| /* | 
 |  * Kernel support for the ptrace() and syscall tracing interfaces. | 
 |  * | 
 |  * Copyright (C) 1999-2005 Hewlett-Packard Co | 
 |  *	David Mosberger-Tang <davidm@hpl.hp.com> | 
 |  * | 
 |  * Derived from the x86 and Alpha versions. | 
 |  */ | 
 | #include <linux/config.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/user.h> | 
 | #include <linux/security.h> | 
 | #include <linux/audit.h> | 
 | #include <linux/signal.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/ptrace_offsets.h> | 
 | #include <asm/rse.h> | 
 | #include <asm/system.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/unwind.h> | 
 | #ifdef CONFIG_PERFMON | 
 | #include <asm/perfmon.h> | 
 | #endif | 
 |  | 
 | #include "entry.h" | 
 |  | 
 | /* | 
 |  * Bits in the PSR that we allow ptrace() to change: | 
 |  *	be, up, ac, mfl, mfh (the user mask; five bits total) | 
 |  *	db (debug breakpoint fault; one bit) | 
 |  *	id (instruction debug fault disable; one bit) | 
 |  *	dd (data debug fault disable; one bit) | 
 |  *	ri (restart instruction; two bits) | 
 |  *	is (instruction set; one bit) | 
 |  */ | 
 | #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\ | 
 | 		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI) | 
 |  | 
 | #define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */ | 
 | #define PFM_MASK	MASK(38) | 
 |  | 
 | #define PTRACE_DEBUG	0 | 
 |  | 
 | #if PTRACE_DEBUG | 
 | # define dprintk(format...)	printk(format) | 
 | # define inline | 
 | #else | 
 | # define dprintk(format...) | 
 | #endif | 
 |  | 
 | /* Return TRUE if PT was created due to kernel-entry via a system-call.  */ | 
 |  | 
 | static inline int | 
 | in_syscall (struct pt_regs *pt) | 
 | { | 
 | 	return (long) pt->cr_ifs >= 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT | 
 |  * bitset where bit i is set iff the NaT bit of register i is set. | 
 |  */ | 
 | unsigned long | 
 | ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat) | 
 | { | 
 | #	define GET_BITS(first, last, unat)				\ | 
 | 	({								\ | 
 | 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\ | 
 | 		unsigned long nbits = (last - first + 1);		\ | 
 | 		unsigned long mask = MASK(nbits) << first;		\ | 
 | 		unsigned long dist;					\ | 
 | 		if (bit < first)					\ | 
 | 			dist = 64 + bit - first;			\ | 
 | 		else							\ | 
 | 			dist = bit - first;				\ | 
 | 		ia64_rotr(unat, dist) & mask;				\ | 
 | 	}) | 
 | 	unsigned long val; | 
 |  | 
 | 	/* | 
 | 	 * Registers that are stored consecutively in struct pt_regs | 
 | 	 * can be handled in parallel.  If the register order in | 
 | 	 * struct_pt_regs changes, this code MUST be updated. | 
 | 	 */ | 
 | 	val  = GET_BITS( 1,  1, scratch_unat); | 
 | 	val |= GET_BITS( 2,  3, scratch_unat); | 
 | 	val |= GET_BITS(12, 13, scratch_unat); | 
 | 	val |= GET_BITS(14, 14, scratch_unat); | 
 | 	val |= GET_BITS(15, 15, scratch_unat); | 
 | 	val |= GET_BITS( 8, 11, scratch_unat); | 
 | 	val |= GET_BITS(16, 31, scratch_unat); | 
 | 	return val; | 
 |  | 
 | #	undef GET_BITS | 
 | } | 
 |  | 
 | /* | 
 |  * Set the NaT bits for the scratch registers according to NAT and | 
 |  * return the resulting unat (assuming the scratch registers are | 
 |  * stored in PT). | 
 |  */ | 
 | unsigned long | 
 | ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat) | 
 | { | 
 | #	define PUT_BITS(first, last, nat)				\ | 
 | 	({								\ | 
 | 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\ | 
 | 		unsigned long nbits = (last - first + 1);		\ | 
 | 		unsigned long mask = MASK(nbits) << first;		\ | 
 | 		long dist;						\ | 
 | 		if (bit < first)					\ | 
 | 			dist = 64 + bit - first;			\ | 
 | 		else							\ | 
 | 			dist = bit - first;				\ | 
 | 		ia64_rotl(nat & mask, dist);				\ | 
 | 	}) | 
 | 	unsigned long scratch_unat; | 
 |  | 
 | 	/* | 
 | 	 * Registers that are stored consecutively in struct pt_regs | 
 | 	 * can be handled in parallel.  If the register order in | 
 | 	 * struct_pt_regs changes, this code MUST be updated. | 
 | 	 */ | 
 | 	scratch_unat  = PUT_BITS( 1,  1, nat); | 
 | 	scratch_unat |= PUT_BITS( 2,  3, nat); | 
 | 	scratch_unat |= PUT_BITS(12, 13, nat); | 
 | 	scratch_unat |= PUT_BITS(14, 14, nat); | 
 | 	scratch_unat |= PUT_BITS(15, 15, nat); | 
 | 	scratch_unat |= PUT_BITS( 8, 11, nat); | 
 | 	scratch_unat |= PUT_BITS(16, 31, nat); | 
 |  | 
 | 	return scratch_unat; | 
 |  | 
 | #	undef PUT_BITS | 
 | } | 
 |  | 
 | #define IA64_MLX_TEMPLATE	0x2 | 
 | #define IA64_MOVL_OPCODE	6 | 
 |  | 
 | void | 
 | ia64_increment_ip (struct pt_regs *regs) | 
 | { | 
 | 	unsigned long w0, ri = ia64_psr(regs)->ri + 1; | 
 |  | 
 | 	if (ri > 2) { | 
 | 		ri = 0; | 
 | 		regs->cr_iip += 16; | 
 | 	} else if (ri == 2) { | 
 | 		get_user(w0, (char __user *) regs->cr_iip + 0); | 
 | 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { | 
 | 			/* | 
 | 			 * rfi'ing to slot 2 of an MLX bundle causes | 
 | 			 * an illegal operation fault.  We don't want | 
 | 			 * that to happen... | 
 | 			 */ | 
 | 			ri = 0; | 
 | 			regs->cr_iip += 16; | 
 | 		} | 
 | 	} | 
 | 	ia64_psr(regs)->ri = ri; | 
 | } | 
 |  | 
 | void | 
 | ia64_decrement_ip (struct pt_regs *regs) | 
 | { | 
 | 	unsigned long w0, ri = ia64_psr(regs)->ri - 1; | 
 |  | 
 | 	if (ia64_psr(regs)->ri == 0) { | 
 | 		regs->cr_iip -= 16; | 
 | 		ri = 2; | 
 | 		get_user(w0, (char __user *) regs->cr_iip + 0); | 
 | 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { | 
 | 			/* | 
 | 			 * rfi'ing to slot 2 of an MLX bundle causes | 
 | 			 * an illegal operation fault.  We don't want | 
 | 			 * that to happen... | 
 | 			 */ | 
 | 			ri = 1; | 
 | 		} | 
 | 	} | 
 | 	ia64_psr(regs)->ri = ri; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine is used to read an rnat bits that are stored on the | 
 |  * kernel backing store.  Since, in general, the alignment of the user | 
 |  * and kernel are different, this is not completely trivial.  In | 
 |  * essence, we need to construct the user RNAT based on up to two | 
 |  * kernel RNAT values and/or the RNAT value saved in the child's | 
 |  * pt_regs. | 
 |  * | 
 |  * user rbs | 
 |  * | 
 |  * +--------+ <-- lowest address | 
 |  * | slot62 | | 
 |  * +--------+ | 
 |  * |  rnat  | 0x....1f8 | 
 |  * +--------+ | 
 |  * | slot00 | \ | 
 |  * +--------+ | | 
 |  * | slot01 | > child_regs->ar_rnat | 
 |  * +--------+ | | 
 |  * | slot02 | /				kernel rbs | 
 |  * +--------+				+--------+ | 
 |  *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs | 
 |  * +- - - - +				+--------+ | 
 |  *					| slot62 | | 
 |  * +- - - - +				+--------+ | 
 |  *					|  rnat	 | | 
 |  * +- - - - +				+--------+ | 
 |  *   vrnat				| slot00 | | 
 |  * +- - - - +				+--------+ | 
 |  *					=	 = | 
 |  *					+--------+ | 
 |  *					| slot00 | \ | 
 |  *					+--------+ | | 
 |  *					| slot01 | > child_stack->ar_rnat | 
 |  *					+--------+ | | 
 |  *					| slot02 | / | 
 |  *					+--------+ | 
 |  *						  <--- child_stack->ar_bspstore | 
 |  * | 
 |  * The way to think of this code is as follows: bit 0 in the user rnat | 
 |  * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat | 
 |  * value.  The kernel rnat value holding this bit is stored in | 
 |  * variable rnat0.  rnat1 is loaded with the kernel rnat value that | 
 |  * form the upper bits of the user rnat value. | 
 |  * | 
 |  * Boundary cases: | 
 |  * | 
 |  * o when reading the rnat "below" the first rnat slot on the kernel | 
 |  *   backing store, rnat0/rnat1 are set to 0 and the low order bits are | 
 |  *   merged in from pt->ar_rnat. | 
 |  * | 
 |  * o when reading the rnat "above" the last rnat slot on the kernel | 
 |  *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat. | 
 |  */ | 
 | static unsigned long | 
 | get_rnat (struct task_struct *task, struct switch_stack *sw, | 
 | 	  unsigned long *krbs, unsigned long *urnat_addr, | 
 | 	  unsigned long *urbs_end) | 
 | { | 
 | 	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr; | 
 | 	unsigned long umask = 0, mask, m; | 
 | 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; | 
 | 	long num_regs, nbits; | 
 | 	struct pt_regs *pt; | 
 |  | 
 | 	pt = ia64_task_regs(task); | 
 | 	kbsp = (unsigned long *) sw->ar_bspstore; | 
 | 	ubspstore = (unsigned long *) pt->ar_bspstore; | 
 |  | 
 | 	if (urbs_end < urnat_addr) | 
 | 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end); | 
 | 	else | 
 | 		nbits = 63; | 
 | 	mask = MASK(nbits); | 
 | 	/* | 
 | 	 * First, figure out which bit number slot 0 in user-land maps | 
 | 	 * to in the kernel rnat.  Do this by figuring out how many | 
 | 	 * register slots we're beyond the user's backingstore and | 
 | 	 * then computing the equivalent address in kernel space. | 
 | 	 */ | 
 | 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); | 
 | 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); | 
 | 	shift = ia64_rse_slot_num(slot0_kaddr); | 
 | 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); | 
 | 	rnat0_kaddr = rnat1_kaddr - 64; | 
 |  | 
 | 	if (ubspstore + 63 > urnat_addr) { | 
 | 		/* some bits need to be merged in from pt->ar_rnat */ | 
 | 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; | 
 | 		urnat = (pt->ar_rnat & umask); | 
 | 		mask &= ~umask; | 
 | 		if (!mask) | 
 | 			return urnat; | 
 | 	} | 
 |  | 
 | 	m = mask << shift; | 
 | 	if (rnat0_kaddr >= kbsp) | 
 | 		rnat0 = sw->ar_rnat; | 
 | 	else if (rnat0_kaddr > krbs) | 
 | 		rnat0 = *rnat0_kaddr; | 
 | 	urnat |= (rnat0 & m) >> shift; | 
 |  | 
 | 	m = mask >> (63 - shift); | 
 | 	if (rnat1_kaddr >= kbsp) | 
 | 		rnat1 = sw->ar_rnat; | 
 | 	else if (rnat1_kaddr > krbs) | 
 | 		rnat1 = *rnat1_kaddr; | 
 | 	urnat |= (rnat1 & m) << (63 - shift); | 
 | 	return urnat; | 
 | } | 
 |  | 
 | /* | 
 |  * The reverse of get_rnat. | 
 |  */ | 
 | static void | 
 | put_rnat (struct task_struct *task, struct switch_stack *sw, | 
 | 	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat, | 
 | 	  unsigned long *urbs_end) | 
 | { | 
 | 	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m; | 
 | 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; | 
 | 	long num_regs, nbits; | 
 | 	struct pt_regs *pt; | 
 | 	unsigned long cfm, *urbs_kargs; | 
 |  | 
 | 	pt = ia64_task_regs(task); | 
 | 	kbsp = (unsigned long *) sw->ar_bspstore; | 
 | 	ubspstore = (unsigned long *) pt->ar_bspstore; | 
 |  | 
 | 	urbs_kargs = urbs_end; | 
 | 	if (in_syscall(pt)) { | 
 | 		/* | 
 | 		 * If entered via syscall, don't allow user to set rnat bits | 
 | 		 * for syscall args. | 
 | 		 */ | 
 | 		cfm = pt->cr_ifs; | 
 | 		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f)); | 
 | 	} | 
 |  | 
 | 	if (urbs_kargs >= urnat_addr) | 
 | 		nbits = 63; | 
 | 	else { | 
 | 		if ((urnat_addr - 63) >= urbs_kargs) | 
 | 			return; | 
 | 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs); | 
 | 	} | 
 | 	mask = MASK(nbits); | 
 |  | 
 | 	/* | 
 | 	 * First, figure out which bit number slot 0 in user-land maps | 
 | 	 * to in the kernel rnat.  Do this by figuring out how many | 
 | 	 * register slots we're beyond the user's backingstore and | 
 | 	 * then computing the equivalent address in kernel space. | 
 | 	 */ | 
 | 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); | 
 | 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); | 
 | 	shift = ia64_rse_slot_num(slot0_kaddr); | 
 | 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); | 
 | 	rnat0_kaddr = rnat1_kaddr - 64; | 
 |  | 
 | 	if (ubspstore + 63 > urnat_addr) { | 
 | 		/* some bits need to be place in pt->ar_rnat: */ | 
 | 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; | 
 | 		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask); | 
 | 		mask &= ~umask; | 
 | 		if (!mask) | 
 | 			return; | 
 | 	} | 
 | 	/* | 
 | 	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an | 
 | 	 * rnat slot is ignored. so we don't have to clear it here. | 
 | 	 */ | 
 | 	rnat0 = (urnat << shift); | 
 | 	m = mask << shift; | 
 | 	if (rnat0_kaddr >= kbsp) | 
 | 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m); | 
 | 	else if (rnat0_kaddr > krbs) | 
 | 		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m)); | 
 |  | 
 | 	rnat1 = (urnat >> (63 - shift)); | 
 | 	m = mask >> (63 - shift); | 
 | 	if (rnat1_kaddr >= kbsp) | 
 | 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m); | 
 | 	else if (rnat1_kaddr > krbs) | 
 | 		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m)); | 
 | } | 
 |  | 
 | static inline int | 
 | on_kernel_rbs (unsigned long addr, unsigned long bspstore, | 
 | 	       unsigned long urbs_end) | 
 | { | 
 | 	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *) | 
 | 						      urbs_end); | 
 | 	return (addr >= bspstore && addr <= (unsigned long) rnat_addr); | 
 | } | 
 |  | 
 | /* | 
 |  * Read a word from the user-level backing store of task CHILD.  ADDR | 
 |  * is the user-level address to read the word from, VAL a pointer to | 
 |  * the return value, and USER_BSP gives the end of the user-level | 
 |  * backing store (i.e., it's the address that would be in ar.bsp after | 
 |  * the user executed a "cover" instruction). | 
 |  * | 
 |  * This routine takes care of accessing the kernel register backing | 
 |  * store for those registers that got spilled there.  It also takes | 
 |  * care of calculating the appropriate RNaT collection words. | 
 |  */ | 
 | long | 
 | ia64_peek (struct task_struct *child, struct switch_stack *child_stack, | 
 | 	   unsigned long user_rbs_end, unsigned long addr, long *val) | 
 | { | 
 | 	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; | 
 | 	struct pt_regs *child_regs; | 
 | 	size_t copied; | 
 | 	long ret; | 
 |  | 
 | 	urbs_end = (long *) user_rbs_end; | 
 | 	laddr = (unsigned long *) addr; | 
 | 	child_regs = ia64_task_regs(child); | 
 | 	bspstore = (unsigned long *) child_regs->ar_bspstore; | 
 | 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; | 
 | 	if (on_kernel_rbs(addr, (unsigned long) bspstore, | 
 | 			  (unsigned long) urbs_end)) | 
 | 	{ | 
 | 		/* | 
 | 		 * Attempt to read the RBS in an area that's actually | 
 | 		 * on the kernel RBS => read the corresponding bits in | 
 | 		 * the kernel RBS. | 
 | 		 */ | 
 | 		rnat_addr = ia64_rse_rnat_addr(laddr); | 
 | 		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end); | 
 |  | 
 | 		if (laddr == rnat_addr) { | 
 | 			/* return NaT collection word itself */ | 
 | 			*val = ret; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { | 
 | 			/* | 
 | 			 * It is implementation dependent whether the | 
 | 			 * data portion of a NaT value gets saved on a | 
 | 			 * st8.spill or RSE spill (e.g., see EAS 2.6, | 
 | 			 * 4.4.4.6 Register Spill and Fill).  To get | 
 | 			 * consistent behavior across all possible | 
 | 			 * IA-64 implementations, we return zero in | 
 | 			 * this case. | 
 | 			 */ | 
 | 			*val = 0; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (laddr < urbs_end) { | 
 | 			/* | 
 | 			 * The desired word is on the kernel RBS and | 
 | 			 * is not a NaT. | 
 | 			 */ | 
 | 			regnum = ia64_rse_num_regs(bspstore, laddr); | 
 | 			*val = *ia64_rse_skip_regs(krbs, regnum); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0); | 
 | 	if (copied != sizeof(ret)) | 
 | 		return -EIO; | 
 | 	*val = ret; | 
 | 	return 0; | 
 | } | 
 |  | 
 | long | 
 | ia64_poke (struct task_struct *child, struct switch_stack *child_stack, | 
 | 	   unsigned long user_rbs_end, unsigned long addr, long val) | 
 | { | 
 | 	unsigned long *bspstore, *krbs, regnum, *laddr; | 
 | 	unsigned long *urbs_end = (long *) user_rbs_end; | 
 | 	struct pt_regs *child_regs; | 
 |  | 
 | 	laddr = (unsigned long *) addr; | 
 | 	child_regs = ia64_task_regs(child); | 
 | 	bspstore = (unsigned long *) child_regs->ar_bspstore; | 
 | 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; | 
 | 	if (on_kernel_rbs(addr, (unsigned long) bspstore, | 
 | 			  (unsigned long) urbs_end)) | 
 | 	{ | 
 | 		/* | 
 | 		 * Attempt to write the RBS in an area that's actually | 
 | 		 * on the kernel RBS => write the corresponding bits | 
 | 		 * in the kernel RBS. | 
 | 		 */ | 
 | 		if (ia64_rse_is_rnat_slot(laddr)) | 
 | 			put_rnat(child, child_stack, krbs, laddr, val, | 
 | 				 urbs_end); | 
 | 		else { | 
 | 			if (laddr < urbs_end) { | 
 | 				regnum = ia64_rse_num_regs(bspstore, laddr); | 
 | 				*ia64_rse_skip_regs(krbs, regnum) = val; | 
 | 			} | 
 | 		} | 
 | 	} else if (access_process_vm(child, addr, &val, sizeof(val), 1) | 
 | 		   != sizeof(val)) | 
 | 		return -EIO; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the address of the end of the user-level register backing | 
 |  * store.  This is the address that would have been stored in ar.bsp | 
 |  * if the user had executed a "cover" instruction right before | 
 |  * entering the kernel.  If CFMP is not NULL, it is used to return the | 
 |  * "current frame mask" that was active at the time the kernel was | 
 |  * entered. | 
 |  */ | 
 | unsigned long | 
 | ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, | 
 | 		       unsigned long *cfmp) | 
 | { | 
 | 	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs; | 
 | 	long ndirty; | 
 |  | 
 | 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; | 
 | 	bspstore = (unsigned long *) pt->ar_bspstore; | 
 | 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); | 
 |  | 
 | 	if (in_syscall(pt)) | 
 | 		ndirty += (cfm & 0x7f); | 
 | 	else | 
 | 		cfm &= ~(1UL << 63);	/* clear valid bit */ | 
 |  | 
 | 	if (cfmp) | 
 | 		*cfmp = cfm; | 
 | 	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty); | 
 | } | 
 |  | 
 | /* | 
 |  * Synchronize (i.e, write) the RSE backing store living in kernel | 
 |  * space to the VM of the CHILD task.  SW and PT are the pointers to | 
 |  * the switch_stack and pt_regs structures, respectively. | 
 |  * USER_RBS_END is the user-level address at which the backing store | 
 |  * ends. | 
 |  */ | 
 | long | 
 | ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, | 
 | 		    unsigned long user_rbs_start, unsigned long user_rbs_end) | 
 | { | 
 | 	unsigned long addr, val; | 
 | 	long ret; | 
 |  | 
 | 	/* now copy word for word from kernel rbs to user rbs: */ | 
 | 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { | 
 | 		ret = ia64_peek(child, sw, user_rbs_end, addr, &val); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		if (access_process_vm(child, addr, &val, sizeof(val), 1) | 
 | 		    != sizeof(val)) | 
 | 			return -EIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int | 
 | thread_matches (struct task_struct *thread, unsigned long addr) | 
 | { | 
 | 	unsigned long thread_rbs_end; | 
 | 	struct pt_regs *thread_regs; | 
 |  | 
 | 	if (ptrace_check_attach(thread, 0) < 0) | 
 | 		/* | 
 | 		 * If the thread is not in an attachable state, we'll | 
 | 		 * ignore it.  The net effect is that if ADDR happens | 
 | 		 * to overlap with the portion of the thread's | 
 | 		 * register backing store that is currently residing | 
 | 		 * on the thread's kernel stack, then ptrace() may end | 
 | 		 * up accessing a stale value.  But if the thread | 
 | 		 * isn't stopped, that's a problem anyhow, so we're | 
 | 		 * doing as well as we can... | 
 | 		 */ | 
 | 		return 0; | 
 |  | 
 | 	thread_regs = ia64_task_regs(thread); | 
 | 	thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL); | 
 | 	if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end)) | 
 | 		return 0; | 
 |  | 
 | 	return 1;	/* looks like we've got a winner */ | 
 | } | 
 |  | 
 | /* | 
 |  * GDB apparently wants to be able to read the register-backing store | 
 |  * of any thread when attached to a given process.  If we are peeking | 
 |  * or poking an address that happens to reside in the kernel-backing | 
 |  * store of another thread, we need to attach to that thread, because | 
 |  * otherwise we end up accessing stale data. | 
 |  * | 
 |  * task_list_lock must be read-locked before calling this routine! | 
 |  */ | 
 | static struct task_struct * | 
 | find_thread_for_addr (struct task_struct *child, unsigned long addr) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 | 	struct mm_struct *mm; | 
 | 	int mm_users; | 
 |  | 
 | 	if (!(mm = get_task_mm(child))) | 
 | 		return child; | 
 |  | 
 | 	/* -1 because of our get_task_mm(): */ | 
 | 	mm_users = atomic_read(&mm->mm_users) - 1; | 
 | 	if (mm_users <= 1) | 
 | 		goto out;		/* not multi-threaded */ | 
 |  | 
 | 	/* | 
 | 	 * First, traverse the child's thread-list.  Good for scalability with | 
 | 	 * NPTL-threads. | 
 | 	 */ | 
 | 	p = child; | 
 | 	do { | 
 | 		if (thread_matches(p, addr)) { | 
 | 			child = p; | 
 | 			goto out; | 
 | 		} | 
 | 		if (mm_users-- <= 1) | 
 | 			goto out; | 
 | 	} while ((p = next_thread(p)) != child); | 
 |  | 
 | 	do_each_thread(g, p) { | 
 | 		if (child->mm != mm) | 
 | 			continue; | 
 |  | 
 | 		if (thread_matches(p, addr)) { | 
 | 			child = p; | 
 | 			goto out; | 
 | 		} | 
 | 	} while_each_thread(g, p); | 
 |   out: | 
 | 	mmput(mm); | 
 | 	return child; | 
 | } | 
 |  | 
 | /* | 
 |  * Write f32-f127 back to task->thread.fph if it has been modified. | 
 |  */ | 
 | inline void | 
 | ia64_flush_fph (struct task_struct *task) | 
 | { | 
 | 	struct ia64_psr *psr = ia64_psr(ia64_task_regs(task)); | 
 |  | 
 | 	/* | 
 | 	 * Prevent migrating this task while | 
 | 	 * we're fiddling with the FPU state | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	if (ia64_is_local_fpu_owner(task) && psr->mfh) { | 
 | 		psr->mfh = 0; | 
 | 		task->thread.flags |= IA64_THREAD_FPH_VALID; | 
 | 		ia64_save_fpu(&task->thread.fph[0]); | 
 | 	} | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * Sync the fph state of the task so that it can be manipulated | 
 |  * through thread.fph.  If necessary, f32-f127 are written back to | 
 |  * thread.fph or, if the fph state hasn't been used before, thread.fph | 
 |  * is cleared to zeroes.  Also, access to f32-f127 is disabled to | 
 |  * ensure that the task picks up the state from thread.fph when it | 
 |  * executes again. | 
 |  */ | 
 | void | 
 | ia64_sync_fph (struct task_struct *task) | 
 | { | 
 | 	struct ia64_psr *psr = ia64_psr(ia64_task_regs(task)); | 
 |  | 
 | 	ia64_flush_fph(task); | 
 | 	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) { | 
 | 		task->thread.flags |= IA64_THREAD_FPH_VALID; | 
 | 		memset(&task->thread.fph, 0, sizeof(task->thread.fph)); | 
 | 	} | 
 | 	ia64_drop_fpu(task); | 
 | 	psr->dfh = 1; | 
 | } | 
 |  | 
 | static int | 
 | access_fr (struct unw_frame_info *info, int regnum, int hi, | 
 | 	   unsigned long *data, int write_access) | 
 | { | 
 | 	struct ia64_fpreg fpval; | 
 | 	int ret; | 
 |  | 
 | 	ret = unw_get_fr(info, regnum, &fpval); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (write_access) { | 
 | 		fpval.u.bits[hi] = *data; | 
 | 		ret = unw_set_fr(info, regnum, fpval); | 
 | 	} else | 
 | 		*data = fpval.u.bits[hi]; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Change the machine-state of CHILD such that it will return via the normal | 
 |  * kernel exit-path, rather than the syscall-exit path. | 
 |  */ | 
 | static void | 
 | convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt, | 
 | 			unsigned long cfm) | 
 | { | 
 | 	struct unw_frame_info info, prev_info; | 
 | 	unsigned long ip, sp, pr; | 
 |  | 
 | 	unw_init_from_blocked_task(&info, child); | 
 | 	while (1) { | 
 | 		prev_info = info; | 
 | 		if (unw_unwind(&info) < 0) | 
 | 			return; | 
 |  | 
 | 		unw_get_sp(&info, &sp); | 
 | 		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp) | 
 | 		    < IA64_PT_REGS_SIZE) { | 
 | 			dprintk("ptrace.%s: ran off the top of the kernel " | 
 | 				"stack\n", __FUNCTION__); | 
 | 			return; | 
 | 		} | 
 | 		if (unw_get_pr (&prev_info, &pr) < 0) { | 
 | 			unw_get_rp(&prev_info, &ip); | 
 | 			dprintk("ptrace.%s: failed to read " | 
 | 				"predicate register (ip=0x%lx)\n", | 
 | 				__FUNCTION__, ip); | 
 | 			return; | 
 | 		} | 
 | 		if (unw_is_intr_frame(&info) | 
 | 		    && (pr & (1UL << PRED_USER_STACK))) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Note: at the time of this call, the target task is blocked | 
 | 	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL | 
 | 	 * (aka, "pLvSys") we redirect execution from | 
 | 	 * .work_pending_syscall_end to .work_processed_kernel. | 
 | 	 */ | 
 | 	unw_get_pr(&prev_info, &pr); | 
 | 	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL)); | 
 | 	pr |=  (1UL << PRED_NON_SYSCALL); | 
 | 	unw_set_pr(&prev_info, pr); | 
 |  | 
 | 	pt->cr_ifs = (1UL << 63) | cfm; | 
 | 	/* | 
 | 	 * Clear the memory that is NOT written on syscall-entry to | 
 | 	 * ensure we do not leak kernel-state to user when execution | 
 | 	 * resumes. | 
 | 	 */ | 
 | 	pt->r2 = 0; | 
 | 	pt->r3 = 0; | 
 | 	pt->r14 = 0; | 
 | 	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */ | 
 | 	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */ | 
 | 	pt->b7 = 0; | 
 | 	pt->ar_ccv = 0; | 
 | 	pt->ar_csd = 0; | 
 | 	pt->ar_ssd = 0; | 
 | } | 
 |  | 
 | static int | 
 | access_nat_bits (struct task_struct *child, struct pt_regs *pt, | 
 | 		 struct unw_frame_info *info, | 
 | 		 unsigned long *data, int write_access) | 
 | { | 
 | 	unsigned long regnum, nat_bits, scratch_unat, dummy = 0; | 
 | 	char nat = 0; | 
 |  | 
 | 	if (write_access) { | 
 | 		nat_bits = *data; | 
 | 		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits); | 
 | 		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) { | 
 | 			dprintk("ptrace: failed to set ar.unat\n"); | 
 | 			return -1; | 
 | 		} | 
 | 		for (regnum = 4; regnum <= 7; ++regnum) { | 
 | 			unw_get_gr(info, regnum, &dummy, &nat); | 
 | 			unw_set_gr(info, regnum, dummy, | 
 | 				   (nat_bits >> regnum) & 1); | 
 | 		} | 
 | 	} else { | 
 | 		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) { | 
 | 			dprintk("ptrace: failed to read ar.unat\n"); | 
 | 			return -1; | 
 | 		} | 
 | 		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat); | 
 | 		for (regnum = 4; regnum <= 7; ++regnum) { | 
 | 			unw_get_gr(info, regnum, &dummy, &nat); | 
 | 			nat_bits |= (nat != 0) << regnum; | 
 | 		} | 
 | 		*data = nat_bits; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | access_uarea (struct task_struct *child, unsigned long addr, | 
 | 	      unsigned long *data, int write_access) | 
 | { | 
 | 	unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm; | 
 | 	struct switch_stack *sw; | 
 | 	struct pt_regs *pt; | 
 | #	define pt_reg_addr(pt, reg)	((void *)			    \ | 
 | 					 ((unsigned long) (pt)		    \ | 
 | 					  + offsetof(struct pt_regs, reg))) | 
 |  | 
 |  | 
 | 	pt = ia64_task_regs(child); | 
 | 	sw = (struct switch_stack *) (child->thread.ksp + 16); | 
 |  | 
 | 	if ((addr & 0x7) != 0) { | 
 | 		dprintk("ptrace: unaligned register address 0x%lx\n", addr); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if (addr < PT_F127 + 16) { | 
 | 		/* accessing fph */ | 
 | 		if (write_access) | 
 | 			ia64_sync_fph(child); | 
 | 		else | 
 | 			ia64_flush_fph(child); | 
 | 		ptr = (unsigned long *) | 
 | 			((unsigned long) &child->thread.fph + addr); | 
 | 	} else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) { | 
 | 		/* scratch registers untouched by kernel (saved in pt_regs) */ | 
 | 		ptr = pt_reg_addr(pt, f10) + (addr - PT_F10); | 
 | 	} else if (addr >= PT_F12 && addr < PT_F15 + 16) { | 
 | 		/* | 
 | 		 * Scratch registers untouched by kernel (saved in | 
 | 		 * switch_stack). | 
 | 		 */ | 
 | 		ptr = (unsigned long *) ((long) sw | 
 | 					 + (addr - PT_NAT_BITS - 32)); | 
 | 	} else if (addr < PT_AR_LC + 8) { | 
 | 		/* preserved state: */ | 
 | 		struct unw_frame_info info; | 
 | 		char nat = 0; | 
 | 		int ret; | 
 |  | 
 | 		unw_init_from_blocked_task(&info, child); | 
 | 		if (unw_unwind_to_user(&info) < 0) | 
 | 			return -1; | 
 |  | 
 | 		switch (addr) { | 
 | 		      case PT_NAT_BITS: | 
 | 			return access_nat_bits(child, pt, &info, | 
 | 					       data, write_access); | 
 |  | 
 | 		      case PT_R4: case PT_R5: case PT_R6: case PT_R7: | 
 | 			if (write_access) { | 
 | 				/* read NaT bit first: */ | 
 | 				unsigned long dummy; | 
 |  | 
 | 				ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4, | 
 | 						 &dummy, &nat); | 
 | 				if (ret < 0) | 
 | 					return ret; | 
 | 			} | 
 | 			return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data, | 
 | 					     &nat, write_access); | 
 |  | 
 | 		      case PT_B1: case PT_B2: case PT_B3: | 
 | 		      case PT_B4: case PT_B5: | 
 | 			return unw_access_br(&info, (addr - PT_B1)/8 + 1, data, | 
 | 					     write_access); | 
 |  | 
 | 		      case PT_AR_EC: | 
 | 			return unw_access_ar(&info, UNW_AR_EC, data, | 
 | 					     write_access); | 
 |  | 
 | 		      case PT_AR_LC: | 
 | 			return unw_access_ar(&info, UNW_AR_LC, data, | 
 | 					     write_access); | 
 |  | 
 | 		      default: | 
 | 			if (addr >= PT_F2 && addr < PT_F5 + 16) | 
 | 				return access_fr(&info, (addr - PT_F2)/16 + 2, | 
 | 						 (addr & 8) != 0, data, | 
 | 						 write_access); | 
 | 			else if (addr >= PT_F16 && addr < PT_F31 + 16) | 
 | 				return access_fr(&info, | 
 | 						 (addr - PT_F16)/16 + 16, | 
 | 						 (addr & 8) != 0, | 
 | 						 data, write_access); | 
 | 			else { | 
 | 				dprintk("ptrace: rejecting access to register " | 
 | 					"address 0x%lx\n", addr); | 
 | 				return -1; | 
 | 			} | 
 | 		} | 
 | 	} else if (addr < PT_F9+16) { | 
 | 		/* scratch state */ | 
 | 		switch (addr) { | 
 | 		      case PT_AR_BSP: | 
 | 			/* | 
 | 			 * By convention, we use PT_AR_BSP to refer to | 
 | 			 * the end of the user-level backing store. | 
 | 			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) | 
 | 			 * to get the real value of ar.bsp at the time | 
 | 			 * the kernel was entered. | 
 | 			 * | 
 | 			 * Furthermore, when changing the contents of | 
 | 			 * PT_AR_BSP (or PT_CFM) we MUST copy any | 
 | 			 * users-level stacked registers that are | 
 | 			 * stored on the kernel stack back to | 
 | 			 * user-space because otherwise, we might end | 
 | 			 * up clobbering kernel stacked registers. | 
 | 			 * Also, if this happens while the task is | 
 | 			 * blocked in a system call, which convert the | 
 | 			 * state such that the non-system-call exit | 
 | 			 * path is used.  This ensures that the proper | 
 | 			 * state will be picked up when resuming | 
 | 			 * execution.  However, it *also* means that | 
 | 			 * once we write PT_AR_BSP/PT_CFM, it won't be | 
 | 			 * possible to modify the syscall arguments of | 
 | 			 * the pending system call any longer.  This | 
 | 			 * shouldn't be an issue because modifying | 
 | 			 * PT_AR_BSP/PT_CFM generally implies that | 
 | 			 * we're either abandoning the pending system | 
 | 			 * call or that we defer it's re-execution | 
 | 			 * (e.g., due to GDB doing an inferior | 
 | 			 * function call). | 
 | 			 */ | 
 | 			urbs_end = ia64_get_user_rbs_end(child, pt, &cfm); | 
 | 			if (write_access) { | 
 | 				if (*data != urbs_end) { | 
 | 					if (ia64_sync_user_rbs(child, sw, | 
 | 							       pt->ar_bspstore, | 
 | 							       urbs_end) < 0) | 
 | 						return -1; | 
 | 					if (in_syscall(pt)) | 
 | 						convert_to_non_syscall(child, | 
 | 								       pt, | 
 | 								       cfm); | 
 | 					/* | 
 | 					 * Simulate user-level write | 
 | 					 * of ar.bsp: | 
 | 					 */ | 
 | 					pt->loadrs = 0; | 
 | 					pt->ar_bspstore = *data; | 
 | 				} | 
 | 			} else | 
 | 				*data = urbs_end; | 
 | 			return 0; | 
 |  | 
 | 		      case PT_CFM: | 
 | 			urbs_end = ia64_get_user_rbs_end(child, pt, &cfm); | 
 | 			if (write_access) { | 
 | 				if (((cfm ^ *data) & PFM_MASK) != 0) { | 
 | 					if (ia64_sync_user_rbs(child, sw, | 
 | 							       pt->ar_bspstore, | 
 | 							       urbs_end) < 0) | 
 | 						return -1; | 
 | 					if (in_syscall(pt)) | 
 | 						convert_to_non_syscall(child, | 
 | 								       pt, | 
 | 								       cfm); | 
 | 					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK) | 
 | 						      | (*data & PFM_MASK)); | 
 | 				} | 
 | 			} else | 
 | 				*data = cfm; | 
 | 			return 0; | 
 |  | 
 | 		      case PT_CR_IPSR: | 
 | 			if (write_access) | 
 | 				pt->cr_ipsr = ((*data & IPSR_MASK) | 
 | 					       | (pt->cr_ipsr & ~IPSR_MASK)); | 
 | 			else | 
 | 				*data = (pt->cr_ipsr & IPSR_MASK); | 
 | 			return 0; | 
 |  | 
 | 		      case PT_AR_RSC: | 
 | 			if (write_access) | 
 | 				pt->ar_rsc = *data | (3 << 2); /* force PL3 */ | 
 | 			else | 
 | 				*data = pt->ar_rsc; | 
 | 			return 0; | 
 |  | 
 | 		      case PT_AR_RNAT: | 
 | 			urbs_end = ia64_get_user_rbs_end(child, pt, NULL); | 
 | 			rnat_addr = (long) ia64_rse_rnat_addr((long *) | 
 | 							      urbs_end); | 
 | 			if (write_access) | 
 | 				return ia64_poke(child, sw, urbs_end, | 
 | 						 rnat_addr, *data); | 
 | 			else | 
 | 				return ia64_peek(child, sw, urbs_end, | 
 | 						 rnat_addr, data); | 
 |  | 
 | 		      case PT_R1: | 
 | 			ptr = pt_reg_addr(pt, r1); | 
 | 			break; | 
 | 		      case PT_R2:  case PT_R3: | 
 | 			ptr = pt_reg_addr(pt, r2) + (addr - PT_R2); | 
 | 			break; | 
 | 		      case PT_R8:  case PT_R9:  case PT_R10: case PT_R11: | 
 | 			ptr = pt_reg_addr(pt, r8) + (addr - PT_R8); | 
 | 			break; | 
 | 		      case PT_R12: case PT_R13: | 
 | 			ptr = pt_reg_addr(pt, r12) + (addr - PT_R12); | 
 | 			break; | 
 | 		      case PT_R14: | 
 | 			ptr = pt_reg_addr(pt, r14); | 
 | 			break; | 
 | 		      case PT_R15: | 
 | 			ptr = pt_reg_addr(pt, r15); | 
 | 			break; | 
 | 		      case PT_R16: case PT_R17: case PT_R18: case PT_R19: | 
 | 		      case PT_R20: case PT_R21: case PT_R22: case PT_R23: | 
 | 		      case PT_R24: case PT_R25: case PT_R26: case PT_R27: | 
 | 		      case PT_R28: case PT_R29: case PT_R30: case PT_R31: | 
 | 			ptr = pt_reg_addr(pt, r16) + (addr - PT_R16); | 
 | 			break; | 
 | 		      case PT_B0: | 
 | 			ptr = pt_reg_addr(pt, b0); | 
 | 			break; | 
 | 		      case PT_B6: | 
 | 			ptr = pt_reg_addr(pt, b6); | 
 | 			break; | 
 | 		      case PT_B7: | 
 | 			ptr = pt_reg_addr(pt, b7); | 
 | 			break; | 
 | 		      case PT_F6:  case PT_F6+8: case PT_F7: case PT_F7+8: | 
 | 		      case PT_F8:  case PT_F8+8: case PT_F9: case PT_F9+8: | 
 | 			ptr = pt_reg_addr(pt, f6) + (addr - PT_F6); | 
 | 			break; | 
 | 		      case PT_AR_BSPSTORE: | 
 | 			ptr = pt_reg_addr(pt, ar_bspstore); | 
 | 			break; | 
 | 		      case PT_AR_UNAT: | 
 | 			ptr = pt_reg_addr(pt, ar_unat); | 
 | 			break; | 
 | 		      case PT_AR_PFS: | 
 | 			ptr = pt_reg_addr(pt, ar_pfs); | 
 | 			break; | 
 | 		      case PT_AR_CCV: | 
 | 			ptr = pt_reg_addr(pt, ar_ccv); | 
 | 			break; | 
 | 		      case PT_AR_FPSR: | 
 | 			ptr = pt_reg_addr(pt, ar_fpsr); | 
 | 			break; | 
 | 		      case PT_CR_IIP: | 
 | 			ptr = pt_reg_addr(pt, cr_iip); | 
 | 			break; | 
 | 		      case PT_PR: | 
 | 			ptr = pt_reg_addr(pt, pr); | 
 | 			break; | 
 | 			/* scratch register */ | 
 |  | 
 | 		      default: | 
 | 			/* disallow accessing anything else... */ | 
 | 			dprintk("ptrace: rejecting access to register " | 
 | 				"address 0x%lx\n", addr); | 
 | 			return -1; | 
 | 		} | 
 | 	} else if (addr <= PT_AR_SSD) { | 
 | 		ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD); | 
 | 	} else { | 
 | 		/* access debug registers */ | 
 |  | 
 | 		if (addr >= PT_IBR) { | 
 | 			regnum = (addr - PT_IBR) >> 3; | 
 | 			ptr = &child->thread.ibr[0]; | 
 | 		} else { | 
 | 			regnum = (addr - PT_DBR) >> 3; | 
 | 			ptr = &child->thread.dbr[0]; | 
 | 		} | 
 |  | 
 | 		if (regnum >= 8) { | 
 | 			dprintk("ptrace: rejecting access to register " | 
 | 				"address 0x%lx\n", addr); | 
 | 			return -1; | 
 | 		} | 
 | #ifdef CONFIG_PERFMON | 
 | 		/* | 
 | 		 * Check if debug registers are used by perfmon. This | 
 | 		 * test must be done once we know that we can do the | 
 | 		 * operation, i.e. the arguments are all valid, but | 
 | 		 * before we start modifying the state. | 
 | 		 * | 
 | 		 * Perfmon needs to keep a count of how many processes | 
 | 		 * are trying to modify the debug registers for system | 
 | 		 * wide monitoring sessions. | 
 | 		 * | 
 | 		 * We also include read access here, because they may | 
 | 		 * cause the PMU-installed debug register state | 
 | 		 * (dbr[], ibr[]) to be reset. The two arrays are also | 
 | 		 * used by perfmon, but we do not use | 
 | 		 * IA64_THREAD_DBG_VALID. The registers are restored | 
 | 		 * by the PMU context switch code. | 
 | 		 */ | 
 | 		if (pfm_use_debug_registers(child)) return -1; | 
 | #endif | 
 |  | 
 | 		if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { | 
 | 			child->thread.flags |= IA64_THREAD_DBG_VALID; | 
 | 			memset(child->thread.dbr, 0, | 
 | 			       sizeof(child->thread.dbr)); | 
 | 			memset(child->thread.ibr, 0, | 
 | 			       sizeof(child->thread.ibr)); | 
 | 		} | 
 |  | 
 | 		ptr += regnum; | 
 |  | 
 | 		if ((regnum & 1) && write_access) { | 
 | 			/* don't let the user set kernel-level breakpoints: */ | 
 | 			*ptr = *data & ~(7UL << 56); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	if (write_access) | 
 | 		*ptr = *data; | 
 | 	else | 
 | 		*data = *ptr; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long | 
 | ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) | 
 | { | 
 | 	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val; | 
 | 	struct unw_frame_info info; | 
 | 	struct ia64_fpreg fpval; | 
 | 	struct switch_stack *sw; | 
 | 	struct pt_regs *pt; | 
 | 	long ret, retval = 0; | 
 | 	char nat = 0; | 
 | 	int i; | 
 |  | 
 | 	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs))) | 
 | 		return -EIO; | 
 |  | 
 | 	pt = ia64_task_regs(child); | 
 | 	sw = (struct switch_stack *) (child->thread.ksp + 16); | 
 | 	unw_init_from_blocked_task(&info, child); | 
 | 	if (unw_unwind_to_user(&info) < 0) { | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (((unsigned long) ppr & 0x7) != 0) { | 
 | 		dprintk("ptrace:unaligned register address %p\n", ppr); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0 | 
 | 	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0 | 
 | 	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0 | 
 | 	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0 | 
 | 	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0 | 
 | 	    || access_uarea(child, PT_CFM, &cfm, 0) | 
 | 	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* control regs */ | 
 |  | 
 | 	retval |= __put_user(pt->cr_iip, &ppr->cr_iip); | 
 | 	retval |= __put_user(psr, &ppr->cr_ipsr); | 
 |  | 
 | 	/* app regs */ | 
 |  | 
 | 	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); | 
 | 	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]); | 
 | 	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); | 
 | 	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); | 
 | 	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); | 
 | 	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); | 
 |  | 
 | 	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]); | 
 | 	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]); | 
 | 	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]); | 
 | 	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]); | 
 | 	retval |= __put_user(cfm, &ppr->cfm); | 
 |  | 
 | 	/* gr1-gr3 */ | 
 |  | 
 | 	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long)); | 
 | 	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2); | 
 |  | 
 | 	/* gr4-gr7 */ | 
 |  | 
 | 	for (i = 4; i < 8; i++) { | 
 | 		if (unw_access_gr(&info, i, &val, &nat, 0) < 0) | 
 | 			return -EIO; | 
 | 		retval |= __put_user(val, &ppr->gr[i]); | 
 | 	} | 
 |  | 
 | 	/* gr8-gr11 */ | 
 |  | 
 | 	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4); | 
 |  | 
 | 	/* gr12-gr15 */ | 
 |  | 
 | 	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2); | 
 | 	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long)); | 
 | 	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long)); | 
 |  | 
 | 	/* gr16-gr31 */ | 
 |  | 
 | 	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16); | 
 |  | 
 | 	/* b0 */ | 
 |  | 
 | 	retval |= __put_user(pt->b0, &ppr->br[0]); | 
 |  | 
 | 	/* b1-b5 */ | 
 |  | 
 | 	for (i = 1; i < 6; i++) { | 
 | 		if (unw_access_br(&info, i, &val, 0) < 0) | 
 | 			return -EIO; | 
 | 		__put_user(val, &ppr->br[i]); | 
 | 	} | 
 |  | 
 | 	/* b6-b7 */ | 
 |  | 
 | 	retval |= __put_user(pt->b6, &ppr->br[6]); | 
 | 	retval |= __put_user(pt->b7, &ppr->br[7]); | 
 |  | 
 | 	/* fr2-fr5 */ | 
 |  | 
 | 	for (i = 2; i < 6; i++) { | 
 | 		if (unw_get_fr(&info, i, &fpval) < 0) | 
 | 			return -EIO; | 
 | 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); | 
 | 	} | 
 |  | 
 | 	/* fr6-fr11 */ | 
 |  | 
 | 	retval |= __copy_to_user(&ppr->fr[6], &pt->f6, | 
 | 				 sizeof(struct ia64_fpreg) * 6); | 
 |  | 
 | 	/* fp scratch regs(12-15) */ | 
 |  | 
 | 	retval |= __copy_to_user(&ppr->fr[12], &sw->f12, | 
 | 				 sizeof(struct ia64_fpreg) * 4); | 
 |  | 
 | 	/* fr16-fr31 */ | 
 |  | 
 | 	for (i = 16; i < 32; i++) { | 
 | 		if (unw_get_fr(&info, i, &fpval) < 0) | 
 | 			return -EIO; | 
 | 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); | 
 | 	} | 
 |  | 
 | 	/* fph */ | 
 |  | 
 | 	ia64_flush_fph(child); | 
 | 	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, | 
 | 				 sizeof(ppr->fr[32]) * 96); | 
 |  | 
 | 	/*  preds */ | 
 |  | 
 | 	retval |= __put_user(pt->pr, &ppr->pr); | 
 |  | 
 | 	/* nat bits */ | 
 |  | 
 | 	retval |= __put_user(nat_bits, &ppr->nat); | 
 |  | 
 | 	ret = retval ? -EIO : 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static long | 
 | ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) | 
 | { | 
 | 	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0; | 
 | 	struct unw_frame_info info; | 
 | 	struct switch_stack *sw; | 
 | 	struct ia64_fpreg fpval; | 
 | 	struct pt_regs *pt; | 
 | 	long ret, retval = 0; | 
 | 	int i; | 
 |  | 
 | 	memset(&fpval, 0, sizeof(fpval)); | 
 |  | 
 | 	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs))) | 
 | 		return -EIO; | 
 |  | 
 | 	pt = ia64_task_regs(child); | 
 | 	sw = (struct switch_stack *) (child->thread.ksp + 16); | 
 | 	unw_init_from_blocked_task(&info, child); | 
 | 	if (unw_unwind_to_user(&info) < 0) { | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (((unsigned long) ppr & 0x7) != 0) { | 
 | 		dprintk("ptrace:unaligned register address %p\n", ppr); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	/* control regs */ | 
 |  | 
 | 	retval |= __get_user(pt->cr_iip, &ppr->cr_iip); | 
 | 	retval |= __get_user(psr, &ppr->cr_ipsr); | 
 |  | 
 | 	/* app regs */ | 
 |  | 
 | 	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); | 
 | 	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]); | 
 | 	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); | 
 | 	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); | 
 | 	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); | 
 | 	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); | 
 |  | 
 | 	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]); | 
 | 	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]); | 
 | 	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]); | 
 | 	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]); | 
 | 	retval |= __get_user(cfm, &ppr->cfm); | 
 |  | 
 | 	/* gr1-gr3 */ | 
 |  | 
 | 	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long)); | 
 | 	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2); | 
 |  | 
 | 	/* gr4-gr7 */ | 
 |  | 
 | 	for (i = 4; i < 8; i++) { | 
 | 		retval |= __get_user(val, &ppr->gr[i]); | 
 | 		/* NaT bit will be set via PT_NAT_BITS: */ | 
 | 		if (unw_set_gr(&info, i, val, 0) < 0) | 
 | 			return -EIO; | 
 | 	} | 
 |  | 
 | 	/* gr8-gr11 */ | 
 |  | 
 | 	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4); | 
 |  | 
 | 	/* gr12-gr15 */ | 
 |  | 
 | 	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2); | 
 | 	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long)); | 
 | 	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long)); | 
 |  | 
 | 	/* gr16-gr31 */ | 
 |  | 
 | 	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16); | 
 |  | 
 | 	/* b0 */ | 
 |  | 
 | 	retval |= __get_user(pt->b0, &ppr->br[0]); | 
 |  | 
 | 	/* b1-b5 */ | 
 |  | 
 | 	for (i = 1; i < 6; i++) { | 
 | 		retval |= __get_user(val, &ppr->br[i]); | 
 | 		unw_set_br(&info, i, val); | 
 | 	} | 
 |  | 
 | 	/* b6-b7 */ | 
 |  | 
 | 	retval |= __get_user(pt->b6, &ppr->br[6]); | 
 | 	retval |= __get_user(pt->b7, &ppr->br[7]); | 
 |  | 
 | 	/* fr2-fr5 */ | 
 |  | 
 | 	for (i = 2; i < 6; i++) { | 
 | 		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval)); | 
 | 		if (unw_set_fr(&info, i, fpval) < 0) | 
 | 			return -EIO; | 
 | 	} | 
 |  | 
 | 	/* fr6-fr11 */ | 
 |  | 
 | 	retval |= __copy_from_user(&pt->f6, &ppr->fr[6], | 
 | 				   sizeof(ppr->fr[6]) * 6); | 
 |  | 
 | 	/* fp scratch regs(12-15) */ | 
 |  | 
 | 	retval |= __copy_from_user(&sw->f12, &ppr->fr[12], | 
 | 				   sizeof(ppr->fr[12]) * 4); | 
 |  | 
 | 	/* fr16-fr31 */ | 
 |  | 
 | 	for (i = 16; i < 32; i++) { | 
 | 		retval |= __copy_from_user(&fpval, &ppr->fr[i], | 
 | 					   sizeof(fpval)); | 
 | 		if (unw_set_fr(&info, i, fpval) < 0) | 
 | 			return -EIO; | 
 | 	} | 
 |  | 
 | 	/* fph */ | 
 |  | 
 | 	ia64_sync_fph(child); | 
 | 	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], | 
 | 				   sizeof(ppr->fr[32]) * 96); | 
 |  | 
 | 	/* preds */ | 
 |  | 
 | 	retval |= __get_user(pt->pr, &ppr->pr); | 
 |  | 
 | 	/* nat bits */ | 
 |  | 
 | 	retval |= __get_user(nat_bits, &ppr->nat); | 
 |  | 
 | 	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1); | 
 | 	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1); | 
 | 	retval |= access_uarea(child, PT_AR_EC, &ec, 1); | 
 | 	retval |= access_uarea(child, PT_AR_LC, &lc, 1); | 
 | 	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1); | 
 | 	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1); | 
 | 	retval |= access_uarea(child, PT_CFM, &cfm, 1); | 
 | 	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1); | 
 |  | 
 | 	ret = retval ? -EIO : 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Called by kernel/ptrace.c when detaching.. | 
 |  * | 
 |  * Make sure the single step bit is not set. | 
 |  */ | 
 | void | 
 | ptrace_disable (struct task_struct *child) | 
 | { | 
 | 	struct ia64_psr *child_psr = ia64_psr(ia64_task_regs(child)); | 
 |  | 
 | 	/* make sure the single step/taken-branch trap bits are not set: */ | 
 | 	child_psr->ss = 0; | 
 | 	child_psr->tb = 0; | 
 | } | 
 |  | 
 | asmlinkage long | 
 | sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data) | 
 | { | 
 | 	struct pt_regs *pt; | 
 | 	unsigned long urbs_end, peek_or_poke; | 
 | 	struct task_struct *child; | 
 | 	struct switch_stack *sw; | 
 | 	long ret; | 
 |  | 
 | 	lock_kernel(); | 
 | 	ret = -EPERM; | 
 | 	if (request == PTRACE_TRACEME) { | 
 | 		/* are we already being traced? */ | 
 | 		if (current->ptrace & PT_PTRACED) | 
 | 			goto out; | 
 | 		ret = security_ptrace(current->parent, current); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		current->ptrace |= PT_PTRACED; | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	peek_or_poke = (request == PTRACE_PEEKTEXT | 
 | 			|| request == PTRACE_PEEKDATA | 
 | 			|| request == PTRACE_POKETEXT | 
 | 			|| request == PTRACE_POKEDATA); | 
 | 	ret = -ESRCH; | 
 | 	read_lock(&tasklist_lock); | 
 | 	{ | 
 | 		child = find_task_by_pid(pid); | 
 | 		if (child) { | 
 | 			if (peek_or_poke) | 
 | 				child = find_thread_for_addr(child, addr); | 
 | 			get_task_struct(child); | 
 | 		} | 
 | 	} | 
 | 	read_unlock(&tasklist_lock); | 
 | 	if (!child) | 
 | 		goto out; | 
 | 	ret = -EPERM; | 
 | 	if (pid == 1)		/* no messing around with init! */ | 
 | 		goto out_tsk; | 
 |  | 
 | 	if (request == PTRACE_ATTACH) { | 
 | 		ret = ptrace_attach(child); | 
 | 		goto out_tsk; | 
 | 	} | 
 |  | 
 | 	ret = ptrace_check_attach(child, request == PTRACE_KILL); | 
 | 	if (ret < 0) | 
 | 		goto out_tsk; | 
 |  | 
 | 	pt = ia64_task_regs(child); | 
 | 	sw = (struct switch_stack *) (child->thread.ksp + 16); | 
 |  | 
 | 	switch (request) { | 
 | 	      case PTRACE_PEEKTEXT: | 
 | 	      case PTRACE_PEEKDATA: | 
 | 		/* read word at location addr */ | 
 | 		urbs_end = ia64_get_user_rbs_end(child, pt, NULL); | 
 | 		ret = ia64_peek(child, sw, urbs_end, addr, &data); | 
 | 		if (ret == 0) { | 
 | 			ret = data; | 
 | 			/* ensure "ret" is not mistaken as an error code: */ | 
 | 			force_successful_syscall_return(); | 
 | 		} | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_POKETEXT: | 
 | 	      case PTRACE_POKEDATA: | 
 | 		/* write the word at location addr */ | 
 | 		urbs_end = ia64_get_user_rbs_end(child, pt, NULL); | 
 | 		ret = ia64_poke(child, sw, urbs_end, addr, data); | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_PEEKUSR: | 
 | 		/* read the word at addr in the USER area */ | 
 | 		if (access_uarea(child, addr, &data, 0) < 0) { | 
 | 			ret = -EIO; | 
 | 			goto out_tsk; | 
 | 		} | 
 | 		ret = data; | 
 | 		/* ensure "ret" is not mistaken as an error code */ | 
 | 		force_successful_syscall_return(); | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_POKEUSR: | 
 | 		/* write the word at addr in the USER area */ | 
 | 		if (access_uarea(child, addr, &data, 1) < 0) { | 
 | 			ret = -EIO; | 
 | 			goto out_tsk; | 
 | 		} | 
 | 		ret = 0; | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_OLD_GETSIGINFO: | 
 | 		/* for backwards-compatibility */ | 
 | 		ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data); | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_OLD_SETSIGINFO: | 
 | 		/* for backwards-compatibility */ | 
 | 		ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data); | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_SYSCALL: | 
 | 		/* continue and stop at next (return from) syscall */ | 
 | 	      case PTRACE_CONT: | 
 | 		/* restart after signal. */ | 
 | 		ret = -EIO; | 
 | 		if (!valid_signal(data)) | 
 | 			goto out_tsk; | 
 | 		if (request == PTRACE_SYSCALL) | 
 | 			set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | 
 | 		else | 
 | 			clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | 
 | 		child->exit_code = data; | 
 |  | 
 | 		/* | 
 | 		 * Make sure the single step/taken-branch trap bits | 
 | 		 * are not set: | 
 | 		 */ | 
 | 		ia64_psr(pt)->ss = 0; | 
 | 		ia64_psr(pt)->tb = 0; | 
 |  | 
 | 		wake_up_process(child); | 
 | 		ret = 0; | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_KILL: | 
 | 		/* | 
 | 		 * Make the child exit.  Best I can do is send it a | 
 | 		 * sigkill.  Perhaps it should be put in the status | 
 | 		 * that it wants to exit. | 
 | 		 */ | 
 | 		if (child->exit_state == EXIT_ZOMBIE) | 
 | 			/* already dead */ | 
 | 			goto out_tsk; | 
 | 		child->exit_code = SIGKILL; | 
 |  | 
 | 		ptrace_disable(child); | 
 | 		wake_up_process(child); | 
 | 		ret = 0; | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_SINGLESTEP: | 
 | 		/* let child execute for one instruction */ | 
 | 	      case PTRACE_SINGLEBLOCK: | 
 | 		ret = -EIO; | 
 | 		if (!valid_signal(data)) | 
 | 			goto out_tsk; | 
 |  | 
 | 		clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | 
 | 		if (request == PTRACE_SINGLESTEP) { | 
 | 			ia64_psr(pt)->ss = 1; | 
 | 		} else { | 
 | 			ia64_psr(pt)->tb = 1; | 
 | 		} | 
 | 		child->exit_code = data; | 
 |  | 
 | 		/* give it a chance to run. */ | 
 | 		wake_up_process(child); | 
 | 		ret = 0; | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_DETACH: | 
 | 		/* detach a process that was attached. */ | 
 | 		ret = ptrace_detach(child, data); | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_GETREGS: | 
 | 		ret = ptrace_getregs(child, | 
 | 				     (struct pt_all_user_regs __user *) data); | 
 | 		goto out_tsk; | 
 |  | 
 | 	      case PTRACE_SETREGS: | 
 | 		ret = ptrace_setregs(child, | 
 | 				     (struct pt_all_user_regs __user *) data); | 
 | 		goto out_tsk; | 
 |  | 
 | 	      default: | 
 | 		ret = ptrace_request(child, request, addr, data); | 
 | 		goto out_tsk; | 
 | 	} | 
 |   out_tsk: | 
 | 	put_task_struct(child); | 
 |   out: | 
 | 	unlock_kernel(); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | void | 
 | syscall_trace (void) | 
 | { | 
 | 	if (!test_thread_flag(TIF_SYSCALL_TRACE)) | 
 | 		return; | 
 | 	if (!(current->ptrace & PT_PTRACED)) | 
 | 		return; | 
 | 	/* | 
 | 	 * The 0x80 provides a way for the tracing parent to | 
 | 	 * distinguish between a syscall stop and SIGTRAP delivery. | 
 | 	 */ | 
 | 	ptrace_notify(SIGTRAP | 
 | 		      | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0)); | 
 |  | 
 | 	/* | 
 | 	 * This isn't the same as continuing with a signal, but it | 
 | 	 * will do for normal use.  strace only continues with a | 
 | 	 * signal if the stopping signal is not SIGTRAP.  -brl | 
 | 	 */ | 
 | 	if (current->exit_code) { | 
 | 		send_sig(current->exit_code, current, 1); | 
 | 		current->exit_code = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* "asmlinkage" so the input arguments are preserved... */ | 
 |  | 
 | asmlinkage void | 
 | syscall_trace_enter (long arg0, long arg1, long arg2, long arg3, | 
 | 		     long arg4, long arg5, long arg6, long arg7, | 
 | 		     struct pt_regs regs) | 
 | { | 
 | 	if (test_thread_flag(TIF_SYSCALL_TRACE)  | 
 | 	    && (current->ptrace & PT_PTRACED)) | 
 | 		syscall_trace(); | 
 |  | 
 | 	if (unlikely(current->audit_context)) { | 
 | 		long syscall; | 
 | 		int arch; | 
 |  | 
 | 		if (IS_IA32_PROCESS(®s)) { | 
 | 			syscall = regs.r1; | 
 | 			arch = AUDIT_ARCH_I386; | 
 | 		} else { | 
 | 			syscall = regs.r15; | 
 | 			arch = AUDIT_ARCH_IA64; | 
 | 		} | 
 |  | 
 | 		audit_syscall_entry(current, arch, syscall, arg0, arg1, arg2, arg3); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /* "asmlinkage" so the input arguments are preserved... */ | 
 |  | 
 | asmlinkage void | 
 | syscall_trace_leave (long arg0, long arg1, long arg2, long arg3, | 
 | 		     long arg4, long arg5, long arg6, long arg7, | 
 | 		     struct pt_regs regs) | 
 | { | 
 | 	if (unlikely(current->audit_context)) | 
 | 		audit_syscall_exit(current, AUDITSC_RESULT(regs.r10), regs.r8); | 
 |  | 
 | 	if (test_thread_flag(TIF_SYSCALL_TRACE) | 
 | 	    && (current->ptrace & PT_PTRACED)) | 
 | 		syscall_trace(); | 
 | } |