| /* |
| * CAN bus driver for Microchip 251x CAN Controller with SPI Interface |
| * |
| * MCP2510 support and bug fixes by Christian Pellegrin |
| * <chripell@evolware.org> |
| * |
| * Copyright 2009 Christian Pellegrin EVOL S.r.l. |
| * |
| * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved. |
| * Written under contract by: |
| * Chris Elston, Katalix Systems, Ltd. |
| * |
| * Based on Microchip MCP251x CAN controller driver written by |
| * David Vrabel, Copyright 2006 Arcom Control Systems Ltd. |
| * |
| * Based on CAN bus driver for the CCAN controller written by |
| * - Sascha Hauer, Marc Kleine-Budde, Pengutronix |
| * - Simon Kallweit, intefo AG |
| * Copyright 2007 |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the version 2 of the GNU General Public License |
| * as published by the Free Software Foundation |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * |
| * |
| * Your platform definition file should specify something like: |
| * |
| * static struct mcp251x_platform_data mcp251x_info = { |
| * .oscillator_frequency = 8000000, |
| * }; |
| * |
| * static struct spi_board_info spi_board_info[] = { |
| * { |
| * .modalias = "mcp2510", |
| * // or "mcp2515" depending on your controller |
| * .platform_data = &mcp251x_info, |
| * .irq = IRQ_EINT13, |
| * .max_speed_hz = 2*1000*1000, |
| * .chip_select = 2, |
| * }, |
| * }; |
| * |
| * Please see mcp251x.h for a description of the fields in |
| * struct mcp251x_platform_data. |
| * |
| */ |
| |
| #include <linux/can/core.h> |
| #include <linux/can/dev.h> |
| #include <linux/can/led.h> |
| #include <linux/can/platform/mcp251x.h> |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/freezer.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/spi/spi.h> |
| #include <linux/uaccess.h> |
| #include <linux/regulator/consumer.h> |
| |
| /* SPI interface instruction set */ |
| #define INSTRUCTION_WRITE 0x02 |
| #define INSTRUCTION_READ 0x03 |
| #define INSTRUCTION_BIT_MODIFY 0x05 |
| #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n)) |
| #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94) |
| #define INSTRUCTION_RESET 0xC0 |
| #define RTS_TXB0 0x01 |
| #define RTS_TXB1 0x02 |
| #define RTS_TXB2 0x04 |
| #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07)) |
| |
| |
| /* MPC251x registers */ |
| #define CANSTAT 0x0e |
| #define CANCTRL 0x0f |
| # define CANCTRL_REQOP_MASK 0xe0 |
| # define CANCTRL_REQOP_CONF 0x80 |
| # define CANCTRL_REQOP_LISTEN_ONLY 0x60 |
| # define CANCTRL_REQOP_LOOPBACK 0x40 |
| # define CANCTRL_REQOP_SLEEP 0x20 |
| # define CANCTRL_REQOP_NORMAL 0x00 |
| # define CANCTRL_OSM 0x08 |
| # define CANCTRL_ABAT 0x10 |
| #define TEC 0x1c |
| #define REC 0x1d |
| #define CNF1 0x2a |
| # define CNF1_SJW_SHIFT 6 |
| #define CNF2 0x29 |
| # define CNF2_BTLMODE 0x80 |
| # define CNF2_SAM 0x40 |
| # define CNF2_PS1_SHIFT 3 |
| #define CNF3 0x28 |
| # define CNF3_SOF 0x08 |
| # define CNF3_WAKFIL 0x04 |
| # define CNF3_PHSEG2_MASK 0x07 |
| #define CANINTE 0x2b |
| # define CANINTE_MERRE 0x80 |
| # define CANINTE_WAKIE 0x40 |
| # define CANINTE_ERRIE 0x20 |
| # define CANINTE_TX2IE 0x10 |
| # define CANINTE_TX1IE 0x08 |
| # define CANINTE_TX0IE 0x04 |
| # define CANINTE_RX1IE 0x02 |
| # define CANINTE_RX0IE 0x01 |
| #define CANINTF 0x2c |
| # define CANINTF_MERRF 0x80 |
| # define CANINTF_WAKIF 0x40 |
| # define CANINTF_ERRIF 0x20 |
| # define CANINTF_TX2IF 0x10 |
| # define CANINTF_TX1IF 0x08 |
| # define CANINTF_TX0IF 0x04 |
| # define CANINTF_RX1IF 0x02 |
| # define CANINTF_RX0IF 0x01 |
| # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF) |
| # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF) |
| # define CANINTF_ERR (CANINTF_ERRIF) |
| #define EFLG 0x2d |
| # define EFLG_EWARN 0x01 |
| # define EFLG_RXWAR 0x02 |
| # define EFLG_TXWAR 0x04 |
| # define EFLG_RXEP 0x08 |
| # define EFLG_TXEP 0x10 |
| # define EFLG_TXBO 0x20 |
| # define EFLG_RX0OVR 0x40 |
| # define EFLG_RX1OVR 0x80 |
| #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF) |
| # define TXBCTRL_ABTF 0x40 |
| # define TXBCTRL_MLOA 0x20 |
| # define TXBCTRL_TXERR 0x10 |
| # define TXBCTRL_TXREQ 0x08 |
| #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF) |
| # define SIDH_SHIFT 3 |
| #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF) |
| # define SIDL_SID_MASK 7 |
| # define SIDL_SID_SHIFT 5 |
| # define SIDL_EXIDE_SHIFT 3 |
| # define SIDL_EID_SHIFT 16 |
| # define SIDL_EID_MASK 3 |
| #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF) |
| #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF) |
| #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF) |
| # define DLC_RTR_SHIFT 6 |
| #define TXBCTRL_OFF 0 |
| #define TXBSIDH_OFF 1 |
| #define TXBSIDL_OFF 2 |
| #define TXBEID8_OFF 3 |
| #define TXBEID0_OFF 4 |
| #define TXBDLC_OFF 5 |
| #define TXBDAT_OFF 6 |
| #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF) |
| # define RXBCTRL_BUKT 0x04 |
| # define RXBCTRL_RXM0 0x20 |
| # define RXBCTRL_RXM1 0x40 |
| #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF) |
| # define RXBSIDH_SHIFT 3 |
| #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF) |
| # define RXBSIDL_IDE 0x08 |
| # define RXBSIDL_SRR 0x10 |
| # define RXBSIDL_EID 3 |
| # define RXBSIDL_SHIFT 5 |
| #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF) |
| #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF) |
| #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF) |
| # define RXBDLC_LEN_MASK 0x0f |
| # define RXBDLC_RTR 0x40 |
| #define RXBCTRL_OFF 0 |
| #define RXBSIDH_OFF 1 |
| #define RXBSIDL_OFF 2 |
| #define RXBEID8_OFF 3 |
| #define RXBEID0_OFF 4 |
| #define RXBDLC_OFF 5 |
| #define RXBDAT_OFF 6 |
| #define RXFSID(n) ((n < 3) ? 0 : 4) |
| #define RXFSIDH(n) ((n) * 4 + RXFSID(n)) |
| #define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n)) |
| #define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n)) |
| #define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n)) |
| #define RXMSIDH(n) ((n) * 4 + 0x20) |
| #define RXMSIDL(n) ((n) * 4 + 0x21) |
| #define RXMEID8(n) ((n) * 4 + 0x22) |
| #define RXMEID0(n) ((n) * 4 + 0x23) |
| |
| #define GET_BYTE(val, byte) \ |
| (((val) >> ((byte) * 8)) & 0xff) |
| #define SET_BYTE(val, byte) \ |
| (((val) & 0xff) << ((byte) * 8)) |
| |
| /* |
| * Buffer size required for the largest SPI transfer (i.e., reading a |
| * frame) |
| */ |
| #define CAN_FRAME_MAX_DATA_LEN 8 |
| #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN) |
| #define CAN_FRAME_MAX_BITS 128 |
| |
| #define TX_ECHO_SKB_MAX 1 |
| |
| #define MCP251X_OST_DELAY_MS (5) |
| |
| #define DEVICE_NAME "mcp251x" |
| |
| static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */ |
| module_param(mcp251x_enable_dma, int, S_IRUGO); |
| MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)"); |
| |
| static const struct can_bittiming_const mcp251x_bittiming_const = { |
| .name = DEVICE_NAME, |
| .tseg1_min = 3, |
| .tseg1_max = 16, |
| .tseg2_min = 2, |
| .tseg2_max = 8, |
| .sjw_max = 4, |
| .brp_min = 1, |
| .brp_max = 64, |
| .brp_inc = 1, |
| }; |
| |
| enum mcp251x_model { |
| CAN_MCP251X_MCP2510 = 0x2510, |
| CAN_MCP251X_MCP2515 = 0x2515, |
| }; |
| |
| struct mcp251x_priv { |
| struct can_priv can; |
| struct net_device *net; |
| struct spi_device *spi; |
| enum mcp251x_model model; |
| |
| struct mutex mcp_lock; /* SPI device lock */ |
| |
| u8 *spi_tx_buf; |
| u8 *spi_rx_buf; |
| dma_addr_t spi_tx_dma; |
| dma_addr_t spi_rx_dma; |
| |
| struct sk_buff *tx_skb; |
| int tx_len; |
| |
| struct workqueue_struct *wq; |
| struct work_struct tx_work; |
| struct work_struct restart_work; |
| |
| int force_quit; |
| int after_suspend; |
| #define AFTER_SUSPEND_UP 1 |
| #define AFTER_SUSPEND_DOWN 2 |
| #define AFTER_SUSPEND_POWER 4 |
| #define AFTER_SUSPEND_RESTART 8 |
| int restart_tx; |
| struct regulator *power; |
| struct regulator *transceiver; |
| struct clk *clk; |
| }; |
| |
| #define MCP251X_IS(_model) \ |
| static inline int mcp251x_is_##_model(struct spi_device *spi) \ |
| { \ |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); \ |
| return priv->model == CAN_MCP251X_MCP##_model; \ |
| } |
| |
| MCP251X_IS(2510); |
| MCP251X_IS(2515); |
| |
| static void mcp251x_clean(struct net_device *net) |
| { |
| struct mcp251x_priv *priv = netdev_priv(net); |
| |
| if (priv->tx_skb || priv->tx_len) |
| net->stats.tx_errors++; |
| if (priv->tx_skb) |
| dev_kfree_skb(priv->tx_skb); |
| if (priv->tx_len) |
| can_free_echo_skb(priv->net, 0); |
| priv->tx_skb = NULL; |
| priv->tx_len = 0; |
| } |
| |
| /* |
| * Note about handling of error return of mcp251x_spi_trans: accessing |
| * registers via SPI is not really different conceptually than using |
| * normal I/O assembler instructions, although it's much more |
| * complicated from a practical POV. So it's not advisable to always |
| * check the return value of this function. Imagine that every |
| * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0) |
| * error();", it would be a great mess (well there are some situation |
| * when exception handling C++ like could be useful after all). So we |
| * just check that transfers are OK at the beginning of our |
| * conversation with the chip and to avoid doing really nasty things |
| * (like injecting bogus packets in the network stack). |
| */ |
| static int mcp251x_spi_trans(struct spi_device *spi, int len) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| struct spi_transfer t = { |
| .tx_buf = priv->spi_tx_buf, |
| .rx_buf = priv->spi_rx_buf, |
| .len = len, |
| .cs_change = 0, |
| }; |
| struct spi_message m; |
| int ret; |
| |
| spi_message_init(&m); |
| |
| if (mcp251x_enable_dma) { |
| t.tx_dma = priv->spi_tx_dma; |
| t.rx_dma = priv->spi_rx_dma; |
| m.is_dma_mapped = 1; |
| } |
| |
| spi_message_add_tail(&t, &m); |
| |
| ret = spi_sync(spi, &m); |
| if (ret) |
| dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret); |
| return ret; |
| } |
| |
| static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| u8 val = 0; |
| |
| priv->spi_tx_buf[0] = INSTRUCTION_READ; |
| priv->spi_tx_buf[1] = reg; |
| |
| mcp251x_spi_trans(spi, 3); |
| val = priv->spi_rx_buf[2]; |
| |
| return val; |
| } |
| |
| static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg, |
| uint8_t *v1, uint8_t *v2) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| |
| priv->spi_tx_buf[0] = INSTRUCTION_READ; |
| priv->spi_tx_buf[1] = reg; |
| |
| mcp251x_spi_trans(spi, 4); |
| |
| *v1 = priv->spi_rx_buf[2]; |
| *v2 = priv->spi_rx_buf[3]; |
| } |
| |
| static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| |
| priv->spi_tx_buf[0] = INSTRUCTION_WRITE; |
| priv->spi_tx_buf[1] = reg; |
| priv->spi_tx_buf[2] = val; |
| |
| mcp251x_spi_trans(spi, 3); |
| } |
| |
| static void mcp251x_write_bits(struct spi_device *spi, u8 reg, |
| u8 mask, uint8_t val) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| |
| priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY; |
| priv->spi_tx_buf[1] = reg; |
| priv->spi_tx_buf[2] = mask; |
| priv->spi_tx_buf[3] = val; |
| |
| mcp251x_spi_trans(spi, 4); |
| } |
| |
| static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf, |
| int len, int tx_buf_idx) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| |
| if (mcp251x_is_2510(spi)) { |
| int i; |
| |
| for (i = 1; i < TXBDAT_OFF + len; i++) |
| mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i, |
| buf[i]); |
| } else { |
| memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len); |
| mcp251x_spi_trans(spi, TXBDAT_OFF + len); |
| } |
| } |
| |
| static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame, |
| int tx_buf_idx) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| u32 sid, eid, exide, rtr; |
| u8 buf[SPI_TRANSFER_BUF_LEN]; |
| |
| exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */ |
| if (exide) |
| sid = (frame->can_id & CAN_EFF_MASK) >> 18; |
| else |
| sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */ |
| eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */ |
| rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */ |
| |
| buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx); |
| buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT; |
| buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) | |
| (exide << SIDL_EXIDE_SHIFT) | |
| ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK); |
| buf[TXBEID8_OFF] = GET_BYTE(eid, 1); |
| buf[TXBEID0_OFF] = GET_BYTE(eid, 0); |
| buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc; |
| memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc); |
| mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx); |
| |
| /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */ |
| priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx); |
| mcp251x_spi_trans(priv->spi, 1); |
| } |
| |
| static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf, |
| int buf_idx) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| |
| if (mcp251x_is_2510(spi)) { |
| int i, len; |
| |
| for (i = 1; i < RXBDAT_OFF; i++) |
| buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i); |
| |
| len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK); |
| for (; i < (RXBDAT_OFF + len); i++) |
| buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i); |
| } else { |
| priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx); |
| mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN); |
| memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN); |
| } |
| } |
| |
| static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| struct sk_buff *skb; |
| struct can_frame *frame; |
| u8 buf[SPI_TRANSFER_BUF_LEN]; |
| |
| skb = alloc_can_skb(priv->net, &frame); |
| if (!skb) { |
| dev_err(&spi->dev, "cannot allocate RX skb\n"); |
| priv->net->stats.rx_dropped++; |
| return; |
| } |
| |
| mcp251x_hw_rx_frame(spi, buf, buf_idx); |
| if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) { |
| /* Extended ID format */ |
| frame->can_id = CAN_EFF_FLAG; |
| frame->can_id |= |
| /* Extended ID part */ |
| SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) | |
| SET_BYTE(buf[RXBEID8_OFF], 1) | |
| SET_BYTE(buf[RXBEID0_OFF], 0) | |
| /* Standard ID part */ |
| (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) | |
| (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18); |
| /* Remote transmission request */ |
| if (buf[RXBDLC_OFF] & RXBDLC_RTR) |
| frame->can_id |= CAN_RTR_FLAG; |
| } else { |
| /* Standard ID format */ |
| frame->can_id = |
| (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) | |
| (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT); |
| if (buf[RXBSIDL_OFF] & RXBSIDL_SRR) |
| frame->can_id |= CAN_RTR_FLAG; |
| } |
| /* Data length */ |
| frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK); |
| memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc); |
| |
| priv->net->stats.rx_packets++; |
| priv->net->stats.rx_bytes += frame->can_dlc; |
| |
| can_led_event(priv->net, CAN_LED_EVENT_RX); |
| |
| netif_rx_ni(skb); |
| } |
| |
| static void mcp251x_hw_sleep(struct spi_device *spi) |
| { |
| mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP); |
| } |
| |
| static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb, |
| struct net_device *net) |
| { |
| struct mcp251x_priv *priv = netdev_priv(net); |
| struct spi_device *spi = priv->spi; |
| |
| if (priv->tx_skb || priv->tx_len) { |
| dev_warn(&spi->dev, "hard_xmit called while tx busy\n"); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (can_dropped_invalid_skb(net, skb)) |
| return NETDEV_TX_OK; |
| |
| netif_stop_queue(net); |
| priv->tx_skb = skb; |
| queue_work(priv->wq, &priv->tx_work); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode) |
| { |
| struct mcp251x_priv *priv = netdev_priv(net); |
| |
| switch (mode) { |
| case CAN_MODE_START: |
| mcp251x_clean(net); |
| /* We have to delay work since SPI I/O may sleep */ |
| priv->can.state = CAN_STATE_ERROR_ACTIVE; |
| priv->restart_tx = 1; |
| if (priv->can.restart_ms == 0) |
| priv->after_suspend = AFTER_SUSPEND_RESTART; |
| queue_work(priv->wq, &priv->restart_work); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| static int mcp251x_set_normal_mode(struct spi_device *spi) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| unsigned long timeout; |
| |
| /* Enable interrupts */ |
| mcp251x_write_reg(spi, CANINTE, |
| CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE | |
| CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE); |
| |
| if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { |
| /* Put device into loopback mode */ |
| mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK); |
| } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) { |
| /* Put device into listen-only mode */ |
| mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY); |
| } else { |
| /* Put device into normal mode */ |
| mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL); |
| |
| /* Wait for the device to enter normal mode */ |
| timeout = jiffies + HZ; |
| while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) { |
| schedule(); |
| if (time_after(jiffies, timeout)) { |
| dev_err(&spi->dev, "MCP251x didn't" |
| " enter in normal mode\n"); |
| return -EBUSY; |
| } |
| } |
| } |
| priv->can.state = CAN_STATE_ERROR_ACTIVE; |
| return 0; |
| } |
| |
| static int mcp251x_do_set_bittiming(struct net_device *net) |
| { |
| struct mcp251x_priv *priv = netdev_priv(net); |
| struct can_bittiming *bt = &priv->can.bittiming; |
| struct spi_device *spi = priv->spi; |
| |
| mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) | |
| (bt->brp - 1)); |
| mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE | |
| (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ? |
| CNF2_SAM : 0) | |
| ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) | |
| (bt->prop_seg - 1)); |
| mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK, |
| (bt->phase_seg2 - 1)); |
| dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n", |
| mcp251x_read_reg(spi, CNF1), |
| mcp251x_read_reg(spi, CNF2), |
| mcp251x_read_reg(spi, CNF3)); |
| |
| return 0; |
| } |
| |
| static int mcp251x_setup(struct net_device *net, struct spi_device *spi) |
| { |
| mcp251x_do_set_bittiming(net); |
| |
| mcp251x_write_reg(spi, RXBCTRL(0), |
| RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1); |
| mcp251x_write_reg(spi, RXBCTRL(1), |
| RXBCTRL_RXM0 | RXBCTRL_RXM1); |
| return 0; |
| } |
| |
| static int mcp251x_hw_reset(struct spi_device *spi) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| u8 reg; |
| int ret; |
| |
| /* Wait for oscillator startup timer after power up */ |
| mdelay(MCP251X_OST_DELAY_MS); |
| |
| priv->spi_tx_buf[0] = INSTRUCTION_RESET; |
| ret = mcp251x_spi_trans(spi, 1); |
| if (ret) |
| return ret; |
| |
| /* Wait for oscillator startup timer after reset */ |
| mdelay(MCP251X_OST_DELAY_MS); |
| |
| reg = mcp251x_read_reg(spi, CANSTAT); |
| if ((reg & CANCTRL_REQOP_MASK) != CANCTRL_REQOP_CONF) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static int mcp251x_hw_probe(struct spi_device *spi) |
| { |
| u8 ctrl; |
| int ret; |
| |
| ret = mcp251x_hw_reset(spi); |
| if (ret) |
| return ret; |
| |
| ctrl = mcp251x_read_reg(spi, CANCTRL); |
| |
| dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl); |
| |
| /* Check for power up default value */ |
| if ((ctrl & 0x17) != 0x07) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static int mcp251x_power_enable(struct regulator *reg, int enable) |
| { |
| if (IS_ERR_OR_NULL(reg)) |
| return 0; |
| |
| if (enable) |
| return regulator_enable(reg); |
| else |
| return regulator_disable(reg); |
| } |
| |
| static void mcp251x_open_clean(struct net_device *net) |
| { |
| struct mcp251x_priv *priv = netdev_priv(net); |
| struct spi_device *spi = priv->spi; |
| |
| free_irq(spi->irq, priv); |
| mcp251x_hw_sleep(spi); |
| mcp251x_power_enable(priv->transceiver, 0); |
| close_candev(net); |
| } |
| |
| static int mcp251x_stop(struct net_device *net) |
| { |
| struct mcp251x_priv *priv = netdev_priv(net); |
| struct spi_device *spi = priv->spi; |
| |
| close_candev(net); |
| |
| priv->force_quit = 1; |
| free_irq(spi->irq, priv); |
| destroy_workqueue(priv->wq); |
| priv->wq = NULL; |
| |
| mutex_lock(&priv->mcp_lock); |
| |
| /* Disable and clear pending interrupts */ |
| mcp251x_write_reg(spi, CANINTE, 0x00); |
| mcp251x_write_reg(spi, CANINTF, 0x00); |
| |
| mcp251x_write_reg(spi, TXBCTRL(0), 0); |
| mcp251x_clean(net); |
| |
| mcp251x_hw_sleep(spi); |
| |
| mcp251x_power_enable(priv->transceiver, 0); |
| |
| priv->can.state = CAN_STATE_STOPPED; |
| |
| mutex_unlock(&priv->mcp_lock); |
| |
| can_led_event(net, CAN_LED_EVENT_STOP); |
| |
| return 0; |
| } |
| |
| static void mcp251x_error_skb(struct net_device *net, int can_id, int data1) |
| { |
| struct sk_buff *skb; |
| struct can_frame *frame; |
| |
| skb = alloc_can_err_skb(net, &frame); |
| if (skb) { |
| frame->can_id |= can_id; |
| frame->data[1] = data1; |
| netif_rx_ni(skb); |
| } else { |
| netdev_err(net, "cannot allocate error skb\n"); |
| } |
| } |
| |
| static void mcp251x_tx_work_handler(struct work_struct *ws) |
| { |
| struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv, |
| tx_work); |
| struct spi_device *spi = priv->spi; |
| struct net_device *net = priv->net; |
| struct can_frame *frame; |
| |
| mutex_lock(&priv->mcp_lock); |
| if (priv->tx_skb) { |
| if (priv->can.state == CAN_STATE_BUS_OFF) { |
| mcp251x_clean(net); |
| } else { |
| frame = (struct can_frame *)priv->tx_skb->data; |
| |
| if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN) |
| frame->can_dlc = CAN_FRAME_MAX_DATA_LEN; |
| mcp251x_hw_tx(spi, frame, 0); |
| priv->tx_len = 1 + frame->can_dlc; |
| can_put_echo_skb(priv->tx_skb, net, 0); |
| priv->tx_skb = NULL; |
| } |
| } |
| mutex_unlock(&priv->mcp_lock); |
| } |
| |
| static void mcp251x_restart_work_handler(struct work_struct *ws) |
| { |
| struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv, |
| restart_work); |
| struct spi_device *spi = priv->spi; |
| struct net_device *net = priv->net; |
| |
| mutex_lock(&priv->mcp_lock); |
| if (priv->after_suspend) { |
| mcp251x_hw_reset(spi); |
| mcp251x_setup(net, spi); |
| if (priv->after_suspend & AFTER_SUSPEND_RESTART) { |
| mcp251x_set_normal_mode(spi); |
| } else if (priv->after_suspend & AFTER_SUSPEND_UP) { |
| netif_device_attach(net); |
| mcp251x_clean(net); |
| mcp251x_set_normal_mode(spi); |
| netif_wake_queue(net); |
| } else { |
| mcp251x_hw_sleep(spi); |
| } |
| priv->after_suspend = 0; |
| priv->force_quit = 0; |
| } |
| |
| if (priv->restart_tx) { |
| priv->restart_tx = 0; |
| mcp251x_write_reg(spi, TXBCTRL(0), 0); |
| mcp251x_clean(net); |
| netif_wake_queue(net); |
| mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0); |
| } |
| mutex_unlock(&priv->mcp_lock); |
| } |
| |
| static irqreturn_t mcp251x_can_ist(int irq, void *dev_id) |
| { |
| struct mcp251x_priv *priv = dev_id; |
| struct spi_device *spi = priv->spi; |
| struct net_device *net = priv->net; |
| |
| mutex_lock(&priv->mcp_lock); |
| while (!priv->force_quit) { |
| enum can_state new_state; |
| u8 intf, eflag; |
| u8 clear_intf = 0; |
| int can_id = 0, data1 = 0; |
| |
| mcp251x_read_2regs(spi, CANINTF, &intf, &eflag); |
| |
| /* mask out flags we don't care about */ |
| intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR; |
| |
| /* receive buffer 0 */ |
| if (intf & CANINTF_RX0IF) { |
| mcp251x_hw_rx(spi, 0); |
| /* |
| * Free one buffer ASAP |
| * (The MCP2515 does this automatically.) |
| */ |
| if (mcp251x_is_2510(spi)) |
| mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00); |
| } |
| |
| /* receive buffer 1 */ |
| if (intf & CANINTF_RX1IF) { |
| mcp251x_hw_rx(spi, 1); |
| /* the MCP2515 does this automatically */ |
| if (mcp251x_is_2510(spi)) |
| clear_intf |= CANINTF_RX1IF; |
| } |
| |
| /* any error or tx interrupt we need to clear? */ |
| if (intf & (CANINTF_ERR | CANINTF_TX)) |
| clear_intf |= intf & (CANINTF_ERR | CANINTF_TX); |
| if (clear_intf) |
| mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00); |
| |
| if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) |
| mcp251x_write_bits(spi, EFLG, eflag, 0x00); |
| |
| /* Update can state */ |
| if (eflag & EFLG_TXBO) { |
| new_state = CAN_STATE_BUS_OFF; |
| can_id |= CAN_ERR_BUSOFF; |
| } else if (eflag & EFLG_TXEP) { |
| new_state = CAN_STATE_ERROR_PASSIVE; |
| can_id |= CAN_ERR_CRTL; |
| data1 |= CAN_ERR_CRTL_TX_PASSIVE; |
| } else if (eflag & EFLG_RXEP) { |
| new_state = CAN_STATE_ERROR_PASSIVE; |
| can_id |= CAN_ERR_CRTL; |
| data1 |= CAN_ERR_CRTL_RX_PASSIVE; |
| } else if (eflag & EFLG_TXWAR) { |
| new_state = CAN_STATE_ERROR_WARNING; |
| can_id |= CAN_ERR_CRTL; |
| data1 |= CAN_ERR_CRTL_TX_WARNING; |
| } else if (eflag & EFLG_RXWAR) { |
| new_state = CAN_STATE_ERROR_WARNING; |
| can_id |= CAN_ERR_CRTL; |
| data1 |= CAN_ERR_CRTL_RX_WARNING; |
| } else { |
| new_state = CAN_STATE_ERROR_ACTIVE; |
| } |
| |
| /* Update can state statistics */ |
| switch (priv->can.state) { |
| case CAN_STATE_ERROR_ACTIVE: |
| if (new_state >= CAN_STATE_ERROR_WARNING && |
| new_state <= CAN_STATE_BUS_OFF) |
| priv->can.can_stats.error_warning++; |
| case CAN_STATE_ERROR_WARNING: /* fallthrough */ |
| if (new_state >= CAN_STATE_ERROR_PASSIVE && |
| new_state <= CAN_STATE_BUS_OFF) |
| priv->can.can_stats.error_passive++; |
| break; |
| default: |
| break; |
| } |
| priv->can.state = new_state; |
| |
| if (intf & CANINTF_ERRIF) { |
| /* Handle overflow counters */ |
| if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) { |
| if (eflag & EFLG_RX0OVR) { |
| net->stats.rx_over_errors++; |
| net->stats.rx_errors++; |
| } |
| if (eflag & EFLG_RX1OVR) { |
| net->stats.rx_over_errors++; |
| net->stats.rx_errors++; |
| } |
| can_id |= CAN_ERR_CRTL; |
| data1 |= CAN_ERR_CRTL_RX_OVERFLOW; |
| } |
| mcp251x_error_skb(net, can_id, data1); |
| } |
| |
| if (priv->can.state == CAN_STATE_BUS_OFF) { |
| if (priv->can.restart_ms == 0) { |
| priv->force_quit = 1; |
| priv->can.can_stats.bus_off++; |
| can_bus_off(net); |
| mcp251x_hw_sleep(spi); |
| break; |
| } |
| } |
| |
| if (intf == 0) |
| break; |
| |
| if (intf & CANINTF_TX) { |
| net->stats.tx_packets++; |
| net->stats.tx_bytes += priv->tx_len - 1; |
| can_led_event(net, CAN_LED_EVENT_TX); |
| if (priv->tx_len) { |
| can_get_echo_skb(net, 0); |
| priv->tx_len = 0; |
| } |
| netif_wake_queue(net); |
| } |
| |
| } |
| mutex_unlock(&priv->mcp_lock); |
| return IRQ_HANDLED; |
| } |
| |
| static int mcp251x_open(struct net_device *net) |
| { |
| struct mcp251x_priv *priv = netdev_priv(net); |
| struct spi_device *spi = priv->spi; |
| unsigned long flags = IRQF_ONESHOT | IRQF_TRIGGER_FALLING; |
| int ret; |
| |
| ret = open_candev(net); |
| if (ret) { |
| dev_err(&spi->dev, "unable to set initial baudrate!\n"); |
| return ret; |
| } |
| |
| mutex_lock(&priv->mcp_lock); |
| mcp251x_power_enable(priv->transceiver, 1); |
| |
| priv->force_quit = 0; |
| priv->tx_skb = NULL; |
| priv->tx_len = 0; |
| |
| ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist, |
| flags | IRQF_ONESHOT, DEVICE_NAME, priv); |
| if (ret) { |
| dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq); |
| mcp251x_power_enable(priv->transceiver, 0); |
| close_candev(net); |
| goto open_unlock; |
| } |
| |
| priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM, |
| 0); |
| INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler); |
| INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler); |
| |
| ret = mcp251x_hw_reset(spi); |
| if (ret) { |
| mcp251x_open_clean(net); |
| goto open_unlock; |
| } |
| ret = mcp251x_setup(net, spi); |
| if (ret) { |
| mcp251x_open_clean(net); |
| goto open_unlock; |
| } |
| ret = mcp251x_set_normal_mode(spi); |
| if (ret) { |
| mcp251x_open_clean(net); |
| goto open_unlock; |
| } |
| |
| can_led_event(net, CAN_LED_EVENT_OPEN); |
| |
| netif_wake_queue(net); |
| |
| open_unlock: |
| mutex_unlock(&priv->mcp_lock); |
| return ret; |
| } |
| |
| static const struct net_device_ops mcp251x_netdev_ops = { |
| .ndo_open = mcp251x_open, |
| .ndo_stop = mcp251x_stop, |
| .ndo_start_xmit = mcp251x_hard_start_xmit, |
| .ndo_change_mtu = can_change_mtu, |
| }; |
| |
| static const struct of_device_id mcp251x_of_match[] = { |
| { |
| .compatible = "microchip,mcp2510", |
| .data = (void *)CAN_MCP251X_MCP2510, |
| }, |
| { |
| .compatible = "microchip,mcp2515", |
| .data = (void *)CAN_MCP251X_MCP2515, |
| }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, mcp251x_of_match); |
| |
| static const struct spi_device_id mcp251x_id_table[] = { |
| { |
| .name = "mcp2510", |
| .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2510, |
| }, |
| { |
| .name = "mcp2515", |
| .driver_data = (kernel_ulong_t)CAN_MCP251X_MCP2515, |
| }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(spi, mcp251x_id_table); |
| |
| static int mcp251x_can_probe(struct spi_device *spi) |
| { |
| const struct of_device_id *of_id = of_match_device(mcp251x_of_match, |
| &spi->dev); |
| struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev); |
| struct net_device *net; |
| struct mcp251x_priv *priv; |
| struct clk *clk; |
| int freq, ret; |
| |
| clk = devm_clk_get(&spi->dev, NULL); |
| if (IS_ERR(clk)) { |
| if (pdata) |
| freq = pdata->oscillator_frequency; |
| else |
| return PTR_ERR(clk); |
| } else { |
| freq = clk_get_rate(clk); |
| } |
| |
| /* Sanity check */ |
| if (freq < 1000000 || freq > 25000000) |
| return -ERANGE; |
| |
| /* Allocate can/net device */ |
| net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX); |
| if (!net) |
| return -ENOMEM; |
| |
| if (!IS_ERR(clk)) { |
| ret = clk_prepare_enable(clk); |
| if (ret) |
| goto out_free; |
| } |
| |
| net->netdev_ops = &mcp251x_netdev_ops; |
| net->flags |= IFF_ECHO; |
| |
| priv = netdev_priv(net); |
| priv->can.bittiming_const = &mcp251x_bittiming_const; |
| priv->can.do_set_mode = mcp251x_do_set_mode; |
| priv->can.clock.freq = freq / 2; |
| priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES | |
| CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY; |
| if (of_id) |
| priv->model = (enum mcp251x_model)of_id->data; |
| else |
| priv->model = spi_get_device_id(spi)->driver_data; |
| priv->net = net; |
| priv->clk = clk; |
| |
| spi_set_drvdata(spi, priv); |
| |
| /* Configure the SPI bus */ |
| spi->bits_per_word = 8; |
| if (mcp251x_is_2510(spi)) |
| spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000; |
| else |
| spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000; |
| ret = spi_setup(spi); |
| if (ret) |
| goto out_clk; |
| |
| priv->power = devm_regulator_get_optional(&spi->dev, "vdd"); |
| priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver"); |
| if ((PTR_ERR(priv->power) == -EPROBE_DEFER) || |
| (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) { |
| ret = -EPROBE_DEFER; |
| goto out_clk; |
| } |
| |
| ret = mcp251x_power_enable(priv->power, 1); |
| if (ret) |
| goto out_clk; |
| |
| priv->spi = spi; |
| mutex_init(&priv->mcp_lock); |
| |
| /* If requested, allocate DMA buffers */ |
| if (mcp251x_enable_dma) { |
| spi->dev.coherent_dma_mask = ~0; |
| |
| /* |
| * Minimum coherent DMA allocation is PAGE_SIZE, so allocate |
| * that much and share it between Tx and Rx DMA buffers. |
| */ |
| priv->spi_tx_buf = dmam_alloc_coherent(&spi->dev, |
| PAGE_SIZE, |
| &priv->spi_tx_dma, |
| GFP_DMA); |
| |
| if (priv->spi_tx_buf) { |
| priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2)); |
| priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma + |
| (PAGE_SIZE / 2)); |
| } else { |
| /* Fall back to non-DMA */ |
| mcp251x_enable_dma = 0; |
| } |
| } |
| |
| /* Allocate non-DMA buffers */ |
| if (!mcp251x_enable_dma) { |
| priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN, |
| GFP_KERNEL); |
| if (!priv->spi_tx_buf) { |
| ret = -ENOMEM; |
| goto error_probe; |
| } |
| priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN, |
| GFP_KERNEL); |
| if (!priv->spi_rx_buf) { |
| ret = -ENOMEM; |
| goto error_probe; |
| } |
| } |
| |
| SET_NETDEV_DEV(net, &spi->dev); |
| |
| /* Here is OK to not lock the MCP, no one knows about it yet */ |
| ret = mcp251x_hw_probe(spi); |
| if (ret) { |
| if (ret == -ENODEV) |
| dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n", priv->model); |
| goto error_probe; |
| } |
| |
| mcp251x_hw_sleep(spi); |
| |
| ret = register_candev(net); |
| if (ret) |
| goto error_probe; |
| |
| devm_can_led_init(net); |
| |
| netdev_info(net, "MCP%x successfully initialized.\n", priv->model); |
| return 0; |
| |
| error_probe: |
| mcp251x_power_enable(priv->power, 0); |
| |
| out_clk: |
| if (!IS_ERR(clk)) |
| clk_disable_unprepare(clk); |
| |
| out_free: |
| free_candev(net); |
| |
| dev_err(&spi->dev, "Probe failed, err=%d\n", -ret); |
| return ret; |
| } |
| |
| static int mcp251x_can_remove(struct spi_device *spi) |
| { |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| struct net_device *net = priv->net; |
| |
| unregister_candev(net); |
| |
| mcp251x_power_enable(priv->power, 0); |
| |
| if (!IS_ERR(priv->clk)) |
| clk_disable_unprepare(priv->clk); |
| |
| free_candev(net); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused mcp251x_can_suspend(struct device *dev) |
| { |
| struct spi_device *spi = to_spi_device(dev); |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| struct net_device *net = priv->net; |
| |
| priv->force_quit = 1; |
| disable_irq(spi->irq); |
| /* |
| * Note: at this point neither IST nor workqueues are running. |
| * open/stop cannot be called anyway so locking is not needed |
| */ |
| if (netif_running(net)) { |
| netif_device_detach(net); |
| |
| mcp251x_hw_sleep(spi); |
| mcp251x_power_enable(priv->transceiver, 0); |
| priv->after_suspend = AFTER_SUSPEND_UP; |
| } else { |
| priv->after_suspend = AFTER_SUSPEND_DOWN; |
| } |
| |
| if (!IS_ERR_OR_NULL(priv->power)) { |
| regulator_disable(priv->power); |
| priv->after_suspend |= AFTER_SUSPEND_POWER; |
| } |
| |
| return 0; |
| } |
| |
| static int __maybe_unused mcp251x_can_resume(struct device *dev) |
| { |
| struct spi_device *spi = to_spi_device(dev); |
| struct mcp251x_priv *priv = spi_get_drvdata(spi); |
| |
| if (priv->after_suspend & AFTER_SUSPEND_POWER) |
| mcp251x_power_enable(priv->power, 1); |
| |
| if (priv->after_suspend & AFTER_SUSPEND_UP) { |
| mcp251x_power_enable(priv->transceiver, 1); |
| queue_work(priv->wq, &priv->restart_work); |
| } else { |
| priv->after_suspend = 0; |
| } |
| |
| priv->force_quit = 0; |
| enable_irq(spi->irq); |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend, |
| mcp251x_can_resume); |
| |
| static struct spi_driver mcp251x_can_driver = { |
| .driver = { |
| .name = DEVICE_NAME, |
| .of_match_table = mcp251x_of_match, |
| .pm = &mcp251x_can_pm_ops, |
| }, |
| .id_table = mcp251x_id_table, |
| .probe = mcp251x_can_probe, |
| .remove = mcp251x_can_remove, |
| }; |
| module_spi_driver(mcp251x_can_driver); |
| |
| MODULE_AUTHOR("Chris Elston <celston@katalix.com>, " |
| "Christian Pellegrin <chripell@evolware.org>"); |
| MODULE_DESCRIPTION("Microchip 251x CAN driver"); |
| MODULE_LICENSE("GPL v2"); |