blob: b2f308766a9e8e5cfc6c34dea6e9b4515cf7fc8d [file] [log] [blame]
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "dc_bios_types.h"
#include "core_types.h"
#include "core_status.h"
#include "resource.h"
#include "dm_helpers.h"
#include "dce110_hw_sequencer.h"
#include "dce110_timing_generator.h"
#include "dce/dce_hwseq.h"
#include "gpio_service_interface.h"
#include "dce110_compressor.h"
#include "bios/bios_parser_helper.h"
#include "timing_generator.h"
#include "mem_input.h"
#include "opp.h"
#include "ipp.h"
#include "transform.h"
#include "stream_encoder.h"
#include "link_encoder.h"
#include "link_hwss.h"
#include "clock_source.h"
#include "abm.h"
#include "audio.h"
#include "reg_helper.h"
/* include DCE11 register header files */
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "custom_float.h"
#include "atomfirmware.h"
/*
* All values are in milliseconds;
* For eDP, after power-up/power/down,
* 300/500 msec max. delay from LCDVCC to black video generation
*/
#define PANEL_POWER_UP_TIMEOUT 300
#define PANEL_POWER_DOWN_TIMEOUT 500
#define HPD_CHECK_INTERVAL 10
#define CTX \
hws->ctx
#define DC_LOGGER_INIT()
#define REG(reg)\
hws->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
struct dce110_hw_seq_reg_offsets {
uint32_t crtc;
};
static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
},
{
.crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
}
};
#define HW_REG_BLND(reg, id)\
(reg + reg_offsets[id].blnd)
#define HW_REG_CRTC(reg, id)\
(reg + reg_offsets[id].crtc)
#define MAX_WATERMARK 0xFFFF
#define SAFE_NBP_MARK 0x7FFF
/*******************************************************************************
* Private definitions
******************************************************************************/
/***************************PIPE_CONTROL***********************************/
static void dce110_init_pte(struct dc_context *ctx)
{
uint32_t addr;
uint32_t value = 0;
uint32_t chunk_int = 0;
uint32_t chunk_mul = 0;
addr = mmUNP_DVMM_PTE_CONTROL;
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
0,
DVMM_PTE_CONTROL,
DVMM_USE_SINGLE_PTE);
set_reg_field_value(
value,
1,
DVMM_PTE_CONTROL,
DVMM_PTE_BUFFER_MODE0);
set_reg_field_value(
value,
1,
DVMM_PTE_CONTROL,
DVMM_PTE_BUFFER_MODE1);
dm_write_reg(ctx, addr, value);
addr = mmDVMM_PTE_REQ;
value = dm_read_reg(ctx, addr);
chunk_int = get_reg_field_value(
value,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_INT);
chunk_mul = get_reg_field_value(
value,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
if (chunk_int != 0x4 || chunk_mul != 0x4) {
set_reg_field_value(
value,
255,
DVMM_PTE_REQ,
MAX_PTEREQ_TO_ISSUE);
set_reg_field_value(
value,
4,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_INT);
set_reg_field_value(
value,
4,
DVMM_PTE_REQ,
HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
dm_write_reg(ctx, addr, value);
}
}
/**************************************************************************/
static void enable_display_pipe_clock_gating(
struct dc_context *ctx,
bool clock_gating)
{
/*TODO*/
}
static bool dce110_enable_display_power_gating(
struct dc *dc,
uint8_t controller_id,
struct dc_bios *dcb,
enum pipe_gating_control power_gating)
{
enum bp_result bp_result = BP_RESULT_OK;
enum bp_pipe_control_action cntl;
struct dc_context *ctx = dc->ctx;
unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
return true;
if (power_gating == PIPE_GATING_CONTROL_INIT)
cntl = ASIC_PIPE_INIT;
else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
cntl = ASIC_PIPE_ENABLE;
else
cntl = ASIC_PIPE_DISABLE;
if (controller_id == underlay_idx)
controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
bp_result = dcb->funcs->enable_disp_power_gating(
dcb, controller_id + 1, cntl);
/* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
* by default when command table is called
*
* Bios parser accepts controller_id = 6 as indicative of
* underlay pipe in dce110. But we do not support more
* than 3.
*/
if (controller_id < CONTROLLER_ID_MAX - 1)
dm_write_reg(ctx,
HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
0);
}
if (power_gating != PIPE_GATING_CONTROL_ENABLE)
dce110_init_pte(ctx);
if (bp_result == BP_RESULT_OK)
return true;
else
return false;
}
static void build_prescale_params(struct ipp_prescale_params *prescale_params,
const struct dc_plane_state *plane_state)
{
prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
switch (plane_state->format) {
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
prescale_params->scale = 0x2020;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
prescale_params->scale = 0x2008;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
prescale_params->scale = 0x2000;
break;
default:
ASSERT(false);
break;
}
}
static bool
dce110_set_input_transfer_func(struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state)
{
struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
const struct dc_transfer_func *tf = NULL;
struct ipp_prescale_params prescale_params = { 0 };
bool result = true;
if (ipp == NULL)
return false;
if (plane_state->in_transfer_func)
tf = plane_state->in_transfer_func;
build_prescale_params(&prescale_params, plane_state);
ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
if (plane_state->gamma_correction &&
!plane_state->gamma_correction->is_identity &&
dce_use_lut(plane_state->format))
ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
if (tf == NULL) {
/* Default case if no input transfer function specified */
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
} else if (tf->type == TF_TYPE_PREDEFINED) {
switch (tf->tf) {
case TRANSFER_FUNCTION_SRGB:
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
break;
case TRANSFER_FUNCTION_BT709:
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
break;
case TRANSFER_FUNCTION_LINEAR:
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
break;
case TRANSFER_FUNCTION_PQ:
default:
result = false;
break;
}
} else if (tf->type == TF_TYPE_BYPASS) {
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
} else {
/*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
result = false;
}
return result;
}
static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
struct curve_points *arr_points,
uint32_t hw_points_num)
{
struct custom_float_format fmt;
struct pwl_result_data *rgb = rgb_resulted;
uint32_t i = 0;
fmt.exponenta_bits = 6;
fmt.mantissa_bits = 12;
fmt.sign = true;
if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
&arr_points[0].custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
&arr_points[0].custom_float_offset)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
&arr_points[0].custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
fmt.mantissa_bits = 10;
fmt.sign = false;
if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
&arr_points[1].custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
&arr_points[1].custom_float_y)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
&arr_points[1].custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
fmt.mantissa_bits = 12;
fmt.sign = true;
while (i != hw_points_num) {
if (!convert_to_custom_float_format(rgb->red, &fmt,
&rgb->red_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->green, &fmt,
&rgb->green_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->blue, &fmt,
&rgb->blue_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
&rgb->delta_red_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
&rgb->delta_green_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
&rgb->delta_blue_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
++rgb;
++i;
}
return true;
}
#define MAX_LOW_POINT 25
#define NUMBER_REGIONS 16
#define NUMBER_SW_SEGMENTS 16
static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
struct pwl_params *regamma_params)
{
struct curve_points *arr_points;
struct pwl_result_data *rgb_resulted;
struct pwl_result_data *rgb;
struct pwl_result_data *rgb_plus_1;
struct fixed31_32 y_r;
struct fixed31_32 y_g;
struct fixed31_32 y_b;
struct fixed31_32 y1_min;
struct fixed31_32 y3_max;
int32_t region_start, region_end;
uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
return false;
arr_points = regamma_params->arr_points;
rgb_resulted = regamma_params->rgb_resulted;
hw_points = 0;
memset(regamma_params, 0, sizeof(struct pwl_params));
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* 16 segments
* segments are from 2^-11 to 2^5
*/
region_start = -11;
region_end = region_start + NUMBER_REGIONS;
for (i = 0; i < NUMBER_REGIONS; i++)
seg_distr[i] = 4;
} else {
/* 10 segments
* segment is from 2^-10 to 2^1
* We include an extra segment for range [2^0, 2^1). This is to
* ensure that colors with normalized values of 1 don't miss the
* LUT.
*/
region_start = -10;
region_end = 1;
seg_distr[0] = 4;
seg_distr[1] = 4;
seg_distr[2] = 4;
seg_distr[3] = 4;
seg_distr[4] = 4;
seg_distr[5] = 4;
seg_distr[6] = 4;
seg_distr[7] = 4;
seg_distr[8] = 4;
seg_distr[9] = 4;
seg_distr[10] = 0;
seg_distr[11] = -1;
seg_distr[12] = -1;
seg_distr[13] = -1;
seg_distr[14] = -1;
seg_distr[15] = -1;
}
for (k = 0; k < 16; k++) {
if (seg_distr[k] != -1)
hw_points += (1 << seg_distr[k]);
}
j = 0;
for (k = 0; k < (region_end - region_start); k++) {
increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
start_index = (region_start + k + MAX_LOW_POINT) *
NUMBER_SW_SEGMENTS;
for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
i += increment) {
if (j == hw_points - 1)
break;
rgb_resulted[j].red = output_tf->tf_pts.red[i];
rgb_resulted[j].green = output_tf->tf_pts.green[i];
rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
j++;
}
}
/* last point */
start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
dc_fixpt_from_int(region_start));
arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
dc_fixpt_from_int(region_end));
y_r = rgb_resulted[0].red;
y_g = rgb_resulted[0].green;
y_b = rgb_resulted[0].blue;
y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
arr_points[0].y = y1_min;
arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
arr_points[0].x);
y_r = rgb_resulted[hw_points - 1].red;
y_g = rgb_resulted[hw_points - 1].green;
y_b = rgb_resulted[hw_points - 1].blue;
/* see comment above, m_arrPoints[1].y should be the Y value for the
* region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
*/
y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
arr_points[1].y = y3_max;
arr_points[1].slope = dc_fixpt_zero;
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* for PQ, we want to have a straight line from last HW X point,
* and the slope to be such that we hit 1.0 at 10000 nits.
*/
const struct fixed31_32 end_value = dc_fixpt_from_int(125);
arr_points[1].slope = dc_fixpt_div(
dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
dc_fixpt_sub(end_value, arr_points[1].x));
}
regamma_params->hw_points_num = hw_points;
i = 1;
for (k = 0; k < 16 && i < 16; k++) {
if (seg_distr[k] != -1) {
regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
regamma_params->arr_curve_points[i].offset =
regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
}
i++;
}
if (seg_distr[k] != -1)
regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
rgb = rgb_resulted;
rgb_plus_1 = rgb_resulted + 1;
i = 1;
while (i != hw_points + 1) {
if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
rgb_plus_1->red = rgb->red;
if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
rgb_plus_1->green = rgb->green;
if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
rgb_plus_1->blue = rgb->blue;
rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
++rgb_plus_1;
++rgb;
++i;
}
convert_to_custom_float(rgb_resulted, arr_points, hw_points);
return true;
}
static bool
dce110_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
struct transform *xfm = pipe_ctx->plane_res.xfm;
xfm->funcs->opp_power_on_regamma_lut(xfm, true);
xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
if (stream->out_transfer_func &&
stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
} else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
&xfm->regamma_params)) {
xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
} else {
xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
}
xfm->funcs->opp_power_on_regamma_lut(xfm, false);
return true;
}
static enum dc_status bios_parser_crtc_source_select(
struct pipe_ctx *pipe_ctx)
{
struct dc_bios *dcb;
/* call VBIOS table to set CRTC source for the HW
* encoder block
* note: video bios clears all FMT setting here. */
struct bp_crtc_source_select crtc_source_select = {0};
const struct dc_sink *sink = pipe_ctx->stream->sink;
crtc_source_select.engine_id = pipe_ctx->stream_res.stream_enc->id;
crtc_source_select.controller_id = pipe_ctx->stream_res.tg->inst + 1;
/*TODO: Need to un-hardcode color depth, dp_audio and account for
* the case where signal and sink signal is different (translator
* encoder)*/
crtc_source_select.signal = pipe_ctx->stream->signal;
crtc_source_select.enable_dp_audio = false;
crtc_source_select.sink_signal = pipe_ctx->stream->signal;
switch (pipe_ctx->stream->timing.display_color_depth) {
case COLOR_DEPTH_666:
crtc_source_select.display_output_bit_depth = PANEL_6BIT_COLOR;
break;
case COLOR_DEPTH_888:
crtc_source_select.display_output_bit_depth = PANEL_8BIT_COLOR;
break;
case COLOR_DEPTH_101010:
crtc_source_select.display_output_bit_depth = PANEL_10BIT_COLOR;
break;
case COLOR_DEPTH_121212:
crtc_source_select.display_output_bit_depth = PANEL_12BIT_COLOR;
break;
default:
BREAK_TO_DEBUGGER();
crtc_source_select.display_output_bit_depth = PANEL_8BIT_COLOR;
break;
}
dcb = sink->ctx->dc_bios;
if (BP_RESULT_OK != dcb->funcs->crtc_source_select(
dcb,
&crtc_source_select)) {
return DC_ERROR_UNEXPECTED;
}
return DC_OK;
}
void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
{
bool is_hdmi;
bool is_dp;
ASSERT(pipe_ctx->stream);
if (pipe_ctx->stream_res.stream_enc == NULL)
return; /* this is not root pipe */
is_hdmi = dc_is_hdmi_signal(pipe_ctx->stream->signal);
is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
if (!is_hdmi && !is_dp)
return;
if (is_hdmi)
pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
pipe_ctx->stream_res.stream_enc,
&pipe_ctx->stream_res.encoder_info_frame);
else
pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
pipe_ctx->stream_res.stream_enc,
&pipe_ctx->stream_res.encoder_info_frame);
}
void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
{
enum dc_lane_count lane_count =
pipe_ctx->stream->sink->link->cur_link_settings.lane_count;
struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
struct dc_link *link = pipe_ctx->stream->sink->link;
uint32_t active_total_with_borders;
uint32_t early_control = 0;
struct timing_generator *tg = pipe_ctx->stream_res.tg;
/* For MST, there are multiply stream go to only one link.
* connect DIG back_end to front_end while enable_stream and
* disconnect them during disable_stream
* BY this, it is logic clean to separate stream and link */
link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
pipe_ctx->stream_res.stream_enc->id, true);
/* update AVI info frame (HDMI, DP)*/
/* TODO: FPGA may change to hwss.update_info_frame */
dce110_update_info_frame(pipe_ctx);
/* enable early control to avoid corruption on DP monitor*/
active_total_with_borders =
timing->h_addressable
+ timing->h_border_left
+ timing->h_border_right;
if (lane_count != 0)
early_control = active_total_with_borders % lane_count;
if (early_control == 0)
early_control = lane_count;
tg->funcs->set_early_control(tg, early_control);
/* enable audio only within mode set */
if (pipe_ctx->stream_res.audio != NULL) {
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
}
}
/*todo: cloned in stream enc, fix*/
static bool is_panel_backlight_on(struct dce_hwseq *hws)
{
uint32_t value;
REG_GET(LVTMA_PWRSEQ_CNTL, LVTMA_BLON, &value);
return value;
}
static bool is_panel_powered_on(struct dce_hwseq *hws)
{
uint32_t pwr_seq_state, dig_on, dig_on_ovrd;
REG_GET(LVTMA_PWRSEQ_STATE, LVTMA_PWRSEQ_TARGET_STATE_R, &pwr_seq_state);
REG_GET_2(LVTMA_PWRSEQ_CNTL, LVTMA_DIGON, &dig_on, LVTMA_DIGON_OVRD, &dig_on_ovrd);
return (pwr_seq_state == 1) || (dig_on == 1 && dig_on_ovrd == 1);
}
static enum bp_result link_transmitter_control(
struct dc_bios *bios,
struct bp_transmitter_control *cntl)
{
enum bp_result result;
result = bios->funcs->transmitter_control(bios, cntl);
return result;
}
/*
* @brief
* eDP only.
*/
void hwss_edp_wait_for_hpd_ready(
struct dc_link *link,
bool power_up)
{
struct dc_context *ctx = link->ctx;
struct graphics_object_id connector = link->link_enc->connector;
struct gpio *hpd;
bool edp_hpd_high = false;
uint32_t time_elapsed = 0;
uint32_t timeout = power_up ?
PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
if (dal_graphics_object_id_get_connector_id(connector)
!= CONNECTOR_ID_EDP) {
BREAK_TO_DEBUGGER();
return;
}
if (!power_up)
/*
* From KV, we will not HPD low after turning off VCC -
* instead, we will check the SW timer in power_up().
*/
return;
/*
* When we power on/off the eDP panel,
* we need to wait until SENSE bit is high/low.
*/
/* obtain HPD */
/* TODO what to do with this? */
hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
if (!hpd) {
BREAK_TO_DEBUGGER();
return;
}
dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
/* wait until timeout or panel detected */
do {
uint32_t detected = 0;
dal_gpio_get_value(hpd, &detected);
if (!(detected ^ power_up)) {
edp_hpd_high = true;
break;
}
msleep(HPD_CHECK_INTERVAL);
time_elapsed += HPD_CHECK_INTERVAL;
} while (time_elapsed < timeout);
dal_gpio_close(hpd);
dal_gpio_destroy_irq(&hpd);
if (false == edp_hpd_high) {
DC_LOG_ERROR(
"%s: wait timed out!\n", __func__);
}
}
void hwss_edp_power_control(
struct dc_link *link,
bool power_up)
{
struct dc_context *ctx = link->ctx;
struct dce_hwseq *hwseq = ctx->dc->hwseq;
struct bp_transmitter_control cntl = { 0 };
enum bp_result bp_result;
if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
!= CONNECTOR_ID_EDP) {
BREAK_TO_DEBUGGER();
return;
}
if (power_up != is_panel_powered_on(hwseq)) {
/* Send VBIOS command to prompt eDP panel power */
if (power_up) {
unsigned long long current_ts = dm_get_timestamp(ctx);
unsigned long long duration_in_ms =
div64_u64(dm_get_elapse_time_in_ns(
ctx,
current_ts,
link->link_trace.time_stamp.edp_poweroff), 1000000);
unsigned long long wait_time_ms = 0;
/* max 500ms from LCDVDD off to on */
unsigned long long edp_poweroff_time_ms = 500;
if (link->local_sink != NULL)
edp_poweroff_time_ms =
500 + link->local_sink->edid_caps.panel_patch.extra_t12_ms;
if (link->link_trace.time_stamp.edp_poweroff == 0)
wait_time_ms = edp_poweroff_time_ms;
else if (duration_in_ms < edp_poweroff_time_ms)
wait_time_ms = edp_poweroff_time_ms - duration_in_ms;
if (wait_time_ms) {
msleep(wait_time_ms);
dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
__func__, wait_time_ms);
}
}
DC_LOG_HW_RESUME_S3(
"%s: Panel Power action: %s\n",
__func__, (power_up ? "On":"Off"));
cntl.action = power_up ?
TRANSMITTER_CONTROL_POWER_ON :
TRANSMITTER_CONTROL_POWER_OFF;
cntl.transmitter = link->link_enc->transmitter;
cntl.connector_obj_id = link->link_enc->connector;
cntl.coherent = false;
cntl.lanes_number = LANE_COUNT_FOUR;
cntl.hpd_sel = link->link_enc->hpd_source;
bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
if (!power_up)
/*save driver power off time stamp*/
link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
else
link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
if (bp_result != BP_RESULT_OK)
DC_LOG_ERROR(
"%s: Panel Power bp_result: %d\n",
__func__, bp_result);
} else {
DC_LOG_HW_RESUME_S3(
"%s: Skipping Panel Power action: %s\n",
__func__, (power_up ? "On":"Off"));
}
}
/*todo: cloned in stream enc, fix*/
/*
* @brief
* eDP only. Control the backlight of the eDP panel
*/
void hwss_edp_backlight_control(
struct dc_link *link,
bool enable)
{
struct dc_context *ctx = link->ctx;
struct dce_hwseq *hws = ctx->dc->hwseq;
struct bp_transmitter_control cntl = { 0 };
if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
!= CONNECTOR_ID_EDP) {
BREAK_TO_DEBUGGER();
return;
}
if (enable && is_panel_backlight_on(hws)) {
DC_LOG_HW_RESUME_S3(
"%s: panel already powered up. Do nothing.\n",
__func__);
return;
}
/* Send VBIOS command to control eDP panel backlight */
DC_LOG_HW_RESUME_S3(
"%s: backlight action: %s\n",
__func__, (enable ? "On":"Off"));
cntl.action = enable ?
TRANSMITTER_CONTROL_BACKLIGHT_ON :
TRANSMITTER_CONTROL_BACKLIGHT_OFF;
/*cntl.engine_id = ctx->engine;*/
cntl.transmitter = link->link_enc->transmitter;
cntl.connector_obj_id = link->link_enc->connector;
/*todo: unhardcode*/
cntl.lanes_number = LANE_COUNT_FOUR;
cntl.hpd_sel = link->link_enc->hpd_source;
cntl.signal = SIGNAL_TYPE_EDP;
/* For eDP, the following delays might need to be considered
* after link training completed:
* idle period - min. accounts for required BS-Idle pattern,
* max. allows for source frame synchronization);
* 50 msec max. delay from valid video data from source
* to video on dislpay or backlight enable.
*
* Disable the delay for now.
* Enable it in the future if necessary.
*/
/* dc_service_sleep_in_milliseconds(50); */
/*edp 1.2*/
if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
edp_receiver_ready_T7(link);
link_transmitter_control(ctx->dc_bios, &cntl);
/*edp 1.2*/
if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF)
edp_receiver_ready_T9(link);
}
void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
{
struct dc *core_dc = pipe_ctx->stream->ctx->dc;
/* notify audio driver for audio modes of monitor */
struct pp_smu_funcs_rv *pp_smu = core_dc->res_pool->pp_smu;
unsigned int i, num_audio = 1;
if (pipe_ctx->stream_res.audio) {
for (i = 0; i < MAX_PIPES; i++) {
/*current_state not updated yet*/
if (core_dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
num_audio++;
}
pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
if (num_audio == 1 && pp_smu != NULL && pp_smu->set_pme_wa_enable != NULL)
/*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
pp_smu->set_pme_wa_enable(&pp_smu->pp_smu);
/* un-mute audio */
/* TODO: audio should be per stream rather than per link */
pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
pipe_ctx->stream_res.stream_enc, false);
}
}
void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx, int option)
{
struct dc *dc = pipe_ctx->stream->ctx->dc;
pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
pipe_ctx->stream_res.stream_enc, true);
if (pipe_ctx->stream_res.audio) {
if (option != KEEP_ACQUIRED_RESOURCE ||
!dc->debug.az_endpoint_mute_only) {
/*only disalbe az_endpoint if power down or free*/
pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
}
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
pipe_ctx->stream_res.stream_enc);
else
pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
pipe_ctx->stream_res.stream_enc);
/*don't free audio if it is from retrain or internal disable stream*/
if (option == FREE_ACQUIRED_RESOURCE && dc->caps.dynamic_audio == true) {
/*we have to dynamic arbitrate the audio endpoints*/
/*we free the resource, need reset is_audio_acquired*/
update_audio_usage(&dc->current_state->res_ctx, dc->res_pool, pipe_ctx->stream_res.audio, false);
pipe_ctx->stream_res.audio = NULL;
}
/* TODO: notify audio driver for if audio modes list changed
* add audio mode list change flag */
/* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
* stream->stream_engine_id);
*/
}
}
void dce110_disable_stream(struct pipe_ctx *pipe_ctx, int option)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->sink->link;
struct dc *dc = pipe_ctx->stream->ctx->dc;
if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
pipe_ctx->stream_res.stream_enc);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
pipe_ctx->stream_res.stream_enc);
dc->hwss.disable_audio_stream(pipe_ctx, option);
link->link_enc->funcs->connect_dig_be_to_fe(
link->link_enc,
pipe_ctx->stream_res.stream_enc->id,
false);
}
void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
struct dc_link_settings *link_settings)
{
struct encoder_unblank_param params = { { 0 } };
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->sink->link;
/* only 3 items below are used by unblank */
params.pixel_clk_khz =
pipe_ctx->stream->timing.pix_clk_khz;
params.link_settings.link_rate = link_settings->link_rate;
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
link->dc->hwss.edp_backlight_control(link, true);
stream->bl_pwm_level = EDP_BACKLIGHT_RAMP_DISABLE_LEVEL;
}
}
void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->sink->link;
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
link->dc->hwss.edp_backlight_control(link, false);
dc_link_set_abm_disable(link);
}
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
}
void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
{
if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
}
static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
{
switch (crtc_id) {
case CONTROLLER_ID_D0:
return DTO_SOURCE_ID0;
case CONTROLLER_ID_D1:
return DTO_SOURCE_ID1;
case CONTROLLER_ID_D2:
return DTO_SOURCE_ID2;
case CONTROLLER_ID_D3:
return DTO_SOURCE_ID3;
case CONTROLLER_ID_D4:
return DTO_SOURCE_ID4;
case CONTROLLER_ID_D5:
return DTO_SOURCE_ID5;
default:
return DTO_SOURCE_UNKNOWN;
}
}
static void build_audio_output(
struct dc_state *state,
const struct pipe_ctx *pipe_ctx,
struct audio_output *audio_output)
{
const struct dc_stream_state *stream = pipe_ctx->stream;
audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
audio_output->signal = pipe_ctx->stream->signal;
/* audio_crtc_info */
audio_output->crtc_info.h_total =
stream->timing.h_total;
/*
* Audio packets are sent during actual CRTC blank physical signal, we
* need to specify actual active signal portion
*/
audio_output->crtc_info.h_active =
stream->timing.h_addressable
+ stream->timing.h_border_left
+ stream->timing.h_border_right;
audio_output->crtc_info.v_active =
stream->timing.v_addressable
+ stream->timing.v_border_top
+ stream->timing.v_border_bottom;
audio_output->crtc_info.pixel_repetition = 1;
audio_output->crtc_info.interlaced =
stream->timing.flags.INTERLACE;
audio_output->crtc_info.refresh_rate =
(stream->timing.pix_clk_khz*1000)/
(stream->timing.h_total*stream->timing.v_total);
audio_output->crtc_info.color_depth =
stream->timing.display_color_depth;
audio_output->crtc_info.requested_pixel_clock =
pipe_ctx->stream_res.pix_clk_params.requested_pix_clk;
audio_output->crtc_info.calculated_pixel_clock =
pipe_ctx->stream_res.pix_clk_params.requested_pix_clk;
/*for HDMI, audio ACR is with deep color ratio factor*/
if (dc_is_hdmi_signal(pipe_ctx->stream->signal) &&
audio_output->crtc_info.requested_pixel_clock ==
stream->timing.pix_clk_khz) {
if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
audio_output->crtc_info.requested_pixel_clock =
audio_output->crtc_info.requested_pixel_clock/2;
audio_output->crtc_info.calculated_pixel_clock =
pipe_ctx->stream_res.pix_clk_params.requested_pix_clk/2;
}
}
if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
audio_output->pll_info.dp_dto_source_clock_in_khz =
state->dis_clk->funcs->get_dp_ref_clk_frequency(
state->dis_clk);
}
audio_output->pll_info.feed_back_divider =
pipe_ctx->pll_settings.feedback_divider;
audio_output->pll_info.dto_source =
translate_to_dto_source(
pipe_ctx->stream_res.tg->inst + 1);
/* TODO hard code to enable for now. Need get from stream */
audio_output->pll_info.ss_enabled = true;
audio_output->pll_info.ss_percentage =
pipe_ctx->pll_settings.ss_percentage;
}
static void get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
struct tg_color *color)
{
uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->stream_res.tg->inst) / 4;
switch (pipe_ctx->plane_res.scl_data.format) {
case PIXEL_FORMAT_ARGB8888:
/* set boarder color to red */
color->color_r_cr = color_value;
break;
case PIXEL_FORMAT_ARGB2101010:
/* set boarder color to blue */
color->color_b_cb = color_value;
break;
case PIXEL_FORMAT_420BPP8:
/* set boarder color to green */
color->color_g_y = color_value;
break;
case PIXEL_FORMAT_420BPP10:
/* set boarder color to yellow */
color->color_g_y = color_value;
color->color_r_cr = color_value;
break;
case PIXEL_FORMAT_FP16:
/* set boarder color to white */
color->color_r_cr = color_value;
color->color_b_cb = color_value;
color->color_g_y = color_value;
break;
default:
break;
}
}
static void program_scaler(const struct dc *dc,
const struct pipe_ctx *pipe_ctx)
{
struct tg_color color = {0};
#if defined(CONFIG_DRM_AMD_DC_DCN1_0)
/* TOFPGA */
if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
return;
#endif
if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
get_surface_visual_confirm_color(pipe_ctx, &color);
else
color_space_to_black_color(dc,
pipe_ctx->stream->output_color_space,
&color);
pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
pipe_ctx->plane_res.xfm,
pipe_ctx->plane_res.scl_data.lb_params.depth,
&pipe_ctx->stream->bit_depth_params);
if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color)
pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
pipe_ctx->stream_res.tg,
&color);
pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
&pipe_ctx->plane_res.scl_data);
}
static enum dc_status dce110_enable_stream_timing(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
pipe_ctx[pipe_ctx->pipe_idx];
struct tg_color black_color = {0};
if (!pipe_ctx_old->stream) {
/* program blank color */
color_space_to_black_color(dc,
stream->output_color_space, &black_color);
pipe_ctx->stream_res.tg->funcs->set_blank_color(
pipe_ctx->stream_res.tg,
&black_color);
/*
* Must blank CRTC after disabling power gating and before any
* programming, otherwise CRTC will be hung in bad state
*/
pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
pipe_ctx->stream_res.tg->funcs->program_timing(
pipe_ctx->stream_res.tg,
&stream->timing,
true);
pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
pipe_ctx->stream_res.tg,
0x182);
}
if (!pipe_ctx_old->stream) {
if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
pipe_ctx->stream_res.tg)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
}
return DC_OK;
}
static enum dc_status apply_single_controller_ctx_to_hw(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc)
{
struct dc_stream_state *stream = pipe_ctx->stream;
struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
pipe_ctx[pipe_ctx->pipe_idx];
if (pipe_ctx->stream_res.audio != NULL) {
struct audio_output audio_output;
build_audio_output(context, pipe_ctx, &audio_output);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
pipe_ctx->stream_res.stream_enc,
pipe_ctx->stream_res.audio->inst,
&pipe_ctx->stream->audio_info);
else
pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
pipe_ctx->stream_res.stream_enc,
pipe_ctx->stream_res.audio->inst,
&pipe_ctx->stream->audio_info,
&audio_output.crtc_info);
pipe_ctx->stream_res.audio->funcs->az_configure(
pipe_ctx->stream_res.audio,
pipe_ctx->stream->signal,
&audio_output.crtc_info,
&pipe_ctx->stream->audio_info);
}
/* */
dc->hwss.enable_stream_timing(pipe_ctx, context, dc);
/* FPGA does not program backend */
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
pipe_ctx->stream_res.opp,
COLOR_SPACE_YCBCR601,
stream->timing.display_color_depth,
pipe_ctx->stream->signal);
pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
pipe_ctx->stream_res.opp,
&stream->bit_depth_params,
&stream->clamping);
return DC_OK;
}
/* TODO: move to stream encoder */
if (pipe_ctx->stream->signal != SIGNAL_TYPE_VIRTUAL)
if (DC_OK != bios_parser_crtc_source_select(pipe_ctx)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
pipe_ctx->stream_res.opp,
COLOR_SPACE_YCBCR601,
stream->timing.display_color_depth,
pipe_ctx->stream->signal);
if (pipe_ctx->stream->signal != SIGNAL_TYPE_VIRTUAL)
stream->sink->link->link_enc->funcs->setup(
stream->sink->link->link_enc,
pipe_ctx->stream->signal);
if (pipe_ctx->stream->signal != SIGNAL_TYPE_VIRTUAL)
pipe_ctx->stream_res.stream_enc->funcs->setup_stereo_sync(
pipe_ctx->stream_res.stream_enc,
pipe_ctx->stream_res.tg->inst,
stream->timing.timing_3d_format != TIMING_3D_FORMAT_NONE);
pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
pipe_ctx->stream_res.opp,
&stream->bit_depth_params,
&stream->clamping);
if (dc_is_dp_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dp_set_stream_attribute(
pipe_ctx->stream_res.stream_enc,
&stream->timing,
stream->output_color_space);
if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->hdmi_set_stream_attribute(
pipe_ctx->stream_res.stream_enc,
&stream->timing,
stream->phy_pix_clk,
pipe_ctx->stream_res.audio != NULL);
if (dc_is_dvi_signal(pipe_ctx->stream->signal))
pipe_ctx->stream_res.stream_enc->funcs->dvi_set_stream_attribute(
pipe_ctx->stream_res.stream_enc,
&stream->timing,
(pipe_ctx->stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK) ?
true : false);
resource_build_info_frame(pipe_ctx);
dce110_update_info_frame(pipe_ctx);
if (!pipe_ctx_old->stream)
core_link_enable_stream(context, pipe_ctx);
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
pipe_ctx->stream->sink->link->psr_enabled = false;
return DC_OK;
}
/******************************************************************************/
static void power_down_encoders(struct dc *dc)
{
int i;
enum connector_id connector_id;
enum signal_type signal = SIGNAL_TYPE_NONE;
/* do not know BIOS back-front mapping, simply blank all. It will not
* hurt for non-DP
*/
for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
dc->res_pool->stream_enc[i]->funcs->dp_blank(
dc->res_pool->stream_enc[i]);
}
for (i = 0; i < dc->link_count; i++) {
connector_id = dal_graphics_object_id_get_connector_id(dc->links[i]->link_id);
if ((connector_id == CONNECTOR_ID_DISPLAY_PORT) ||
(connector_id == CONNECTOR_ID_EDP)) {
if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
dp_receiver_power_ctrl(dc->links[i], false);
if (connector_id == CONNECTOR_ID_EDP)
signal = SIGNAL_TYPE_EDP;
}
dc->links[i]->link_enc->funcs->disable_output(
dc->links[i]->link_enc, signal);
}
}
static void power_down_controllers(struct dc *dc)
{
int i;
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
dc->res_pool->timing_generators[i]->funcs->disable_crtc(
dc->res_pool->timing_generators[i]);
}
}
static void power_down_clock_sources(struct dc *dc)
{
int i;
if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
dc->res_pool->dp_clock_source) == false)
dm_error("Failed to power down pll! (dp clk src)\n");
for (i = 0; i < dc->res_pool->clk_src_count; i++) {
if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
dc->res_pool->clock_sources[i]) == false)
dm_error("Failed to power down pll! (clk src index=%d)\n", i);
}
}
static void power_down_all_hw_blocks(struct dc *dc)
{
power_down_encoders(dc);
power_down_controllers(dc);
power_down_clock_sources(dc);
if (dc->fbc_compressor)
dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
}
static void disable_vga_and_power_gate_all_controllers(
struct dc *dc)
{
int i;
struct timing_generator *tg;
struct dc_context *ctx = dc->ctx;
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
tg = dc->res_pool->timing_generators[i];
if (tg->funcs->disable_vga)
tg->funcs->disable_vga(tg);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
/* Enable CLOCK gating for each pipe BEFORE controller
* powergating. */
enable_display_pipe_clock_gating(ctx,
true);
dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
dc->hwss.disable_plane(dc,
&dc->current_state->res_ctx.pipe_ctx[i]);
}
}
static struct dc_link *get_link_for_edp(struct dc *dc)
{
int i;
for (i = 0; i < dc->link_count; i++) {
if (dc->links[i]->connector_signal == SIGNAL_TYPE_EDP)
return dc->links[i];
}
return NULL;
}
static struct dc_link *get_link_for_edp_not_in_use(
struct dc *dc,
struct dc_state *context)
{
int i;
struct dc_link *link = NULL;
/* check if eDP panel is suppose to be set mode, if yes, no need to disable */
for (i = 0; i < context->stream_count; i++) {
if (context->streams[i]->signal == SIGNAL_TYPE_EDP)
return NULL;
}
/* check if there is an eDP panel not in use */
for (i = 0; i < dc->link_count; i++) {
if (dc->links[i]->local_sink &&
dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
link = dc->links[i];
break;
}
}
return link;
}
/**
* When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
* 1. Power down all DC HW blocks
* 2. Disable VGA engine on all controllers
* 3. Enable power gating for controller
* 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
*/
void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
{
struct dc_link *edp_link_to_turnoff = NULL;
struct dc_link *edp_link = get_link_for_edp(dc);
bool can_eDP_fast_boot_optimize = false;
if (edp_link) {
/* this seems to cause blank screens on DCE8 */
if ((dc->ctx->dce_version == DCE_VERSION_8_0) ||
(dc->ctx->dce_version == DCE_VERSION_8_1) ||
(dc->ctx->dce_version == DCE_VERSION_8_3))
can_eDP_fast_boot_optimize = false;
else
can_eDP_fast_boot_optimize =
edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc);
}
if (can_eDP_fast_boot_optimize) {
edp_link_to_turnoff = get_link_for_edp_not_in_use(dc, context);
/* if OS doesn't light up eDP and eDP link is available, we want to disable
* If resume from S4/S5, should optimization.
*/
if (!edp_link_to_turnoff)
dc->apply_edp_fast_boot_optimization = true;
}
if (!dc->apply_edp_fast_boot_optimization) {
if (edp_link_to_turnoff) {
/*turn off backlight before DP_blank and encoder powered down*/
dc->hwss.edp_backlight_control(edp_link_to_turnoff, false);
}
/*resume from S3, no vbios posting, no need to power down again*/
power_down_all_hw_blocks(dc);
disable_vga_and_power_gate_all_controllers(dc);
if (edp_link_to_turnoff)
dc->hwss.edp_power_control(edp_link_to_turnoff, false);
}
bios_set_scratch_acc_mode_change(dc->ctx->dc_bios);
}
static uint32_t compute_pstate_blackout_duration(
struct bw_fixed blackout_duration,
const struct dc_stream_state *stream)
{
uint32_t total_dest_line_time_ns;
uint32_t pstate_blackout_duration_ns;
pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
total_dest_line_time_ns = 1000000UL *
stream->timing.h_total /
stream->timing.pix_clk_khz +
pstate_blackout_duration_ns;
return total_dest_line_time_ns;
}
static void dce110_set_displaymarks(
const struct dc *dc,
struct dc_state *context)
{
uint8_t i, num_pipes;
unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
uint32_t total_dest_line_time_ns;
if (pipe_ctx->stream == NULL)
continue;
total_dest_line_time_ns = compute_pstate_blackout_duration(
dc->bw_vbios->blackout_duration, pipe_ctx->stream);
pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
pipe_ctx->plane_res.mi,
context->bw.dce.nbp_state_change_wm_ns[num_pipes],
context->bw.dce.stutter_exit_wm_ns[num_pipes],
context->bw.dce.stutter_entry_wm_ns[num_pipes],
context->bw.dce.urgent_wm_ns[num_pipes],
total_dest_line_time_ns);
if (i == underlay_idx) {
num_pipes++;
pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
pipe_ctx->plane_res.mi,
context->bw.dce.nbp_state_change_wm_ns[num_pipes],
context->bw.dce.stutter_exit_wm_ns[num_pipes],
context->bw.dce.urgent_wm_ns[num_pipes],
total_dest_line_time_ns);
}
num_pipes++;
}
}
void dce110_set_safe_displaymarks(
struct resource_context *res_ctx,
const struct resource_pool *pool)
{
int i;
int underlay_idx = pool->underlay_pipe_index;
struct dce_watermarks max_marks = {
MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
struct dce_watermarks nbp_marks = {
SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
struct dce_watermarks min_marks = { 0, 0, 0, 0};
for (i = 0; i < MAX_PIPES; i++) {
if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
continue;
res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
res_ctx->pipe_ctx[i].plane_res.mi,
nbp_marks,
max_marks,
min_marks,
max_marks,
MAX_WATERMARK);
if (i == underlay_idx)
res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
res_ctx->pipe_ctx[i].plane_res.mi,
nbp_marks,
max_marks,
max_marks,
MAX_WATERMARK);
}
}
/*******************************************************************************
* Public functions
******************************************************************************/
static void set_drr(struct pipe_ctx **pipe_ctx,
int num_pipes, int vmin, int vmax)
{
int i = 0;
struct drr_params params = {0};
params.vertical_total_max = vmax;
params.vertical_total_min = vmin;
/* TODO: If multiple pipes are to be supported, you need
* some GSL stuff
*/
for (i = 0; i < num_pipes; i++) {
pipe_ctx[i]->stream_res.tg->funcs->set_drr(pipe_ctx[i]->stream_res.tg, &params);
}
}
static void get_position(struct pipe_ctx **pipe_ctx,
int num_pipes,
struct crtc_position *position)
{
int i = 0;
/* TODO: handle pipes > 1
*/
for (i = 0; i < num_pipes; i++)
pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
}
static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
int num_pipes, const struct dc_static_screen_events *events)
{
unsigned int i;
unsigned int value = 0;
if (events->overlay_update)
value |= 0x100;
if (events->surface_update)
value |= 0x80;
if (events->cursor_update)
value |= 0x2;
if (events->force_trigger)
value |= 0x1;
value |= 0x84;
for (i = 0; i < num_pipes; i++)
pipe_ctx[i]->stream_res.tg->funcs->
set_static_screen_control(pipe_ctx[i]->stream_res.tg, value);
}
/* unit: in_khz before mode set, get pixel clock from context. ASIC register
* may not be programmed yet
*/
static uint32_t get_max_pixel_clock_for_all_paths(
struct dc *dc,
struct dc_state *context)
{
uint32_t max_pix_clk = 0;
int i;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == NULL)
continue;
/* do not check under lay */
if (pipe_ctx->top_pipe)
continue;
if (pipe_ctx->stream_res.pix_clk_params.requested_pix_clk > max_pix_clk)
max_pix_clk =
pipe_ctx->stream_res.pix_clk_params.requested_pix_clk;
}
return max_pix_clk;
}
/*
* Check if FBC can be enabled
*/
static bool should_enable_fbc(struct dc *dc,
struct dc_state *context,
uint32_t *pipe_idx)
{
uint32_t i;
struct pipe_ctx *pipe_ctx = NULL;
struct resource_context *res_ctx = &context->res_ctx;
ASSERT(dc->fbc_compressor);
/* FBC memory should be allocated */
if (!dc->ctx->fbc_gpu_addr)
return false;
/* Only supports single display */
if (context->stream_count != 1)
return false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (res_ctx->pipe_ctx[i].stream) {
pipe_ctx = &res_ctx->pipe_ctx[i];
*pipe_idx = i;
break;
}
}
/* Pipe context should be found */
ASSERT(pipe_ctx);
/* Only supports eDP */
if (pipe_ctx->stream->sink->link->connector_signal != SIGNAL_TYPE_EDP)
return false;
/* PSR should not be enabled */
if (pipe_ctx->stream->sink->link->psr_enabled)
return false;
/* Nothing to compress */
if (!pipe_ctx->plane_state)
return false;
/* Only for non-linear tiling */
if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
return false;
return true;
}
/*
* Enable FBC
*/
static void enable_fbc(struct dc *dc,
struct dc_state *context)
{
uint32_t pipe_idx = 0;
if (should_enable_fbc(dc, context, &pipe_idx)) {
/* Program GRPH COMPRESSED ADDRESS and PITCH */
struct compr_addr_and_pitch_params params = {0, 0, 0};
struct compressor *compr = dc->fbc_compressor;
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
params.source_view_width = pipe_ctx->stream->timing.h_addressable;
params.source_view_height = pipe_ctx->stream->timing.v_addressable;
compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
compr->funcs->surface_address_and_pitch(compr, &params);
compr->funcs->set_fbc_invalidation_triggers(compr, 1);
compr->funcs->enable_fbc(compr, &params);
}
}
static void dce110_reset_hw_ctx_wrap(
struct dc *dc,
struct dc_state *context)
{
int i;
/* Reset old context */
/* look up the targets that have been removed since last commit */
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
/* Note: We need to disable output if clock sources change,
* since bios does optimization and doesn't apply if changing
* PHY when not already disabled.
*/
/* Skip underlay pipe since it will be handled in commit surface*/
if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
continue;
if (!pipe_ctx->stream ||
pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
struct clock_source *old_clk = pipe_ctx_old->clock_source;
/* Disable if new stream is null. O/w, if stream is
* disabled already, no need to disable again.
*/
if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off)
core_link_disable_stream(pipe_ctx_old, FREE_ACQUIRED_RESOURCE);
pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
dm_error("DC: failed to blank crtc!\n");
BREAK_TO_DEBUGGER();
}
pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
dc->res_pool,
old_clk))
old_clk->funcs->cs_power_down(old_clk);
dc->hwss.disable_plane(dc, pipe_ctx_old);
pipe_ctx_old->stream = NULL;
}
}
}
static void dce110_setup_audio_dto(
struct dc *dc,
struct dc_state *context)
{
int i;
/* program audio wall clock. use HDMI as clock source if HDMI
* audio active. Otherwise, use DP as clock source
* first, loop to find any HDMI audio, if not, loop find DP audio
*/
/* Setup audio rate clock source */
/* Issue:
* Audio lag happened on DP monitor when unplug a HDMI monitor
*
* Cause:
* In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
* is set to either dto0 or dto1, audio should work fine.
* In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
* set to dto0 will cause audio lag.
*
* Solution:
* Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
* find first available pipe with audio, setup audio wall DTO per topology
* instead of per pipe.
*/
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == NULL)
continue;
if (pipe_ctx->top_pipe)
continue;
if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
continue;
if (pipe_ctx->stream_res.audio != NULL) {
struct audio_output audio_output;
build_audio_output(context, pipe_ctx, &audio_output);
pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
pipe_ctx->stream_res.audio,
pipe_ctx->stream->signal,
&audio_output.crtc_info,
&audio_output.pll_info);
break;
}
}
/* no HDMI audio is found, try DP audio */
if (i == dc->res_pool->pipe_count) {
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == NULL)
continue;
if (pipe_ctx->top_pipe)
continue;
if (!dc_is_dp_signal(pipe_ctx->stream->signal))
continue;
if (pipe_ctx->stream_res.audio != NULL) {
struct audio_output audio_output;
build_audio_output(context, pipe_ctx, &audio_output);
pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
pipe_ctx->stream_res.audio,
pipe_ctx->stream->signal,
&audio_output.crtc_info,
&audio_output.pll_info);
break;
}
}
}
}
enum dc_status dce110_apply_ctx_to_hw(
struct dc *dc,
struct dc_state *context)
{
struct dc_bios *dcb = dc->ctx->dc_bios;
enum dc_status status;
int i;
/* Reset old context */
/* look up the targets that have been removed since last commit */
dc->hwss.reset_hw_ctx_wrap(dc, context);
/* Skip applying if no targets */
if (context->stream_count <= 0)
return DC_OK;
/* Apply new context */
dcb->funcs->set_scratch_critical_state(dcb, true);
/* below is for real asic only */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
continue;
if (pipe_ctx->stream == pipe_ctx_old->stream) {
if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
dce_crtc_switch_to_clk_src(dc->hwseq,
pipe_ctx->clock_source, i);
continue;
}
dc->hwss.enable_display_power_gating(
dc, i, dc->ctx->dc_bios,
PIPE_GATING_CONTROL_DISABLE);
}
if (dc->fbc_compressor)
dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
dce110_setup_audio_dto(dc, context);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream == NULL)
continue;
if (pipe_ctx->stream == pipe_ctx_old->stream)
continue;
if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
continue;
if (pipe_ctx->top_pipe)
continue;
status = apply_single_controller_ctx_to_hw(
pipe_ctx,
context,
dc);
if (DC_OK != status)
return status;
}
dcb->funcs->set_scratch_critical_state(dcb, false);
if (dc->fbc_compressor)
enable_fbc(dc, context);
return DC_OK;
}
/*******************************************************************************
* Front End programming
******************************************************************************/
static void set_default_colors(struct pipe_ctx *pipe_ctx)
{
struct default_adjustment default_adjust = { 0 };
default_adjust.force_hw_default = false;
default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
/* display color depth */
default_adjust.color_depth =
pipe_ctx->stream->timing.display_color_depth;
/* Lb color depth */
default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
pipe_ctx->plane_res.xfm, &default_adjust);
}
/*******************************************************************************
* In order to turn on/off specific surface we will program
* Blender + CRTC
*
* In case that we have two surfaces and they have a different visibility
* we can't turn off the CRTC since it will turn off the entire display
*
* |----------------------------------------------- |
* |bottom pipe|curr pipe | | |
* |Surface |Surface | Blender | CRCT |
* |visibility |visibility | Configuration| |
* |------------------------------------------------|
* | off | off | CURRENT_PIPE | blank |
* | off | on | CURRENT_PIPE | unblank |
* | on | off | OTHER_PIPE | unblank |
* | on | on | BLENDING | unblank |
* -------------------------------------------------|
*
******************************************************************************/
static void program_surface_visibility(const struct dc *dc,
struct pipe_ctx *pipe_ctx)
{
enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
bool blank_target = false;
if (pipe_ctx->bottom_pipe) {
/* For now we are supporting only two pipes */
ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
if (pipe_ctx->bottom_pipe->plane_state->visible) {
if (pipe_ctx->plane_state->visible)
blender_mode = BLND_MODE_BLENDING;
else
blender_mode = BLND_MODE_OTHER_PIPE;
} else if (!pipe_ctx->plane_state->visible)
blank_target = true;
} else if (!pipe_ctx->plane_state->visible)
blank_target = true;
dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
}
static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
{
int i = 0;
struct xfm_grph_csc_adjustment adjust;
memset(&adjust, 0, sizeof(adjust));
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
adjust.temperature_matrix[i] =
pipe_ctx->stream->gamut_remap_matrix.matrix[i];
}
pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
}
static void update_plane_addr(const struct dc *dc,
struct pipe_ctx *pipe_ctx)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
if (plane_state == NULL)
return;
pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
pipe_ctx->plane_res.mi,
&plane_state->address,
plane_state->flip_immediate);
plane_state->status.requested_address = plane_state->address;
}
static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
if (plane_state == NULL)
return;
plane_state->status.is_flip_pending =
pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
pipe_ctx->plane_res.mi);
if (plane_state->status.is_flip_pending && !plane_state->visible)
pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
plane_state->status.is_right_eye =\
!pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
}
}
void dce110_power_down(struct dc *dc)
{
power_down_all_hw_blocks(dc);
disable_vga_and_power_gate_all_controllers(dc);
}
static bool wait_for_reset_trigger_to_occur(
struct dc_context *dc_ctx,
struct timing_generator *tg)
{
bool rc = false;
/* To avoid endless loop we wait at most
* frames_to_wait_on_triggered_reset frames for the reset to occur. */
const uint32_t frames_to_wait_on_triggered_reset = 10;
uint32_t i;
for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
if (!tg->funcs->is_counter_moving(tg)) {
DC_ERROR("TG counter is not moving!\n");
break;
}
if (tg->funcs->did_triggered_reset_occur(tg)) {
rc = true;
/* usually occurs at i=1 */
DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
i);
break;
}
/* Wait for one frame. */
tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
}
if (false == rc)
DC_ERROR("GSL: Timeout on reset trigger!\n");
return rc;
}
/* Enable timing synchronization for a group of Timing Generators. */
static void dce110_enable_timing_synchronization(
struct dc *dc,
int group_index,
int group_size,
struct pipe_ctx *grouped_pipes[])
{
struct dc_context *dc_ctx = dc->ctx;
struct dcp_gsl_params gsl_params = { 0 };
int i;
DC_SYNC_INFO("GSL: Setting-up...\n");
/* Designate a single TG in the group as a master.
* Since HW doesn't care which one, we always assign
* the 1st one in the group. */
gsl_params.gsl_group = 0;
gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
for (i = 0; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
grouped_pipes[i]->stream_res.tg, &gsl_params);
/* Reset slave controllers on master VSync */
DC_SYNC_INFO("GSL: enabling trigger-reset\n");
for (i = 1 /* skip the master */; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
grouped_pipes[i]->stream_res.tg,
gsl_params.gsl_group);
for (i = 1 /* skip the master */; i < group_size; i++) {
DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
grouped_pipes[i]->stream_res.tg);
}
/* GSL Vblank synchronization is a one time sync mechanism, assumption
* is that the sync'ed displays will not drift out of sync over time*/
DC_SYNC_INFO("GSL: Restoring register states.\n");
for (i = 0; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
DC_SYNC_INFO("GSL: Set-up complete.\n");
}
static void dce110_enable_per_frame_crtc_position_reset(
struct dc *dc,
int group_size,
struct pipe_ctx *grouped_pipes[])
{
struct dc_context *dc_ctx = dc->ctx;
struct dcp_gsl_params gsl_params = { 0 };
int i;
gsl_params.gsl_group = 0;
gsl_params.gsl_master = grouped_pipes[0]->stream->triggered_crtc_reset.event_source->status.primary_otg_inst;
for (i = 0; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
grouped_pipes[i]->stream_res.tg, &gsl_params);
DC_SYNC_INFO("GSL: enabling trigger-reset\n");
for (i = 1; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
grouped_pipes[i]->stream_res.tg,
gsl_params.gsl_master,
&grouped_pipes[i]->stream->triggered_crtc_reset);
DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
for (i = 1; i < group_size; i++)
wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
for (i = 0; i < group_size; i++)
grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
}
static void init_hw(struct dc *dc)
{
int i;
struct dc_bios *bp;
struct transform *xfm;
struct abm *abm;
bp = dc->ctx->dc_bios;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
xfm = dc->res_pool->transforms[i];
xfm->funcs->transform_reset(xfm);
dc->hwss.enable_display_power_gating(
dc, i, bp,
PIPE_GATING_CONTROL_INIT);
dc->hwss.enable_display_power_gating(
dc, i, bp,
PIPE_GATING_CONTROL_DISABLE);
dc->hwss.enable_display_pipe_clock_gating(
dc->ctx,
true);
}
dce_clock_gating_power_up(dc->hwseq, false);
/***************************************/
for (i = 0; i < dc->link_count; i++) {
/****************************************/
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector). */
struct dc_link *link = dc->links[i];
if (link->link_enc->connector.id == CONNECTOR_ID_EDP)
dc->hwss.edp_power_control(link, true);
link->link_enc->funcs->hw_init(link->link_enc);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
tg->funcs->disable_vga(tg);
/* Blank controller using driver code instead of
* command table. */
tg->funcs->set_blank(tg, true);
hwss_wait_for_blank_complete(tg);
}
for (i = 0; i < dc->res_pool->audio_count; i++) {
struct audio *audio = dc->res_pool->audios[i];
audio->funcs->hw_init(audio);
}
abm = dc->res_pool->abm;
if (abm != NULL) {
abm->funcs->init_backlight(abm);
abm->funcs->abm_init(abm);
}
if (dc->fbc_compressor)
dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
}
void dce110_fill_display_configs(
const struct dc_state *context,
struct dm_pp_display_configuration *pp_display_cfg)
{
int j;
int num_cfgs = 0;
for (j = 0; j < context->stream_count; j++) {
int k;
const struct dc_stream_state *stream = context->streams[j];
struct dm_pp_single_disp_config *cfg =
&pp_display_cfg->disp_configs[num_cfgs];
const struct pipe_ctx *pipe_ctx = NULL;
for (k = 0; k < MAX_PIPES; k++)
if (stream == context->res_ctx.pipe_ctx[k].stream) {
pipe_ctx = &context->res_ctx.pipe_ctx[k];
break;
}
ASSERT(pipe_ctx != NULL);
/* only notify active stream */
if (stream->dpms_off)
continue;
num_cfgs++;
cfg->signal = pipe_ctx->stream->signal;
cfg->pipe_idx = pipe_ctx->stream_res.tg->inst;
cfg->src_height = stream->src.height;
cfg->src_width = stream->src.width;
cfg->ddi_channel_mapping =
stream->sink->link->ddi_channel_mapping.raw;
cfg->transmitter =
stream->sink->link->link_enc->transmitter;
cfg->link_settings.lane_count =
stream->sink->link->cur_link_settings.lane_count;
cfg->link_settings.link_rate =
stream->sink->link->cur_link_settings.link_rate;
cfg->link_settings.link_spread =
stream->sink->link->cur_link_settings.link_spread;
cfg->sym_clock = stream->phy_pix_clk;
/* Round v_refresh*/
cfg->v_refresh = stream->timing.pix_clk_khz * 1000;
cfg->v_refresh /= stream->timing.h_total;
cfg->v_refresh = (cfg->v_refresh + stream->timing.v_total / 2)
/ stream->timing.v_total;
}
pp_display_cfg->display_count = num_cfgs;
}
uint32_t dce110_get_min_vblank_time_us(const struct dc_state *context)
{
uint8_t j;
uint32_t min_vertical_blank_time = -1;
for (j = 0; j < context->stream_count; j++) {
struct dc_stream_state *stream = context->streams[j];
uint32_t vertical_blank_in_pixels = 0;
uint32_t vertical_blank_time = 0;
vertical_blank_in_pixels = stream->timing.h_total *
(stream->timing.v_total
- stream->timing.v_addressable);
vertical_blank_time = vertical_blank_in_pixels
* 1000 / stream->timing.pix_clk_khz;
if (min_vertical_blank_time > vertical_blank_time)
min_vertical_blank_time = vertical_blank_time;
}
return min_vertical_blank_time;
}
static int determine_sclk_from_bounding_box(
const struct dc *dc,
int required_sclk)
{
int i;
/*
* Some asics do not give us sclk levels, so we just report the actual
* required sclk
*/
if (dc->sclk_lvls.num_levels == 0)
return required_sclk;
for (i = 0; i < dc->sclk_lvls.num_levels; i++) {
if (dc->sclk_lvls.clocks_in_khz[i] >= required_sclk)
return dc->sclk_lvls.clocks_in_khz[i];
}
/*
* even maximum level could not satisfy requirement, this
* is unexpected at this stage, should have been caught at
* validation time
*/
ASSERT(0);
return dc->sclk_lvls.clocks_in_khz[dc->sclk_lvls.num_levels - 1];
}
static void pplib_apply_display_requirements(
struct dc *dc,
struct dc_state *context)
{
struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg;
pp_display_cfg->all_displays_in_sync =
context->bw.dce.all_displays_in_sync;
pp_display_cfg->nb_pstate_switch_disable =
context->bw.dce.nbp_state_change_enable == false;
pp_display_cfg->cpu_cc6_disable =
context->bw.dce.cpuc_state_change_enable == false;
pp_display_cfg->cpu_pstate_disable =
context->bw.dce.cpup_state_change_enable == false;
pp_display_cfg->cpu_pstate_separation_time =
context->bw.dce.blackout_recovery_time_us;
pp_display_cfg->min_memory_clock_khz = context->bw.dce.yclk_khz
/ MEMORY_TYPE_MULTIPLIER;
pp_display_cfg->min_engine_clock_khz = determine_sclk_from_bounding_box(
dc,
context->bw.dce.sclk_khz);
pp_display_cfg->min_engine_clock_deep_sleep_khz
= context->bw.dce.sclk_deep_sleep_khz;
pp_display_cfg->avail_mclk_switch_time_us =
dce110_get_min_vblank_time_us(context);
/* TODO: dce11.2*/
pp_display_cfg->avail_mclk_switch_time_in_disp_active_us = 0;
pp_display_cfg->disp_clk_khz = dc->res_pool->dccg->clks.dispclk_khz;
dce110_fill_display_configs(context, pp_display_cfg);
/* TODO: is this still applicable?*/
if (pp_display_cfg->display_count == 1) {
const struct dc_crtc_timing *timing =
&context->streams[0]->timing;
pp_display_cfg->crtc_index =
pp_display_cfg->disp_configs[0].pipe_idx;
pp_display_cfg->line_time_in_us = timing->h_total * 1000
/ timing->pix_clk_khz;
}
if (memcmp(&dc->prev_display_config, pp_display_cfg, sizeof(
struct dm_pp_display_configuration)) != 0)
dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg);
dc->prev_display_config = *pp_display_cfg;
}
static void dce110_set_bandwidth(
struct dc *dc,
struct dc_state *context,
bool decrease_allowed)
{
struct dc_clocks req_clks;
req_clks.dispclk_khz = context->bw.dce.dispclk_khz;
req_clks.phyclk_khz = get_max_pixel_clock_for_all_paths(dc, context);
if (decrease_allowed)
dce110_set_displaymarks(dc, context);
else
dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
dc->res_pool->dccg->funcs->update_clocks(
dc->res_pool->dccg,
&req_clks,
decrease_allowed);
pplib_apply_display_requirements(dc, context);
}
static void dce110_program_front_end_for_pipe(
struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct mem_input *mi = pipe_ctx->plane_res.mi;
struct pipe_ctx *old_pipe = NULL;
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
struct xfm_grph_csc_adjustment adjust;
struct out_csc_color_matrix tbl_entry;
unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
unsigned int i;
DC_LOGGER_INIT();
memset(&tbl_entry, 0, sizeof(tbl_entry));
if (dc->current_state)
old_pipe = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
memset(&adjust, 0, sizeof(adjust));
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
dce_enable_fe_clock(dc->hwseq, mi->inst, true);
set_default_colors(pipe_ctx);
if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
== true) {
tbl_entry.color_space =
pipe_ctx->stream->output_color_space;
for (i = 0; i < 12; i++)
tbl_entry.regval[i] =
pipe_ctx->stream->csc_color_matrix.matrix[i];
pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
(pipe_ctx->plane_res.xfm, &tbl_entry);
}
if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
adjust.temperature_matrix[i] =
pipe_ctx->stream->gamut_remap_matrix.matrix[i];
}
pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
program_scaler(dc, pipe_ctx);
/* fbc not applicable on Underlay pipe */
if (dc->fbc_compressor && old_pipe->stream &&
pipe_ctx->pipe_idx != underlay_idx) {
if (plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
else
enable_fbc(dc, dc->current_state);
}
mi->funcs->mem_input_program_surface_config(
mi,
plane_state->format,
&plane_state->tiling_info,
&plane_state->plane_size,
plane_state->rotation,
NULL,
false);
if (mi->funcs->set_blank)
mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
if (dc->config.gpu_vm_support)
mi->funcs->mem_input_program_pte_vm(
pipe_ctx->plane_res.mi,
plane_state->format,
&plane_state->tiling_info,
plane_state->rotation);
/* Moved programming gamma from dc to hwss */
if (pipe_ctx->plane_state->update_flags.bits.full_update ||
pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
pipe_ctx->plane_state->update_flags.bits.gamma_change)
dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state);
if (pipe_ctx->plane_state->update_flags.bits.full_update)
dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream);
DC_LOG_SURFACE(
"Pipe:%d %p: addr hi:0x%x, "
"addr low:0x%x, "
"src: %d, %d, %d,"
" %d; dst: %d, %d, %d, %d;"
"clip: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
(void *) pipe_ctx->plane_state,
pipe_ctx->plane_state->address.grph.addr.high_part,
pipe_ctx->plane_state->address.grph.addr.low_part,
pipe_ctx->plane_state->src_rect.x,
pipe_ctx->plane_state->src_rect.y,
pipe_ctx->plane_state->src_rect.width,
pipe_ctx->plane_state->src_rect.height,
pipe_ctx->plane_state->dst_rect.x,
pipe_ctx->plane_state->dst_rect.y,
pipe_ctx->plane_state->dst_rect.width,
pipe_ctx->plane_state->dst_rect.height,
pipe_ctx->plane_state->clip_rect.x,
pipe_ctx->plane_state->clip_rect.y,
pipe_ctx->plane_state->clip_rect.width,
pipe_ctx->plane_state->clip_rect.height);
DC_LOG_SURFACE(
"Pipe %d: width, height, x, y\n"
"viewport:%d, %d, %d, %d\n"
"recout: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
pipe_ctx->plane_res.scl_data.viewport.width,
pipe_ctx->plane_res.scl_data.viewport.height,
pipe_ctx->plane_res.scl_data.viewport.x,
pipe_ctx->plane_res.scl_data.viewport.y,
pipe_ctx->plane_res.scl_data.recout.width,
pipe_ctx->plane_res.scl_data.recout.height,
pipe_ctx->plane_res.scl_data.recout.x,
pipe_ctx->plane_res.scl_data.recout.y);
}
static void dce110_apply_ctx_for_surface(
struct dc *dc,
const struct dc_stream_state *stream,
int num_planes,
struct dc_state *context)
{
int i;
if (num_planes == 0)
return;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
if (stream == pipe_ctx->stream) {
if (!pipe_ctx->top_pipe &&
(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
}
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->stream != stream)
continue;
/* Need to allocate mem before program front end for Fiji */
pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
pipe_ctx->plane_res.mi,
pipe_ctx->stream->timing.h_total,
pipe_ctx->stream->timing.v_total,
pipe_ctx->stream->timing.pix_clk_khz,
context->stream_count);
dce110_program_front_end_for_pipe(dc, pipe_ctx);
dc->hwss.update_plane_addr(dc, pipe_ctx);
program_surface_visibility(dc, pipe_ctx);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
if ((stream == pipe_ctx->stream) &&
(!pipe_ctx->top_pipe) &&
(pipe_ctx->plane_state || old_pipe_ctx->plane_state))
dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
}
}
static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
int fe_idx = pipe_ctx->plane_res.mi ?
pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
/* Do not power down fe when stream is active on dce*/
if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
return;
dc->hwss.enable_display_power_gating(
dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
dc->res_pool->transforms[fe_idx]);
}
static void dce110_wait_for_mpcc_disconnect(
struct dc *dc,
struct resource_pool *res_pool,
struct pipe_ctx *pipe_ctx)
{
/* do nothing*/
}
static void program_csc_matrix(struct pipe_ctx *pipe_ctx,
enum dc_color_space colorspace,
uint16_t *matrix)
{
int i;
struct out_csc_color_matrix tbl_entry;
if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
== true) {
enum dc_color_space color_space =
pipe_ctx->stream->output_color_space;
//uint16_t matrix[12];
for (i = 0; i < 12; i++)
tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
tbl_entry.color_space = color_space;
//tbl_entry.regval = matrix;
pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(pipe_ctx->plane_res.xfm, &tbl_entry);
}
}
void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
{
struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
struct mem_input *mi = pipe_ctx->plane_res.mi;
struct dc_cursor_mi_param param = {
.pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_khz,
.ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clock_inKhz,
.viewport = pipe_ctx->plane_res.scl_data.viewport,
.h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
.v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
.rotation = pipe_ctx->plane_state->rotation,
.mirror = pipe_ctx->plane_state->horizontal_mirror
};
if (pipe_ctx->plane_state->address.type
== PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
pos_cpy.enable = false;
if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
pos_cpy.enable = false;
if (ipp->funcs->ipp_cursor_set_position)
ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
if (mi->funcs->set_cursor_position)
mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
}
void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
{
struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
if (pipe_ctx->plane_res.ipp &&
pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
pipe_ctx->plane_res.ipp, attributes);
if (pipe_ctx->plane_res.mi &&
pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
pipe_ctx->plane_res.mi, attributes);
if (pipe_ctx->plane_res.xfm &&
pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
pipe_ctx->plane_res.xfm, attributes);
}
static void ready_shared_resources(struct dc *dc, struct dc_state *context) {}
static void optimize_shared_resources(struct dc *dc) {}
static const struct hw_sequencer_funcs dce110_funcs = {
.program_gamut_remap = program_gamut_remap,
.program_csc_matrix = program_csc_matrix,
.init_hw = init_hw,
.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
.apply_ctx_for_surface = dce110_apply_ctx_for_surface,
.update_plane_addr = update_plane_addr,
.update_pending_status = dce110_update_pending_status,
.set_input_transfer_func = dce110_set_input_transfer_func,
.set_output_transfer_func = dce110_set_output_transfer_func,
.power_down = dce110_power_down,
.enable_accelerated_mode = dce110_enable_accelerated_mode,
.enable_timing_synchronization = dce110_enable_timing_synchronization,
.enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
.update_info_frame = dce110_update_info_frame,
.enable_stream = dce110_enable_stream,
.disable_stream = dce110_disable_stream,
.unblank_stream = dce110_unblank_stream,
.blank_stream = dce110_blank_stream,
.enable_audio_stream = dce110_enable_audio_stream,
.disable_audio_stream = dce110_disable_audio_stream,
.enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
.enable_display_power_gating = dce110_enable_display_power_gating,
.disable_plane = dce110_power_down_fe,
.pipe_control_lock = dce_pipe_control_lock,
.set_bandwidth = dce110_set_bandwidth,
.set_drr = set_drr,
.get_position = get_position,
.set_static_screen_control = set_static_screen_control,
.reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
.enable_stream_timing = dce110_enable_stream_timing,
.setup_stereo = NULL,
.set_avmute = dce110_set_avmute,
.wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
.ready_shared_resources = ready_shared_resources,
.optimize_shared_resources = optimize_shared_resources,
.pplib_apply_display_requirements = pplib_apply_display_requirements,
.edp_backlight_control = hwss_edp_backlight_control,
.edp_power_control = hwss_edp_power_control,
.edp_wait_for_hpd_ready = hwss_edp_wait_for_hpd_ready,
.set_cursor_position = dce110_set_cursor_position,
.set_cursor_attribute = dce110_set_cursor_attribute
};
void dce110_hw_sequencer_construct(struct dc *dc)
{
dc->hwss = dce110_funcs;
}