|  | /* | 
|  | *  toshiba_acpi.c - Toshiba Laptop ACPI Extras | 
|  | * | 
|  | * | 
|  | *  Copyright (C) 2002-2004 John Belmonte | 
|  | *  Copyright (C) 2008 Philip Langdale | 
|  | *  Copyright (C) 2010 Pierre Ducroquet | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, write to the Free Software | 
|  | *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | * | 
|  | * | 
|  | *  The devolpment page for this driver is located at | 
|  | *  http://memebeam.org/toys/ToshibaAcpiDriver. | 
|  | * | 
|  | *  Credits: | 
|  | *	Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse | 
|  | *		engineering the Windows drivers | 
|  | *	Yasushi Nagato - changes for linux kernel 2.4 -> 2.5 | 
|  | *	Rob Miller - TV out and hotkeys help | 
|  | * | 
|  | * | 
|  | *  TODO | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define TOSHIBA_ACPI_VERSION	"0.19" | 
|  | #define PROC_INTERFACE_VERSION	1 | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/backlight.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/rfkill.h> | 
|  | #include <linux/input.h> | 
|  | #include <linux/leds.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include <acpi/acpi_drivers.h> | 
|  |  | 
|  | MODULE_AUTHOR("John Belmonte"); | 
|  | MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | #define MY_LOGPREFIX "toshiba_acpi: " | 
|  | #define MY_ERR KERN_ERR MY_LOGPREFIX | 
|  | #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX | 
|  | #define MY_INFO KERN_INFO MY_LOGPREFIX | 
|  |  | 
|  | /* Toshiba ACPI method paths */ | 
|  | #define METHOD_LCD_BRIGHTNESS	"\\_SB_.PCI0.VGA_.LCD_._BCM" | 
|  | #define TOSH_INTERFACE_1	"\\_SB_.VALD" | 
|  | #define TOSH_INTERFACE_2	"\\_SB_.VALZ" | 
|  | #define METHOD_VIDEO_OUT	"\\_SB_.VALX.DSSX" | 
|  | #define GHCI_METHOD		".GHCI" | 
|  |  | 
|  | /* Toshiba HCI interface definitions | 
|  | * | 
|  | * HCI is Toshiba's "Hardware Control Interface" which is supposed to | 
|  | * be uniform across all their models.  Ideally we would just call | 
|  | * dedicated ACPI methods instead of using this primitive interface. | 
|  | * However the ACPI methods seem to be incomplete in some areas (for | 
|  | * example they allow setting, but not reading, the LCD brightness value), | 
|  | * so this is still useful. | 
|  | */ | 
|  |  | 
|  | #define HCI_WORDS			6 | 
|  |  | 
|  | /* operations */ | 
|  | #define HCI_SET				0xff00 | 
|  | #define HCI_GET				0xfe00 | 
|  |  | 
|  | /* return codes */ | 
|  | #define HCI_SUCCESS			0x0000 | 
|  | #define HCI_FAILURE			0x1000 | 
|  | #define HCI_NOT_SUPPORTED		0x8000 | 
|  | #define HCI_EMPTY			0x8c00 | 
|  |  | 
|  | /* registers */ | 
|  | #define HCI_FAN				0x0004 | 
|  | #define HCI_SYSTEM_EVENT		0x0016 | 
|  | #define HCI_VIDEO_OUT			0x001c | 
|  | #define HCI_HOTKEY_EVENT		0x001e | 
|  | #define HCI_LCD_BRIGHTNESS		0x002a | 
|  | #define HCI_WIRELESS			0x0056 | 
|  |  | 
|  | /* field definitions */ | 
|  | #define HCI_LCD_BRIGHTNESS_BITS		3 | 
|  | #define HCI_LCD_BRIGHTNESS_SHIFT	(16-HCI_LCD_BRIGHTNESS_BITS) | 
|  | #define HCI_LCD_BRIGHTNESS_LEVELS	(1 << HCI_LCD_BRIGHTNESS_BITS) | 
|  | #define HCI_VIDEO_OUT_LCD		0x1 | 
|  | #define HCI_VIDEO_OUT_CRT		0x2 | 
|  | #define HCI_VIDEO_OUT_TV		0x4 | 
|  | #define HCI_WIRELESS_KILL_SWITCH	0x01 | 
|  | #define HCI_WIRELESS_BT_PRESENT		0x0f | 
|  | #define HCI_WIRELESS_BT_ATTACH		0x40 | 
|  | #define HCI_WIRELESS_BT_POWER		0x80 | 
|  |  | 
|  | static const struct acpi_device_id toshiba_device_ids[] = { | 
|  | {"TOS6200", 0}, | 
|  | {"TOS6208", 0}, | 
|  | {"TOS1900", 0}, | 
|  | {"", 0}, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(acpi, toshiba_device_ids); | 
|  |  | 
|  | struct key_entry { | 
|  | char type; | 
|  | u16 code; | 
|  | u16 keycode; | 
|  | }; | 
|  |  | 
|  | enum {KE_KEY, KE_END}; | 
|  |  | 
|  | static struct key_entry toshiba_acpi_keymap[]  = { | 
|  | {KE_KEY, 0x101, KEY_MUTE}, | 
|  | {KE_KEY, 0x102, KEY_ZOOMOUT}, | 
|  | {KE_KEY, 0x103, KEY_ZOOMIN}, | 
|  | {KE_KEY, 0x13b, KEY_COFFEE}, | 
|  | {KE_KEY, 0x13c, KEY_BATTERY}, | 
|  | {KE_KEY, 0x13d, KEY_SLEEP}, | 
|  | {KE_KEY, 0x13e, KEY_SUSPEND}, | 
|  | {KE_KEY, 0x13f, KEY_SWITCHVIDEOMODE}, | 
|  | {KE_KEY, 0x140, KEY_BRIGHTNESSDOWN}, | 
|  | {KE_KEY, 0x141, KEY_BRIGHTNESSUP}, | 
|  | {KE_KEY, 0x142, KEY_WLAN}, | 
|  | {KE_KEY, 0x143, KEY_PROG1}, | 
|  | {KE_KEY, 0xb05, KEY_PROG2}, | 
|  | {KE_KEY, 0xb06, KEY_WWW}, | 
|  | {KE_KEY, 0xb07, KEY_MAIL}, | 
|  | {KE_KEY, 0xb30, KEY_STOP}, | 
|  | {KE_KEY, 0xb31, KEY_PREVIOUSSONG}, | 
|  | {KE_KEY, 0xb32, KEY_NEXTSONG}, | 
|  | {KE_KEY, 0xb33, KEY_PLAYPAUSE}, | 
|  | {KE_KEY, 0xb5a, KEY_MEDIA}, | 
|  | {KE_END, 0, 0}, | 
|  | }; | 
|  |  | 
|  | /* utility | 
|  | */ | 
|  |  | 
|  | static __inline__ void _set_bit(u32 * word, u32 mask, int value) | 
|  | { | 
|  | *word = (*word & ~mask) | (mask * value); | 
|  | } | 
|  |  | 
|  | /* acpi interface wrappers | 
|  | */ | 
|  |  | 
|  | static int is_valid_acpi_path(const char *methodName) | 
|  | { | 
|  | acpi_handle handle; | 
|  | acpi_status status; | 
|  |  | 
|  | status = acpi_get_handle(NULL, (char *)methodName, &handle); | 
|  | return !ACPI_FAILURE(status); | 
|  | } | 
|  |  | 
|  | static int write_acpi_int(const char *methodName, int val) | 
|  | { | 
|  | struct acpi_object_list params; | 
|  | union acpi_object in_objs[1]; | 
|  | acpi_status status; | 
|  |  | 
|  | params.count = ARRAY_SIZE(in_objs); | 
|  | params.pointer = in_objs; | 
|  | in_objs[0].type = ACPI_TYPE_INTEGER; | 
|  | in_objs[0].integer.value = val; | 
|  |  | 
|  | status = acpi_evaluate_object(NULL, (char *)methodName, ¶ms, NULL); | 
|  | return (status == AE_OK); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static int read_acpi_int(const char *methodName, int *pVal) | 
|  | { | 
|  | struct acpi_buffer results; | 
|  | union acpi_object out_objs[1]; | 
|  | acpi_status status; | 
|  |  | 
|  | results.length = sizeof(out_objs); | 
|  | results.pointer = out_objs; | 
|  |  | 
|  | status = acpi_evaluate_object(0, (char *)methodName, 0, &results); | 
|  | *pVal = out_objs[0].integer.value; | 
|  |  | 
|  | return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const char *method_hci /*= 0*/ ; | 
|  |  | 
|  | /* Perform a raw HCI call.  Here we don't care about input or output buffer | 
|  | * format. | 
|  | */ | 
|  | static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS]) | 
|  | { | 
|  | struct acpi_object_list params; | 
|  | union acpi_object in_objs[HCI_WORDS]; | 
|  | struct acpi_buffer results; | 
|  | union acpi_object out_objs[HCI_WORDS + 1]; | 
|  | acpi_status status; | 
|  | int i; | 
|  |  | 
|  | params.count = HCI_WORDS; | 
|  | params.pointer = in_objs; | 
|  | for (i = 0; i < HCI_WORDS; ++i) { | 
|  | in_objs[i].type = ACPI_TYPE_INTEGER; | 
|  | in_objs[i].integer.value = in[i]; | 
|  | } | 
|  |  | 
|  | results.length = sizeof(out_objs); | 
|  | results.pointer = out_objs; | 
|  |  | 
|  | status = acpi_evaluate_object(NULL, (char *)method_hci, ¶ms, | 
|  | &results); | 
|  | if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) { | 
|  | for (i = 0; i < out_objs->package.count; ++i) { | 
|  | out[i] = out_objs->package.elements[i].integer.value; | 
|  | } | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* common hci tasks (get or set one or two value) | 
|  | * | 
|  | * In addition to the ACPI status, the HCI system returns a result which | 
|  | * may be useful (such as "not supported"). | 
|  | */ | 
|  |  | 
|  | static acpi_status hci_write1(u32 reg, u32 in1, u32 * result) | 
|  | { | 
|  | u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 }; | 
|  | u32 out[HCI_WORDS]; | 
|  | acpi_status status = hci_raw(in, out); | 
|  | *result = (status == AE_OK) ? out[0] : HCI_FAILURE; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result) | 
|  | { | 
|  | u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 }; | 
|  | u32 out[HCI_WORDS]; | 
|  | acpi_status status = hci_raw(in, out); | 
|  | *out1 = out[2]; | 
|  | *result = (status == AE_OK) ? out[0] : HCI_FAILURE; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result) | 
|  | { | 
|  | u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 }; | 
|  | u32 out[HCI_WORDS]; | 
|  | acpi_status status = hci_raw(in, out); | 
|  | *result = (status == AE_OK) ? out[0] : HCI_FAILURE; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result) | 
|  | { | 
|  | u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 }; | 
|  | u32 out[HCI_WORDS]; | 
|  | acpi_status status = hci_raw(in, out); | 
|  | *out1 = out[2]; | 
|  | *out2 = out[3]; | 
|  | *result = (status == AE_OK) ? out[0] : HCI_FAILURE; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | struct toshiba_acpi_dev { | 
|  | struct platform_device *p_dev; | 
|  | struct rfkill *bt_rfk; | 
|  | struct input_dev *hotkey_dev; | 
|  | int illumination_installed; | 
|  | acpi_handle handle; | 
|  |  | 
|  | const char *bt_name; | 
|  |  | 
|  | struct mutex mutex; | 
|  | }; | 
|  |  | 
|  | /* Illumination support */ | 
|  | static int toshiba_illumination_available(void) | 
|  | { | 
|  | u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 }; | 
|  | u32 out[HCI_WORDS]; | 
|  | acpi_status status; | 
|  |  | 
|  | in[0] = 0xf100; | 
|  | status = hci_raw(in, out); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | printk(MY_INFO "Illumination device not available\n"); | 
|  | return 0; | 
|  | } | 
|  | in[0] = 0xf400; | 
|  | status = hci_raw(in, out); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void toshiba_illumination_set(struct led_classdev *cdev, | 
|  | enum led_brightness brightness) | 
|  | { | 
|  | u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 }; | 
|  | u32 out[HCI_WORDS]; | 
|  | acpi_status status; | 
|  |  | 
|  | /* First request : initialize communication. */ | 
|  | in[0] = 0xf100; | 
|  | status = hci_raw(in, out); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | printk(MY_INFO "Illumination device not available\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (brightness) { | 
|  | /* Switch the illumination on */ | 
|  | in[0] = 0xf400; | 
|  | in[1] = 0x14e; | 
|  | in[2] = 1; | 
|  | status = hci_raw(in, out); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | printk(MY_INFO "ACPI call for illumination failed.\n"); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | /* Switch the illumination off */ | 
|  | in[0] = 0xf400; | 
|  | in[1] = 0x14e; | 
|  | in[2] = 0; | 
|  | status = hci_raw(in, out); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | printk(MY_INFO "ACPI call for illumination failed.\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Last request : close communication. */ | 
|  | in[0] = 0xf200; | 
|  | in[1] = 0; | 
|  | in[2] = 0; | 
|  | hci_raw(in, out); | 
|  | } | 
|  |  | 
|  | static enum led_brightness toshiba_illumination_get(struct led_classdev *cdev) | 
|  | { | 
|  | u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 }; | 
|  | u32 out[HCI_WORDS]; | 
|  | acpi_status status; | 
|  | enum led_brightness result; | 
|  |  | 
|  | /* First request : initialize communication. */ | 
|  | in[0] = 0xf100; | 
|  | status = hci_raw(in, out); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | printk(MY_INFO "Illumination device not available\n"); | 
|  | return LED_OFF; | 
|  | } | 
|  |  | 
|  | /* Check the illumination */ | 
|  | in[0] = 0xf300; | 
|  | in[1] = 0x14e; | 
|  | status = hci_raw(in, out); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | printk(MY_INFO "ACPI call for illumination failed.\n"); | 
|  | return LED_OFF; | 
|  | } | 
|  |  | 
|  | result = out[2] ? LED_FULL : LED_OFF; | 
|  |  | 
|  | /* Last request : close communication. */ | 
|  | in[0] = 0xf200; | 
|  | in[1] = 0; | 
|  | in[2] = 0; | 
|  | hci_raw(in, out); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static struct led_classdev toshiba_led = { | 
|  | .name           = "toshiba::illumination", | 
|  | .max_brightness = 1, | 
|  | .brightness_set = toshiba_illumination_set, | 
|  | .brightness_get = toshiba_illumination_get, | 
|  | }; | 
|  |  | 
|  | static struct toshiba_acpi_dev toshiba_acpi = { | 
|  | .bt_name = "Toshiba Bluetooth", | 
|  | }; | 
|  |  | 
|  | /* Bluetooth rfkill handlers */ | 
|  |  | 
|  | static u32 hci_get_bt_present(bool *present) | 
|  | { | 
|  | u32 hci_result; | 
|  | u32 value, value2; | 
|  |  | 
|  | value = 0; | 
|  | value2 = 0; | 
|  | hci_read2(HCI_WIRELESS, &value, &value2, &hci_result); | 
|  | if (hci_result == HCI_SUCCESS) | 
|  | *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false; | 
|  |  | 
|  | return hci_result; | 
|  | } | 
|  |  | 
|  | static u32 hci_get_radio_state(bool *radio_state) | 
|  | { | 
|  | u32 hci_result; | 
|  | u32 value, value2; | 
|  |  | 
|  | value = 0; | 
|  | value2 = 0x0001; | 
|  | hci_read2(HCI_WIRELESS, &value, &value2, &hci_result); | 
|  |  | 
|  | *radio_state = value & HCI_WIRELESS_KILL_SWITCH; | 
|  | return hci_result; | 
|  | } | 
|  |  | 
|  | static int bt_rfkill_set_block(void *data, bool blocked) | 
|  | { | 
|  | struct toshiba_acpi_dev *dev = data; | 
|  | u32 result1, result2; | 
|  | u32 value; | 
|  | int err; | 
|  | bool radio_state; | 
|  |  | 
|  | value = (blocked == false); | 
|  |  | 
|  | mutex_lock(&dev->mutex); | 
|  | if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) { | 
|  | err = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!radio_state) { | 
|  | err = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1); | 
|  | hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2); | 
|  |  | 
|  | if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS) | 
|  | err = -EBUSY; | 
|  | else | 
|  | err = 0; | 
|  | out: | 
|  | mutex_unlock(&dev->mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void bt_rfkill_poll(struct rfkill *rfkill, void *data) | 
|  | { | 
|  | bool new_rfk_state; | 
|  | bool value; | 
|  | u32 hci_result; | 
|  | struct toshiba_acpi_dev *dev = data; | 
|  |  | 
|  | mutex_lock(&dev->mutex); | 
|  |  | 
|  | hci_result = hci_get_radio_state(&value); | 
|  | if (hci_result != HCI_SUCCESS) { | 
|  | /* Can't do anything useful */ | 
|  | mutex_unlock(&dev->mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | new_rfk_state = value; | 
|  |  | 
|  | mutex_unlock(&dev->mutex); | 
|  |  | 
|  | if (rfkill_set_hw_state(rfkill, !new_rfk_state)) | 
|  | bt_rfkill_set_block(data, true); | 
|  | } | 
|  |  | 
|  | static const struct rfkill_ops toshiba_rfk_ops = { | 
|  | .set_block = bt_rfkill_set_block, | 
|  | .poll = bt_rfkill_poll, | 
|  | }; | 
|  |  | 
|  | static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ; | 
|  | static struct backlight_device *toshiba_backlight_device; | 
|  | static int force_fan; | 
|  | static int last_key_event; | 
|  | static int key_event_valid; | 
|  |  | 
|  | static int get_lcd(struct backlight_device *bd) | 
|  | { | 
|  | u32 hci_result; | 
|  | u32 value; | 
|  |  | 
|  | hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result); | 
|  | if (hci_result == HCI_SUCCESS) { | 
|  | return (value >> HCI_LCD_BRIGHTNESS_SHIFT); | 
|  | } else | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | static int lcd_proc_show(struct seq_file *m, void *v) | 
|  | { | 
|  | int value = get_lcd(NULL); | 
|  |  | 
|  | if (value >= 0) { | 
|  | seq_printf(m, "brightness:              %d\n", value); | 
|  | seq_printf(m, "brightness_levels:       %d\n", | 
|  | HCI_LCD_BRIGHTNESS_LEVELS); | 
|  | } else { | 
|  | printk(MY_ERR "Error reading LCD brightness\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int lcd_proc_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, lcd_proc_show, NULL); | 
|  | } | 
|  |  | 
|  | static int set_lcd(int value) | 
|  | { | 
|  | u32 hci_result; | 
|  |  | 
|  | value = value << HCI_LCD_BRIGHTNESS_SHIFT; | 
|  | hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result); | 
|  | if (hci_result != HCI_SUCCESS) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_lcd_status(struct backlight_device *bd) | 
|  | { | 
|  | return set_lcd(bd->props.brightness); | 
|  | } | 
|  |  | 
|  | static ssize_t lcd_proc_write(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *pos) | 
|  | { | 
|  | char cmd[42]; | 
|  | size_t len; | 
|  | int value; | 
|  | int ret; | 
|  |  | 
|  | len = min(count, sizeof(cmd) - 1); | 
|  | if (copy_from_user(cmd, buf, len)) | 
|  | return -EFAULT; | 
|  | cmd[len] = '\0'; | 
|  |  | 
|  | if (sscanf(cmd, " brightness : %i", &value) == 1 && | 
|  | value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) { | 
|  | ret = set_lcd(value); | 
|  | if (ret == 0) | 
|  | ret = count; | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct file_operations lcd_proc_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= lcd_proc_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | .write		= lcd_proc_write, | 
|  | }; | 
|  |  | 
|  | static int video_proc_show(struct seq_file *m, void *v) | 
|  | { | 
|  | u32 hci_result; | 
|  | u32 value; | 
|  |  | 
|  | hci_read1(HCI_VIDEO_OUT, &value, &hci_result); | 
|  | if (hci_result == HCI_SUCCESS) { | 
|  | int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0; | 
|  | int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0; | 
|  | int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0; | 
|  | seq_printf(m, "lcd_out:                 %d\n", is_lcd); | 
|  | seq_printf(m, "crt_out:                 %d\n", is_crt); | 
|  | seq_printf(m, "tv_out:                  %d\n", is_tv); | 
|  | } else { | 
|  | printk(MY_ERR "Error reading video out status\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int video_proc_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, video_proc_show, NULL); | 
|  | } | 
|  |  | 
|  | static ssize_t video_proc_write(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *pos) | 
|  | { | 
|  | char *cmd, *buffer; | 
|  | int value; | 
|  | int remain = count; | 
|  | int lcd_out = -1; | 
|  | int crt_out = -1; | 
|  | int tv_out = -1; | 
|  | u32 hci_result; | 
|  | u32 video_out; | 
|  |  | 
|  | cmd = kmalloc(count + 1, GFP_KERNEL); | 
|  | if (!cmd) | 
|  | return -ENOMEM; | 
|  | if (copy_from_user(cmd, buf, count)) { | 
|  | kfree(cmd); | 
|  | return -EFAULT; | 
|  | } | 
|  | cmd[count] = '\0'; | 
|  |  | 
|  | buffer = cmd; | 
|  |  | 
|  | /* scan expression.  Multiple expressions may be delimited with ; | 
|  | * | 
|  | *  NOTE: to keep scanning simple, invalid fields are ignored | 
|  | */ | 
|  | while (remain) { | 
|  | if (sscanf(buffer, " lcd_out : %i", &value) == 1) | 
|  | lcd_out = value & 1; | 
|  | else if (sscanf(buffer, " crt_out : %i", &value) == 1) | 
|  | crt_out = value & 1; | 
|  | else if (sscanf(buffer, " tv_out : %i", &value) == 1) | 
|  | tv_out = value & 1; | 
|  | /* advance to one character past the next ; */ | 
|  | do { | 
|  | ++buffer; | 
|  | --remain; | 
|  | } | 
|  | while (remain && *(buffer - 1) != ';'); | 
|  | } | 
|  |  | 
|  | kfree(cmd); | 
|  |  | 
|  | hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result); | 
|  | if (hci_result == HCI_SUCCESS) { | 
|  | unsigned int new_video_out = video_out; | 
|  | if (lcd_out != -1) | 
|  | _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out); | 
|  | if (crt_out != -1) | 
|  | _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out); | 
|  | if (tv_out != -1) | 
|  | _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out); | 
|  | /* To avoid unnecessary video disruption, only write the new | 
|  | * video setting if something changed. */ | 
|  | if (new_video_out != video_out) | 
|  | write_acpi_int(METHOD_VIDEO_OUT, new_video_out); | 
|  | } else { | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const struct file_operations video_proc_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= video_proc_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | .write		= video_proc_write, | 
|  | }; | 
|  |  | 
|  | static int fan_proc_show(struct seq_file *m, void *v) | 
|  | { | 
|  | u32 hci_result; | 
|  | u32 value; | 
|  |  | 
|  | hci_read1(HCI_FAN, &value, &hci_result); | 
|  | if (hci_result == HCI_SUCCESS) { | 
|  | seq_printf(m, "running:                 %d\n", (value > 0)); | 
|  | seq_printf(m, "force_on:                %d\n", force_fan); | 
|  | } else { | 
|  | printk(MY_ERR "Error reading fan status\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fan_proc_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, fan_proc_show, NULL); | 
|  | } | 
|  |  | 
|  | static ssize_t fan_proc_write(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *pos) | 
|  | { | 
|  | char cmd[42]; | 
|  | size_t len; | 
|  | int value; | 
|  | u32 hci_result; | 
|  |  | 
|  | len = min(count, sizeof(cmd) - 1); | 
|  | if (copy_from_user(cmd, buf, len)) | 
|  | return -EFAULT; | 
|  | cmd[len] = '\0'; | 
|  |  | 
|  | if (sscanf(cmd, " force_on : %i", &value) == 1 && | 
|  | value >= 0 && value <= 1) { | 
|  | hci_write1(HCI_FAN, value, &hci_result); | 
|  | if (hci_result != HCI_SUCCESS) | 
|  | return -EFAULT; | 
|  | else | 
|  | force_fan = value; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const struct file_operations fan_proc_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= fan_proc_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | .write		= fan_proc_write, | 
|  | }; | 
|  |  | 
|  | static int keys_proc_show(struct seq_file *m, void *v) | 
|  | { | 
|  | u32 hci_result; | 
|  | u32 value; | 
|  |  | 
|  | if (!key_event_valid) { | 
|  | hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result); | 
|  | if (hci_result == HCI_SUCCESS) { | 
|  | key_event_valid = 1; | 
|  | last_key_event = value; | 
|  | } else if (hci_result == HCI_EMPTY) { | 
|  | /* better luck next time */ | 
|  | } else if (hci_result == HCI_NOT_SUPPORTED) { | 
|  | /* This is a workaround for an unresolved issue on | 
|  | * some machines where system events sporadically | 
|  | * become disabled. */ | 
|  | hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result); | 
|  | printk(MY_NOTICE "Re-enabled hotkeys\n"); | 
|  | } else { | 
|  | printk(MY_ERR "Error reading hotkey status\n"); | 
|  | goto end; | 
|  | } | 
|  | } | 
|  |  | 
|  | seq_printf(m, "hotkey_ready:            %d\n", key_event_valid); | 
|  | seq_printf(m, "hotkey:                  0x%04x\n", last_key_event); | 
|  | end: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int keys_proc_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, keys_proc_show, NULL); | 
|  | } | 
|  |  | 
|  | static ssize_t keys_proc_write(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *pos) | 
|  | { | 
|  | char cmd[42]; | 
|  | size_t len; | 
|  | int value; | 
|  |  | 
|  | len = min(count, sizeof(cmd) - 1); | 
|  | if (copy_from_user(cmd, buf, len)) | 
|  | return -EFAULT; | 
|  | cmd[len] = '\0'; | 
|  |  | 
|  | if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) { | 
|  | key_event_valid = 0; | 
|  | } else { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const struct file_operations keys_proc_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= keys_proc_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | .write		= keys_proc_write, | 
|  | }; | 
|  |  | 
|  | static int version_proc_show(struct seq_file *m, void *v) | 
|  | { | 
|  | seq_printf(m, "driver:                  %s\n", TOSHIBA_ACPI_VERSION); | 
|  | seq_printf(m, "proc_interface:          %d\n", PROC_INTERFACE_VERSION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int version_proc_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, version_proc_show, PDE(inode)->data); | 
|  | } | 
|  |  | 
|  | static const struct file_operations version_proc_fops = { | 
|  | .owner		= THIS_MODULE, | 
|  | .open		= version_proc_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | }; | 
|  |  | 
|  | /* proc and module init | 
|  | */ | 
|  |  | 
|  | #define PROC_TOSHIBA		"toshiba" | 
|  |  | 
|  | static void __init create_toshiba_proc_entries(void) | 
|  | { | 
|  | proc_create("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_fops); | 
|  | proc_create("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_fops); | 
|  | proc_create("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_fops); | 
|  | proc_create("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_fops); | 
|  | proc_create("version", S_IRUGO, toshiba_proc_dir, &version_proc_fops); | 
|  | } | 
|  |  | 
|  | static void remove_toshiba_proc_entries(void) | 
|  | { | 
|  | remove_proc_entry("lcd", toshiba_proc_dir); | 
|  | remove_proc_entry("video", toshiba_proc_dir); | 
|  | remove_proc_entry("fan", toshiba_proc_dir); | 
|  | remove_proc_entry("keys", toshiba_proc_dir); | 
|  | remove_proc_entry("version", toshiba_proc_dir); | 
|  | } | 
|  |  | 
|  | static struct backlight_ops toshiba_backlight_data = { | 
|  | .get_brightness = get_lcd, | 
|  | .update_status  = set_lcd_status, | 
|  | }; | 
|  |  | 
|  | static struct key_entry *toshiba_acpi_get_entry_by_scancode(unsigned int code) | 
|  | { | 
|  | struct key_entry *key; | 
|  |  | 
|  | for (key = toshiba_acpi_keymap; key->type != KE_END; key++) | 
|  | if (code == key->code) | 
|  | return key; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct key_entry *toshiba_acpi_get_entry_by_keycode(unsigned int code) | 
|  | { | 
|  | struct key_entry *key; | 
|  |  | 
|  | for (key = toshiba_acpi_keymap; key->type != KE_END; key++) | 
|  | if (code == key->keycode && key->type == KE_KEY) | 
|  | return key; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int toshiba_acpi_getkeycode(struct input_dev *dev, | 
|  | unsigned int scancode, unsigned int *keycode) | 
|  | { | 
|  | struct key_entry *key = toshiba_acpi_get_entry_by_scancode(scancode); | 
|  |  | 
|  | if (key && key->type == KE_KEY) { | 
|  | *keycode = key->keycode; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int toshiba_acpi_setkeycode(struct input_dev *dev, | 
|  | unsigned int scancode, unsigned int keycode) | 
|  | { | 
|  | struct key_entry *key; | 
|  | unsigned int old_keycode; | 
|  |  | 
|  | key = toshiba_acpi_get_entry_by_scancode(scancode); | 
|  | if (key && key->type == KE_KEY) { | 
|  | old_keycode = key->keycode; | 
|  | key->keycode = keycode; | 
|  | set_bit(keycode, dev->keybit); | 
|  | if (!toshiba_acpi_get_entry_by_keycode(old_keycode)) | 
|  | clear_bit(old_keycode, dev->keybit); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void toshiba_acpi_notify(acpi_handle handle, u32 event, void *context) | 
|  | { | 
|  | u32 hci_result, value; | 
|  | struct key_entry *key; | 
|  |  | 
|  | if (event != 0x80) | 
|  | return; | 
|  | do { | 
|  | hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result); | 
|  | if (hci_result == HCI_SUCCESS) { | 
|  | if (value == 0x100) | 
|  | continue; | 
|  | /* act on key press; ignore key release */ | 
|  | if (value & 0x80) | 
|  | continue; | 
|  |  | 
|  | key = toshiba_acpi_get_entry_by_scancode | 
|  | (value); | 
|  | if (!key) { | 
|  | printk(MY_INFO "Unknown key %x\n", | 
|  | value); | 
|  | continue; | 
|  | } | 
|  | input_report_key(toshiba_acpi.hotkey_dev, | 
|  | key->keycode, 1); | 
|  | input_sync(toshiba_acpi.hotkey_dev); | 
|  | input_report_key(toshiba_acpi.hotkey_dev, | 
|  | key->keycode, 0); | 
|  | input_sync(toshiba_acpi.hotkey_dev); | 
|  | } else if (hci_result == HCI_NOT_SUPPORTED) { | 
|  | /* This is a workaround for an unresolved issue on | 
|  | * some machines where system events sporadically | 
|  | * become disabled. */ | 
|  | hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result); | 
|  | printk(MY_NOTICE "Re-enabled hotkeys\n"); | 
|  | } | 
|  | } while (hci_result != HCI_EMPTY); | 
|  | } | 
|  |  | 
|  | static int toshiba_acpi_setup_keyboard(char *device) | 
|  | { | 
|  | acpi_status status; | 
|  | acpi_handle handle; | 
|  | int result; | 
|  | const struct key_entry *key; | 
|  |  | 
|  | status = acpi_get_handle(NULL, device, &handle); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | printk(MY_INFO "Unable to get notification device\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | toshiba_acpi.handle = handle; | 
|  |  | 
|  | status = acpi_evaluate_object(handle, "ENAB", NULL, NULL); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | printk(MY_INFO "Unable to enable hotkeys\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | status = acpi_install_notify_handler(handle, ACPI_DEVICE_NOTIFY, | 
|  | toshiba_acpi_notify, NULL); | 
|  | if (ACPI_FAILURE(status)) { | 
|  | printk(MY_INFO "Unable to install hotkey notification\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | toshiba_acpi.hotkey_dev = input_allocate_device(); | 
|  | if (!toshiba_acpi.hotkey_dev) { | 
|  | printk(MY_INFO "Unable to register input device\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | toshiba_acpi.hotkey_dev->name = "Toshiba input device"; | 
|  | toshiba_acpi.hotkey_dev->phys = device; | 
|  | toshiba_acpi.hotkey_dev->id.bustype = BUS_HOST; | 
|  | toshiba_acpi.hotkey_dev->getkeycode = toshiba_acpi_getkeycode; | 
|  | toshiba_acpi.hotkey_dev->setkeycode = toshiba_acpi_setkeycode; | 
|  |  | 
|  | for (key = toshiba_acpi_keymap; key->type != KE_END; key++) { | 
|  | set_bit(EV_KEY, toshiba_acpi.hotkey_dev->evbit); | 
|  | set_bit(key->keycode, toshiba_acpi.hotkey_dev->keybit); | 
|  | } | 
|  |  | 
|  | result = input_register_device(toshiba_acpi.hotkey_dev); | 
|  | if (result) { | 
|  | printk(MY_INFO "Unable to register input device\n"); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void toshiba_acpi_exit(void) | 
|  | { | 
|  | if (toshiba_acpi.hotkey_dev) | 
|  | input_unregister_device(toshiba_acpi.hotkey_dev); | 
|  |  | 
|  | if (toshiba_acpi.bt_rfk) { | 
|  | rfkill_unregister(toshiba_acpi.bt_rfk); | 
|  | rfkill_destroy(toshiba_acpi.bt_rfk); | 
|  | } | 
|  |  | 
|  | if (toshiba_backlight_device) | 
|  | backlight_device_unregister(toshiba_backlight_device); | 
|  |  | 
|  | remove_toshiba_proc_entries(); | 
|  |  | 
|  | if (toshiba_proc_dir) | 
|  | remove_proc_entry(PROC_TOSHIBA, acpi_root_dir); | 
|  |  | 
|  | acpi_remove_notify_handler(toshiba_acpi.handle, ACPI_DEVICE_NOTIFY, | 
|  | toshiba_acpi_notify); | 
|  |  | 
|  | if (toshiba_acpi.illumination_installed) | 
|  | led_classdev_unregister(&toshiba_led); | 
|  |  | 
|  | platform_device_unregister(toshiba_acpi.p_dev); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int __init toshiba_acpi_init(void) | 
|  | { | 
|  | u32 hci_result; | 
|  | bool bt_present; | 
|  | int ret = 0; | 
|  | struct backlight_properties props; | 
|  |  | 
|  | if (acpi_disabled) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* simple device detection: look for HCI method */ | 
|  | if (is_valid_acpi_path(TOSH_INTERFACE_1 GHCI_METHOD)) { | 
|  | method_hci = TOSH_INTERFACE_1 GHCI_METHOD; | 
|  | if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_1)) | 
|  | printk(MY_INFO "Unable to activate hotkeys\n"); | 
|  | } else if (is_valid_acpi_path(TOSH_INTERFACE_2 GHCI_METHOD)) { | 
|  | method_hci = TOSH_INTERFACE_2 GHCI_METHOD; | 
|  | if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_2)) | 
|  | printk(MY_INFO "Unable to activate hotkeys\n"); | 
|  | } else | 
|  | return -ENODEV; | 
|  |  | 
|  | printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n", | 
|  | TOSHIBA_ACPI_VERSION); | 
|  | printk(MY_INFO "    HCI method: %s\n", method_hci); | 
|  |  | 
|  | mutex_init(&toshiba_acpi.mutex); | 
|  |  | 
|  | toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi", | 
|  | -1, NULL, 0); | 
|  | if (IS_ERR(toshiba_acpi.p_dev)) { | 
|  | ret = PTR_ERR(toshiba_acpi.p_dev); | 
|  | printk(MY_ERR "unable to register platform device\n"); | 
|  | toshiba_acpi.p_dev = NULL; | 
|  | toshiba_acpi_exit(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | force_fan = 0; | 
|  | key_event_valid = 0; | 
|  |  | 
|  | /* enable event fifo */ | 
|  | hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result); | 
|  |  | 
|  | toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir); | 
|  | if (!toshiba_proc_dir) { | 
|  | toshiba_acpi_exit(); | 
|  | return -ENODEV; | 
|  | } else { | 
|  | create_toshiba_proc_entries(); | 
|  | } | 
|  |  | 
|  | props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1; | 
|  | toshiba_backlight_device = backlight_device_register("toshiba", | 
|  | &toshiba_acpi.p_dev->dev, | 
|  | NULL, | 
|  | &toshiba_backlight_data, | 
|  | &props); | 
|  | if (IS_ERR(toshiba_backlight_device)) { | 
|  | ret = PTR_ERR(toshiba_backlight_device); | 
|  |  | 
|  | printk(KERN_ERR "Could not register toshiba backlight device\n"); | 
|  | toshiba_backlight_device = NULL; | 
|  | toshiba_acpi_exit(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Register rfkill switch for Bluetooth */ | 
|  | if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) { | 
|  | toshiba_acpi.bt_rfk = rfkill_alloc(toshiba_acpi.bt_name, | 
|  | &toshiba_acpi.p_dev->dev, | 
|  | RFKILL_TYPE_BLUETOOTH, | 
|  | &toshiba_rfk_ops, | 
|  | &toshiba_acpi); | 
|  | if (!toshiba_acpi.bt_rfk) { | 
|  | printk(MY_ERR "unable to allocate rfkill device\n"); | 
|  | toshiba_acpi_exit(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = rfkill_register(toshiba_acpi.bt_rfk); | 
|  | if (ret) { | 
|  | printk(MY_ERR "unable to register rfkill device\n"); | 
|  | rfkill_destroy(toshiba_acpi.bt_rfk); | 
|  | toshiba_acpi_exit(); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | toshiba_acpi.illumination_installed = 0; | 
|  | if (toshiba_illumination_available()) { | 
|  | if (!led_classdev_register(&(toshiba_acpi.p_dev->dev), | 
|  | &toshiba_led)) | 
|  | toshiba_acpi.illumination_installed = 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(toshiba_acpi_init); | 
|  | module_exit(toshiba_acpi_exit); |