |  | 
 | 	xhci_dbg(xhci, "xhci_run\n"); | 
 | #if 0	/* FIXME: MSI not setup yet */ | 
 | 	/* Do this at the very last minute */ | 
 | 	ret = xhci_setup_msix(xhci); | 
 | 	if (!ret) | 
 | 		return ret; | 
 |  | 
 | 	return -ENOSYS; | 
 | #endif | 
 | #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING | 
 | 	init_timer(&xhci->event_ring_timer); | 
 | 	xhci->event_ring_timer.data = (unsigned long) xhci; | 
 | 	xhci->event_ring_timer.function = xhci_event_ring_work; | 
 | 	/* Poll the event ring */ | 
 | 	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ; | 
 | 	xhci->zombie = 0; | 
 | 	xhci_dbg(xhci, "Setting event ring polling timer\n"); | 
 | 	add_timer(&xhci->event_ring_timer); | 
 | #endif | 
 |  | 
 | 	xhci_dbg(xhci, "Command ring memory map follows:\n"); | 
 | 	xhci_debug_ring(xhci, xhci->cmd_ring); | 
 | 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring); | 
 | 	xhci_dbg_cmd_ptrs(xhci); | 
 |  | 
 | 	xhci_dbg(xhci, "ERST memory map follows:\n"); | 
 | 	xhci_dbg_erst(xhci, &xhci->erst); | 
 | 	xhci_dbg(xhci, "Event ring:\n"); | 
 | 	xhci_debug_ring(xhci, xhci->event_ring); | 
 | 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring); | 
 | 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
 | 	temp_64 &= ~ERST_PTR_MASK; | 
 | 	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64); | 
 |  | 
 | 	xhci_dbg(xhci, "// Set the interrupt modulation register\n"); | 
 | 	temp = xhci_readl(xhci, &xhci->ir_set->irq_control); | 
 | 	temp &= ~ER_IRQ_INTERVAL_MASK; | 
 | 	temp |= (u32) 160; | 
 | 	xhci_writel(xhci, temp, &xhci->ir_set->irq_control); | 
 |  | 
 | 	/* Set the HCD state before we enable the irqs */ | 
 | 	hcd->state = HC_STATE_RUNNING; | 
 | 	temp = xhci_readl(xhci, &xhci->op_regs->command); | 
 | 	temp |= (CMD_EIE); | 
 | 	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n", | 
 | 			temp); | 
 | 	xhci_writel(xhci, temp, &xhci->op_regs->command); | 
 |  | 
 | 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
 | 	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n", | 
 | 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp)); | 
 | 	xhci_writel(xhci, ER_IRQ_ENABLE(temp), | 
 | 			&xhci->ir_set->irq_pending); | 
 | 	xhci_print_ir_set(xhci, xhci->ir_set, 0); | 
 |  | 
 | 	if (NUM_TEST_NOOPS > 0) | 
 | 		doorbell = xhci_setup_one_noop(xhci); | 
 |  | 
 | 	temp = xhci_readl(xhci, &xhci->op_regs->command); | 
 | 	temp |= (CMD_RUN); | 
 | 	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n", | 
 | 			temp); | 
 | 	xhci_writel(xhci, temp, &xhci->op_regs->command); | 
 | 	/* Flush PCI posted writes */ | 
 | 	temp = xhci_readl(xhci, &xhci->op_regs->command); | 
 | 	xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp); | 
 | 	if (doorbell) | 
 | 		(*doorbell)(xhci); | 
 |  | 
 | 	xhci_dbg(xhci, "Finished xhci_run\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Stop xHCI driver. | 
 |  * | 
 |  * This function is called by the USB core when the HC driver is removed. | 
 |  * Its opposite is xhci_run(). | 
 |  * | 
 |  * Disable device contexts, disable IRQs, and quiesce the HC. | 
 |  * Reset the HC, finish any completed transactions, and cleanup memory. | 
 |  */ | 
 | void xhci_stop(struct usb_hcd *hcd) | 
 | { | 
 | 	u32 temp; | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	spin_lock_irq(&xhci->lock); | 
 | 	if (HC_IS_RUNNING(hcd->state)) | 
 | 		xhci_quiesce(xhci); | 
 | 	xhci_halt(xhci); | 
 | 	xhci_reset(xhci); | 
 | 	spin_unlock_irq(&xhci->lock); | 
 |  | 
 | #if 0	/* No MSI yet */ | 
 | 	xhci_cleanup_msix(xhci); | 
 | #endif | 
 | #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING | 
 | 	/* Tell the event ring poll function not to reschedule */ | 
 | 	xhci->zombie = 1; | 
 | 	del_timer_sync(&xhci->event_ring_timer); | 
 | #endif | 
 |  | 
 | 	xhci_dbg(xhci, "// Disabling event ring interrupts\n"); | 
 | 	temp = xhci_readl(xhci, &xhci->op_regs->status); | 
 | 	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status); | 
 | 	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
 | 	xhci_writel(xhci, ER_IRQ_DISABLE(temp), | 
 | 			&xhci->ir_set->irq_pending); | 
 | 	xhci_print_ir_set(xhci, xhci->ir_set, 0); | 
 |  | 
 | 	xhci_dbg(xhci, "cleaning up memory\n"); | 
 | 	xhci_mem_cleanup(xhci); | 
 | 	xhci_dbg(xhci, "xhci_stop completed - status = %x\n", | 
 | 		    xhci_readl(xhci, &xhci->op_regs->status)); | 
 | } | 
 |  | 
 | /* | 
 |  * Shutdown HC (not bus-specific) | 
 |  * | 
 |  * This is called when the machine is rebooting or halting.  We assume that the | 
 |  * machine will be powered off, and the HC's internal state will be reset. | 
 |  * Don't bother to free memory. | 
 |  */ | 
 | void xhci_shutdown(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	spin_lock_irq(&xhci->lock); | 
 | 	xhci_halt(xhci); | 
 | 	spin_unlock_irq(&xhci->lock); | 
 |  | 
 | #if 0 | 
 | 	xhci_cleanup_msix(xhci); | 
 | #endif | 
 |  | 
 | 	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n", | 
 | 		    xhci_readl(xhci, &xhci->op_regs->status)); | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------*/ | 
 |  | 
 | /** | 
 |  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and | 
 |  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return | 
 |  * value to right shift 1 for the bitmask. | 
 |  * | 
 |  * Index  = (epnum * 2) + direction - 1, | 
 |  * where direction = 0 for OUT, 1 for IN. | 
 |  * For control endpoints, the IN index is used (OUT index is unused), so | 
 |  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) | 
 |  */ | 
 | unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc) | 
 | { | 
 | 	unsigned int index; | 
 | 	if (usb_endpoint_xfer_control(desc)) | 
 | 		index = (unsigned int) (usb_endpoint_num(desc)*2); | 
 | 	else | 
 | 		index = (unsigned int) (usb_endpoint_num(desc)*2) + | 
 | 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1; | 
 | 	return index; | 
 | } | 
 |  | 
 | /* Find the flag for this endpoint (for use in the control context).  Use the | 
 |  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is | 
 |  * bit 1, etc. | 
 |  */ | 
 | unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc) | 
 | { | 
 | 	return 1 << (xhci_get_endpoint_index(desc) + 1); | 
 | } | 
 |  | 
 | /* Compute the last valid endpoint context index.  Basically, this is the | 
 |  * endpoint index plus one.  For slot contexts with more than valid endpoint, | 
 |  * we find the most significant bit set in the added contexts flags. | 
 |  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000 | 
 |  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one. | 
 |  */ | 
 | static inline unsigned int xhci_last_valid_endpoint(u32 added_ctxs) | 
 | { | 
 | 	return fls(added_ctxs) - 1; | 
 | } | 
 |  | 
 | /* Returns 1 if the arguments are OK; | 
 |  * returns 0 this is a root hub; returns -EINVAL for NULL pointers. | 
 |  */ | 
 | int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep, int check_ep, const char *func) { | 
 | 	if (!hcd || (check_ep && !ep) || !udev) { | 
 | 		printk(KERN_DEBUG "xHCI %s called with invalid args\n", | 
 | 				func); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (!udev->parent) { | 
 | 		printk(KERN_DEBUG "xHCI %s called for root hub\n", | 
 | 				func); | 
 | 		return 0; | 
 | 	} | 
 | 	if (!udev->slot_id) { | 
 | 		printk(KERN_DEBUG "xHCI %s called with unaddressed device\n", | 
 | 				func); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * non-error returns are a promise to giveback() the urb later | 
 |  * we drop ownership so next owner (or urb unlink) can get it | 
 |  */ | 
 | int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 | 	unsigned int slot_id, ep_index; | 
 |  | 
 | 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	slot_id = urb->dev->slot_id; | 
 | 	ep_index = xhci_get_endpoint_index(&urb->ep->desc); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	if (!xhci->devs || !xhci->devs[slot_id]) { | 
 | 		if (!in_interrupt()) | 
 | 			dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto exit; | 
 | 	} | 
 | 	if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) { | 
 | 		if (!in_interrupt()) | 
 | 			xhci_dbg(xhci, "urb submitted during PCI suspend\n"); | 
 | 		ret = -ESHUTDOWN; | 
 | 		goto exit; | 
 | 	} | 
 | 	if (usb_endpoint_xfer_control(&urb->ep->desc)) | 
 | 		/* We have a spinlock and interrupts disabled, so we must pass | 
 | 		 * atomic context to this function, which may allocate memory. | 
 | 		 */ | 
 | 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb, | 
 | 				slot_id, ep_index); | 
 | 	else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) | 
 | 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, | 
 | 				slot_id, ep_index); | 
 | 	else | 
 | 		ret = -EINVAL; | 
 | exit: | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop | 
 |  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC | 
 |  * should pick up where it left off in the TD, unless a Set Transfer Ring | 
 |  * Dequeue Pointer is issued. | 
 |  * | 
 |  * The TRBs that make up the buffers for the canceled URB will be "removed" from | 
 |  * the ring.  Since the ring is a contiguous structure, they can't be physically | 
 |  * removed.  Instead, there are two options: | 
 |  * | 
 |  *  1) If the HC is in the middle of processing the URB to be canceled, we | 
 |  *     simply move the ring's dequeue pointer past those TRBs using the Set | 
 |  *     Transfer Ring Dequeue Pointer command.  This will be the common case, | 
 |  *     when drivers timeout on the last submitted URB and attempt to cancel. | 
 |  * | 
 |  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a | 
 |  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The | 
 |  *     HC will need to invalidate the any TRBs it has cached after the stop | 
 |  *     endpoint command, as noted in the xHCI 0.95 errata. | 
 |  * | 
 |  *  3) The TD may have completed by the time the Stop Endpoint Command | 
 |  *     completes, so software needs to handle that case too. | 
 |  * | 
 |  * This function should protect against the TD enqueueing code ringing the | 
 |  * doorbell while this code is waiting for a Stop Endpoint command to complete. | 
 |  * It also needs to account for multiple cancellations on happening at the same | 
 |  * time for the same endpoint. | 
 |  * | 
 |  * Note that this function can be called in any context, or so says | 
 |  * usb_hcd_unlink_urb() | 
 |  */ | 
 | int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_td *td; | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_ring *ep_ring; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	/* Make sure the URB hasn't completed or been unlinked already */ | 
 | 	ret = usb_hcd_check_unlink_urb(hcd, urb, status); | 
 | 	if (ret || !urb->hcpriv) | 
 | 		goto done; | 
 |  | 
 | 	xhci_dbg(xhci, "Cancel URB %p\n", urb); | 
 | 	xhci_dbg(xhci, "Event ring:\n"); | 
 | 	xhci_debug_ring(xhci, xhci->event_ring); | 
 | 	ep_index = xhci_get_endpoint_index(&urb->ep->desc); | 
 | 	ep_ring = xhci->devs[urb->dev->slot_id]->ep_rings[ep_index]; | 
 | 	xhci_dbg(xhci, "Endpoint ring:\n"); | 
 | 	xhci_debug_ring(xhci, ep_ring); | 
 | 	td = (struct xhci_td *) urb->hcpriv; | 
 |  | 
 | 	ep_ring->cancels_pending++; | 
 | 	list_add_tail(&td->cancelled_td_list, &ep_ring->cancelled_td_list); | 
 | 	/* Queue a stop endpoint command, but only if this is | 
 | 	 * the first cancellation to be handled. | 
 | 	 */ | 
 | 	if (ep_ring->cancels_pending == 1) { | 
 | 		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index); | 
 | 		xhci_ring_cmd_db(xhci); | 
 | 	} | 
 | done: | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Drop an endpoint from a new bandwidth configuration for this device. | 
 |  * Only one call to this function is allowed per endpoint before | 
 |  * check_bandwidth() or reset_bandwidth() must be called. | 
 |  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will | 
 |  * add the endpoint to the schedule with possibly new parameters denoted by a | 
 |  * different endpoint descriptor in usb_host_endpoint. | 
 |  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is | 
 |  * not allowed. | 
 |  * | 
 |  * The USB core will not allow URBs to be queued to an endpoint that is being | 
 |  * disabled, so there's no need for mutual exclusion to protect | 
 |  * the xhci->devs[slot_id] structure. | 
 |  */ | 
 | int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_container_ctx *in_ctx, *out_ctx; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	unsigned int last_ctx; | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	u32 drop_flag; | 
 | 	u32 new_add_flags, new_drop_flags, new_slot_info; | 
 | 	int ret; | 
 |  | 
 | 	ret = xhci_check_args(hcd, udev, ep, 1, __func__); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); | 
 |  | 
 | 	drop_flag = xhci_get_endpoint_flag(&ep->desc); | 
 | 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) { | 
 | 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n", | 
 | 				__func__, drop_flag); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!xhci->devs || !xhci->devs[udev->slot_id]) { | 
 | 		xhci_warn(xhci, "xHCI %s called with unaddressed device\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	in_ctx = xhci->devs[udev->slot_id]->in_ctx; | 
 | 	out_ctx = xhci->devs[udev->slot_id]->out_ctx; | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); | 
 | 	ep_index = xhci_get_endpoint_index(&ep->desc); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
 | 	/* If the HC already knows the endpoint is disabled, | 
 | 	 * or the HCD has noted it is disabled, ignore this request | 
 | 	 */ | 
 | 	if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED || | 
 | 			ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) { | 
 | 		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", | 
 | 				__func__, ep); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ctrl_ctx->drop_flags |= drop_flag; | 
 | 	new_drop_flags = ctrl_ctx->drop_flags; | 
 |  | 
 | 	ctrl_ctx->add_flags = ~drop_flag; | 
 | 	new_add_flags = ctrl_ctx->add_flags; | 
 |  | 
 | 	last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags); | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); | 
 | 	/* Update the last valid endpoint context, if we deleted the last one */ | 
 | 	if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) { | 
 | 		slot_ctx->dev_info &= ~LAST_CTX_MASK; | 
 | 		slot_ctx->dev_info |= LAST_CTX(last_ctx); | 
 | 	} | 
 | 	new_slot_info = slot_ctx->dev_info; | 
 |  | 
 | 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); | 
 |  | 
 | 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", | 
 | 			(unsigned int) ep->desc.bEndpointAddress, | 
 | 			udev->slot_id, | 
 | 			(unsigned int) new_drop_flags, | 
 | 			(unsigned int) new_add_flags, | 
 | 			(unsigned int) new_slot_info); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Add an endpoint to a new possible bandwidth configuration for this device. | 
 |  * Only one call to this function is allowed per endpoint before | 
 |  * check_bandwidth() or reset_bandwidth() must be called. | 
 |  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will | 
 |  * add the endpoint to the schedule with possibly new parameters denoted by a | 
 |  * different endpoint descriptor in usb_host_endpoint. | 
 |  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is | 
 |  * not allowed. | 
 |  * | 
 |  * The USB core will not allow URBs to be queued to an endpoint until the | 
 |  * configuration or alt setting is installed in the device, so there's no need | 
 |  * for mutual exclusion to protect the xhci->devs[slot_id] structure. | 
 |  */ | 
 | int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_container_ctx *in_ctx, *out_ctx; | 
 | 	unsigned int ep_index; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	u32 added_ctxs; | 
 | 	unsigned int last_ctx; | 
 | 	u32 new_add_flags, new_drop_flags, new_slot_info; | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = xhci_check_args(hcd, udev, ep, 1, __func__); | 
 | 	if (ret <= 0) { | 
 | 		/* So we won't queue a reset ep command for a root hub */ | 
 | 		ep->hcpriv = NULL; | 
 | 		return ret; | 
 | 	} | 
 | 	xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	added_ctxs = xhci_get_endpoint_flag(&ep->desc); | 
 | 	last_ctx = xhci_last_valid_endpoint(added_ctxs); | 
 | 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { | 
 | 		/* FIXME when we have to issue an evaluate endpoint command to | 
 | 		 * deal with ep0 max packet size changing once we get the | 
 | 		 * descriptors | 
 | 		 */ | 
 | 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n", | 
 | 				__func__, added_ctxs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!xhci->devs || !xhci->devs[udev->slot_id]) { | 
 | 		xhci_warn(xhci, "xHCI %s called with unaddressed device\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	in_ctx = xhci->devs[udev->slot_id]->in_ctx; | 
 | 	out_ctx = xhci->devs[udev->slot_id]->out_ctx; | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); | 
 | 	ep_index = xhci_get_endpoint_index(&ep->desc); | 
 | 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); | 
 | 	/* If the HCD has already noted the endpoint is enabled, | 
 | 	 * ignore this request. | 
 | 	 */ | 
 | 	if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) { | 
 | 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", | 
 | 				__func__, ep); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Configuration and alternate setting changes must be done in | 
 | 	 * process context, not interrupt context (or so documenation | 
 | 	 * for usb_set_interface() and usb_set_configuration() claim). | 
 | 	 */ | 
 | 	if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id], | 
 | 				udev, ep, GFP_KERNEL) < 0) { | 
 | 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n", | 
 | 				__func__, ep->desc.bEndpointAddress); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ctrl_ctx->add_flags |= added_ctxs; | 
 | 	new_add_flags = ctrl_ctx->add_flags; | 
 |  | 
 | 	/* If xhci_endpoint_disable() was called for this endpoint, but the | 
 | 	 * xHC hasn't been notified yet through the check_bandwidth() call, | 
 | 	 * this re-adds a new state for the endpoint from the new endpoint | 
 | 	 * descriptors.  We must drop and re-add this endpoint, so we leave the | 
 | 	 * drop flags alone. | 
 | 	 */ | 
 | 	new_drop_flags = ctrl_ctx->drop_flags; | 
 |  | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); | 
 | 	/* Update the last valid endpoint context, if we just added one past */ | 
 | 	if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) { | 
 | 		slot_ctx->dev_info &= ~LAST_CTX_MASK; | 
 | 		slot_ctx->dev_info |= LAST_CTX(last_ctx); | 
 | 	} | 
 | 	new_slot_info = slot_ctx->dev_info; | 
 |  | 
 | 	/* Store the usb_device pointer for later use */ | 
 | 	ep->hcpriv = udev; | 
 |  | 
 | 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n", | 
 | 			(unsigned int) ep->desc.bEndpointAddress, | 
 | 			udev->slot_id, | 
 | 			(unsigned int) new_drop_flags, | 
 | 			(unsigned int) new_add_flags, | 
 | 			(unsigned int) new_slot_info); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev) | 
 | { | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_ep_ctx *ep_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	int i; | 
 |  | 
 | 	/* When a device's add flag and drop flag are zero, any subsequent | 
 | 	 * configure endpoint command will leave that endpoint's state | 
 | 	 * untouched.  Make sure we don't leave any old state in the input | 
 | 	 * endpoint contexts. | 
 | 	 */ | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); | 
 | 	ctrl_ctx->drop_flags = 0; | 
 | 	ctrl_ctx->add_flags = 0; | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); | 
 | 	slot_ctx->dev_info &= ~LAST_CTX_MASK; | 
 | 	/* Endpoint 0 is always valid */ | 
 | 	slot_ctx->dev_info |= LAST_CTX(1); | 
 | 	for (i = 1; i < 31; ++i) { | 
 | 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); | 
 | 		ep_ctx->ep_info = 0; | 
 | 		ep_ctx->ep_info2 = 0; | 
 | 		ep_ctx->deq = 0; | 
 | 		ep_ctx->tx_info = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* Called after one or more calls to xhci_add_endpoint() or | 
 |  * xhci_drop_endpoint().  If this call fails, the USB core is expected | 
 |  * to call xhci_reset_bandwidth(). | 
 |  * | 
 |  * Since we are in the middle of changing either configuration or | 
 |  * installing a new alt setting, the USB core won't allow URBs to be | 
 |  * enqueued for any endpoint on the old config or interface.  Nothing | 
 |  * else should be touching the xhci->devs[slot_id] structure, so we | 
 |  * don't need to take the xhci->lock for manipulating that. | 
 |  */ | 
 | int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	int i; | 
 | 	int ret = 0; | 
 | 	int timeleft; | 
 | 	unsigned long flags; | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_virt_device	*virt_dev; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 |  | 
 | 	ret = xhci_check_args(hcd, udev, NULL, 0, __func__); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 | 	xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) { | 
 | 		xhci_warn(xhci, "xHCI %s called with unaddressed device\n", | 
 | 				__func__); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 |  | 
 | 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); | 
 | 	ctrl_ctx->add_flags |= SLOT_FLAG; | 
 | 	ctrl_ctx->add_flags &= ~EP0_FLAG; | 
 | 	ctrl_ctx->drop_flags &= ~SLOT_FLAG; | 
 | 	ctrl_ctx->drop_flags &= ~EP0_FLAG; | 
 | 	xhci_dbg(xhci, "New Input Control Context:\n"); | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); | 
 | 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, | 
 | 			LAST_CTX_TO_EP_NUM(slot_ctx->dev_info)); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	ret = xhci_queue_configure_endpoint(xhci, virt_dev->in_ctx->dma, | 
 | 			udev->slot_id); | 
 | 	if (ret < 0) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_dbg(xhci, "FIXME allocate a new ring segment\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	/* Wait for the configure endpoint command to complete */ | 
 | 	timeleft = wait_for_completion_interruptible_timeout( | 
 | 			&virt_dev->cmd_completion, | 
 | 			USB_CTRL_SET_TIMEOUT); | 
 | 	if (timeleft <= 0) { | 
 | 		xhci_warn(xhci, "%s while waiting for configure endpoint command\n", | 
 | 				timeleft == 0 ? "Timeout" : "Signal"); | 
 | 		/* FIXME cancel the configure endpoint command */ | 
 | 		return -ETIME; | 
 | 	} | 
 |  | 
 | 	switch (virt_dev->cmd_status) { | 
 | 	case COMP_ENOMEM: | 
 | 		dev_warn(&udev->dev, "Not enough host controller resources " | 
 | 				"for new device state.\n"); | 
 | 		ret = -ENOMEM; | 
 | 		/* FIXME: can we allocate more resources for the HC? */ | 
 | 		break; | 
 | 	case COMP_BW_ERR: | 
 | 		dev_warn(&udev->dev, "Not enough bandwidth " | 
 | 				"for new device state.\n"); | 
 | 		ret = -ENOSPC; | 
 | 		/* FIXME: can we go back to the old state? */ | 
 | 		break; | 
 | 	case COMP_TRB_ERR: | 
 | 		/* the HCD set up something wrong */ | 
 | 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, add flag = 1, " | 
 | 				"and endpoint is not disabled.\n"); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	case COMP_SUCCESS: | 
 | 		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n"); | 
 | 		break; | 
 | 	default: | 
 | 		xhci_err(xhci, "ERROR: unexpected command completion " | 
 | 				"code 0x%x.\n", virt_dev->cmd_status); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	if (ret) { | 
 | 		/* Callee should call reset_bandwidth() */ | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); | 
 | 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, | 
 | 			LAST_CTX_TO_EP_NUM(slot_ctx->dev_info)); | 
 |  | 
 | 	xhci_zero_in_ctx(xhci, virt_dev); | 
 | 	/* Free any old rings */ | 
 | 	for (i = 1; i < 31; ++i) { | 
 | 		if (virt_dev->new_ep_rings[i]) { | 
 | 			xhci_ring_free(xhci, virt_dev->ep_rings[i]); | 
 | 			virt_dev->ep_rings[i] = virt_dev->new_ep_rings[i]; | 
 | 			virt_dev->new_ep_rings[i] = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct xhci_virt_device	*virt_dev; | 
 | 	int i, ret; | 
 |  | 
 | 	ret = xhci_check_args(hcd, udev, NULL, 0, __func__); | 
 | 	if (ret <= 0) | 
 | 		return; | 
 | 	xhci = hcd_to_xhci(hcd); | 
 |  | 
 | 	if (!xhci->devs || !xhci->devs[udev->slot_id]) { | 
 | 		xhci_warn(xhci, "xHCI %s called with unaddressed device\n", | 
 | 				__func__); | 
 | 		return; | 
 | 	} | 
 | 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev); | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 | 	/* Free any rings allocated for added endpoints */ | 
 | 	for (i = 0; i < 31; ++i) { | 
 | 		if (virt_dev->new_ep_rings[i]) { | 
 | 			xhci_ring_free(xhci, virt_dev->new_ep_rings[i]); | 
 | 			virt_dev->new_ep_rings[i] = NULL; | 
 | 		} | 
 | 	} | 
 | 	xhci_zero_in_ctx(xhci, virt_dev); | 
 | } | 
 |  | 
 | /* Deal with stalled endpoints.  The core should have sent the control message | 
 |  * to clear the halt condition.  However, we need to make the xHCI hardware | 
 |  * reset its sequence number, since a device will expect a sequence number of | 
 |  * zero after the halt condition is cleared. | 
 |  * Context: in_interrupt | 
 |  */ | 
 | void xhci_endpoint_reset(struct usb_hcd *hcd, | 
 | 		struct usb_host_endpoint *ep) | 
 | { | 
 | 	struct xhci_hcd *xhci; | 
 | 	struct usb_device *udev; | 
 | 	unsigned int ep_index; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 | 	struct xhci_dequeue_state deq_state; | 
 | 	struct xhci_ring *ep_ring; | 
 |  | 
 | 	xhci = hcd_to_xhci(hcd); | 
 | 	udev = (struct usb_device *) ep->hcpriv; | 
 | 	/* Called with a root hub endpoint (or an endpoint that wasn't added | 
 | 	 * with xhci_add_endpoint() | 
 | 	 */ | 
 | 	if (!ep->hcpriv) | 
 | 		return; | 
 | 	ep_index = xhci_get_endpoint_index(&ep->desc); | 
 | 	ep_ring = xhci->devs[udev->slot_id]->ep_rings[ep_index]; | 
 | 	if (!ep_ring->stopped_td) { | 
 | 		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n", | 
 | 				ep->desc.bEndpointAddress); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	xhci_dbg(xhci, "Queueing reset endpoint command\n"); | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index); | 
 | 	/* | 
 | 	 * Can't change the ring dequeue pointer until it's transitioned to the | 
 | 	 * stopped state, which is only upon a successful reset endpoint | 
 | 	 * command.  Better hope that last command worked! | 
 | 	 */ | 
 | 	if (!ret) { | 
 | 		xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n"); | 
 | 		/* We need to move the HW's dequeue pointer past this TD, | 
 | 		 * or it will attempt to resend it on the next doorbell ring. | 
 | 		 */ | 
 | 		xhci_find_new_dequeue_state(xhci, udev->slot_id, | 
 | 				ep_index, ep_ring->stopped_td, &deq_state); | 
 | 		xhci_dbg(xhci, "Queueing new dequeue state\n"); | 
 | 		xhci_queue_new_dequeue_state(xhci, ep_ring, | 
 | 				udev->slot_id, | 
 | 				ep_index, &deq_state); | 
 | 		kfree(ep_ring->stopped_td); | 
 | 		xhci_ring_cmd_db(xhci); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	if (ret) | 
 | 		xhci_warn(xhci, "FIXME allocate a new ring segment\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * At this point, the struct usb_device is about to go away, the device has | 
 |  * disconnected, and all traffic has been stopped and the endpoints have been | 
 |  * disabled.  Free any HC data structures associated with that device. | 
 |  */ | 
 | void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (udev->slot_id == 0) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); | 
 | 		return; | 
 | 	} | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 	/* | 
 | 	 * Event command completion handler will free any data structures | 
 | 	 * associated with the slot.  XXX Can free sleep? | 
 | 	 */ | 
 | } | 
 |  | 
 | /* | 
 |  * Returns 0 if the xHC ran out of device slots, the Enable Slot command | 
 |  * timed out, or allocating memory failed.  Returns 1 on success. | 
 |  */ | 
 | int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	unsigned long flags; | 
 | 	int timeleft; | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0); | 
 | 	if (ret) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	/* XXX: how much time for xHC slot assignment? */ | 
 | 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, | 
 | 			USB_CTRL_SET_TIMEOUT); | 
 | 	if (timeleft <= 0) { | 
 | 		xhci_warn(xhci, "%s while waiting for a slot\n", | 
 | 				timeleft == 0 ? "Timeout" : "Signal"); | 
 | 		/* FIXME cancel the enable slot request */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!xhci->slot_id) { | 
 | 		xhci_err(xhci, "Error while assigning device slot ID\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	/* xhci_alloc_virt_device() does not touch rings; no need to lock */ | 
 | 	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) { | 
 | 		/* Disable slot, if we can do it without mem alloc */ | 
 | 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n"); | 
 | 		spin_lock_irqsave(&xhci->lock, flags); | 
 | 		if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) | 
 | 			xhci_ring_cmd_db(xhci); | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		return 0; | 
 | 	} | 
 | 	udev->slot_id = xhci->slot_id; | 
 | 	/* Is this a LS or FS device under a HS hub? */ | 
 | 	/* Hub or peripherial? */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Issue an Address Device command (which will issue a SetAddress request to | 
 |  * the device). | 
 |  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so | 
 |  * we should only issue and wait on one address command at the same time. | 
 |  * | 
 |  * We add one to the device address issued by the hardware because the USB core | 
 |  * uses address 1 for the root hubs (even though they're not really devices). | 
 |  */ | 
 | int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int timeleft; | 
 | 	struct xhci_virt_device *virt_dev; | 
 | 	int ret = 0; | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	struct xhci_slot_ctx *slot_ctx; | 
 | 	struct xhci_input_control_ctx *ctrl_ctx; | 
 | 	u64 temp_64; | 
 |  | 
 | 	if (!udev->slot_id) { | 
 | 		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	virt_dev = xhci->devs[udev->slot_id]; | 
 |  | 
 | 	/* If this is a Set Address to an unconfigured device, setup ep 0 */ | 
 | 	if (!udev->config) | 
 | 		xhci_setup_addressable_virt_dev(xhci, udev); | 
 | 	/* Otherwise, assume the core has the device configured how it wants */ | 
 | 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); | 
 | 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); | 
 |  | 
 | 	spin_lock_irqsave(&xhci->lock, flags); | 
 | 	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma, | 
 | 					udev->slot_id); | 
 | 	if (ret) { | 
 | 		spin_unlock_irqrestore(&xhci->lock, flags); | 
 | 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n"); | 
 | 		return ret; | 
 | 	} | 
 | 	xhci_ring_cmd_db(xhci); | 
 | 	spin_unlock_irqrestore(&xhci->lock, flags); | 
 |  | 
 | 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */ | 
 | 	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev, | 
 | 			USB_CTRL_SET_TIMEOUT); | 
 | 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing | 
 | 	 * the SetAddress() "recovery interval" required by USB and aborting the | 
 | 	 * command on a timeout. | 
 | 	 */ | 
 | 	if (timeleft <= 0) { | 
 | 		xhci_warn(xhci, "%s while waiting for a slot\n", | 
 | 				timeleft == 0 ? "Timeout" : "Signal"); | 
 | 		/* FIXME cancel the address device command */ | 
 | 		return -ETIME; | 
 | 	} | 
 |  | 
 | 	switch (virt_dev->cmd_status) { | 
 | 	case COMP_CTX_STATE: | 
 | 	case COMP_EBADSLT: | 
 | 		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n", | 
 | 				udev->slot_id); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	case COMP_TX_ERR: | 
 | 		dev_warn(&udev->dev, "Device not responding to set address.\n"); | 
 | 		ret = -EPROTO; | 
 | 		break; | 
 | 	case COMP_SUCCESS: | 
 | 		xhci_dbg(xhci, "Successful Address Device command\n"); | 
 | 		break; | 
 | 	default: | 
 | 		xhci_err(xhci, "ERROR: unexpected command completion " | 
 | 				"code 0x%x.\n", virt_dev->cmd_status); | 
 | 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); | 
 | 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	if (ret) { | 
 | 		return ret; | 
 | 	} | 
 | 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr); | 
 | 	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64); | 
 | 	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n", | 
 | 			udev->slot_id, | 
 | 			&xhci->dcbaa->dev_context_ptrs[udev->slot_id], | 
 | 			(unsigned long long) | 
 | 				xhci->dcbaa->dev_context_ptrs[udev->slot_id]); | 
 | 	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", | 
 | 			(unsigned long long)virt_dev->out_ctx->dma); | 
 | 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); | 
 | 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2); | 
 | 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id); | 
 | 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2); | 
 | 	/* | 
 | 	 * USB core uses address 1 for the roothubs, so we add one to the | 
 | 	 * address given back to us by the HC. | 
 | 	 */ | 
 | 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); | 
 | 	udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1; | 
 | 	/* Zero the input context control for later use */ | 
 | 	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); | 
 | 	ctrl_ctx->add_flags = 0; | 
 | 	ctrl_ctx->drop_flags = 0; | 
 |  | 
 | 	xhci_dbg(xhci, "Device address = %d\n", udev->devnum); | 
 | 	/* XXX Meh, not sure if anyone else but choose_address uses this. */ | 
 | 	set_bit(udev->devnum, udev->bus->devmap.devicemap); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int xhci_get_frame(struct usb_hcd *hcd) | 
 | { | 
 | 	struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
 | 	/* EHCI mods by the periodic size.  Why? */ | 
 | 	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3; | 
 | } | 
 |  | 
 | MODULE_DESCRIPTION(DRIVER_DESC); | 
 | MODULE_AUTHOR(DRIVER_AUTHOR); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static int __init xhci_hcd_init(void) | 
 | { | 
 | #ifdef CONFIG_PCI | 
 | 	int retval = 0; | 
 |  | 
 | 	retval = xhci_register_pci(); | 
 |  | 
 | 	if (retval < 0) { | 
 | 		printk(KERN_DEBUG "Problem registering PCI driver."); | 
 | 		return retval; | 
 | 	} | 
 | #endif | 
 | 	/* | 
 | 	 * Check the compiler generated sizes of structures that must be laid | 
 | 	 * out in specific ways for hardware access. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8); | 
 | 	/* xhci_device_control has eight fields, and also | 
 | 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8); | 
 | 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8); | 
 | 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */ | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8); | 
 | 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8); | 
 | 	return 0; | 
 | } | 
 | module_init(xhci_hcd_init); | 
 |  | 
 | static void __exit xhci_hcd_cleanup(void) | 
 | { | 
 | #ifdef CONFIG_PCI | 
 | 	xhci_unregister_pci(); | 
 | #endif | 
 | } | 
 | module_exit(xhci_hcd_cleanup); |