| /* | 
 |  *  Derived from "arch/i386/kernel/process.c" | 
 |  *    Copyright (C) 1995  Linus Torvalds | 
 |  * | 
 |  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and | 
 |  *  Paul Mackerras (paulus@cs.anu.edu.au) | 
 |  * | 
 |  *  PowerPC version | 
 |  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or | 
 |  *  modify it under the terms of the GNU General Public License | 
 |  *  as published by the Free Software Foundation; either version | 
 |  *  2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #include <linux/errno.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/stddef.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/user.h> | 
 | #include <linux/elf.h> | 
 | #include <linux/init.h> | 
 | #include <linux/prctl.h> | 
 | #include <linux/init_task.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/mqueue.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/ftrace.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/random.h> | 
 | #include <linux/hw_breakpoint.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/system.h> | 
 | #include <asm/io.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/mmu.h> | 
 | #include <asm/prom.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/time.h> | 
 | #include <asm/syscalls.h> | 
 | #ifdef CONFIG_PPC64 | 
 | #include <asm/firmware.h> | 
 | #endif | 
 | #include <linux/kprobes.h> | 
 | #include <linux/kdebug.h> | 
 |  | 
 | extern unsigned long _get_SP(void); | 
 |  | 
 | #ifndef CONFIG_SMP | 
 | struct task_struct *last_task_used_math = NULL; | 
 | struct task_struct *last_task_used_altivec = NULL; | 
 | struct task_struct *last_task_used_vsx = NULL; | 
 | struct task_struct *last_task_used_spe = NULL; | 
 | #endif | 
 |  | 
 | /* | 
 |  * Make sure the floating-point register state in the | 
 |  * the thread_struct is up to date for task tsk. | 
 |  */ | 
 | void flush_fp_to_thread(struct task_struct *tsk) | 
 | { | 
 | 	if (tsk->thread.regs) { | 
 | 		/* | 
 | 		 * We need to disable preemption here because if we didn't, | 
 | 		 * another process could get scheduled after the regs->msr | 
 | 		 * test but before we have finished saving the FP registers | 
 | 		 * to the thread_struct.  That process could take over the | 
 | 		 * FPU, and then when we get scheduled again we would store | 
 | 		 * bogus values for the remaining FP registers. | 
 | 		 */ | 
 | 		preempt_disable(); | 
 | 		if (tsk->thread.regs->msr & MSR_FP) { | 
 | #ifdef CONFIG_SMP | 
 | 			/* | 
 | 			 * This should only ever be called for current or | 
 | 			 * for a stopped child process.  Since we save away | 
 | 			 * the FP register state on context switch on SMP, | 
 | 			 * there is something wrong if a stopped child appears | 
 | 			 * to still have its FP state in the CPU registers. | 
 | 			 */ | 
 | 			BUG_ON(tsk != current); | 
 | #endif | 
 | 			giveup_fpu(tsk); | 
 | 		} | 
 | 		preempt_enable(); | 
 | 	} | 
 | } | 
 |  | 
 | void enable_kernel_fp(void) | 
 | { | 
 | 	WARN_ON(preemptible()); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) | 
 | 		giveup_fpu(current); | 
 | 	else | 
 | 		giveup_fpu(NULL);	/* just enables FP for kernel */ | 
 | #else | 
 | 	giveup_fpu(last_task_used_math); | 
 | #endif /* CONFIG_SMP */ | 
 | } | 
 | EXPORT_SYMBOL(enable_kernel_fp); | 
 |  | 
 | #ifdef CONFIG_ALTIVEC | 
 | void enable_kernel_altivec(void) | 
 | { | 
 | 	WARN_ON(preemptible()); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) | 
 | 		giveup_altivec(current); | 
 | 	else | 
 | 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */ | 
 | #else | 
 | 	giveup_altivec(last_task_used_altivec); | 
 | #endif /* CONFIG_SMP */ | 
 | } | 
 | EXPORT_SYMBOL(enable_kernel_altivec); | 
 |  | 
 | /* | 
 |  * Make sure the VMX/Altivec register state in the | 
 |  * the thread_struct is up to date for task tsk. | 
 |  */ | 
 | void flush_altivec_to_thread(struct task_struct *tsk) | 
 | { | 
 | 	if (tsk->thread.regs) { | 
 | 		preempt_disable(); | 
 | 		if (tsk->thread.regs->msr & MSR_VEC) { | 
 | #ifdef CONFIG_SMP | 
 | 			BUG_ON(tsk != current); | 
 | #endif | 
 | 			giveup_altivec(tsk); | 
 | 		} | 
 | 		preempt_enable(); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_ALTIVEC */ | 
 |  | 
 | #ifdef CONFIG_VSX | 
 | #if 0 | 
 | /* not currently used, but some crazy RAID module might want to later */ | 
 | void enable_kernel_vsx(void) | 
 | { | 
 | 	WARN_ON(preemptible()); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) | 
 | 		giveup_vsx(current); | 
 | 	else | 
 | 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */ | 
 | #else | 
 | 	giveup_vsx(last_task_used_vsx); | 
 | #endif /* CONFIG_SMP */ | 
 | } | 
 | EXPORT_SYMBOL(enable_kernel_vsx); | 
 | #endif | 
 |  | 
 | void giveup_vsx(struct task_struct *tsk) | 
 | { | 
 | 	giveup_fpu(tsk); | 
 | 	giveup_altivec(tsk); | 
 | 	__giveup_vsx(tsk); | 
 | } | 
 |  | 
 | void flush_vsx_to_thread(struct task_struct *tsk) | 
 | { | 
 | 	if (tsk->thread.regs) { | 
 | 		preempt_disable(); | 
 | 		if (tsk->thread.regs->msr & MSR_VSX) { | 
 | #ifdef CONFIG_SMP | 
 | 			BUG_ON(tsk != current); | 
 | #endif | 
 | 			giveup_vsx(tsk); | 
 | 		} | 
 | 		preempt_enable(); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_VSX */ | 
 |  | 
 | #ifdef CONFIG_SPE | 
 |  | 
 | void enable_kernel_spe(void) | 
 | { | 
 | 	WARN_ON(preemptible()); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) | 
 | 		giveup_spe(current); | 
 | 	else | 
 | 		giveup_spe(NULL);	/* just enable SPE for kernel - force */ | 
 | #else | 
 | 	giveup_spe(last_task_used_spe); | 
 | #endif /* __SMP __ */ | 
 | } | 
 | EXPORT_SYMBOL(enable_kernel_spe); | 
 |  | 
 | void flush_spe_to_thread(struct task_struct *tsk) | 
 | { | 
 | 	if (tsk->thread.regs) { | 
 | 		preempt_disable(); | 
 | 		if (tsk->thread.regs->msr & MSR_SPE) { | 
 | #ifdef CONFIG_SMP | 
 | 			BUG_ON(tsk != current); | 
 | #endif | 
 | 			giveup_spe(tsk); | 
 | 		} | 
 | 		preempt_enable(); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_SPE */ | 
 |  | 
 | #ifndef CONFIG_SMP | 
 | /* | 
 |  * If we are doing lazy switching of CPU state (FP, altivec or SPE), | 
 |  * and the current task has some state, discard it. | 
 |  */ | 
 | void discard_lazy_cpu_state(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	if (last_task_used_math == current) | 
 | 		last_task_used_math = NULL; | 
 | #ifdef CONFIG_ALTIVEC | 
 | 	if (last_task_used_altivec == current) | 
 | 		last_task_used_altivec = NULL; | 
 | #endif /* CONFIG_ALTIVEC */ | 
 | #ifdef CONFIG_VSX | 
 | 	if (last_task_used_vsx == current) | 
 | 		last_task_used_vsx = NULL; | 
 | #endif /* CONFIG_VSX */ | 
 | #ifdef CONFIG_SPE | 
 | 	if (last_task_used_spe == current) | 
 | 		last_task_used_spe = NULL; | 
 | #endif | 
 | 	preempt_enable(); | 
 | } | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
 | void do_send_trap(struct pt_regs *regs, unsigned long address, | 
 | 		  unsigned long error_code, int signal_code, int breakpt) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, | 
 | 			11, SIGSEGV) == NOTIFY_STOP) | 
 | 		return; | 
 |  | 
 | 	/* Deliver the signal to userspace */ | 
 | 	info.si_signo = SIGTRAP; | 
 | 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */ | 
 | 	info.si_code = signal_code; | 
 | 	info.si_addr = (void __user *)address; | 
 | 	force_sig_info(SIGTRAP, &info, current); | 
 | } | 
 | #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */ | 
 | void do_dabr(struct pt_regs *regs, unsigned long address, | 
 | 		    unsigned long error_code) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, | 
 | 			11, SIGSEGV) == NOTIFY_STOP) | 
 | 		return; | 
 |  | 
 | 	if (debugger_dabr_match(regs)) | 
 | 		return; | 
 |  | 
 | 	/* Clear the DABR */ | 
 | 	set_dabr(0); | 
 |  | 
 | 	/* Deliver the signal to userspace */ | 
 | 	info.si_signo = SIGTRAP; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = TRAP_HWBKPT; | 
 | 	info.si_addr = (void __user *)address; | 
 | 	force_sig_info(SIGTRAP, &info, current); | 
 | } | 
 | #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */ | 
 |  | 
 | static DEFINE_PER_CPU(unsigned long, current_dabr); | 
 |  | 
 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
 | /* | 
 |  * Set the debug registers back to their default "safe" values. | 
 |  */ | 
 | static void set_debug_reg_defaults(struct thread_struct *thread) | 
 | { | 
 | 	thread->iac1 = thread->iac2 = 0; | 
 | #if CONFIG_PPC_ADV_DEBUG_IACS > 2 | 
 | 	thread->iac3 = thread->iac4 = 0; | 
 | #endif | 
 | 	thread->dac1 = thread->dac2 = 0; | 
 | #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 | 
 | 	thread->dvc1 = thread->dvc2 = 0; | 
 | #endif | 
 | 	thread->dbcr0 = 0; | 
 | #ifdef CONFIG_BOOKE | 
 | 	/* | 
 | 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) | 
 | 	 */ | 
 | 	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\ | 
 | 			DBCR1_IAC3US | DBCR1_IAC4US; | 
 | 	/* | 
 | 	 * Force Data Address Compare User/Supervisor bits to be User-only | 
 | 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. | 
 | 	 */ | 
 | 	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; | 
 | #else | 
 | 	thread->dbcr1 = 0; | 
 | #endif | 
 | } | 
 |  | 
 | static void prime_debug_regs(struct thread_struct *thread) | 
 | { | 
 | 	mtspr(SPRN_IAC1, thread->iac1); | 
 | 	mtspr(SPRN_IAC2, thread->iac2); | 
 | #if CONFIG_PPC_ADV_DEBUG_IACS > 2 | 
 | 	mtspr(SPRN_IAC3, thread->iac3); | 
 | 	mtspr(SPRN_IAC4, thread->iac4); | 
 | #endif | 
 | 	mtspr(SPRN_DAC1, thread->dac1); | 
 | 	mtspr(SPRN_DAC2, thread->dac2); | 
 | #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 | 
 | 	mtspr(SPRN_DVC1, thread->dvc1); | 
 | 	mtspr(SPRN_DVC2, thread->dvc2); | 
 | #endif | 
 | 	mtspr(SPRN_DBCR0, thread->dbcr0); | 
 | 	mtspr(SPRN_DBCR1, thread->dbcr1); | 
 | #ifdef CONFIG_BOOKE | 
 | 	mtspr(SPRN_DBCR2, thread->dbcr2); | 
 | #endif | 
 | } | 
 | /* | 
 |  * Unless neither the old or new thread are making use of the | 
 |  * debug registers, set the debug registers from the values | 
 |  * stored in the new thread. | 
 |  */ | 
 | static void switch_booke_debug_regs(struct thread_struct *new_thread) | 
 | { | 
 | 	if ((current->thread.dbcr0 & DBCR0_IDM) | 
 | 		|| (new_thread->dbcr0 & DBCR0_IDM)) | 
 | 			prime_debug_regs(new_thread); | 
 | } | 
 | #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */ | 
 | static void set_debug_reg_defaults(struct thread_struct *thread) | 
 | { | 
 | 	if (thread->dabr) { | 
 | 		thread->dabr = 0; | 
 | 		set_dabr(0); | 
 | 	} | 
 | } | 
 | #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */ | 
 |  | 
 | int set_dabr(unsigned long dabr) | 
 | { | 
 | 	__get_cpu_var(current_dabr) = dabr; | 
 |  | 
 | 	if (ppc_md.set_dabr) | 
 | 		return ppc_md.set_dabr(dabr); | 
 |  | 
 | 	/* XXX should we have a CPU_FTR_HAS_DABR ? */ | 
 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
 | 	mtspr(SPRN_DAC1, dabr); | 
 | #ifdef CONFIG_PPC_47x | 
 | 	isync(); | 
 | #endif | 
 | #elif defined(CONFIG_PPC_BOOK3S) | 
 | 	mtspr(SPRN_DABR, dabr); | 
 | #endif | 
 |  | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); | 
 | #endif | 
 |  | 
 | struct task_struct *__switch_to(struct task_struct *prev, | 
 | 	struct task_struct *new) | 
 | { | 
 | 	struct thread_struct *new_thread, *old_thread; | 
 | 	unsigned long flags; | 
 | 	struct task_struct *last; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* avoid complexity of lazy save/restore of fpu | 
 | 	 * by just saving it every time we switch out if | 
 | 	 * this task used the fpu during the last quantum. | 
 | 	 * | 
 | 	 * If it tries to use the fpu again, it'll trap and | 
 | 	 * reload its fp regs.  So we don't have to do a restore | 
 | 	 * every switch, just a save. | 
 | 	 *  -- Cort | 
 | 	 */ | 
 | 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) | 
 | 		giveup_fpu(prev); | 
 | #ifdef CONFIG_ALTIVEC | 
 | 	/* | 
 | 	 * If the previous thread used altivec in the last quantum | 
 | 	 * (thus changing altivec regs) then save them. | 
 | 	 * We used to check the VRSAVE register but not all apps | 
 | 	 * set it, so we don't rely on it now (and in fact we need | 
 | 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus | 
 | 	 * | 
 | 	 * On SMP we always save/restore altivec regs just to avoid the | 
 | 	 * complexity of changing processors. | 
 | 	 *  -- Cort | 
 | 	 */ | 
 | 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) | 
 | 		giveup_altivec(prev); | 
 | #endif /* CONFIG_ALTIVEC */ | 
 | #ifdef CONFIG_VSX | 
 | 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX)) | 
 | 		/* VMX and FPU registers are already save here */ | 
 | 		__giveup_vsx(prev); | 
 | #endif /* CONFIG_VSX */ | 
 | #ifdef CONFIG_SPE | 
 | 	/* | 
 | 	 * If the previous thread used spe in the last quantum | 
 | 	 * (thus changing spe regs) then save them. | 
 | 	 * | 
 | 	 * On SMP we always save/restore spe regs just to avoid the | 
 | 	 * complexity of changing processors. | 
 | 	 */ | 
 | 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) | 
 | 		giveup_spe(prev); | 
 | #endif /* CONFIG_SPE */ | 
 |  | 
 | #else  /* CONFIG_SMP */ | 
 | #ifdef CONFIG_ALTIVEC | 
 | 	/* Avoid the trap.  On smp this this never happens since | 
 | 	 * we don't set last_task_used_altivec -- Cort | 
 | 	 */ | 
 | 	if (new->thread.regs && last_task_used_altivec == new) | 
 | 		new->thread.regs->msr |= MSR_VEC; | 
 | #endif /* CONFIG_ALTIVEC */ | 
 | #ifdef CONFIG_VSX | 
 | 	if (new->thread.regs && last_task_used_vsx == new) | 
 | 		new->thread.regs->msr |= MSR_VSX; | 
 | #endif /* CONFIG_VSX */ | 
 | #ifdef CONFIG_SPE | 
 | 	/* Avoid the trap.  On smp this this never happens since | 
 | 	 * we don't set last_task_used_spe | 
 | 	 */ | 
 | 	if (new->thread.regs && last_task_used_spe == new) | 
 | 		new->thread.regs->msr |= MSR_SPE; | 
 | #endif /* CONFIG_SPE */ | 
 |  | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
 | 	switch_booke_debug_regs(&new->thread); | 
 | #else | 
 | /* | 
 |  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would | 
 |  * schedule DABR | 
 |  */ | 
 | #ifndef CONFIG_HAVE_HW_BREAKPOINT | 
 | 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) | 
 | 		set_dabr(new->thread.dabr); | 
 | #endif /* CONFIG_HAVE_HW_BREAKPOINT */ | 
 | #endif | 
 |  | 
 |  | 
 | 	new_thread = &new->thread; | 
 | 	old_thread = ¤t->thread; | 
 |  | 
 | #if defined(CONFIG_PPC_BOOK3E_64) | 
 | 	/* XXX Current Book3E code doesn't deal with kernel side DBCR0, | 
 | 	 * we always hold the user values, so we set it now. | 
 | 	 * | 
 | 	 * However, we ensure the kernel MSR:DE is appropriately cleared too | 
 | 	 * to avoid spurrious single step exceptions in the kernel. | 
 | 	 * | 
 | 	 * This will have to change to merge with the ppc32 code at some point, | 
 | 	 * but I don't like much what ppc32 is doing today so there's some | 
 | 	 * thinking needed there | 
 | 	 */ | 
 | 	if ((new_thread->dbcr0 | old_thread->dbcr0) & DBCR0_IDM) { | 
 | 		u32 dbcr0; | 
 |  | 
 | 		mtmsr(mfmsr() & ~MSR_DE); | 
 | 		isync(); | 
 | 		dbcr0 = mfspr(SPRN_DBCR0); | 
 | 		dbcr0 = (dbcr0 & DBCR0_EDM) | new_thread->dbcr0; | 
 | 		mtspr(SPRN_DBCR0, dbcr0); | 
 | 	} | 
 | #endif /* CONFIG_PPC64_BOOK3E */ | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | 	/* | 
 | 	 * Collect processor utilization data per process | 
 | 	 */ | 
 | 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) { | 
 | 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); | 
 | 		long unsigned start_tb, current_tb; | 
 | 		start_tb = old_thread->start_tb; | 
 | 		cu->current_tb = current_tb = mfspr(SPRN_PURR); | 
 | 		old_thread->accum_tb += (current_tb - start_tb); | 
 | 		new_thread->start_tb = current_tb; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	account_system_vtime(current); | 
 | 	account_process_vtime(current); | 
 | 	calculate_steal_time(); | 
 |  | 
 | 	/* | 
 | 	 * We can't take a PMU exception inside _switch() since there is a | 
 | 	 * window where the kernel stack SLB and the kernel stack are out | 
 | 	 * of sync. Hard disable here. | 
 | 	 */ | 
 | 	hard_irq_disable(); | 
 | 	last = _switch(old_thread, new_thread); | 
 |  | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return last; | 
 | } | 
 |  | 
 | static int instructions_to_print = 16; | 
 |  | 
 | static void show_instructions(struct pt_regs *regs) | 
 | { | 
 | 	int i; | 
 | 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * | 
 | 			sizeof(int)); | 
 |  | 
 | 	printk("Instruction dump:"); | 
 |  | 
 | 	for (i = 0; i < instructions_to_print; i++) { | 
 | 		int instr; | 
 |  | 
 | 		if (!(i % 8)) | 
 | 			printk("\n"); | 
 |  | 
 | #if !defined(CONFIG_BOOKE) | 
 | 		/* If executing with the IMMU off, adjust pc rather | 
 | 		 * than print XXXXXXXX. | 
 | 		 */ | 
 | 		if (!(regs->msr & MSR_IR)) | 
 | 			pc = (unsigned long)phys_to_virt(pc); | 
 | #endif | 
 |  | 
 | 		/* We use __get_user here *only* to avoid an OOPS on a | 
 | 		 * bad address because the pc *should* only be a | 
 | 		 * kernel address. | 
 | 		 */ | 
 | 		if (!__kernel_text_address(pc) || | 
 | 		     __get_user(instr, (unsigned int __user *)pc)) { | 
 | 			printk("XXXXXXXX "); | 
 | 		} else { | 
 | 			if (regs->nip == pc) | 
 | 				printk("<%08x> ", instr); | 
 | 			else | 
 | 				printk("%08x ", instr); | 
 | 		} | 
 |  | 
 | 		pc += sizeof(int); | 
 | 	} | 
 |  | 
 | 	printk("\n"); | 
 | } | 
 |  | 
 | static struct regbit { | 
 | 	unsigned long bit; | 
 | 	const char *name; | 
 | } msr_bits[] = { | 
 | 	{MSR_EE,	"EE"}, | 
 | 	{MSR_PR,	"PR"}, | 
 | 	{MSR_FP,	"FP"}, | 
 | 	{MSR_VEC,	"VEC"}, | 
 | 	{MSR_VSX,	"VSX"}, | 
 | 	{MSR_ME,	"ME"}, | 
 | 	{MSR_CE,	"CE"}, | 
 | 	{MSR_DE,	"DE"}, | 
 | 	{MSR_IR,	"IR"}, | 
 | 	{MSR_DR,	"DR"}, | 
 | 	{0,		NULL} | 
 | }; | 
 |  | 
 | static void printbits(unsigned long val, struct regbit *bits) | 
 | { | 
 | 	const char *sep = ""; | 
 |  | 
 | 	printk("<"); | 
 | 	for (; bits->bit; ++bits) | 
 | 		if (val & bits->bit) { | 
 | 			printk("%s%s", sep, bits->name); | 
 | 			sep = ","; | 
 | 		} | 
 | 	printk(">"); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | #define REG		"%016lx" | 
 | #define REGS_PER_LINE	4 | 
 | #define LAST_VOLATILE	13 | 
 | #else | 
 | #define REG		"%08lx" | 
 | #define REGS_PER_LINE	8 | 
 | #define LAST_VOLATILE	12 | 
 | #endif | 
 |  | 
 | void show_regs(struct pt_regs * regs) | 
 | { | 
 | 	int i, trap; | 
 |  | 
 | 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n", | 
 | 	       regs->nip, regs->link, regs->ctr); | 
 | 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n", | 
 | 	       regs, regs->trap, print_tainted(), init_utsname()->release); | 
 | 	printk("MSR: "REG" ", regs->msr); | 
 | 	printbits(regs->msr, msr_bits); | 
 | 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer); | 
 | 	trap = TRAP(regs); | 
 | 	if (trap == 0x300 || trap == 0x600) | 
 | #ifdef CONFIG_PPC_ADV_DEBUG_REGS | 
 | 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr); | 
 | #else | 
 | 		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); | 
 | #endif | 
 | 	printk("TASK = %p[%d] '%s' THREAD: %p", | 
 | 	       current, task_pid_nr(current), current->comm, task_thread_info(current)); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	printk(" CPU: %d", raw_smp_processor_id()); | 
 | #endif /* CONFIG_SMP */ | 
 |  | 
 | 	for (i = 0;  i < 32;  i++) { | 
 | 		if ((i % REGS_PER_LINE) == 0) | 
 | 			printk("\nGPR%02d: ", i); | 
 | 		printk(REG " ", regs->gpr[i]); | 
 | 		if (i == LAST_VOLATILE && !FULL_REGS(regs)) | 
 | 			break; | 
 | 	} | 
 | 	printk("\n"); | 
 | #ifdef CONFIG_KALLSYMS | 
 | 	/* | 
 | 	 * Lookup NIP late so we have the best change of getting the | 
 | 	 * above info out without failing | 
 | 	 */ | 
 | 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); | 
 | 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); | 
 | #endif | 
 | 	show_stack(current, (unsigned long *) regs->gpr[1]); | 
 | 	if (!user_mode(regs)) | 
 | 		show_instructions(regs); | 
 | } | 
 |  | 
 | void exit_thread(void) | 
 | { | 
 | 	discard_lazy_cpu_state(); | 
 | } | 
 |  | 
 | void flush_thread(void) | 
 | { | 
 | 	discard_lazy_cpu_state(); | 
 |  | 
 | #ifdef CONFIG_HAVE_HW_BREAKPOINTS | 
 | 	flush_ptrace_hw_breakpoint(current); | 
 | #else /* CONFIG_HAVE_HW_BREAKPOINTS */ | 
 | 	set_debug_reg_defaults(¤t->thread); | 
 | #endif /* CONFIG_HAVE_HW_BREAKPOINTS */ | 
 | } | 
 |  | 
 | void | 
 | release_thread(struct task_struct *t) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * This gets called before we allocate a new thread and copy | 
 |  * the current task into it. | 
 |  */ | 
 | void prepare_to_copy(struct task_struct *tsk) | 
 | { | 
 | 	flush_fp_to_thread(current); | 
 | 	flush_altivec_to_thread(current); | 
 | 	flush_vsx_to_thread(current); | 
 | 	flush_spe_to_thread(current); | 
 | #ifdef CONFIG_HAVE_HW_BREAKPOINT | 
 | 	flush_ptrace_hw_breakpoint(tsk); | 
 | #endif /* CONFIG_HAVE_HW_BREAKPOINT */ | 
 | } | 
 |  | 
 | /* | 
 |  * Copy a thread.. | 
 |  */ | 
 | int copy_thread(unsigned long clone_flags, unsigned long usp, | 
 | 		unsigned long unused, struct task_struct *p, | 
 | 		struct pt_regs *regs) | 
 | { | 
 | 	struct pt_regs *childregs, *kregs; | 
 | 	extern void ret_from_fork(void); | 
 | 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; | 
 |  | 
 | 	CHECK_FULL_REGS(regs); | 
 | 	/* Copy registers */ | 
 | 	sp -= sizeof(struct pt_regs); | 
 | 	childregs = (struct pt_regs *) sp; | 
 | 	*childregs = *regs; | 
 | 	if ((childregs->msr & MSR_PR) == 0) { | 
 | 		/* for kernel thread, set `current' and stackptr in new task */ | 
 | 		childregs->gpr[1] = sp + sizeof(struct pt_regs); | 
 | #ifdef CONFIG_PPC32 | 
 | 		childregs->gpr[2] = (unsigned long) p; | 
 | #else | 
 | 		clear_tsk_thread_flag(p, TIF_32BIT); | 
 | #endif | 
 | 		p->thread.regs = NULL;	/* no user register state */ | 
 | 	} else { | 
 | 		childregs->gpr[1] = usp; | 
 | 		p->thread.regs = childregs; | 
 | 		if (clone_flags & CLONE_SETTLS) { | 
 | #ifdef CONFIG_PPC64 | 
 | 			if (!is_32bit_task()) | 
 | 				childregs->gpr[13] = childregs->gpr[6]; | 
 | 			else | 
 | #endif | 
 | 				childregs->gpr[2] = childregs->gpr[6]; | 
 | 		} | 
 | 	} | 
 | 	childregs->gpr[3] = 0;  /* Result from fork() */ | 
 | 	sp -= STACK_FRAME_OVERHEAD; | 
 |  | 
 | 	/* | 
 | 	 * The way this works is that at some point in the future | 
 | 	 * some task will call _switch to switch to the new task. | 
 | 	 * That will pop off the stack frame created below and start | 
 | 	 * the new task running at ret_from_fork.  The new task will | 
 | 	 * do some house keeping and then return from the fork or clone | 
 | 	 * system call, using the stack frame created above. | 
 | 	 */ | 
 | 	sp -= sizeof(struct pt_regs); | 
 | 	kregs = (struct pt_regs *) sp; | 
 | 	sp -= STACK_FRAME_OVERHEAD; | 
 | 	p->thread.ksp = sp; | 
 | 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) + | 
 | 				_ALIGN_UP(sizeof(struct thread_info), 16); | 
 |  | 
 | #ifdef CONFIG_PPC_STD_MMU_64 | 
 | 	if (cpu_has_feature(CPU_FTR_SLB)) { | 
 | 		unsigned long sp_vsid; | 
 | 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; | 
 |  | 
 | 		if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) | 
 | 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) | 
 | 				<< SLB_VSID_SHIFT_1T; | 
 | 		else | 
 | 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) | 
 | 				<< SLB_VSID_SHIFT; | 
 | 		sp_vsid |= SLB_VSID_KERNEL | llp; | 
 | 		p->thread.ksp_vsid = sp_vsid; | 
 | 	} | 
 | #endif /* CONFIG_PPC_STD_MMU_64 */ | 
 |  | 
 | 	/* | 
 | 	 * The PPC64 ABI makes use of a TOC to contain function  | 
 | 	 * pointers.  The function (ret_from_except) is actually a pointer | 
 | 	 * to the TOC entry.  The first entry is a pointer to the actual | 
 | 	 * function. | 
 |  	 */ | 
 | #ifdef CONFIG_PPC64 | 
 | 	kregs->nip = *((unsigned long *)ret_from_fork); | 
 | #else | 
 | 	kregs->nip = (unsigned long)ret_from_fork; | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set up a thread for executing a new program | 
 |  */ | 
 | void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) | 
 | { | 
 | #ifdef CONFIG_PPC64 | 
 | 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */ | 
 | #endif | 
 |  | 
 | 	set_fs(USER_DS); | 
 |  | 
 | 	/* | 
 | 	 * If we exec out of a kernel thread then thread.regs will not be | 
 | 	 * set.  Do it now. | 
 | 	 */ | 
 | 	if (!current->thread.regs) { | 
 | 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; | 
 | 		current->thread.regs = regs - 1; | 
 | 	} | 
 |  | 
 | 	memset(regs->gpr, 0, sizeof(regs->gpr)); | 
 | 	regs->ctr = 0; | 
 | 	regs->link = 0; | 
 | 	regs->xer = 0; | 
 | 	regs->ccr = 0; | 
 | 	regs->gpr[1] = sp; | 
 |  | 
 | 	/* | 
 | 	 * We have just cleared all the nonvolatile GPRs, so make | 
 | 	 * FULL_REGS(regs) return true.  This is necessary to allow | 
 | 	 * ptrace to examine the thread immediately after exec. | 
 | 	 */ | 
 | 	regs->trap &= ~1UL; | 
 |  | 
 | #ifdef CONFIG_PPC32 | 
 | 	regs->mq = 0; | 
 | 	regs->nip = start; | 
 | 	regs->msr = MSR_USER; | 
 | #else | 
 | 	if (!is_32bit_task()) { | 
 | 		unsigned long entry, toc; | 
 |  | 
 | 		/* start is a relocated pointer to the function descriptor for | 
 | 		 * the elf _start routine.  The first entry in the function | 
 | 		 * descriptor is the entry address of _start and the second | 
 | 		 * entry is the TOC value we need to use. | 
 | 		 */ | 
 | 		__get_user(entry, (unsigned long __user *)start); | 
 | 		__get_user(toc, (unsigned long __user *)start+1); | 
 |  | 
 | 		/* Check whether the e_entry function descriptor entries | 
 | 		 * need to be relocated before we can use them. | 
 | 		 */ | 
 | 		if (load_addr != 0) { | 
 | 			entry += load_addr; | 
 | 			toc   += load_addr; | 
 | 		} | 
 | 		regs->nip = entry; | 
 | 		regs->gpr[2] = toc; | 
 | 		regs->msr = MSR_USER64; | 
 | 	} else { | 
 | 		regs->nip = start; | 
 | 		regs->gpr[2] = 0; | 
 | 		regs->msr = MSR_USER32; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	discard_lazy_cpu_state(); | 
 | #ifdef CONFIG_VSX | 
 | 	current->thread.used_vsr = 0; | 
 | #endif | 
 | 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); | 
 | 	current->thread.fpscr.val = 0; | 
 | #ifdef CONFIG_ALTIVEC | 
 | 	memset(current->thread.vr, 0, sizeof(current->thread.vr)); | 
 | 	memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); | 
 | 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ | 
 | 	current->thread.vrsave = 0; | 
 | 	current->thread.used_vr = 0; | 
 | #endif /* CONFIG_ALTIVEC */ | 
 | #ifdef CONFIG_SPE | 
 | 	memset(current->thread.evr, 0, sizeof(current->thread.evr)); | 
 | 	current->thread.acc = 0; | 
 | 	current->thread.spefscr = 0; | 
 | 	current->thread.used_spe = 0; | 
 | #endif /* CONFIG_SPE */ | 
 | } | 
 |  | 
 | #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ | 
 | 		| PR_FP_EXC_RES | PR_FP_EXC_INV) | 
 |  | 
 | int set_fpexc_mode(struct task_struct *tsk, unsigned int val) | 
 | { | 
 | 	struct pt_regs *regs = tsk->thread.regs; | 
 |  | 
 | 	/* This is a bit hairy.  If we are an SPE enabled  processor | 
 | 	 * (have embedded fp) we store the IEEE exception enable flags in | 
 | 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception | 
 | 	 * mode (asyn, precise, disabled) for 'Classic' FP. */ | 
 | 	if (val & PR_FP_EXC_SW_ENABLE) { | 
 | #ifdef CONFIG_SPE | 
 | 		if (cpu_has_feature(CPU_FTR_SPE)) { | 
 | 			tsk->thread.fpexc_mode = val & | 
 | 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); | 
 | 			return 0; | 
 | 		} else { | 
 | 			return -EINVAL; | 
 | 		} | 
 | #else | 
 | 		return -EINVAL; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* on a CONFIG_SPE this does not hurt us.  The bits that | 
 | 	 * __pack_fe01 use do not overlap with bits used for | 
 | 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits | 
 | 	 * on CONFIG_SPE implementations are reserved so writing to | 
 | 	 * them does not change anything */ | 
 | 	if (val > PR_FP_EXC_PRECISE) | 
 | 		return -EINVAL; | 
 | 	tsk->thread.fpexc_mode = __pack_fe01(val); | 
 | 	if (regs != NULL && (regs->msr & MSR_FP) != 0) | 
 | 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) | 
 | 			| tsk->thread.fpexc_mode; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) | 
 | { | 
 | 	unsigned int val; | 
 |  | 
 | 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) | 
 | #ifdef CONFIG_SPE | 
 | 		if (cpu_has_feature(CPU_FTR_SPE)) | 
 | 			val = tsk->thread.fpexc_mode; | 
 | 		else | 
 | 			return -EINVAL; | 
 | #else | 
 | 		return -EINVAL; | 
 | #endif | 
 | 	else | 
 | 		val = __unpack_fe01(tsk->thread.fpexc_mode); | 
 | 	return put_user(val, (unsigned int __user *) adr); | 
 | } | 
 |  | 
 | int set_endian(struct task_struct *tsk, unsigned int val) | 
 | { | 
 | 	struct pt_regs *regs = tsk->thread.regs; | 
 |  | 
 | 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || | 
 | 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (regs == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (val == PR_ENDIAN_BIG) | 
 | 		regs->msr &= ~MSR_LE; | 
 | 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) | 
 | 		regs->msr |= MSR_LE; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int get_endian(struct task_struct *tsk, unsigned long adr) | 
 | { | 
 | 	struct pt_regs *regs = tsk->thread.regs; | 
 | 	unsigned int val; | 
 |  | 
 | 	if (!cpu_has_feature(CPU_FTR_PPC_LE) && | 
 | 	    !cpu_has_feature(CPU_FTR_REAL_LE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (regs == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (regs->msr & MSR_LE) { | 
 | 		if (cpu_has_feature(CPU_FTR_REAL_LE)) | 
 | 			val = PR_ENDIAN_LITTLE; | 
 | 		else | 
 | 			val = PR_ENDIAN_PPC_LITTLE; | 
 | 	} else | 
 | 		val = PR_ENDIAN_BIG; | 
 |  | 
 | 	return put_user(val, (unsigned int __user *)adr); | 
 | } | 
 |  | 
 | int set_unalign_ctl(struct task_struct *tsk, unsigned int val) | 
 | { | 
 | 	tsk->thread.align_ctl = val; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) | 
 | { | 
 | 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); | 
 | } | 
 |  | 
 | #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff)) | 
 |  | 
 | int sys_clone(unsigned long clone_flags, unsigned long usp, | 
 | 	      int __user *parent_tidp, void __user *child_threadptr, | 
 | 	      int __user *child_tidp, int p6, | 
 | 	      struct pt_regs *regs) | 
 | { | 
 | 	CHECK_FULL_REGS(regs); | 
 | 	if (usp == 0) | 
 | 		usp = regs->gpr[1];	/* stack pointer for child */ | 
 | #ifdef CONFIG_PPC64 | 
 | 	if (is_32bit_task()) { | 
 | 		parent_tidp = TRUNC_PTR(parent_tidp); | 
 | 		child_tidp = TRUNC_PTR(child_tidp); | 
 | 	} | 
 | #endif | 
 |  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); | 
 | } | 
 |  | 
 | int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, | 
 | 	     unsigned long p4, unsigned long p5, unsigned long p6, | 
 | 	     struct pt_regs *regs) | 
 | { | 
 | 	CHECK_FULL_REGS(regs); | 
 | 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); | 
 | } | 
 |  | 
 | int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, | 
 | 	      unsigned long p4, unsigned long p5, unsigned long p6, | 
 | 	      struct pt_regs *regs) | 
 | { | 
 | 	CHECK_FULL_REGS(regs); | 
 | 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], | 
 | 			regs, 0, NULL, NULL); | 
 | } | 
 |  | 
 | int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, | 
 | 	       unsigned long a3, unsigned long a4, unsigned long a5, | 
 | 	       struct pt_regs *regs) | 
 | { | 
 | 	int error; | 
 | 	char *filename; | 
 |  | 
 | 	filename = getname((const char __user *) a0); | 
 | 	error = PTR_ERR(filename); | 
 | 	if (IS_ERR(filename)) | 
 | 		goto out; | 
 | 	flush_fp_to_thread(current); | 
 | 	flush_altivec_to_thread(current); | 
 | 	flush_spe_to_thread(current); | 
 | 	error = do_execve(filename, | 
 | 			  (const char __user *const __user *) a1, | 
 | 			  (const char __user *const __user *) a2, regs); | 
 | 	putname(filename); | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, | 
 | 				  unsigned long nbytes) | 
 | { | 
 | 	unsigned long stack_page; | 
 | 	unsigned long cpu = task_cpu(p); | 
 |  | 
 | 	/* | 
 | 	 * Avoid crashing if the stack has overflowed and corrupted | 
 | 	 * task_cpu(p), which is in the thread_info struct. | 
 | 	 */ | 
 | 	if (cpu < NR_CPUS && cpu_possible(cpu)) { | 
 | 		stack_page = (unsigned long) hardirq_ctx[cpu]; | 
 | 		if (sp >= stack_page + sizeof(struct thread_struct) | 
 | 		    && sp <= stack_page + THREAD_SIZE - nbytes) | 
 | 			return 1; | 
 |  | 
 | 		stack_page = (unsigned long) softirq_ctx[cpu]; | 
 | 		if (sp >= stack_page + sizeof(struct thread_struct) | 
 | 		    && sp <= stack_page + THREAD_SIZE - nbytes) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int validate_sp(unsigned long sp, struct task_struct *p, | 
 | 		       unsigned long nbytes) | 
 | { | 
 | 	unsigned long stack_page = (unsigned long)task_stack_page(p); | 
 |  | 
 | 	if (sp >= stack_page + sizeof(struct thread_struct) | 
 | 	    && sp <= stack_page + THREAD_SIZE - nbytes) | 
 | 		return 1; | 
 |  | 
 | 	return valid_irq_stack(sp, p, nbytes); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(validate_sp); | 
 |  | 
 | unsigned long get_wchan(struct task_struct *p) | 
 | { | 
 | 	unsigned long ip, sp; | 
 | 	int count = 0; | 
 |  | 
 | 	if (!p || p == current || p->state == TASK_RUNNING) | 
 | 		return 0; | 
 |  | 
 | 	sp = p->thread.ksp; | 
 | 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) | 
 | 		return 0; | 
 |  | 
 | 	do { | 
 | 		sp = *(unsigned long *)sp; | 
 | 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) | 
 | 			return 0; | 
 | 		if (count > 0) { | 
 | 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; | 
 | 			if (!in_sched_functions(ip)) | 
 | 				return ip; | 
 | 		} | 
 | 	} while (count++ < 16); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; | 
 |  | 
 | void show_stack(struct task_struct *tsk, unsigned long *stack) | 
 | { | 
 | 	unsigned long sp, ip, lr, newsp; | 
 | 	int count = 0; | 
 | 	int firstframe = 1; | 
 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
 | 	int curr_frame = current->curr_ret_stack; | 
 | 	extern void return_to_handler(void); | 
 | 	unsigned long rth = (unsigned long)return_to_handler; | 
 | 	unsigned long mrth = -1; | 
 | #ifdef CONFIG_PPC64 | 
 | 	extern void mod_return_to_handler(void); | 
 | 	rth = *(unsigned long *)rth; | 
 | 	mrth = (unsigned long)mod_return_to_handler; | 
 | 	mrth = *(unsigned long *)mrth; | 
 | #endif | 
 | #endif | 
 |  | 
 | 	sp = (unsigned long) stack; | 
 | 	if (tsk == NULL) | 
 | 		tsk = current; | 
 | 	if (sp == 0) { | 
 | 		if (tsk == current) | 
 | 			asm("mr %0,1" : "=r" (sp)); | 
 | 		else | 
 | 			sp = tsk->thread.ksp; | 
 | 	} | 
 |  | 
 | 	lr = 0; | 
 | 	printk("Call Trace:\n"); | 
 | 	do { | 
 | 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) | 
 | 			return; | 
 |  | 
 | 		stack = (unsigned long *) sp; | 
 | 		newsp = stack[0]; | 
 | 		ip = stack[STACK_FRAME_LR_SAVE]; | 
 | 		if (!firstframe || ip != lr) { | 
 | 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); | 
 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER | 
 | 			if ((ip == rth || ip == mrth) && curr_frame >= 0) { | 
 | 				printk(" (%pS)", | 
 | 				       (void *)current->ret_stack[curr_frame].ret); | 
 | 				curr_frame--; | 
 | 			} | 
 | #endif | 
 | 			if (firstframe) | 
 | 				printk(" (unreliable)"); | 
 | 			printk("\n"); | 
 | 		} | 
 | 		firstframe = 0; | 
 |  | 
 | 		/* | 
 | 		 * See if this is an exception frame. | 
 | 		 * We look for the "regshere" marker in the current frame. | 
 | 		 */ | 
 | 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) | 
 | 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { | 
 | 			struct pt_regs *regs = (struct pt_regs *) | 
 | 				(sp + STACK_FRAME_OVERHEAD); | 
 | 			lr = regs->link; | 
 | 			printk("--- Exception: %lx at %pS\n    LR = %pS\n", | 
 | 			       regs->trap, (void *)regs->nip, (void *)lr); | 
 | 			firstframe = 1; | 
 | 		} | 
 |  | 
 | 		sp = newsp; | 
 | 	} while (count++ < kstack_depth_to_print); | 
 | } | 
 |  | 
 | void dump_stack(void) | 
 | { | 
 | 	show_stack(current, NULL); | 
 | } | 
 | EXPORT_SYMBOL(dump_stack); | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | void ppc64_runlatch_on(void) | 
 | { | 
 | 	unsigned long ctrl; | 
 |  | 
 | 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) { | 
 | 		HMT_medium(); | 
 |  | 
 | 		ctrl = mfspr(SPRN_CTRLF); | 
 | 		ctrl |= CTRL_RUNLATCH; | 
 | 		mtspr(SPRN_CTRLT, ctrl); | 
 |  | 
 | 		set_thread_flag(TIF_RUNLATCH); | 
 | 	} | 
 | } | 
 |  | 
 | void __ppc64_runlatch_off(void) | 
 | { | 
 | 	unsigned long ctrl; | 
 |  | 
 | 	HMT_medium(); | 
 |  | 
 | 	clear_thread_flag(TIF_RUNLATCH); | 
 |  | 
 | 	ctrl = mfspr(SPRN_CTRLF); | 
 | 	ctrl &= ~CTRL_RUNLATCH; | 
 | 	mtspr(SPRN_CTRLT, ctrl); | 
 | } | 
 | #endif | 
 |  | 
 | #if THREAD_SHIFT < PAGE_SHIFT | 
 |  | 
 | static struct kmem_cache *thread_info_cache; | 
 |  | 
 | struct thread_info *alloc_thread_info(struct task_struct *tsk) | 
 | { | 
 | 	struct thread_info *ti; | 
 |  | 
 | 	ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL); | 
 | 	if (unlikely(ti == NULL)) | 
 | 		return NULL; | 
 | #ifdef CONFIG_DEBUG_STACK_USAGE | 
 | 	memset(ti, 0, THREAD_SIZE); | 
 | #endif | 
 | 	return ti; | 
 | } | 
 |  | 
 | void free_thread_info(struct thread_info *ti) | 
 | { | 
 | 	kmem_cache_free(thread_info_cache, ti); | 
 | } | 
 |  | 
 | void thread_info_cache_init(void) | 
 | { | 
 | 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, | 
 | 					      THREAD_SIZE, 0, NULL); | 
 | 	BUG_ON(thread_info_cache == NULL); | 
 | } | 
 |  | 
 | #endif /* THREAD_SHIFT < PAGE_SHIFT */ | 
 |  | 
 | unsigned long arch_align_stack(unsigned long sp) | 
 | { | 
 | 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
 | 		sp -= get_random_int() & ~PAGE_MASK; | 
 | 	return sp & ~0xf; | 
 | } | 
 |  | 
 | static inline unsigned long brk_rnd(void) | 
 | { | 
 |         unsigned long rnd = 0; | 
 |  | 
 | 	/* 8MB for 32bit, 1GB for 64bit */ | 
 | 	if (is_32bit_task()) | 
 | 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT))); | 
 | 	else | 
 | 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT))); | 
 |  | 
 | 	return rnd << PAGE_SHIFT; | 
 | } | 
 |  | 
 | unsigned long arch_randomize_brk(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long base = mm->brk; | 
 | 	unsigned long ret; | 
 |  | 
 | #ifdef CONFIG_PPC_STD_MMU_64 | 
 | 	/* | 
 | 	 * If we are using 1TB segments and we are allowed to randomise | 
 | 	 * the heap, we can put it above 1TB so it is backed by a 1TB | 
 | 	 * segment. Otherwise the heap will be in the bottom 1TB | 
 | 	 * which always uses 256MB segments and this may result in a | 
 | 	 * performance penalty. | 
 | 	 */ | 
 | 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) | 
 | 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); | 
 | #endif | 
 |  | 
 | 	ret = PAGE_ALIGN(base + brk_rnd()); | 
 |  | 
 | 	if (ret < mm->brk) | 
 | 		return mm->brk; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | unsigned long randomize_et_dyn(unsigned long base) | 
 | { | 
 | 	unsigned long ret = PAGE_ALIGN(base + brk_rnd()); | 
 |  | 
 | 	if (ret < base) | 
 | 		return base; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | int arch_sd_sibling_asym_packing(void) | 
 | { | 
 | 	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) { | 
 | 		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n"); | 
 | 		return SD_ASYM_PACKING; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #endif |