| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/cache.h> |
| #include <linux/delay.h> |
| #include <linux/uaccess.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <asm/atomic.h> |
| #include <arch/chip.h> |
| |
| /* The routines in atomic_asm.S are private, so we only declare them here. */ |
| extern struct __get_user __atomic_cmpxchg(volatile int *p, |
| int *lock, int o, int n); |
| extern struct __get_user __atomic_xchg(volatile int *p, int *lock, int n); |
| extern struct __get_user __atomic_xchg_add(volatile int *p, int *lock, int n); |
| extern struct __get_user __atomic_xchg_add_unless(volatile int *p, |
| int *lock, int o, int n); |
| extern struct __get_user __atomic_or(volatile int *p, int *lock, int n); |
| extern struct __get_user __atomic_andn(volatile int *p, int *lock, int n); |
| extern struct __get_user __atomic_xor(volatile int *p, int *lock, int n); |
| |
| extern u64 __atomic64_cmpxchg(volatile u64 *p, int *lock, u64 o, u64 n); |
| extern u64 __atomic64_xchg(volatile u64 *p, int *lock, u64 n); |
| extern u64 __atomic64_xchg_add(volatile u64 *p, int *lock, u64 n); |
| extern u64 __atomic64_xchg_add_unless(volatile u64 *p, |
| int *lock, u64 o, u64 n); |
| |
| |
| /* See <asm/atomic.h> */ |
| #if ATOMIC_LOCKS_FOUND_VIA_TABLE() |
| |
| /* |
| * A block of memory containing locks for atomic ops. Each instance of this |
| * struct will be homed on a different CPU. |
| */ |
| struct atomic_locks_on_cpu { |
| int lock[ATOMIC_HASH_L2_SIZE]; |
| } __attribute__((aligned(ATOMIC_HASH_L2_SIZE * 4))); |
| |
| static DEFINE_PER_CPU(struct atomic_locks_on_cpu, atomic_lock_pool); |
| |
| /* The locks we'll use until __init_atomic_per_cpu is called. */ |
| static struct atomic_locks_on_cpu __initdata initial_atomic_locks; |
| |
| /* Hash into this vector to get a pointer to lock for the given atomic. */ |
| struct atomic_locks_on_cpu *atomic_lock_ptr[ATOMIC_HASH_L1_SIZE] |
| __write_once = { |
| [0 ... ATOMIC_HASH_L1_SIZE-1] (&initial_atomic_locks) |
| }; |
| |
| #else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ |
| |
| /* This page is remapped on startup to be hash-for-home. */ |
| int atomic_locks[PAGE_SIZE / sizeof(int) /* Only ATOMIC_HASH_SIZE is used */] |
| __attribute__((aligned(PAGE_SIZE), section(".bss.page_aligned"))); |
| |
| #endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ |
| |
| static inline int *__atomic_hashed_lock(volatile void *v) |
| { |
| /* NOTE: this code must match "sys_cmpxchg" in kernel/intvec.S */ |
| #if ATOMIC_LOCKS_FOUND_VIA_TABLE() |
| unsigned long i = |
| (unsigned long) v & ((PAGE_SIZE-1) & -sizeof(long long)); |
| unsigned long n = __insn_crc32_32(0, i); |
| |
| /* Grab high bits for L1 index. */ |
| unsigned long l1_index = n >> ((sizeof(n) * 8) - ATOMIC_HASH_L1_SHIFT); |
| /* Grab low bits for L2 index. */ |
| unsigned long l2_index = n & (ATOMIC_HASH_L2_SIZE - 1); |
| |
| return &atomic_lock_ptr[l1_index]->lock[l2_index]; |
| #else |
| /* |
| * Use bits [3, 3 + ATOMIC_HASH_SHIFT) as the lock index. |
| * Using mm works here because atomic_locks is page aligned. |
| */ |
| unsigned long ptr = __insn_mm((unsigned long)v >> 1, |
| (unsigned long)atomic_locks, |
| 2, (ATOMIC_HASH_SHIFT + 2) - 1); |
| return (int *)ptr; |
| #endif |
| } |
| |
| #ifdef CONFIG_SMP |
| /* Return whether the passed pointer is a valid atomic lock pointer. */ |
| static int is_atomic_lock(int *p) |
| { |
| #if ATOMIC_LOCKS_FOUND_VIA_TABLE() |
| int i; |
| for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) { |
| |
| if (p >= &atomic_lock_ptr[i]->lock[0] && |
| p < &atomic_lock_ptr[i]->lock[ATOMIC_HASH_L2_SIZE]) { |
| return 1; |
| } |
| } |
| return 0; |
| #else |
| return p >= &atomic_locks[0] && p < &atomic_locks[ATOMIC_HASH_SIZE]; |
| #endif |
| } |
| |
| void __atomic_fault_unlock(int *irqlock_word) |
| { |
| BUG_ON(!is_atomic_lock(irqlock_word)); |
| BUG_ON(*irqlock_word != 1); |
| *irqlock_word = 0; |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| static inline int *__atomic_setup(volatile void *v) |
| { |
| /* Issue a load to the target to bring it into cache. */ |
| *(volatile int *)v; |
| return __atomic_hashed_lock(v); |
| } |
| |
| int _atomic_xchg(atomic_t *v, int n) |
| { |
| return __atomic_xchg(&v->counter, __atomic_setup(v), n).val; |
| } |
| EXPORT_SYMBOL(_atomic_xchg); |
| |
| int _atomic_xchg_add(atomic_t *v, int i) |
| { |
| return __atomic_xchg_add(&v->counter, __atomic_setup(v), i).val; |
| } |
| EXPORT_SYMBOL(_atomic_xchg_add); |
| |
| int _atomic_xchg_add_unless(atomic_t *v, int a, int u) |
| { |
| /* |
| * Note: argument order is switched here since it is easier |
| * to use the first argument consistently as the "old value" |
| * in the assembly, as is done for _atomic_cmpxchg(). |
| */ |
| return __atomic_xchg_add_unless(&v->counter, __atomic_setup(v), u, a) |
| .val; |
| } |
| EXPORT_SYMBOL(_atomic_xchg_add_unless); |
| |
| int _atomic_cmpxchg(atomic_t *v, int o, int n) |
| { |
| return __atomic_cmpxchg(&v->counter, __atomic_setup(v), o, n).val; |
| } |
| EXPORT_SYMBOL(_atomic_cmpxchg); |
| |
| unsigned long _atomic_or(volatile unsigned long *p, unsigned long mask) |
| { |
| return __atomic_or((int *)p, __atomic_setup(p), mask).val; |
| } |
| EXPORT_SYMBOL(_atomic_or); |
| |
| unsigned long _atomic_andn(volatile unsigned long *p, unsigned long mask) |
| { |
| return __atomic_andn((int *)p, __atomic_setup(p), mask).val; |
| } |
| EXPORT_SYMBOL(_atomic_andn); |
| |
| unsigned long _atomic_xor(volatile unsigned long *p, unsigned long mask) |
| { |
| return __atomic_xor((int *)p, __atomic_setup(p), mask).val; |
| } |
| EXPORT_SYMBOL(_atomic_xor); |
| |
| |
| u64 _atomic64_xchg(atomic64_t *v, u64 n) |
| { |
| return __atomic64_xchg(&v->counter, __atomic_setup(v), n); |
| } |
| EXPORT_SYMBOL(_atomic64_xchg); |
| |
| u64 _atomic64_xchg_add(atomic64_t *v, u64 i) |
| { |
| return __atomic64_xchg_add(&v->counter, __atomic_setup(v), i); |
| } |
| EXPORT_SYMBOL(_atomic64_xchg_add); |
| |
| u64 _atomic64_xchg_add_unless(atomic64_t *v, u64 a, u64 u) |
| { |
| /* |
| * Note: argument order is switched here since it is easier |
| * to use the first argument consistently as the "old value" |
| * in the assembly, as is done for _atomic_cmpxchg(). |
| */ |
| return __atomic64_xchg_add_unless(&v->counter, __atomic_setup(v), |
| u, a); |
| } |
| EXPORT_SYMBOL(_atomic64_xchg_add_unless); |
| |
| u64 _atomic64_cmpxchg(atomic64_t *v, u64 o, u64 n) |
| { |
| return __atomic64_cmpxchg(&v->counter, __atomic_setup(v), o, n); |
| } |
| EXPORT_SYMBOL(_atomic64_cmpxchg); |
| |
| |
| static inline int *__futex_setup(__user int *v) |
| { |
| /* |
| * Issue a prefetch to the counter to bring it into cache. |
| * As for __atomic_setup, but we can't do a read into the L1 |
| * since it might fault; instead we do a prefetch into the L2. |
| */ |
| __insn_prefetch(v); |
| return __atomic_hashed_lock(v); |
| } |
| |
| struct __get_user futex_set(int *v, int i) |
| { |
| return __atomic_xchg(v, __futex_setup(v), i); |
| } |
| |
| struct __get_user futex_add(int *v, int n) |
| { |
| return __atomic_xchg_add(v, __futex_setup(v), n); |
| } |
| |
| struct __get_user futex_or(int *v, int n) |
| { |
| return __atomic_or(v, __futex_setup(v), n); |
| } |
| |
| struct __get_user futex_andn(int *v, int n) |
| { |
| return __atomic_andn(v, __futex_setup(v), n); |
| } |
| |
| struct __get_user futex_xor(int *v, int n) |
| { |
| return __atomic_xor(v, __futex_setup(v), n); |
| } |
| |
| struct __get_user futex_cmpxchg(int *v, int o, int n) |
| { |
| return __atomic_cmpxchg(v, __futex_setup(v), o, n); |
| } |
| |
| /* |
| * If any of the atomic or futex routines hit a bad address (not in |
| * the page tables at kernel PL) this routine is called. The futex |
| * routines are never used on kernel space, and the normal atomics and |
| * bitops are never used on user space. So a fault on kernel space |
| * must be fatal, but a fault on userspace is a futex fault and we |
| * need to return -EFAULT. Note that the context this routine is |
| * invoked in is the context of the "_atomic_xxx()" routines called |
| * by the functions in this file. |
| */ |
| struct __get_user __atomic_bad_address(int *addr) |
| { |
| if (unlikely(!access_ok(VERIFY_WRITE, addr, sizeof(int)))) |
| panic("Bad address used for kernel atomic op: %p\n", addr); |
| return (struct __get_user) { .err = -EFAULT }; |
| } |
| |
| |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| static int __init noatomichash(char *str) |
| { |
| printk("noatomichash is deprecated.\n"); |
| return 1; |
| } |
| __setup("noatomichash", noatomichash); |
| #endif |
| |
| void __init __init_atomic_per_cpu(void) |
| { |
| #if ATOMIC_LOCKS_FOUND_VIA_TABLE() |
| |
| unsigned int i; |
| int actual_cpu; |
| |
| /* |
| * Before this is called from setup, we just have one lock for |
| * all atomic objects/operations. Here we replace the |
| * elements of atomic_lock_ptr so that they point at per_cpu |
| * integers. This seemingly over-complex approach stems from |
| * the fact that DEFINE_PER_CPU defines an entry for each cpu |
| * in the grid, not each cpu from 0..ATOMIC_HASH_SIZE-1. But |
| * for efficient hashing of atomics to their locks we want a |
| * compile time constant power of 2 for the size of this |
| * table, so we use ATOMIC_HASH_SIZE. |
| * |
| * Here we populate atomic_lock_ptr from the per cpu |
| * atomic_lock_pool, interspersing by actual cpu so that |
| * subsequent elements are homed on consecutive cpus. |
| */ |
| |
| actual_cpu = cpumask_first(cpu_possible_mask); |
| |
| for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) { |
| /* |
| * Preincrement to slightly bias against using cpu 0, |
| * which has plenty of stuff homed on it already. |
| */ |
| actual_cpu = cpumask_next(actual_cpu, cpu_possible_mask); |
| if (actual_cpu >= nr_cpu_ids) |
| actual_cpu = cpumask_first(cpu_possible_mask); |
| |
| atomic_lock_ptr[i] = &per_cpu(atomic_lock_pool, actual_cpu); |
| } |
| |
| #else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ |
| |
| /* Validate power-of-two and "bigger than cpus" assumption */ |
| BUG_ON(ATOMIC_HASH_SIZE & (ATOMIC_HASH_SIZE-1)); |
| BUG_ON(ATOMIC_HASH_SIZE < nr_cpu_ids); |
| |
| /* |
| * On TILEPro we prefer to use a single hash-for-home |
| * page, since this means atomic operations are less |
| * likely to encounter a TLB fault and thus should |
| * in general perform faster. You may wish to disable |
| * this in situations where few hash-for-home tiles |
| * are configured. |
| */ |
| BUG_ON((unsigned long)atomic_locks % PAGE_SIZE != 0); |
| |
| /* The locks must all fit on one page. */ |
| BUG_ON(ATOMIC_HASH_SIZE * sizeof(int) > PAGE_SIZE); |
| |
| /* |
| * We use the page offset of the atomic value's address as |
| * an index into atomic_locks, excluding the low 3 bits. |
| * That should not produce more indices than ATOMIC_HASH_SIZE. |
| */ |
| BUG_ON((PAGE_SIZE >> 3) > ATOMIC_HASH_SIZE); |
| |
| #endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */ |
| |
| /* The futex code makes this assumption, so we validate it here. */ |
| BUG_ON(sizeof(atomic_t) != sizeof(int)); |
| } |