| /* | 
 |  * Performance events ring-buffer code: | 
 |  * | 
 |  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
 |  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar | 
 |  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra | 
 |  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 
 |  * | 
 |  * For licensing details see kernel-base/COPYING | 
 |  */ | 
 |  | 
 | #include <linux/perf_event.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/circ_buf.h> | 
 | #include <linux/poll.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | static void perf_output_wakeup(struct perf_output_handle *handle) | 
 | { | 
 | 	atomic_set(&handle->rb->poll, POLLIN); | 
 |  | 
 | 	handle->event->pending_wakeup = 1; | 
 | 	irq_work_queue(&handle->event->pending); | 
 | } | 
 |  | 
 | /* | 
 |  * We need to ensure a later event_id doesn't publish a head when a former | 
 |  * event isn't done writing. However since we need to deal with NMIs we | 
 |  * cannot fully serialize things. | 
 |  * | 
 |  * We only publish the head (and generate a wakeup) when the outer-most | 
 |  * event completes. | 
 |  */ | 
 | static void perf_output_get_handle(struct perf_output_handle *handle) | 
 | { | 
 | 	struct ring_buffer *rb = handle->rb; | 
 |  | 
 | 	preempt_disable(); | 
 | 	local_inc(&rb->nest); | 
 | 	handle->wakeup = local_read(&rb->wakeup); | 
 | } | 
 |  | 
 | static void perf_output_put_handle(struct perf_output_handle *handle) | 
 | { | 
 | 	struct ring_buffer *rb = handle->rb; | 
 | 	unsigned long head; | 
 |  | 
 | again: | 
 | 	head = local_read(&rb->head); | 
 |  | 
 | 	/* | 
 | 	 * IRQ/NMI can happen here, which means we can miss a head update. | 
 | 	 */ | 
 |  | 
 | 	if (!local_dec_and_test(&rb->nest)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Since the mmap() consumer (userspace) can run on a different CPU: | 
 | 	 * | 
 | 	 *   kernel				user | 
 | 	 * | 
 | 	 *   if (LOAD ->data_tail) {		LOAD ->data_head | 
 | 	 *			(A)		smp_rmb()	(C) | 
 | 	 *	STORE $data			LOAD $data | 
 | 	 *	smp_wmb()	(B)		smp_mb()	(D) | 
 | 	 *	STORE ->data_head		STORE ->data_tail | 
 | 	 *   } | 
 | 	 * | 
 | 	 * Where A pairs with D, and B pairs with C. | 
 | 	 * | 
 | 	 * In our case (A) is a control dependency that separates the load of | 
 | 	 * the ->data_tail and the stores of $data. In case ->data_tail | 
 | 	 * indicates there is no room in the buffer to store $data we do not. | 
 | 	 * | 
 | 	 * D needs to be a full barrier since it separates the data READ | 
 | 	 * from the tail WRITE. | 
 | 	 * | 
 | 	 * For B a WMB is sufficient since it separates two WRITEs, and for C | 
 | 	 * an RMB is sufficient since it separates two READs. | 
 | 	 * | 
 | 	 * See perf_output_begin(). | 
 | 	 */ | 
 | 	smp_wmb(); /* B, matches C */ | 
 | 	rb->user_page->data_head = head; | 
 |  | 
 | 	/* | 
 | 	 * Now check if we missed an update -- rely on previous implied | 
 | 	 * compiler barriers to force a re-read. | 
 | 	 */ | 
 | 	if (unlikely(head != local_read(&rb->head))) { | 
 | 		local_inc(&rb->nest); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	if (handle->wakeup != local_read(&rb->wakeup)) | 
 | 		perf_output_wakeup(handle); | 
 |  | 
 | out: | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static bool __always_inline | 
 | ring_buffer_has_space(unsigned long head, unsigned long tail, | 
 | 		      unsigned long data_size, unsigned int size, | 
 | 		      bool backward) | 
 | { | 
 | 	if (!backward) | 
 | 		return CIRC_SPACE(head, tail, data_size) >= size; | 
 | 	else | 
 | 		return CIRC_SPACE(tail, head, data_size) >= size; | 
 | } | 
 |  | 
 | static int __always_inline | 
 | __perf_output_begin(struct perf_output_handle *handle, | 
 | 		    struct perf_event *event, unsigned int size, | 
 | 		    bool backward) | 
 | { | 
 | 	struct ring_buffer *rb; | 
 | 	unsigned long tail, offset, head; | 
 | 	int have_lost, page_shift; | 
 | 	struct { | 
 | 		struct perf_event_header header; | 
 | 		u64			 id; | 
 | 		u64			 lost; | 
 | 	} lost_event; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	/* | 
 | 	 * For inherited events we send all the output towards the parent. | 
 | 	 */ | 
 | 	if (event->parent) | 
 | 		event = event->parent; | 
 |  | 
 | 	rb = rcu_dereference(event->rb); | 
 | 	if (unlikely(!rb)) | 
 | 		goto out; | 
 |  | 
 | 	if (unlikely(rb->paused)) { | 
 | 		if (rb->nr_pages) | 
 | 			local_inc(&rb->lost); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	handle->rb    = rb; | 
 | 	handle->event = event; | 
 |  | 
 | 	have_lost = local_read(&rb->lost); | 
 | 	if (unlikely(have_lost)) { | 
 | 		size += sizeof(lost_event); | 
 | 		if (event->attr.sample_id_all) | 
 | 			size += event->id_header_size; | 
 | 	} | 
 |  | 
 | 	perf_output_get_handle(handle); | 
 |  | 
 | 	do { | 
 | 		tail = READ_ONCE(rb->user_page->data_tail); | 
 | 		offset = head = local_read(&rb->head); | 
 | 		if (!rb->overwrite) { | 
 | 			if (unlikely(!ring_buffer_has_space(head, tail, | 
 | 							    perf_data_size(rb), | 
 | 							    size, backward))) | 
 | 				goto fail; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The above forms a control dependency barrier separating the | 
 | 		 * @tail load above from the data stores below. Since the @tail | 
 | 		 * load is required to compute the branch to fail below. | 
 | 		 * | 
 | 		 * A, matches D; the full memory barrier userspace SHOULD issue | 
 | 		 * after reading the data and before storing the new tail | 
 | 		 * position. | 
 | 		 * | 
 | 		 * See perf_output_put_handle(). | 
 | 		 */ | 
 |  | 
 | 		if (!backward) | 
 | 			head += size; | 
 | 		else | 
 | 			head -= size; | 
 | 	} while (local_cmpxchg(&rb->head, offset, head) != offset); | 
 |  | 
 | 	if (backward) { | 
 | 		offset = head; | 
 | 		head = (u64)(-head); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We rely on the implied barrier() by local_cmpxchg() to ensure | 
 | 	 * none of the data stores below can be lifted up by the compiler. | 
 | 	 */ | 
 |  | 
 | 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) | 
 | 		local_add(rb->watermark, &rb->wakeup); | 
 |  | 
 | 	page_shift = PAGE_SHIFT + page_order(rb); | 
 |  | 
 | 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1); | 
 | 	offset &= (1UL << page_shift) - 1; | 
 | 	handle->addr = rb->data_pages[handle->page] + offset; | 
 | 	handle->size = (1UL << page_shift) - offset; | 
 |  | 
 | 	if (unlikely(have_lost)) { | 
 | 		struct perf_sample_data sample_data; | 
 |  | 
 | 		lost_event.header.size = sizeof(lost_event); | 
 | 		lost_event.header.type = PERF_RECORD_LOST; | 
 | 		lost_event.header.misc = 0; | 
 | 		lost_event.id          = event->id; | 
 | 		lost_event.lost        = local_xchg(&rb->lost, 0); | 
 |  | 
 | 		perf_event_header__init_id(&lost_event.header, | 
 | 					   &sample_data, event); | 
 | 		perf_output_put(handle, lost_event); | 
 | 		perf_event__output_id_sample(event, handle, &sample_data); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	local_inc(&rb->lost); | 
 | 	perf_output_put_handle(handle); | 
 | out: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | int perf_output_begin_forward(struct perf_output_handle *handle, | 
 | 			     struct perf_event *event, unsigned int size) | 
 | { | 
 | 	return __perf_output_begin(handle, event, size, false); | 
 | } | 
 |  | 
 | int perf_output_begin_backward(struct perf_output_handle *handle, | 
 | 			       struct perf_event *event, unsigned int size) | 
 | { | 
 | 	return __perf_output_begin(handle, event, size, true); | 
 | } | 
 |  | 
 | int perf_output_begin(struct perf_output_handle *handle, | 
 | 		      struct perf_event *event, unsigned int size) | 
 | { | 
 |  | 
 | 	return __perf_output_begin(handle, event, size, | 
 | 				   unlikely(is_write_backward(event))); | 
 | } | 
 |  | 
 | unsigned int perf_output_copy(struct perf_output_handle *handle, | 
 | 		      const void *buf, unsigned int len) | 
 | { | 
 | 	return __output_copy(handle, buf, len); | 
 | } | 
 |  | 
 | unsigned int perf_output_skip(struct perf_output_handle *handle, | 
 | 			      unsigned int len) | 
 | { | 
 | 	return __output_skip(handle, NULL, len); | 
 | } | 
 |  | 
 | void perf_output_end(struct perf_output_handle *handle) | 
 | { | 
 | 	perf_output_put_handle(handle); | 
 | 	rcu_read_unlock(); | 
 | } | 
 |  | 
 | static void | 
 | ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) | 
 | { | 
 | 	long max_size = perf_data_size(rb); | 
 |  | 
 | 	if (watermark) | 
 | 		rb->watermark = min(max_size, watermark); | 
 |  | 
 | 	if (!rb->watermark) | 
 | 		rb->watermark = max_size / 2; | 
 |  | 
 | 	if (flags & RING_BUFFER_WRITABLE) | 
 | 		rb->overwrite = 0; | 
 | 	else | 
 | 		rb->overwrite = 1; | 
 |  | 
 | 	atomic_set(&rb->refcount, 1); | 
 |  | 
 | 	INIT_LIST_HEAD(&rb->event_list); | 
 | 	spin_lock_init(&rb->event_lock); | 
 |  | 
 | 	/* | 
 | 	 * perf_output_begin() only checks rb->paused, therefore | 
 | 	 * rb->paused must be true if we have no pages for output. | 
 | 	 */ | 
 | 	if (!rb->nr_pages) | 
 | 		rb->paused = 1; | 
 | } | 
 |  | 
 | /* | 
 |  * This is called before hardware starts writing to the AUX area to | 
 |  * obtain an output handle and make sure there's room in the buffer. | 
 |  * When the capture completes, call perf_aux_output_end() to commit | 
 |  * the recorded data to the buffer. | 
 |  * | 
 |  * The ordering is similar to that of perf_output_{begin,end}, with | 
 |  * the exception of (B), which should be taken care of by the pmu | 
 |  * driver, since ordering rules will differ depending on hardware. | 
 |  * | 
 |  * Call this from pmu::start(); see the comment in perf_aux_output_end() | 
 |  * about its use in pmu callbacks. Both can also be called from the PMI | 
 |  * handler if needed. | 
 |  */ | 
 | void *perf_aux_output_begin(struct perf_output_handle *handle, | 
 | 			    struct perf_event *event) | 
 | { | 
 | 	struct perf_event *output_event = event; | 
 | 	unsigned long aux_head, aux_tail; | 
 | 	struct ring_buffer *rb; | 
 |  | 
 | 	if (output_event->parent) | 
 | 		output_event = output_event->parent; | 
 |  | 
 | 	/* | 
 | 	 * Since this will typically be open across pmu::add/pmu::del, we | 
 | 	 * grab ring_buffer's refcount instead of holding rcu read lock | 
 | 	 * to make sure it doesn't disappear under us. | 
 | 	 */ | 
 | 	rb = ring_buffer_get(output_event); | 
 | 	if (!rb) | 
 | 		return NULL; | 
 |  | 
 | 	if (!rb_has_aux(rb)) | 
 | 		goto err; | 
 |  | 
 | 	/* | 
 | 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(), | 
 | 	 * about to get freed, so we leave immediately. | 
 | 	 * | 
 | 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in | 
 | 	 * the same order, see perf_mmap_close. Otherwise we end up freeing | 
 | 	 * aux pages in this path, which is a bug, because in_atomic(). | 
 | 	 */ | 
 | 	if (!atomic_read(&rb->aux_mmap_count)) | 
 | 		goto err; | 
 |  | 
 | 	if (!atomic_inc_not_zero(&rb->aux_refcount)) | 
 | 		goto err; | 
 |  | 
 | 	/* | 
 | 	 * Nesting is not supported for AUX area, make sure nested | 
 | 	 * writers are caught early | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1))) | 
 | 		goto err_put; | 
 |  | 
 | 	aux_head = local_read(&rb->aux_head); | 
 |  | 
 | 	handle->rb = rb; | 
 | 	handle->event = event; | 
 | 	handle->head = aux_head; | 
 | 	handle->size = 0; | 
 |  | 
 | 	/* | 
 | 	 * In overwrite mode, AUX data stores do not depend on aux_tail, | 
 | 	 * therefore (A) control dependency barrier does not exist. The | 
 | 	 * (B) <-> (C) ordering is still observed by the pmu driver. | 
 | 	 */ | 
 | 	if (!rb->aux_overwrite) { | 
 | 		aux_tail = ACCESS_ONCE(rb->user_page->aux_tail); | 
 | 		handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark; | 
 | 		if (aux_head - aux_tail < perf_aux_size(rb)) | 
 | 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); | 
 |  | 
 | 		/* | 
 | 		 * handle->size computation depends on aux_tail load; this forms a | 
 | 		 * control dependency barrier separating aux_tail load from aux data | 
 | 		 * store that will be enabled on successful return | 
 | 		 */ | 
 | 		if (!handle->size) { /* A, matches D */ | 
 | 			event->pending_disable = 1; | 
 | 			perf_output_wakeup(handle); | 
 | 			local_set(&rb->aux_nest, 0); | 
 | 			goto err_put; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return handle->rb->aux_priv; | 
 |  | 
 | err_put: | 
 | 	/* can't be last */ | 
 | 	rb_free_aux(rb); | 
 |  | 
 | err: | 
 | 	ring_buffer_put(rb); | 
 | 	handle->event = NULL; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Commit the data written by hardware into the ring buffer by adjusting | 
 |  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the | 
 |  * pmu driver's responsibility to observe ordering rules of the hardware, | 
 |  * so that all the data is externally visible before this is called. | 
 |  * | 
 |  * Note: this has to be called from pmu::stop() callback, as the assumption | 
 |  * of the AUX buffer management code is that after pmu::stop(), the AUX | 
 |  * transaction must be stopped and therefore drop the AUX reference count. | 
 |  */ | 
 | void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, | 
 | 			 bool truncated) | 
 | { | 
 | 	struct ring_buffer *rb = handle->rb; | 
 | 	bool wakeup = truncated; | 
 | 	unsigned long aux_head; | 
 | 	u64 flags = 0; | 
 |  | 
 | 	if (truncated) | 
 | 		flags |= PERF_AUX_FLAG_TRUNCATED; | 
 |  | 
 | 	/* in overwrite mode, driver provides aux_head via handle */ | 
 | 	if (rb->aux_overwrite) { | 
 | 		flags |= PERF_AUX_FLAG_OVERWRITE; | 
 |  | 
 | 		aux_head = handle->head; | 
 | 		local_set(&rb->aux_head, aux_head); | 
 | 	} else { | 
 | 		aux_head = local_read(&rb->aux_head); | 
 | 		local_add(size, &rb->aux_head); | 
 | 	} | 
 |  | 
 | 	if (size || flags) { | 
 | 		/* | 
 | 		 * Only send RECORD_AUX if we have something useful to communicate | 
 | 		 */ | 
 |  | 
 | 		perf_event_aux_event(handle->event, aux_head, size, flags); | 
 | 	} | 
 |  | 
 | 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head); | 
 |  | 
 | 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) { | 
 | 		wakeup = true; | 
 | 		local_add(rb->aux_watermark, &rb->aux_wakeup); | 
 | 	} | 
 |  | 
 | 	if (wakeup) { | 
 | 		if (truncated) | 
 | 			handle->event->pending_disable = 1; | 
 | 		perf_output_wakeup(handle); | 
 | 	} | 
 |  | 
 | 	handle->event = NULL; | 
 |  | 
 | 	local_set(&rb->aux_nest, 0); | 
 | 	/* can't be last */ | 
 | 	rb_free_aux(rb); | 
 | 	ring_buffer_put(rb); | 
 | } | 
 |  | 
 | /* | 
 |  * Skip over a given number of bytes in the AUX buffer, due to, for example, | 
 |  * hardware's alignment constraints. | 
 |  */ | 
 | int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) | 
 | { | 
 | 	struct ring_buffer *rb = handle->rb; | 
 | 	unsigned long aux_head; | 
 |  | 
 | 	if (size > handle->size) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	local_add(size, &rb->aux_head); | 
 |  | 
 | 	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head); | 
 | 	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) { | 
 | 		perf_output_wakeup(handle); | 
 | 		local_add(rb->aux_watermark, &rb->aux_wakeup); | 
 | 		handle->wakeup = local_read(&rb->aux_wakeup) + | 
 | 				 rb->aux_watermark; | 
 | 	} | 
 |  | 
 | 	handle->head = aux_head; | 
 | 	handle->size -= size; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void *perf_get_aux(struct perf_output_handle *handle) | 
 | { | 
 | 	/* this is only valid between perf_aux_output_begin and *_end */ | 
 | 	if (!handle->event) | 
 | 		return NULL; | 
 |  | 
 | 	return handle->rb->aux_priv; | 
 | } | 
 |  | 
 | #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) | 
 |  | 
 | static struct page *rb_alloc_aux_page(int node, int order) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	if (order > MAX_ORDER) | 
 | 		order = MAX_ORDER; | 
 |  | 
 | 	do { | 
 | 		page = alloc_pages_node(node, PERF_AUX_GFP, order); | 
 | 	} while (!page && order--); | 
 |  | 
 | 	if (page && order) { | 
 | 		/* | 
 | 		 * Communicate the allocation size to the driver: | 
 | 		 * if we managed to secure a high-order allocation, | 
 | 		 * set its first page's private to this order; | 
 | 		 * !PagePrivate(page) means it's just a normal page. | 
 | 		 */ | 
 | 		split_page(page, order); | 
 | 		SetPagePrivate(page); | 
 | 		set_page_private(page, order); | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static void rb_free_aux_page(struct ring_buffer *rb, int idx) | 
 | { | 
 | 	struct page *page = virt_to_page(rb->aux_pages[idx]); | 
 |  | 
 | 	ClearPagePrivate(page); | 
 | 	page->mapping = NULL; | 
 | 	__free_page(page); | 
 | } | 
 |  | 
 | static void __rb_free_aux(struct ring_buffer *rb) | 
 | { | 
 | 	int pg; | 
 |  | 
 | 	/* | 
 | 	 * Should never happen, the last reference should be dropped from | 
 | 	 * perf_mmap_close() path, which first stops aux transactions (which | 
 | 	 * in turn are the atomic holders of aux_refcount) and then does the | 
 | 	 * last rb_free_aux(). | 
 | 	 */ | 
 | 	WARN_ON_ONCE(in_atomic()); | 
 |  | 
 | 	if (rb->aux_priv) { | 
 | 		rb->free_aux(rb->aux_priv); | 
 | 		rb->free_aux = NULL; | 
 | 		rb->aux_priv = NULL; | 
 | 	} | 
 |  | 
 | 	if (rb->aux_nr_pages) { | 
 | 		for (pg = 0; pg < rb->aux_nr_pages; pg++) | 
 | 			rb_free_aux_page(rb, pg); | 
 |  | 
 | 		kfree(rb->aux_pages); | 
 | 		rb->aux_nr_pages = 0; | 
 | 	} | 
 | } | 
 |  | 
 | int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event, | 
 | 		 pgoff_t pgoff, int nr_pages, long watermark, int flags) | 
 | { | 
 | 	bool overwrite = !(flags & RING_BUFFER_WRITABLE); | 
 | 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); | 
 | 	int ret = -ENOMEM, max_order = 0; | 
 |  | 
 | 	if (!has_aux(event)) | 
 | 		return -ENOTSUPP; | 
 |  | 
 | 	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) { | 
 | 		/* | 
 | 		 * We need to start with the max_order that fits in nr_pages, | 
 | 		 * not the other way around, hence ilog2() and not get_order. | 
 | 		 */ | 
 | 		max_order = ilog2(nr_pages); | 
 |  | 
 | 		/* | 
 | 		 * PMU requests more than one contiguous chunks of memory | 
 | 		 * for SW double buffering | 
 | 		 */ | 
 | 		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) && | 
 | 		    !overwrite) { | 
 | 			if (!max_order) | 
 | 				return -EINVAL; | 
 |  | 
 | 			max_order--; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node); | 
 | 	if (!rb->aux_pages) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rb->free_aux = event->pmu->free_aux; | 
 | 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { | 
 | 		struct page *page; | 
 | 		int last, order; | 
 |  | 
 | 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); | 
 | 		page = rb_alloc_aux_page(node, order); | 
 | 		if (!page) | 
 | 			goto out; | 
 |  | 
 | 		for (last = rb->aux_nr_pages + (1 << page_private(page)); | 
 | 		     last > rb->aux_nr_pages; rb->aux_nr_pages++) | 
 | 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In overwrite mode, PMUs that don't support SG may not handle more | 
 | 	 * than one contiguous allocation, since they rely on PMI to do double | 
 | 	 * buffering. In this case, the entire buffer has to be one contiguous | 
 | 	 * chunk. | 
 | 	 */ | 
 | 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && | 
 | 	    overwrite) { | 
 | 		struct page *page = virt_to_page(rb->aux_pages[0]); | 
 |  | 
 | 		if (page_private(page) != max_order) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages, | 
 | 					     overwrite); | 
 | 	if (!rb->aux_priv) | 
 | 		goto out; | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * aux_pages (and pmu driver's private data, aux_priv) will be | 
 | 	 * referenced in both producer's and consumer's contexts, thus | 
 | 	 * we keep a refcount here to make sure either of the two can | 
 | 	 * reference them safely. | 
 | 	 */ | 
 | 	atomic_set(&rb->aux_refcount, 1); | 
 |  | 
 | 	rb->aux_overwrite = overwrite; | 
 | 	rb->aux_watermark = watermark; | 
 |  | 
 | 	if (!rb->aux_watermark && !rb->aux_overwrite) | 
 | 		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1); | 
 |  | 
 | out: | 
 | 	if (!ret) | 
 | 		rb->aux_pgoff = pgoff; | 
 | 	else | 
 | 		__rb_free_aux(rb); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void rb_free_aux(struct ring_buffer *rb) | 
 | { | 
 | 	if (atomic_dec_and_test(&rb->aux_refcount)) | 
 | 		__rb_free_aux(rb); | 
 | } | 
 |  | 
 | #ifndef CONFIG_PERF_USE_VMALLOC | 
 |  | 
 | /* | 
 |  * Back perf_mmap() with regular GFP_KERNEL-0 pages. | 
 |  */ | 
 |  | 
 | static struct page * | 
 | __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) | 
 | { | 
 | 	if (pgoff > rb->nr_pages) | 
 | 		return NULL; | 
 |  | 
 | 	if (pgoff == 0) | 
 | 		return virt_to_page(rb->user_page); | 
 |  | 
 | 	return virt_to_page(rb->data_pages[pgoff - 1]); | 
 | } | 
 |  | 
 | static void *perf_mmap_alloc_page(int cpu) | 
 | { | 
 | 	struct page *page; | 
 | 	int node; | 
 |  | 
 | 	node = (cpu == -1) ? cpu : cpu_to_node(cpu); | 
 | 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	return page_address(page); | 
 | } | 
 |  | 
 | struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) | 
 | { | 
 | 	struct ring_buffer *rb; | 
 | 	unsigned long size; | 
 | 	int i; | 
 |  | 
 | 	size = sizeof(struct ring_buffer); | 
 | 	size += nr_pages * sizeof(void *); | 
 |  | 
 | 	rb = kzalloc(size, GFP_KERNEL); | 
 | 	if (!rb) | 
 | 		goto fail; | 
 |  | 
 | 	rb->user_page = perf_mmap_alloc_page(cpu); | 
 | 	if (!rb->user_page) | 
 | 		goto fail_user_page; | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		rb->data_pages[i] = perf_mmap_alloc_page(cpu); | 
 | 		if (!rb->data_pages[i]) | 
 | 			goto fail_data_pages; | 
 | 	} | 
 |  | 
 | 	rb->nr_pages = nr_pages; | 
 |  | 
 | 	ring_buffer_init(rb, watermark, flags); | 
 |  | 
 | 	return rb; | 
 |  | 
 | fail_data_pages: | 
 | 	for (i--; i >= 0; i--) | 
 | 		free_page((unsigned long)rb->data_pages[i]); | 
 |  | 
 | 	free_page((unsigned long)rb->user_page); | 
 |  | 
 | fail_user_page: | 
 | 	kfree(rb); | 
 |  | 
 | fail: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void perf_mmap_free_page(unsigned long addr) | 
 | { | 
 | 	struct page *page = virt_to_page((void *)addr); | 
 |  | 
 | 	page->mapping = NULL; | 
 | 	__free_page(page); | 
 | } | 
 |  | 
 | void rb_free(struct ring_buffer *rb) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	perf_mmap_free_page((unsigned long)rb->user_page); | 
 | 	for (i = 0; i < rb->nr_pages; i++) | 
 | 		perf_mmap_free_page((unsigned long)rb->data_pages[i]); | 
 | 	kfree(rb); | 
 | } | 
 |  | 
 | #else | 
 | static int data_page_nr(struct ring_buffer *rb) | 
 | { | 
 | 	return rb->nr_pages << page_order(rb); | 
 | } | 
 |  | 
 | static struct page * | 
 | __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) | 
 | { | 
 | 	/* The '>' counts in the user page. */ | 
 | 	if (pgoff > data_page_nr(rb)) | 
 | 		return NULL; | 
 |  | 
 | 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); | 
 | } | 
 |  | 
 | static void perf_mmap_unmark_page(void *addr) | 
 | { | 
 | 	struct page *page = vmalloc_to_page(addr); | 
 |  | 
 | 	page->mapping = NULL; | 
 | } | 
 |  | 
 | static void rb_free_work(struct work_struct *work) | 
 | { | 
 | 	struct ring_buffer *rb; | 
 | 	void *base; | 
 | 	int i, nr; | 
 |  | 
 | 	rb = container_of(work, struct ring_buffer, work); | 
 | 	nr = data_page_nr(rb); | 
 |  | 
 | 	base = rb->user_page; | 
 | 	/* The '<=' counts in the user page. */ | 
 | 	for (i = 0; i <= nr; i++) | 
 | 		perf_mmap_unmark_page(base + (i * PAGE_SIZE)); | 
 |  | 
 | 	vfree(base); | 
 | 	kfree(rb); | 
 | } | 
 |  | 
 | void rb_free(struct ring_buffer *rb) | 
 | { | 
 | 	schedule_work(&rb->work); | 
 | } | 
 |  | 
 | struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) | 
 | { | 
 | 	struct ring_buffer *rb; | 
 | 	unsigned long size; | 
 | 	void *all_buf; | 
 |  | 
 | 	size = sizeof(struct ring_buffer); | 
 | 	size += sizeof(void *); | 
 |  | 
 | 	rb = kzalloc(size, GFP_KERNEL); | 
 | 	if (!rb) | 
 | 		goto fail; | 
 |  | 
 | 	INIT_WORK(&rb->work, rb_free_work); | 
 |  | 
 | 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); | 
 | 	if (!all_buf) | 
 | 		goto fail_all_buf; | 
 |  | 
 | 	rb->user_page = all_buf; | 
 | 	rb->data_pages[0] = all_buf + PAGE_SIZE; | 
 | 	if (nr_pages) { | 
 | 		rb->nr_pages = 1; | 
 | 		rb->page_order = ilog2(nr_pages); | 
 | 	} | 
 |  | 
 | 	ring_buffer_init(rb, watermark, flags); | 
 |  | 
 | 	return rb; | 
 |  | 
 | fail_all_buf: | 
 | 	kfree(rb); | 
 |  | 
 | fail: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | struct page * | 
 | perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) | 
 | { | 
 | 	if (rb->aux_nr_pages) { | 
 | 		/* above AUX space */ | 
 | 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) | 
 | 			return NULL; | 
 |  | 
 | 		/* AUX space */ | 
 | 		if (pgoff >= rb->aux_pgoff) | 
 | 			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]); | 
 | 	} | 
 |  | 
 | 	return __perf_mmap_to_page(rb, pgoff); | 
 | } |