| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Renesas R-Car Fine Display Processor |
| * |
| * Video format converter and frame deinterlacer device. |
| * |
| * Author: Kieran Bingham, <kieran@bingham.xyz> |
| * Copyright (c) 2016 Renesas Electronics Corporation. |
| * |
| * This code is developed and inspired from the vim2m, rcar_jpu, |
| * m2m-deinterlace, and vsp1 drivers. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/fs.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/timer.h> |
| #include <media/rcar-fcp.h> |
| #include <media/v4l2-ctrls.h> |
| #include <media/v4l2-device.h> |
| #include <media/v4l2-event.h> |
| #include <media/v4l2-ioctl.h> |
| #include <media/v4l2-mem2mem.h> |
| #include <media/videobuf2-dma-contig.h> |
| |
| static unsigned int debug; |
| module_param(debug, uint, 0644); |
| MODULE_PARM_DESC(debug, "activate debug info"); |
| |
| /* Minimum and maximum frame width/height */ |
| #define FDP1_MIN_W 80U |
| #define FDP1_MIN_H 80U |
| |
| #define FDP1_MAX_W 3840U |
| #define FDP1_MAX_H 2160U |
| |
| #define FDP1_MAX_PLANES 3U |
| #define FDP1_MAX_STRIDE 8190U |
| |
| /* Flags that indicate a format can be used for capture/output */ |
| #define FDP1_CAPTURE BIT(0) |
| #define FDP1_OUTPUT BIT(1) |
| |
| #define DRIVER_NAME "rcar_fdp1" |
| |
| /* Number of Job's to have available on the processing queue */ |
| #define FDP1_NUMBER_JOBS 8 |
| |
| #define dprintk(fdp1, fmt, arg...) \ |
| v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg) |
| |
| /* |
| * FDP1 registers and bits |
| */ |
| |
| /* FDP1 start register - Imm */ |
| #define FD1_CTL_CMD 0x0000 |
| #define FD1_CTL_CMD_STRCMD BIT(0) |
| |
| /* Sync generator register - Imm */ |
| #define FD1_CTL_SGCMD 0x0004 |
| #define FD1_CTL_SGCMD_SGEN BIT(0) |
| |
| /* Register set end register - Imm */ |
| #define FD1_CTL_REGEND 0x0008 |
| #define FD1_CTL_REGEND_REGEND BIT(0) |
| |
| /* Channel activation register - Vupdt */ |
| #define FD1_CTL_CHACT 0x000c |
| #define FD1_CTL_CHACT_SMW BIT(9) |
| #define FD1_CTL_CHACT_WR BIT(8) |
| #define FD1_CTL_CHACT_SMR BIT(3) |
| #define FD1_CTL_CHACT_RD2 BIT(2) |
| #define FD1_CTL_CHACT_RD1 BIT(1) |
| #define FD1_CTL_CHACT_RD0 BIT(0) |
| |
| /* Operation Mode Register - Vupdt */ |
| #define FD1_CTL_OPMODE 0x0010 |
| #define FD1_CTL_OPMODE_PRG BIT(4) |
| #define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0) |
| #define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0) |
| #define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0) |
| |
| #define FD1_CTL_VPERIOD 0x0014 |
| #define FD1_CTL_CLKCTRL 0x0018 |
| #define FD1_CTL_CLKCTRL_CSTP_N BIT(0) |
| |
| /* Software reset register */ |
| #define FD1_CTL_SRESET 0x001c |
| #define FD1_CTL_SRESET_SRST BIT(0) |
| |
| /* Control status register (V-update-status) */ |
| #define FD1_CTL_STATUS 0x0024 |
| #define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16) |
| #define FD1_CTL_STATUS_VINT_CNT_SHIFT 16 |
| #define FD1_CTL_STATUS_SGREGSET BIT(10) |
| #define FD1_CTL_STATUS_SGVERR BIT(9) |
| #define FD1_CTL_STATUS_SGFREND BIT(8) |
| #define FD1_CTL_STATUS_BSY BIT(0) |
| |
| #define FD1_CTL_VCYCLE_STAT 0x0028 |
| |
| /* Interrupt enable register */ |
| #define FD1_CTL_IRQENB 0x0038 |
| /* Interrupt status register */ |
| #define FD1_CTL_IRQSTA 0x003c |
| /* Interrupt control register */ |
| #define FD1_CTL_IRQFSET 0x0040 |
| |
| /* Common IRQ Bit settings */ |
| #define FD1_CTL_IRQ_VERE BIT(16) |
| #define FD1_CTL_IRQ_VINTE BIT(4) |
| #define FD1_CTL_IRQ_FREE BIT(0) |
| #define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \ |
| FD1_CTL_IRQ_VINTE | \ |
| FD1_CTL_IRQ_FREE) |
| |
| /* RPF */ |
| #define FD1_RPF_SIZE 0x0060 |
| #define FD1_RPF_SIZE_MASK GENMASK(12, 0) |
| #define FD1_RPF_SIZE_H_SHIFT 16 |
| #define FD1_RPF_SIZE_V_SHIFT 0 |
| |
| #define FD1_RPF_FORMAT 0x0064 |
| #define FD1_RPF_FORMAT_CIPM BIT(16) |
| #define FD1_RPF_FORMAT_RSPYCS BIT(13) |
| #define FD1_RPF_FORMAT_RSPUVS BIT(12) |
| #define FD1_RPF_FORMAT_CF BIT(8) |
| |
| #define FD1_RPF_PSTRIDE 0x0068 |
| #define FD1_RPF_PSTRIDE_Y_SHIFT 16 |
| #define FD1_RPF_PSTRIDE_C_SHIFT 0 |
| |
| /* RPF0 Source Component Y Address register */ |
| #define FD1_RPF0_ADDR_Y 0x006c |
| |
| /* RPF1 Current Picture Registers */ |
| #define FD1_RPF1_ADDR_Y 0x0078 |
| #define FD1_RPF1_ADDR_C0 0x007c |
| #define FD1_RPF1_ADDR_C1 0x0080 |
| |
| /* RPF2 next picture register */ |
| #define FD1_RPF2_ADDR_Y 0x0084 |
| |
| #define FD1_RPF_SMSK_ADDR 0x0090 |
| #define FD1_RPF_SWAP 0x0094 |
| |
| /* WPF */ |
| #define FD1_WPF_FORMAT 0x00c0 |
| #define FD1_WPF_FORMAT_PDV_SHIFT 24 |
| #define FD1_WPF_FORMAT_FCNL BIT(20) |
| #define FD1_WPF_FORMAT_WSPYCS BIT(15) |
| #define FD1_WPF_FORMAT_WSPUVS BIT(14) |
| #define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9) |
| #define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9) |
| #define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9) |
| #define FD1_WPF_FORMAT_CSC BIT(8) |
| |
| #define FD1_WPF_RNDCTL 0x00c4 |
| #define FD1_WPF_RNDCTL_CBRM BIT(28) |
| #define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12) |
| #define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12) |
| #define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12) |
| |
| #define FD1_WPF_PSTRIDE 0x00c8 |
| #define FD1_WPF_PSTRIDE_Y_SHIFT 16 |
| #define FD1_WPF_PSTRIDE_C_SHIFT 0 |
| |
| /* WPF Destination picture */ |
| #define FD1_WPF_ADDR_Y 0x00cc |
| #define FD1_WPF_ADDR_C0 0x00d0 |
| #define FD1_WPF_ADDR_C1 0x00d4 |
| #define FD1_WPF_SWAP 0x00d8 |
| #define FD1_WPF_SWAP_OSWAP_SHIFT 0 |
| #define FD1_WPF_SWAP_SSWAP_SHIFT 4 |
| |
| /* WPF/RPF Common */ |
| #define FD1_RWPF_SWAP_BYTE BIT(0) |
| #define FD1_RWPF_SWAP_WORD BIT(1) |
| #define FD1_RWPF_SWAP_LWRD BIT(2) |
| #define FD1_RWPF_SWAP_LLWD BIT(3) |
| |
| /* IPC */ |
| #define FD1_IPC_MODE 0x0100 |
| #define FD1_IPC_MODE_DLI BIT(8) |
| #define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0) |
| #define FD1_IPC_MODE_DIM_FIXED2D (1 << 0) |
| #define FD1_IPC_MODE_DIM_FIXED3D (2 << 0) |
| #define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0) |
| #define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0) |
| |
| #define FD1_IPC_SMSK_THRESH 0x0104 |
| #define FD1_IPC_SMSK_THRESH_CONST 0x00010002 |
| |
| #define FD1_IPC_COMB_DET 0x0108 |
| #define FD1_IPC_COMB_DET_CONST 0x00200040 |
| |
| #define FD1_IPC_MOTDEC 0x010c |
| #define FD1_IPC_MOTDEC_CONST 0x00008020 |
| |
| /* DLI registers */ |
| #define FD1_IPC_DLI_BLEND 0x0120 |
| #define FD1_IPC_DLI_BLEND_CONST 0x0080ff02 |
| |
| #define FD1_IPC_DLI_HGAIN 0x0124 |
| #define FD1_IPC_DLI_HGAIN_CONST 0x001000ff |
| |
| #define FD1_IPC_DLI_SPRS 0x0128 |
| #define FD1_IPC_DLI_SPRS_CONST 0x009004ff |
| |
| #define FD1_IPC_DLI_ANGLE 0x012c |
| #define FD1_IPC_DLI_ANGLE_CONST 0x0004080c |
| |
| #define FD1_IPC_DLI_ISOPIX0 0x0130 |
| #define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10 |
| |
| #define FD1_IPC_DLI_ISOPIX1 0x0134 |
| #define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10 |
| |
| /* Sensor registers */ |
| #define FD1_IPC_SENSOR_TH0 0x0140 |
| #define FD1_IPC_SENSOR_TH0_CONST 0x20208080 |
| |
| #define FD1_IPC_SENSOR_TH1 0x0144 |
| #define FD1_IPC_SENSOR_TH1_CONST 0 |
| |
| #define FD1_IPC_SENSOR_CTL0 0x0170 |
| #define FD1_IPC_SENSOR_CTL0_CONST 0x00002201 |
| |
| #define FD1_IPC_SENSOR_CTL1 0x0174 |
| #define FD1_IPC_SENSOR_CTL1_CONST 0 |
| |
| #define FD1_IPC_SENSOR_CTL2 0x0178 |
| #define FD1_IPC_SENSOR_CTL2_X_SHIFT 16 |
| #define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0 |
| |
| #define FD1_IPC_SENSOR_CTL3 0x017c |
| #define FD1_IPC_SENSOR_CTL3_0_SHIFT 16 |
| #define FD1_IPC_SENSOR_CTL3_1_SHIFT 0 |
| |
| /* Line memory pixel number register */ |
| #define FD1_IPC_LMEM 0x01e0 |
| #define FD1_IPC_LMEM_LINEAR 1024 |
| #define FD1_IPC_LMEM_TILE 960 |
| |
| /* Internal Data (HW Version) */ |
| #define FD1_IP_INTDATA 0x0800 |
| #define FD1_IP_H3_ES1 0x02010101 |
| #define FD1_IP_M3W 0x02010202 |
| #define FD1_IP_H3 0x02010203 |
| #define FD1_IP_M3N 0x02010204 |
| #define FD1_IP_E3 0x02010205 |
| |
| /* LUTs */ |
| #define FD1_LUT_DIF_ADJ 0x1000 |
| #define FD1_LUT_SAD_ADJ 0x1400 |
| #define FD1_LUT_BLD_GAIN 0x1800 |
| #define FD1_LUT_DIF_GAIN 0x1c00 |
| #define FD1_LUT_MDET 0x2000 |
| |
| /** |
| * struct fdp1_fmt - The FDP1 internal format data |
| * @fourcc: the fourcc code, to match the V4L2 API |
| * @bpp: bits per pixel per plane |
| * @num_planes: number of planes |
| * @hsub: horizontal subsampling factor |
| * @vsub: vertical subsampling factor |
| * @fmt: 7-bit format code for the fdp1 hardware |
| * @swap_yc: the Y and C components are swapped (Y comes before C) |
| * @swap_uv: the U and V components are swapped (V comes before U) |
| * @swap: swap register control |
| * @types: types of queue this format is applicable to |
| */ |
| struct fdp1_fmt { |
| u32 fourcc; |
| u8 bpp[3]; |
| u8 num_planes; |
| u8 hsub; |
| u8 vsub; |
| u8 fmt; |
| bool swap_yc; |
| bool swap_uv; |
| u8 swap; |
| u8 types; |
| }; |
| |
| static const struct fdp1_fmt fdp1_formats[] = { |
| /* RGB formats are only supported by the Write Pixel Formatter */ |
| |
| { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD, |
| FDP1_CAPTURE }, |
| { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD, |
| FDP1_CAPTURE }, |
| |
| /* YUV Formats are supported by Read and Write Pixel Formatters */ |
| |
| { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true, |
| FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD | |
| FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE, |
| FDP1_CAPTURE | FDP1_OUTPUT }, |
| }; |
| |
| static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt) |
| { |
| return fmt->fmt <= 0x1b; /* Last RGB code */ |
| } |
| |
| /* |
| * FDP1 Lookup tables range from 0...255 only |
| * |
| * Each table must be less than 256 entries, and all tables |
| * are padded out to 256 entries by duplicating the last value. |
| */ |
| static const u8 fdp1_diff_adj[] = { |
| 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf, |
| 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3, |
| 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff, |
| }; |
| |
| static const u8 fdp1_sad_adj[] = { |
| 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf, |
| 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3, |
| 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff, |
| }; |
| |
| static const u8 fdp1_bld_gain[] = { |
| 0x80, |
| }; |
| |
| static const u8 fdp1_dif_gain[] = { |
| 0x80, |
| }; |
| |
| static const u8 fdp1_mdet[] = { |
| 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
| 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
| 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, |
| 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, |
| 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, |
| 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, |
| 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, |
| 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, |
| 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, |
| 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, |
| 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, |
| 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, |
| 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, |
| 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, |
| 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, |
| 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, |
| 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, |
| 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, |
| 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, |
| 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, |
| 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, |
| 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, |
| 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, |
| 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, |
| 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, |
| 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, |
| 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, |
| 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, |
| 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, |
| 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, |
| 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff |
| }; |
| |
| /* Per-queue, driver-specific private data */ |
| struct fdp1_q_data { |
| const struct fdp1_fmt *fmt; |
| struct v4l2_pix_format_mplane format; |
| |
| unsigned int vsize; |
| unsigned int stride_y; |
| unsigned int stride_c; |
| }; |
| |
| static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat) |
| { |
| const struct fdp1_fmt *fmt; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) { |
| fmt = &fdp1_formats[i]; |
| if (fmt->fourcc == pixelformat) |
| return fmt; |
| } |
| |
| return NULL; |
| } |
| |
| enum fdp1_deint_mode { |
| FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */ |
| FDP1_ADAPT2D3D, |
| FDP1_FIXED2D, |
| FDP1_FIXED3D, |
| FDP1_PREVFIELD, |
| FDP1_NEXTFIELD, |
| }; |
| |
| #define FDP1_DEINT_MODE_USES_NEXT(mode) \ |
| (mode == FDP1_ADAPT2D3D || \ |
| mode == FDP1_FIXED3D || \ |
| mode == FDP1_NEXTFIELD) |
| |
| #define FDP1_DEINT_MODE_USES_PREV(mode) \ |
| (mode == FDP1_ADAPT2D3D || \ |
| mode == FDP1_FIXED3D || \ |
| mode == FDP1_PREVFIELD) |
| |
| /* |
| * FDP1 operates on potentially 3 fields, which are tracked |
| * from the VB buffers using this context structure. |
| * Will always be a field or a full frame, never two fields. |
| */ |
| struct fdp1_field_buffer { |
| struct vb2_v4l2_buffer *vb; |
| dma_addr_t addrs[3]; |
| |
| /* Should be NONE:TOP:BOTTOM only */ |
| enum v4l2_field field; |
| |
| /* Flag to indicate this is the last field in the vb */ |
| bool last_field; |
| |
| /* Buffer queue lists */ |
| struct list_head list; |
| }; |
| |
| struct fdp1_buffer { |
| struct v4l2_m2m_buffer m2m_buf; |
| struct fdp1_field_buffer fields[2]; |
| unsigned int num_fields; |
| }; |
| |
| static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb) |
| { |
| return container_of(vb, struct fdp1_buffer, m2m_buf.vb); |
| } |
| |
| struct fdp1_job { |
| struct fdp1_field_buffer *previous; |
| struct fdp1_field_buffer *active; |
| struct fdp1_field_buffer *next; |
| struct fdp1_field_buffer *dst; |
| |
| /* A job can only be on one list at a time */ |
| struct list_head list; |
| }; |
| |
| struct fdp1_dev { |
| struct v4l2_device v4l2_dev; |
| struct video_device vfd; |
| |
| struct mutex dev_mutex; |
| spinlock_t irqlock; |
| spinlock_t device_process_lock; |
| |
| void __iomem *regs; |
| unsigned int irq; |
| struct device *dev; |
| |
| /* Job Queues */ |
| struct fdp1_job jobs[FDP1_NUMBER_JOBS]; |
| struct list_head free_job_list; |
| struct list_head queued_job_list; |
| struct list_head hw_job_list; |
| |
| unsigned int clk_rate; |
| |
| struct rcar_fcp_device *fcp; |
| struct v4l2_m2m_dev *m2m_dev; |
| }; |
| |
| struct fdp1_ctx { |
| struct v4l2_fh fh; |
| struct fdp1_dev *fdp1; |
| |
| struct v4l2_ctrl_handler hdl; |
| unsigned int sequence; |
| |
| /* Processed buffers in this transaction */ |
| u8 num_processed; |
| |
| /* Transaction length (i.e. how many buffers per transaction) */ |
| u32 translen; |
| |
| /* Abort requested by m2m */ |
| int aborting; |
| |
| /* Deinterlace processing mode */ |
| enum fdp1_deint_mode deint_mode; |
| |
| /* |
| * Adaptive 2D/3D mode uses a shared mask |
| * This is allocated at streamon, if the ADAPT2D3D mode |
| * is requested |
| */ |
| unsigned int smsk_size; |
| dma_addr_t smsk_addr[2]; |
| void *smsk_cpu; |
| |
| /* Capture pipeline, can specify an alpha value |
| * for supported formats. 0-255 only |
| */ |
| unsigned char alpha; |
| |
| /* Source and destination queue data */ |
| struct fdp1_q_data out_q; /* HW Source */ |
| struct fdp1_q_data cap_q; /* HW Destination */ |
| |
| /* |
| * Field Queues |
| * Interlaced fields are used on 3 occasions, and tracked in this list. |
| * |
| * V4L2 Buffers are tracked inside the fdp1_buffer |
| * and released when the last 'field' completes |
| */ |
| struct list_head fields_queue; |
| unsigned int buffers_queued; |
| |
| /* |
| * For de-interlacing we need to track our previous buffer |
| * while preparing our job lists. |
| */ |
| struct fdp1_field_buffer *previous; |
| }; |
| |
| static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh) |
| { |
| return container_of(fh, struct fdp1_ctx, fh); |
| } |
| |
| static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx, |
| enum v4l2_buf_type type) |
| { |
| if (V4L2_TYPE_IS_OUTPUT(type)) |
| return &ctx->out_q; |
| else |
| return &ctx->cap_q; |
| } |
| |
| /* |
| * list_remove_job: Take the first item off the specified job list |
| * |
| * Returns: pointer to a job, or NULL if the list is empty. |
| */ |
| static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1, |
| struct list_head *list) |
| { |
| struct fdp1_job *job; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fdp1->irqlock, flags); |
| job = list_first_entry_or_null(list, struct fdp1_job, list); |
| if (job) |
| list_del(&job->list); |
| spin_unlock_irqrestore(&fdp1->irqlock, flags); |
| |
| return job; |
| } |
| |
| /* |
| * list_add_job: Add a job to the specified job list |
| * |
| * Returns: void - always succeeds |
| */ |
| static void list_add_job(struct fdp1_dev *fdp1, |
| struct list_head *list, |
| struct fdp1_job *job) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fdp1->irqlock, flags); |
| list_add_tail(&job->list, list); |
| spin_unlock_irqrestore(&fdp1->irqlock, flags); |
| } |
| |
| static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1) |
| { |
| return list_remove_job(fdp1, &fdp1->free_job_list); |
| } |
| |
| static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job) |
| { |
| /* Ensure that all residue from previous jobs is gone */ |
| memset(job, 0, sizeof(struct fdp1_job)); |
| |
| list_add_job(fdp1, &fdp1->free_job_list, job); |
| } |
| |
| static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job) |
| { |
| list_add_job(fdp1, &fdp1->queued_job_list, job); |
| } |
| |
| static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1) |
| { |
| return list_remove_job(fdp1, &fdp1->queued_job_list); |
| } |
| |
| static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job) |
| { |
| list_add_job(fdp1, &fdp1->hw_job_list, job); |
| } |
| |
| static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1) |
| { |
| return list_remove_job(fdp1, &fdp1->hw_job_list); |
| } |
| |
| /* |
| * Buffer lists handling |
| */ |
| static void fdp1_field_complete(struct fdp1_ctx *ctx, |
| struct fdp1_field_buffer *fbuf) |
| { |
| /* job->previous may be on the first field */ |
| if (!fbuf) |
| return; |
| |
| if (fbuf->last_field) |
| v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE); |
| } |
| |
| static void fdp1_queue_field(struct fdp1_ctx *ctx, |
| struct fdp1_field_buffer *fbuf) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ctx->fdp1->irqlock, flags); |
| list_add_tail(&fbuf->list, &ctx->fields_queue); |
| spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); |
| |
| ctx->buffers_queued++; |
| } |
| |
| static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx) |
| { |
| struct fdp1_field_buffer *fbuf; |
| unsigned long flags; |
| |
| ctx->buffers_queued--; |
| |
| spin_lock_irqsave(&ctx->fdp1->irqlock, flags); |
| fbuf = list_first_entry_or_null(&ctx->fields_queue, |
| struct fdp1_field_buffer, list); |
| if (fbuf) |
| list_del(&fbuf->list); |
| spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); |
| |
| return fbuf; |
| } |
| |
| /* |
| * Return the next field in the queue - or NULL, |
| * without removing the item from the list |
| */ |
| static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx) |
| { |
| struct fdp1_field_buffer *fbuf; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ctx->fdp1->irqlock, flags); |
| fbuf = list_first_entry_or_null(&ctx->fields_queue, |
| struct fdp1_field_buffer, list); |
| spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); |
| |
| return fbuf; |
| } |
| |
| static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg) |
| { |
| u32 value = ioread32(fdp1->regs + reg); |
| |
| if (debug >= 2) |
| dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg); |
| |
| return value; |
| } |
| |
| static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg) |
| { |
| if (debug >= 2) |
| dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg); |
| |
| iowrite32(val, fdp1->regs + reg); |
| } |
| |
| /* IPC registers are to be programmed with constant values */ |
| static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx) |
| { |
| struct fdp1_dev *fdp1 = ctx->fdp1; |
| |
| fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH); |
| fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET); |
| fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC); |
| |
| fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND); |
| fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN); |
| fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS); |
| fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE); |
| fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0); |
| fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1); |
| } |
| |
| |
| static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx) |
| { |
| struct fdp1_dev *fdp1 = ctx->fdp1; |
| struct fdp1_q_data *src_q_data = &ctx->out_q; |
| unsigned int x0, x1; |
| unsigned int hsize = src_q_data->format.width; |
| unsigned int vsize = src_q_data->format.height; |
| |
| x0 = hsize / 3; |
| x1 = 2 * hsize / 3; |
| |
| fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0); |
| fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1); |
| fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0); |
| fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1); |
| |
| fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) | |
| ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT), |
| FD1_IPC_SENSOR_CTL2); |
| |
| fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) | |
| (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT), |
| FD1_IPC_SENSOR_CTL3); |
| } |
| |
| /* |
| * fdp1_write_lut: Write a padded LUT to the hw |
| * |
| * FDP1 uses constant data for de-interlacing processing, |
| * with large tables. These hardware tables are all 256 bytes |
| * long, however they often contain repeated data at the end. |
| * |
| * The last byte of the table is written to all remaining entries. |
| */ |
| static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut, |
| unsigned int len, unsigned int base) |
| { |
| unsigned int i; |
| u8 pad; |
| |
| /* Tables larger than the hw are clipped */ |
| len = min(len, 256u); |
| |
| for (i = 0; i < len; i++) |
| fdp1_write(fdp1, lut[i], base + (i*4)); |
| |
| /* Tables are padded with the last entry */ |
| pad = lut[i-1]; |
| |
| for (; i < 256; i++) |
| fdp1_write(fdp1, pad, base + (i*4)); |
| } |
| |
| static void fdp1_set_lut(struct fdp1_dev *fdp1) |
| { |
| fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj), |
| FD1_LUT_DIF_ADJ); |
| fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj), |
| FD1_LUT_SAD_ADJ); |
| fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain), |
| FD1_LUT_BLD_GAIN); |
| fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain), |
| FD1_LUT_DIF_GAIN); |
| fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet), |
| FD1_LUT_MDET); |
| } |
| |
| static void fdp1_configure_rpf(struct fdp1_ctx *ctx, |
| struct fdp1_job *job) |
| { |
| struct fdp1_dev *fdp1 = ctx->fdp1; |
| u32 picture_size; |
| u32 pstride; |
| u32 format; |
| u32 smsk_addr; |
| |
| struct fdp1_q_data *q_data = &ctx->out_q; |
| |
| /* Picture size is common to Source and Destination frames */ |
| picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT) |
| | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT); |
| |
| /* Strides */ |
| pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT; |
| if (q_data->format.num_planes > 1) |
| pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT; |
| |
| /* Format control */ |
| format = q_data->fmt->fmt; |
| if (q_data->fmt->swap_yc) |
| format |= FD1_RPF_FORMAT_RSPYCS; |
| |
| if (q_data->fmt->swap_uv) |
| format |= FD1_RPF_FORMAT_RSPUVS; |
| |
| if (job->active->field == V4L2_FIELD_BOTTOM) { |
| format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */ |
| smsk_addr = ctx->smsk_addr[0]; |
| } else { |
| smsk_addr = ctx->smsk_addr[1]; |
| } |
| |
| /* Deint mode is non-zero when deinterlacing */ |
| if (ctx->deint_mode) |
| format |= FD1_RPF_FORMAT_CIPM; |
| |
| fdp1_write(fdp1, format, FD1_RPF_FORMAT); |
| fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP); |
| fdp1_write(fdp1, picture_size, FD1_RPF_SIZE); |
| fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE); |
| fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR); |
| |
| /* Previous Field Channel (CH0) */ |
| if (job->previous) |
| fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y); |
| |
| /* Current Field Channel (CH1) */ |
| fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y); |
| fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0); |
| fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1); |
| |
| /* Next Field Channel (CH2) */ |
| if (job->next) |
| fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y); |
| } |
| |
| static void fdp1_configure_wpf(struct fdp1_ctx *ctx, |
| struct fdp1_job *job) |
| { |
| struct fdp1_dev *fdp1 = ctx->fdp1; |
| struct fdp1_q_data *src_q_data = &ctx->out_q; |
| struct fdp1_q_data *q_data = &ctx->cap_q; |
| u32 pstride; |
| u32 format; |
| u32 swap; |
| u32 rndctl; |
| |
| pstride = q_data->format.plane_fmt[0].bytesperline |
| << FD1_WPF_PSTRIDE_Y_SHIFT; |
| |
| if (q_data->format.num_planes > 1) |
| pstride |= q_data->format.plane_fmt[1].bytesperline |
| << FD1_WPF_PSTRIDE_C_SHIFT; |
| |
| format = q_data->fmt->fmt; /* Output Format Code */ |
| |
| if (q_data->fmt->swap_yc) |
| format |= FD1_WPF_FORMAT_WSPYCS; |
| |
| if (q_data->fmt->swap_uv) |
| format |= FD1_WPF_FORMAT_WSPUVS; |
| |
| if (fdp1_fmt_is_rgb(q_data->fmt)) { |
| /* Enable Colour Space conversion */ |
| format |= FD1_WPF_FORMAT_CSC; |
| |
| /* Set WRTM */ |
| if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709) |
| format |= FD1_WPF_FORMAT_WRTM_709_16; |
| else if (src_q_data->format.quantization == |
| V4L2_QUANTIZATION_FULL_RANGE) |
| format |= FD1_WPF_FORMAT_WRTM_601_0; |
| else |
| format |= FD1_WPF_FORMAT_WRTM_601_16; |
| } |
| |
| /* Set an alpha value into the Pad Value */ |
| format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT; |
| |
| /* Determine picture rounding and clipping */ |
| rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */ |
| rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP; |
| |
| /* WPF Swap needs both ISWAP and OSWAP setting */ |
| swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT; |
| swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT; |
| |
| fdp1_write(fdp1, format, FD1_WPF_FORMAT); |
| fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL); |
| fdp1_write(fdp1, swap, FD1_WPF_SWAP); |
| fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE); |
| |
| fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y); |
| fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0); |
| fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1); |
| } |
| |
| static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx, |
| struct fdp1_job *job) |
| { |
| struct fdp1_dev *fdp1 = ctx->fdp1; |
| u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT; |
| u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */ |
| u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */ |
| |
| /* De-interlacing Mode */ |
| switch (ctx->deint_mode) { |
| default: |
| case FDP1_PROGRESSIVE: |
| dprintk(fdp1, "Progressive Mode\n"); |
| opmode |= FD1_CTL_OPMODE_PRG; |
| ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; |
| break; |
| case FDP1_ADAPT2D3D: |
| dprintk(fdp1, "Adapt2D3D Mode\n"); |
| if (ctx->sequence == 0 || ctx->aborting) |
| ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; |
| else |
| ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D; |
| |
| if (ctx->sequence > 1) { |
| channels |= FD1_CTL_CHACT_SMW; |
| channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2; |
| } |
| |
| if (ctx->sequence > 2) |
| channels |= FD1_CTL_CHACT_SMR; |
| |
| break; |
| case FDP1_FIXED3D: |
| dprintk(fdp1, "Fixed 3D Mode\n"); |
| ipcmode |= FD1_IPC_MODE_DIM_FIXED3D; |
| /* Except for first and last frame, enable all channels */ |
| if (!(ctx->sequence == 0 || ctx->aborting)) |
| channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2; |
| break; |
| case FDP1_FIXED2D: |
| dprintk(fdp1, "Fixed 2D Mode\n"); |
| ipcmode |= FD1_IPC_MODE_DIM_FIXED2D; |
| /* No extra channels enabled */ |
| break; |
| case FDP1_PREVFIELD: |
| dprintk(fdp1, "Previous Field Mode\n"); |
| ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD; |
| channels |= FD1_CTL_CHACT_RD0; /* Previous */ |
| break; |
| case FDP1_NEXTFIELD: |
| dprintk(fdp1, "Next Field Mode\n"); |
| ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD; |
| channels |= FD1_CTL_CHACT_RD2; /* Next */ |
| break; |
| } |
| |
| fdp1_write(fdp1, channels, FD1_CTL_CHACT); |
| fdp1_write(fdp1, opmode, FD1_CTL_OPMODE); |
| fdp1_write(fdp1, ipcmode, FD1_IPC_MODE); |
| } |
| |
| /* |
| * fdp1_device_process() - Run the hardware |
| * |
| * Configure and start the hardware to generate a single frame |
| * of output given our input parameters. |
| */ |
| static int fdp1_device_process(struct fdp1_ctx *ctx) |
| |
| { |
| struct fdp1_dev *fdp1 = ctx->fdp1; |
| struct fdp1_job *job; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&fdp1->device_process_lock, flags); |
| |
| /* Get a job to process */ |
| job = get_queued_job(fdp1); |
| if (!job) { |
| /* |
| * VINT can call us to see if we can queue another job. |
| * If we have no work to do, we simply return. |
| */ |
| spin_unlock_irqrestore(&fdp1->device_process_lock, flags); |
| return 0; |
| } |
| |
| /* First Frame only? ... */ |
| fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL); |
| |
| /* Set the mode, and configuration */ |
| fdp1_configure_deint_mode(ctx, job); |
| |
| /* DLI Static Configuration */ |
| fdp1_set_ipc_dli(ctx); |
| |
| /* Sensor Configuration */ |
| fdp1_set_ipc_sensor(ctx); |
| |
| /* Setup the source picture */ |
| fdp1_configure_rpf(ctx, job); |
| |
| /* Setup the destination picture */ |
| fdp1_configure_wpf(ctx, job); |
| |
| /* Line Memory Pixel Number Register for linear access */ |
| fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM); |
| |
| /* Enable Interrupts */ |
| fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB); |
| |
| /* Finally, the Immediate Registers */ |
| |
| /* This job is now in the HW queue */ |
| queue_hw_job(fdp1, job); |
| |
| /* Start the command */ |
| fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD); |
| |
| /* Registers will update to HW at next VINT */ |
| fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND); |
| |
| /* Enable VINT Generator */ |
| fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD); |
| |
| spin_unlock_irqrestore(&fdp1->device_process_lock, flags); |
| |
| return 0; |
| } |
| |
| /* |
| * mem2mem callbacks |
| */ |
| |
| /* |
| * job_ready() - check whether an instance is ready to be scheduled to run |
| */ |
| static int fdp1_m2m_job_ready(void *priv) |
| { |
| struct fdp1_ctx *ctx = priv; |
| struct fdp1_q_data *src_q_data = &ctx->out_q; |
| int srcbufs = 1; |
| int dstbufs = 1; |
| |
| dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n", |
| v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx), |
| v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx)); |
| |
| /* One output buffer is required for each field */ |
| if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field)) |
| dstbufs = 2; |
| |
| if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs |
| || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) { |
| dprintk(ctx->fdp1, "Not enough buffers available\n"); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void fdp1_m2m_job_abort(void *priv) |
| { |
| struct fdp1_ctx *ctx = priv; |
| |
| dprintk(ctx->fdp1, "+\n"); |
| |
| /* Will cancel the transaction in the next interrupt handler */ |
| ctx->aborting = 1; |
| |
| /* Immediate abort sequence */ |
| fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD); |
| fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET); |
| } |
| |
| /* |
| * fdp1_prepare_job: Prepare and queue a new job for a single action of work |
| * |
| * Prepare the next field, (or frame in progressive) and an output |
| * buffer for the hardware to perform a single operation. |
| */ |
| static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx) |
| { |
| struct vb2_v4l2_buffer *vbuf; |
| struct fdp1_buffer *fbuf; |
| struct fdp1_dev *fdp1 = ctx->fdp1; |
| struct fdp1_job *job; |
| unsigned int buffers_required = 1; |
| |
| dprintk(fdp1, "+\n"); |
| |
| if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) |
| buffers_required = 2; |
| |
| if (ctx->buffers_queued < buffers_required) |
| return NULL; |
| |
| job = fdp1_job_alloc(fdp1); |
| if (!job) { |
| dprintk(fdp1, "No free jobs currently available\n"); |
| return NULL; |
| } |
| |
| job->active = fdp1_dequeue_field(ctx); |
| if (!job->active) { |
| /* Buffer check should prevent this ever happening */ |
| dprintk(fdp1, "No input buffers currently available\n"); |
| |
| fdp1_job_free(fdp1, job); |
| return NULL; |
| } |
| |
| dprintk(fdp1, "+ Buffer en-route...\n"); |
| |
| /* Source buffers have been prepared on our buffer_queue |
| * Prepare our Output buffer |
| */ |
| vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); |
| fbuf = to_fdp1_buffer(vbuf); |
| job->dst = &fbuf->fields[0]; |
| |
| job->active->vb->sequence = ctx->sequence; |
| job->dst->vb->sequence = ctx->sequence; |
| ctx->sequence++; |
| |
| if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) { |
| job->previous = ctx->previous; |
| |
| /* Active buffer becomes the next job's previous buffer */ |
| ctx->previous = job->active; |
| } |
| |
| if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) { |
| /* Must be called after 'active' is dequeued */ |
| job->next = fdp1_peek_queued_field(ctx); |
| } |
| |
| /* Transfer timestamps and flags from src->dst */ |
| |
| job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp; |
| |
| job->dst->vb->flags = job->active->vb->flags & |
| V4L2_BUF_FLAG_TSTAMP_SRC_MASK; |
| |
| /* Ideally, the frame-end function will just 'check' to see |
| * if there are more jobs instead |
| */ |
| ctx->translen++; |
| |
| /* Finally, Put this job on the processing queue */ |
| queue_job(fdp1, job); |
| |
| dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen); |
| |
| return job; |
| } |
| |
| /* fdp1_m2m_device_run() - prepares and starts the device for an M2M task |
| * |
| * A single input buffer is taken and serialised into our fdp1_buffer |
| * queue. The queue is then processed to create as many jobs as possible |
| * from our available input. |
| */ |
| static void fdp1_m2m_device_run(void *priv) |
| { |
| struct fdp1_ctx *ctx = priv; |
| struct fdp1_dev *fdp1 = ctx->fdp1; |
| struct vb2_v4l2_buffer *src_vb; |
| struct fdp1_buffer *buf; |
| unsigned int i; |
| |
| dprintk(fdp1, "+\n"); |
| |
| ctx->translen = 0; |
| |
| /* Get our incoming buffer of either one or two fields, or one frame */ |
| src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); |
| buf = to_fdp1_buffer(src_vb); |
| |
| for (i = 0; i < buf->num_fields; i++) { |
| struct fdp1_field_buffer *fbuf = &buf->fields[i]; |
| |
| fdp1_queue_field(ctx, fbuf); |
| dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n", |
| i, fbuf->last_field); |
| } |
| |
| /* Queue as many jobs as our data provides for */ |
| while (fdp1_prepare_job(ctx)) |
| ; |
| |
| if (ctx->translen == 0) { |
| dprintk(fdp1, "No jobs were processed. M2M action complete\n"); |
| v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx); |
| return; |
| } |
| |
| /* Kick the job processing action */ |
| fdp1_device_process(ctx); |
| } |
| |
| /* |
| * device_frame_end: |
| * |
| * Handles the M2M level after a buffer completion event. |
| */ |
| static void device_frame_end(struct fdp1_dev *fdp1, |
| enum vb2_buffer_state state) |
| { |
| struct fdp1_ctx *ctx; |
| unsigned long flags; |
| struct fdp1_job *job = get_hw_queued_job(fdp1); |
| |
| dprintk(fdp1, "+\n"); |
| |
| ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev); |
| |
| if (ctx == NULL) { |
| v4l2_err(&fdp1->v4l2_dev, |
| "Instance released before the end of transaction\n"); |
| return; |
| } |
| |
| ctx->num_processed++; |
| |
| /* |
| * fdp1_field_complete will call buf_done only when the last vb2_buffer |
| * reference is complete |
| */ |
| if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) |
| fdp1_field_complete(ctx, job->previous); |
| else |
| fdp1_field_complete(ctx, job->active); |
| |
| spin_lock_irqsave(&fdp1->irqlock, flags); |
| v4l2_m2m_buf_done(job->dst->vb, state); |
| job->dst = NULL; |
| spin_unlock_irqrestore(&fdp1->irqlock, flags); |
| |
| /* Move this job back to the free job list */ |
| fdp1_job_free(fdp1, job); |
| |
| dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n", |
| ctx->num_processed, ctx->translen); |
| |
| if (ctx->num_processed == ctx->translen || |
| ctx->aborting) { |
| dprintk(ctx->fdp1, "Finishing transaction\n"); |
| ctx->num_processed = 0; |
| v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx); |
| } else { |
| /* |
| * For pipelined performance support, this would |
| * be called from a VINT handler |
| */ |
| fdp1_device_process(ctx); |
| } |
| } |
| |
| /* |
| * video ioctls |
| */ |
| static int fdp1_vidioc_querycap(struct file *file, void *priv, |
| struct v4l2_capability *cap) |
| { |
| strscpy(cap->driver, DRIVER_NAME, sizeof(cap->driver)); |
| strscpy(cap->card, DRIVER_NAME, sizeof(cap->card)); |
| snprintf(cap->bus_info, sizeof(cap->bus_info), |
| "platform:%s", DRIVER_NAME); |
| return 0; |
| } |
| |
| static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type) |
| { |
| unsigned int i, num; |
| |
| num = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) { |
| if (fdp1_formats[i].types & type) { |
| if (num == f->index) |
| break; |
| ++num; |
| } |
| } |
| |
| /* Format not found */ |
| if (i >= ARRAY_SIZE(fdp1_formats)) |
| return -EINVAL; |
| |
| /* Format found */ |
| f->pixelformat = fdp1_formats[i].fourcc; |
| |
| return 0; |
| } |
| |
| static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv, |
| struct v4l2_fmtdesc *f) |
| { |
| return fdp1_enum_fmt(f, FDP1_CAPTURE); |
| } |
| |
| static int fdp1_enum_fmt_vid_out(struct file *file, void *priv, |
| struct v4l2_fmtdesc *f) |
| { |
| return fdp1_enum_fmt(f, FDP1_OUTPUT); |
| } |
| |
| static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f) |
| { |
| struct fdp1_q_data *q_data; |
| struct fdp1_ctx *ctx = fh_to_ctx(priv); |
| |
| if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type)) |
| return -EINVAL; |
| |
| q_data = get_q_data(ctx, f->type); |
| f->fmt.pix_mp = q_data->format; |
| |
| return 0; |
| } |
| |
| static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix, |
| const struct fdp1_fmt *fmt) |
| { |
| unsigned int i; |
| |
| /* Compute and clamp the stride and image size. */ |
| for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) { |
| unsigned int hsub = i > 0 ? fmt->hsub : 1; |
| unsigned int vsub = i > 0 ? fmt->vsub : 1; |
| /* From VSP : TODO: Confirm alignment limits for FDP1 */ |
| unsigned int align = 128; |
| unsigned int bpl; |
| |
| bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline, |
| pix->width / hsub * fmt->bpp[i] / 8, |
| round_down(FDP1_MAX_STRIDE, align)); |
| |
| pix->plane_fmt[i].bytesperline = round_up(bpl, align); |
| pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline |
| * pix->height / vsub; |
| |
| memset(pix->plane_fmt[i].reserved, 0, |
| sizeof(pix->plane_fmt[i].reserved)); |
| } |
| |
| if (fmt->num_planes == 3) { |
| /* The two chroma planes must have the same stride. */ |
| pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline; |
| pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage; |
| |
| memset(pix->plane_fmt[2].reserved, 0, |
| sizeof(pix->plane_fmt[2].reserved)); |
| } |
| } |
| |
| static void fdp1_try_fmt_output(struct fdp1_ctx *ctx, |
| const struct fdp1_fmt **fmtinfo, |
| struct v4l2_pix_format_mplane *pix) |
| { |
| const struct fdp1_fmt *fmt; |
| unsigned int width; |
| unsigned int height; |
| |
| /* Validate the pixel format to ensure the output queue supports it. */ |
| fmt = fdp1_find_format(pix->pixelformat); |
| if (!fmt || !(fmt->types & FDP1_OUTPUT)) |
| fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV); |
| |
| if (fmtinfo) |
| *fmtinfo = fmt; |
| |
| pix->pixelformat = fmt->fourcc; |
| pix->num_planes = fmt->num_planes; |
| |
| /* |
| * Progressive video and all interlaced field orders are acceptable. |
| * Default to V4L2_FIELD_INTERLACED. |
| */ |
| if (pix->field != V4L2_FIELD_NONE && |
| pix->field != V4L2_FIELD_ALTERNATE && |
| !V4L2_FIELD_HAS_BOTH(pix->field)) |
| pix->field = V4L2_FIELD_INTERLACED; |
| |
| /* |
| * The deinterlacer doesn't care about the colorspace, accept all values |
| * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion |
| * at the output of the deinterlacer supports a subset of encodings and |
| * quantization methods and will only be available when the colorspace |
| * allows it. |
| */ |
| if (pix->colorspace == V4L2_COLORSPACE_DEFAULT) |
| pix->colorspace = V4L2_COLORSPACE_SMPTE170M; |
| |
| /* |
| * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp |
| * them to the supported frame size range. The height boundary are |
| * related to the full frame, divide them by two when the format passes |
| * fields in separate buffers. |
| */ |
| width = round_down(pix->width, fmt->hsub); |
| pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W); |
| |
| height = round_down(pix->height, fmt->vsub); |
| if (pix->field == V4L2_FIELD_ALTERNATE) |
| pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2); |
| else |
| pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H); |
| |
| fdp1_compute_stride(pix, fmt); |
| } |
| |
| static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx, |
| const struct fdp1_fmt **fmtinfo, |
| struct v4l2_pix_format_mplane *pix) |
| { |
| struct fdp1_q_data *src_data = &ctx->out_q; |
| enum v4l2_colorspace colorspace; |
| enum v4l2_ycbcr_encoding ycbcr_enc; |
| enum v4l2_quantization quantization; |
| const struct fdp1_fmt *fmt; |
| bool allow_rgb; |
| |
| /* |
| * Validate the pixel format. We can only accept RGB output formats if |
| * the input encoding and quantization are compatible with the format |
| * conversions supported by the hardware. The supported combinations are |
| * |
| * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE |
| * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE |
| * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE |
| */ |
| colorspace = src_data->format.colorspace; |
| |
| ycbcr_enc = src_data->format.ycbcr_enc; |
| if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) |
| ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace); |
| |
| quantization = src_data->format.quantization; |
| if (quantization == V4L2_QUANTIZATION_DEFAULT) |
| quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace, |
| ycbcr_enc); |
| |
| allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 || |
| (ycbcr_enc == V4L2_YCBCR_ENC_709 && |
| quantization == V4L2_QUANTIZATION_LIM_RANGE); |
| |
| fmt = fdp1_find_format(pix->pixelformat); |
| if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt))) |
| fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV); |
| |
| if (fmtinfo) |
| *fmtinfo = fmt; |
| |
| pix->pixelformat = fmt->fourcc; |
| pix->num_planes = fmt->num_planes; |
| pix->field = V4L2_FIELD_NONE; |
| |
| /* |
| * The colorspace on the capture queue is copied from the output queue |
| * as the hardware can't change the colorspace. It can convert YCbCr to |
| * RGB though, in which case the encoding and quantization are set to |
| * default values as anything else wouldn't make sense. |
| */ |
| pix->colorspace = src_data->format.colorspace; |
| pix->xfer_func = src_data->format.xfer_func; |
| |
| if (fdp1_fmt_is_rgb(fmt)) { |
| pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; |
| pix->quantization = V4L2_QUANTIZATION_DEFAULT; |
| } else { |
| pix->ycbcr_enc = src_data->format.ycbcr_enc; |
| pix->quantization = src_data->format.quantization; |
| } |
| |
| /* |
| * The frame width is identical to the output queue, and the height is |
| * either doubled or identical depending on whether the output queue |
| * field order contains one or two fields per frame. |
| */ |
| pix->width = src_data->format.width; |
| if (src_data->format.field == V4L2_FIELD_ALTERNATE) |
| pix->height = 2 * src_data->format.height; |
| else |
| pix->height = src_data->format.height; |
| |
| fdp1_compute_stride(pix, fmt); |
| } |
| |
| static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f) |
| { |
| struct fdp1_ctx *ctx = fh_to_ctx(priv); |
| |
| if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) |
| fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp); |
| else |
| fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp); |
| |
| dprintk(ctx->fdp1, "Try %s format: %4.4s (0x%08x) %ux%u field %u\n", |
| V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture", |
| (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat, |
| f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field); |
| |
| return 0; |
| } |
| |
| static void fdp1_set_format(struct fdp1_ctx *ctx, |
| struct v4l2_pix_format_mplane *pix, |
| enum v4l2_buf_type type) |
| { |
| struct fdp1_q_data *q_data = get_q_data(ctx, type); |
| const struct fdp1_fmt *fmtinfo; |
| |
| if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) |
| fdp1_try_fmt_output(ctx, &fmtinfo, pix); |
| else |
| fdp1_try_fmt_capture(ctx, &fmtinfo, pix); |
| |
| q_data->fmt = fmtinfo; |
| q_data->format = *pix; |
| |
| q_data->vsize = pix->height; |
| if (pix->field != V4L2_FIELD_NONE) |
| q_data->vsize /= 2; |
| |
| q_data->stride_y = pix->plane_fmt[0].bytesperline; |
| q_data->stride_c = pix->plane_fmt[1].bytesperline; |
| |
| /* Adjust strides for interleaved buffers */ |
| if (pix->field == V4L2_FIELD_INTERLACED || |
| pix->field == V4L2_FIELD_INTERLACED_TB || |
| pix->field == V4L2_FIELD_INTERLACED_BT) { |
| q_data->stride_y *= 2; |
| q_data->stride_c *= 2; |
| } |
| |
| /* Propagate the format from the output node to the capture node. */ |
| if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) { |
| struct fdp1_q_data *dst_data = &ctx->cap_q; |
| |
| /* |
| * Copy the format, clear the per-plane bytes per line and image |
| * size, override the field and double the height if needed. |
| */ |
| dst_data->format = q_data->format; |
| memset(dst_data->format.plane_fmt, 0, |
| sizeof(dst_data->format.plane_fmt)); |
| |
| dst_data->format.field = V4L2_FIELD_NONE; |
| if (pix->field == V4L2_FIELD_ALTERNATE) |
| dst_data->format.height *= 2; |
| |
| fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format); |
| |
| dst_data->vsize = dst_data->format.height; |
| dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline; |
| dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline; |
| } |
| } |
| |
| static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f) |
| { |
| struct fdp1_ctx *ctx = fh_to_ctx(priv); |
| struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx; |
| struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type); |
| |
| if (vb2_is_busy(vq)) { |
| v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__); |
| return -EBUSY; |
| } |
| |
| fdp1_set_format(ctx, &f->fmt.pix_mp, f->type); |
| |
| dprintk(ctx->fdp1, "Set %s format: %4.4s (0x%08x) %ux%u field %u\n", |
| V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture", |
| (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat, |
| f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field); |
| |
| return 0; |
| } |
| |
| static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct fdp1_ctx *ctx = |
| container_of(ctrl->handler, struct fdp1_ctx, hdl); |
| struct fdp1_q_data *src_q_data = &ctx->out_q; |
| |
| switch (ctrl->id) { |
| case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE: |
| if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field)) |
| ctrl->val = 2; |
| else |
| ctrl->val = 1; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct fdp1_ctx *ctx = |
| container_of(ctrl->handler, struct fdp1_ctx, hdl); |
| |
| switch (ctrl->id) { |
| case V4L2_CID_ALPHA_COMPONENT: |
| ctx->alpha = ctrl->val; |
| break; |
| |
| case V4L2_CID_DEINTERLACING_MODE: |
| ctx->deint_mode = ctrl->val; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static const struct v4l2_ctrl_ops fdp1_ctrl_ops = { |
| .s_ctrl = fdp1_s_ctrl, |
| .g_volatile_ctrl = fdp1_g_ctrl, |
| }; |
| |
| static const char * const fdp1_ctrl_deint_menu[] = { |
| "Progressive", |
| "Adaptive 2D/3D", |
| "Fixed 2D", |
| "Fixed 3D", |
| "Previous field", |
| "Next field", |
| NULL |
| }; |
| |
| static const struct v4l2_ioctl_ops fdp1_ioctl_ops = { |
| .vidioc_querycap = fdp1_vidioc_querycap, |
| |
| .vidioc_enum_fmt_vid_cap = fdp1_enum_fmt_vid_cap, |
| .vidioc_enum_fmt_vid_out = fdp1_enum_fmt_vid_out, |
| .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt, |
| .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt, |
| .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt, |
| .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt, |
| .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt, |
| .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt, |
| |
| .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs, |
| .vidioc_querybuf = v4l2_m2m_ioctl_querybuf, |
| .vidioc_qbuf = v4l2_m2m_ioctl_qbuf, |
| .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf, |
| .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf, |
| .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs, |
| .vidioc_expbuf = v4l2_m2m_ioctl_expbuf, |
| |
| .vidioc_streamon = v4l2_m2m_ioctl_streamon, |
| .vidioc_streamoff = v4l2_m2m_ioctl_streamoff, |
| |
| .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, |
| .vidioc_unsubscribe_event = v4l2_event_unsubscribe, |
| }; |
| |
| /* |
| * Queue operations |
| */ |
| |
| static int fdp1_queue_setup(struct vb2_queue *vq, |
| unsigned int *nbuffers, unsigned int *nplanes, |
| unsigned int sizes[], |
| struct device *alloc_ctxs[]) |
| { |
| struct fdp1_ctx *ctx = vb2_get_drv_priv(vq); |
| struct fdp1_q_data *q_data; |
| unsigned int i; |
| |
| q_data = get_q_data(ctx, vq->type); |
| |
| if (*nplanes) { |
| if (*nplanes > FDP1_MAX_PLANES) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| *nplanes = q_data->format.num_planes; |
| |
| for (i = 0; i < *nplanes; i++) |
| sizes[i] = q_data->format.plane_fmt[i].sizeimage; |
| |
| return 0; |
| } |
| |
| static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data, |
| struct vb2_v4l2_buffer *vbuf, |
| unsigned int field_num) |
| { |
| struct fdp1_buffer *buf = to_fdp1_buffer(vbuf); |
| struct fdp1_field_buffer *fbuf = &buf->fields[field_num]; |
| unsigned int num_fields; |
| unsigned int i; |
| |
| num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1; |
| |
| fbuf->vb = vbuf; |
| fbuf->last_field = (field_num + 1) == num_fields; |
| |
| for (i = 0; i < vbuf->vb2_buf.num_planes; ++i) |
| fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i); |
| |
| switch (vbuf->field) { |
| case V4L2_FIELD_INTERLACED: |
| /* |
| * Interlaced means bottom-top for 60Hz TV standards (NTSC) and |
| * top-bottom for 50Hz. As TV standards are not applicable to |
| * the mem-to-mem API, use the height as a heuristic. |
| */ |
| fbuf->field = (q_data->format.height < 576) == field_num |
| ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM; |
| break; |
| case V4L2_FIELD_INTERLACED_TB: |
| case V4L2_FIELD_SEQ_TB: |
| fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP; |
| break; |
| case V4L2_FIELD_INTERLACED_BT: |
| case V4L2_FIELD_SEQ_BT: |
| fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM; |
| break; |
| default: |
| fbuf->field = vbuf->field; |
| break; |
| } |
| |
| /* Buffer is completed */ |
| if (!field_num) |
| return; |
| |
| /* Adjust buffer addresses for second field */ |
| switch (vbuf->field) { |
| case V4L2_FIELD_INTERLACED: |
| case V4L2_FIELD_INTERLACED_TB: |
| case V4L2_FIELD_INTERLACED_BT: |
| for (i = 0; i < vbuf->vb2_buf.num_planes; i++) |
| fbuf->addrs[i] += |
| (i == 0 ? q_data->stride_y : q_data->stride_c); |
| break; |
| case V4L2_FIELD_SEQ_TB: |
| case V4L2_FIELD_SEQ_BT: |
| for (i = 0; i < vbuf->vb2_buf.num_planes; i++) |
| fbuf->addrs[i] += q_data->vsize * |
| (i == 0 ? q_data->stride_y : q_data->stride_c); |
| break; |
| } |
| } |
| |
| static int fdp1_buf_prepare(struct vb2_buffer *vb) |
| { |
| struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); |
| struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type); |
| struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); |
| struct fdp1_buffer *buf = to_fdp1_buffer(vbuf); |
| unsigned int i; |
| |
| if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) { |
| bool field_valid = true; |
| |
| /* Validate the buffer field. */ |
| switch (q_data->format.field) { |
| case V4L2_FIELD_NONE: |
| if (vbuf->field != V4L2_FIELD_NONE) |
| field_valid = false; |
| break; |
| |
| case V4L2_FIELD_ALTERNATE: |
| if (vbuf->field != V4L2_FIELD_TOP && |
| vbuf->field != V4L2_FIELD_BOTTOM) |
| field_valid = false; |
| break; |
| |
| case V4L2_FIELD_INTERLACED: |
| case V4L2_FIELD_SEQ_TB: |
| case V4L2_FIELD_SEQ_BT: |
| case V4L2_FIELD_INTERLACED_TB: |
| case V4L2_FIELD_INTERLACED_BT: |
| if (vbuf->field != q_data->format.field) |
| field_valid = false; |
| break; |
| } |
| |
| if (!field_valid) { |
| dprintk(ctx->fdp1, |
| "buffer field %u invalid for format field %u\n", |
| vbuf->field, q_data->format.field); |
| return -EINVAL; |
| } |
| } else { |
| vbuf->field = V4L2_FIELD_NONE; |
| } |
| |
| /* Validate the planes sizes. */ |
| for (i = 0; i < q_data->format.num_planes; i++) { |
| unsigned long size = q_data->format.plane_fmt[i].sizeimage; |
| |
| if (vb2_plane_size(vb, i) < size) { |
| dprintk(ctx->fdp1, |
| "data will not fit into plane [%u/%u] (%lu < %lu)\n", |
| i, q_data->format.num_planes, |
| vb2_plane_size(vb, i), size); |
| return -EINVAL; |
| } |
| |
| /* We have known size formats all around */ |
| vb2_set_plane_payload(vb, i, size); |
| } |
| |
| buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1; |
| for (i = 0; i < buf->num_fields; ++i) |
| fdp1_buf_prepare_field(q_data, vbuf, i); |
| |
| return 0; |
| } |
| |
| static void fdp1_buf_queue(struct vb2_buffer *vb) |
| { |
| struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); |
| struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); |
| |
| v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf); |
| } |
| |
| static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count) |
| { |
| struct fdp1_ctx *ctx = vb2_get_drv_priv(q); |
| struct fdp1_q_data *q_data = get_q_data(ctx, q->type); |
| |
| if (V4L2_TYPE_IS_OUTPUT(q->type)) { |
| /* |
| * Force our deint_mode when we are progressive, |
| * ignoring any setting on the device from the user, |
| * Otherwise, lock in the requested de-interlace mode. |
| */ |
| if (q_data->format.field == V4L2_FIELD_NONE) |
| ctx->deint_mode = FDP1_PROGRESSIVE; |
| |
| if (ctx->deint_mode == FDP1_ADAPT2D3D) { |
| u32 stride; |
| dma_addr_t smsk_base; |
| const u32 bpp = 2; /* bytes per pixel */ |
| |
| stride = round_up(q_data->format.width, 8); |
| |
| ctx->smsk_size = bpp * stride * q_data->vsize; |
| |
| ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev, |
| ctx->smsk_size, &smsk_base, GFP_KERNEL); |
| |
| if (ctx->smsk_cpu == NULL) { |
| dprintk(ctx->fdp1, "Failed to alloc smsk\n"); |
| return -ENOMEM; |
| } |
| |
| ctx->smsk_addr[0] = smsk_base; |
| ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void fdp1_stop_streaming(struct vb2_queue *q) |
| { |
| struct fdp1_ctx *ctx = vb2_get_drv_priv(q); |
| struct vb2_v4l2_buffer *vbuf; |
| unsigned long flags; |
| |
| while (1) { |
| if (V4L2_TYPE_IS_OUTPUT(q->type)) |
| vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); |
| else |
| vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); |
| if (vbuf == NULL) |
| break; |
| spin_lock_irqsave(&ctx->fdp1->irqlock, flags); |
| v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR); |
| spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags); |
| } |
| |
| /* Empty Output queues */ |
| if (V4L2_TYPE_IS_OUTPUT(q->type)) { |
| /* Empty our internal queues */ |
| struct fdp1_field_buffer *fbuf; |
| |
| /* Free any queued buffers */ |
| fbuf = fdp1_dequeue_field(ctx); |
| while (fbuf != NULL) { |
| fdp1_field_complete(ctx, fbuf); |
| fbuf = fdp1_dequeue_field(ctx); |
| } |
| |
| /* Free smsk_data */ |
| if (ctx->smsk_cpu) { |
| dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size, |
| ctx->smsk_cpu, ctx->smsk_addr[0]); |
| ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0; |
| ctx->smsk_cpu = NULL; |
| } |
| |
| WARN(!list_empty(&ctx->fields_queue), |
| "Buffer queue not empty"); |
| } else { |
| /* Empty Capture queues (Jobs) */ |
| struct fdp1_job *job; |
| |
| job = get_queued_job(ctx->fdp1); |
| while (job) { |
| if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) |
| fdp1_field_complete(ctx, job->previous); |
| else |
| fdp1_field_complete(ctx, job->active); |
| |
| v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR); |
| job->dst = NULL; |
| |
| job = get_queued_job(ctx->fdp1); |
| } |
| |
| /* Free any held buffer in the ctx */ |
| fdp1_field_complete(ctx, ctx->previous); |
| |
| WARN(!list_empty(&ctx->fdp1->queued_job_list), |
| "Queued Job List not empty"); |
| |
| WARN(!list_empty(&ctx->fdp1->hw_job_list), |
| "HW Job list not empty"); |
| } |
| } |
| |
| static const struct vb2_ops fdp1_qops = { |
| .queue_setup = fdp1_queue_setup, |
| .buf_prepare = fdp1_buf_prepare, |
| .buf_queue = fdp1_buf_queue, |
| .start_streaming = fdp1_start_streaming, |
| .stop_streaming = fdp1_stop_streaming, |
| .wait_prepare = vb2_ops_wait_prepare, |
| .wait_finish = vb2_ops_wait_finish, |
| }; |
| |
| static int queue_init(void *priv, struct vb2_queue *src_vq, |
| struct vb2_queue *dst_vq) |
| { |
| struct fdp1_ctx *ctx = priv; |
| int ret; |
| |
| src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; |
| src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; |
| src_vq->drv_priv = ctx; |
| src_vq->buf_struct_size = sizeof(struct fdp1_buffer); |
| src_vq->ops = &fdp1_qops; |
| src_vq->mem_ops = &vb2_dma_contig_memops; |
| src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; |
| src_vq->lock = &ctx->fdp1->dev_mutex; |
| src_vq->dev = ctx->fdp1->dev; |
| |
| ret = vb2_queue_init(src_vq); |
| if (ret) |
| return ret; |
| |
| dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; |
| dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; |
| dst_vq->drv_priv = ctx; |
| dst_vq->buf_struct_size = sizeof(struct fdp1_buffer); |
| dst_vq->ops = &fdp1_qops; |
| dst_vq->mem_ops = &vb2_dma_contig_memops; |
| dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; |
| dst_vq->lock = &ctx->fdp1->dev_mutex; |
| dst_vq->dev = ctx->fdp1->dev; |
| |
| return vb2_queue_init(dst_vq); |
| } |
| |
| /* |
| * File operations |
| */ |
| static int fdp1_open(struct file *file) |
| { |
| struct fdp1_dev *fdp1 = video_drvdata(file); |
| struct v4l2_pix_format_mplane format; |
| struct fdp1_ctx *ctx = NULL; |
| struct v4l2_ctrl *ctrl; |
| int ret = 0; |
| |
| if (mutex_lock_interruptible(&fdp1->dev_mutex)) |
| return -ERESTARTSYS; |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| v4l2_fh_init(&ctx->fh, video_devdata(file)); |
| file->private_data = &ctx->fh; |
| ctx->fdp1 = fdp1; |
| |
| /* Initialise Queues */ |
| INIT_LIST_HEAD(&ctx->fields_queue); |
| |
| ctx->translen = 1; |
| ctx->sequence = 0; |
| |
| /* Initialise controls */ |
| |
| v4l2_ctrl_handler_init(&ctx->hdl, 3); |
| v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops, |
| V4L2_CID_DEINTERLACING_MODE, |
| FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D, |
| fdp1_ctrl_deint_menu); |
| |
| ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops, |
| V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1); |
| if (ctrl) |
| ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE; |
| |
| v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops, |
| V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255); |
| |
| if (ctx->hdl.error) { |
| ret = ctx->hdl.error; |
| v4l2_ctrl_handler_free(&ctx->hdl); |
| goto done; |
| } |
| |
| ctx->fh.ctrl_handler = &ctx->hdl; |
| v4l2_ctrl_handler_setup(&ctx->hdl); |
| |
| /* Configure default parameters. */ |
| memset(&format, 0, sizeof(format)); |
| fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE); |
| |
| ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init); |
| |
| if (IS_ERR(ctx->fh.m2m_ctx)) { |
| ret = PTR_ERR(ctx->fh.m2m_ctx); |
| |
| v4l2_ctrl_handler_free(&ctx->hdl); |
| kfree(ctx); |
| goto done; |
| } |
| |
| /* Perform any power management required */ |
| pm_runtime_get_sync(fdp1->dev); |
| |
| v4l2_fh_add(&ctx->fh); |
| |
| dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n", |
| ctx, ctx->fh.m2m_ctx); |
| |
| done: |
| mutex_unlock(&fdp1->dev_mutex); |
| return ret; |
| } |
| |
| static int fdp1_release(struct file *file) |
| { |
| struct fdp1_dev *fdp1 = video_drvdata(file); |
| struct fdp1_ctx *ctx = fh_to_ctx(file->private_data); |
| |
| dprintk(fdp1, "Releasing instance %p\n", ctx); |
| |
| v4l2_fh_del(&ctx->fh); |
| v4l2_fh_exit(&ctx->fh); |
| v4l2_ctrl_handler_free(&ctx->hdl); |
| mutex_lock(&fdp1->dev_mutex); |
| v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); |
| mutex_unlock(&fdp1->dev_mutex); |
| kfree(ctx); |
| |
| pm_runtime_put(fdp1->dev); |
| |
| return 0; |
| } |
| |
| static const struct v4l2_file_operations fdp1_fops = { |
| .owner = THIS_MODULE, |
| .open = fdp1_open, |
| .release = fdp1_release, |
| .poll = v4l2_m2m_fop_poll, |
| .unlocked_ioctl = video_ioctl2, |
| .mmap = v4l2_m2m_fop_mmap, |
| }; |
| |
| static const struct video_device fdp1_videodev = { |
| .name = DRIVER_NAME, |
| .vfl_dir = VFL_DIR_M2M, |
| .fops = &fdp1_fops, |
| .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING, |
| .ioctl_ops = &fdp1_ioctl_ops, |
| .minor = -1, |
| .release = video_device_release_empty, |
| }; |
| |
| static const struct v4l2_m2m_ops m2m_ops = { |
| .device_run = fdp1_m2m_device_run, |
| .job_ready = fdp1_m2m_job_ready, |
| .job_abort = fdp1_m2m_job_abort, |
| }; |
| |
| static irqreturn_t fdp1_irq_handler(int irq, void *dev_id) |
| { |
| struct fdp1_dev *fdp1 = dev_id; |
| u32 int_status; |
| u32 ctl_status; |
| u32 vint_cnt; |
| u32 cycles; |
| |
| int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA); |
| cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT); |
| ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS); |
| vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >> |
| FD1_CTL_STATUS_VINT_CNT_SHIFT; |
| |
| /* Clear interrupts */ |
| fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA); |
| |
| if (debug >= 2) { |
| dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status, |
| int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]", |
| int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]", |
| int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]"); |
| |
| dprintk(fdp1, "CycleStatus = %d (%dms)\n", |
| cycles, cycles/(fdp1->clk_rate/1000)); |
| |
| dprintk(fdp1, |
| "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n", |
| ctl_status, vint_cnt, |
| ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "", |
| ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "", |
| ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "", |
| ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : ""); |
| dprintk(fdp1, "***********************************\n"); |
| } |
| |
| /* Spurious interrupt */ |
| if (!(FD1_CTL_IRQ_MASK & int_status)) |
| return IRQ_NONE; |
| |
| /* Work completed, release the frame */ |
| if (FD1_CTL_IRQ_VERE & int_status) |
| device_frame_end(fdp1, VB2_BUF_STATE_ERROR); |
| else if (FD1_CTL_IRQ_FREE & int_status) |
| device_frame_end(fdp1, VB2_BUF_STATE_DONE); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int fdp1_probe(struct platform_device *pdev) |
| { |
| struct fdp1_dev *fdp1; |
| struct video_device *vfd; |
| struct device_node *fcp_node; |
| struct resource *res; |
| struct clk *clk; |
| unsigned int i; |
| |
| int ret; |
| int hw_version; |
| |
| fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL); |
| if (!fdp1) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&fdp1->free_job_list); |
| INIT_LIST_HEAD(&fdp1->queued_job_list); |
| INIT_LIST_HEAD(&fdp1->hw_job_list); |
| |
| /* Initialise the jobs on the free list */ |
| for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++) |
| list_add(&fdp1->jobs[i].list, &fdp1->free_job_list); |
| |
| mutex_init(&fdp1->dev_mutex); |
| |
| spin_lock_init(&fdp1->irqlock); |
| spin_lock_init(&fdp1->device_process_lock); |
| fdp1->dev = &pdev->dev; |
| platform_set_drvdata(pdev, fdp1); |
| |
| /* Memory-mapped registers */ |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| fdp1->regs = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(fdp1->regs)) |
| return PTR_ERR(fdp1->regs); |
| |
| /* Interrupt service routine registration */ |
| fdp1->irq = ret = platform_get_irq(pdev, 0); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "cannot find IRQ\n"); |
| return ret; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0, |
| dev_name(&pdev->dev), fdp1); |
| if (ret) { |
| dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq); |
| return ret; |
| } |
| |
| /* FCP */ |
| fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0); |
| if (fcp_node) { |
| fdp1->fcp = rcar_fcp_get(fcp_node); |
| of_node_put(fcp_node); |
| if (IS_ERR(fdp1->fcp)) { |
| dev_err(&pdev->dev, "FCP not found (%ld)\n", |
| PTR_ERR(fdp1->fcp)); |
| return PTR_ERR(fdp1->fcp); |
| } |
| } |
| |
| /* Determine our clock rate */ |
| clk = clk_get(&pdev->dev, NULL); |
| if (IS_ERR(clk)) |
| return PTR_ERR(clk); |
| |
| fdp1->clk_rate = clk_get_rate(clk); |
| clk_put(clk); |
| |
| /* V4L2 device registration */ |
| ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev); |
| if (ret) { |
| v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n"); |
| return ret; |
| } |
| |
| /* M2M registration */ |
| fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops); |
| if (IS_ERR(fdp1->m2m_dev)) { |
| v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n"); |
| ret = PTR_ERR(fdp1->m2m_dev); |
| goto unreg_dev; |
| } |
| |
| /* Video registration */ |
| fdp1->vfd = fdp1_videodev; |
| vfd = &fdp1->vfd; |
| vfd->lock = &fdp1->dev_mutex; |
| vfd->v4l2_dev = &fdp1->v4l2_dev; |
| video_set_drvdata(vfd, fdp1); |
| strscpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name)); |
| |
| ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0); |
| if (ret) { |
| v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n"); |
| goto release_m2m; |
| } |
| |
| v4l2_info(&fdp1->v4l2_dev, "Device registered as /dev/video%d\n", |
| vfd->num); |
| |
| /* Power up the cells to read HW */ |
| pm_runtime_enable(&pdev->dev); |
| pm_runtime_get_sync(fdp1->dev); |
| |
| hw_version = fdp1_read(fdp1, FD1_IP_INTDATA); |
| switch (hw_version) { |
| case FD1_IP_H3_ES1: |
| dprintk(fdp1, "FDP1 Version R-Car H3 ES1\n"); |
| break; |
| case FD1_IP_M3W: |
| dprintk(fdp1, "FDP1 Version R-Car M3-W\n"); |
| break; |
| case FD1_IP_H3: |
| dprintk(fdp1, "FDP1 Version R-Car H3\n"); |
| break; |
| case FD1_IP_M3N: |
| dprintk(fdp1, "FDP1 Version R-Car M3N\n"); |
| break; |
| case FD1_IP_E3: |
| dprintk(fdp1, "FDP1 Version R-Car E3\n"); |
| break; |
| default: |
| dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n", |
| hw_version); |
| } |
| |
| /* Allow the hw to sleep until an open call puts it to use */ |
| pm_runtime_put(fdp1->dev); |
| |
| return 0; |
| |
| release_m2m: |
| v4l2_m2m_release(fdp1->m2m_dev); |
| |
| unreg_dev: |
| v4l2_device_unregister(&fdp1->v4l2_dev); |
| |
| return ret; |
| } |
| |
| static int fdp1_remove(struct platform_device *pdev) |
| { |
| struct fdp1_dev *fdp1 = platform_get_drvdata(pdev); |
| |
| v4l2_m2m_release(fdp1->m2m_dev); |
| video_unregister_device(&fdp1->vfd); |
| v4l2_device_unregister(&fdp1->v4l2_dev); |
| pm_runtime_disable(&pdev->dev); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused fdp1_pm_runtime_suspend(struct device *dev) |
| { |
| struct fdp1_dev *fdp1 = dev_get_drvdata(dev); |
| |
| rcar_fcp_disable(fdp1->fcp); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused fdp1_pm_runtime_resume(struct device *dev) |
| { |
| struct fdp1_dev *fdp1 = dev_get_drvdata(dev); |
| |
| /* Program in the static LUTs */ |
| fdp1_set_lut(fdp1); |
| |
| return rcar_fcp_enable(fdp1->fcp); |
| } |
| |
| static const struct dev_pm_ops fdp1_pm_ops = { |
| SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend, |
| fdp1_pm_runtime_resume, |
| NULL) |
| }; |
| |
| static const struct of_device_id fdp1_dt_ids[] = { |
| { .compatible = "renesas,fdp1" }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, fdp1_dt_ids); |
| |
| static struct platform_driver fdp1_pdrv = { |
| .probe = fdp1_probe, |
| .remove = fdp1_remove, |
| .driver = { |
| .name = DRIVER_NAME, |
| .of_match_table = fdp1_dt_ids, |
| .pm = &fdp1_pm_ops, |
| }, |
| }; |
| |
| module_platform_driver(fdp1_pdrv); |
| |
| MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver"); |
| MODULE_AUTHOR("Kieran Bingham <kieran@bingham.xyz>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:" DRIVER_NAME); |