| /* |
| * libata-core.c - helper library for ATA |
| * |
| * Maintained by: Jeff Garzik <jgarzik@pobox.com> |
| * Please ALWAYS copy linux-ide@vger.kernel.org |
| * on emails. |
| * |
| * Copyright 2003-2004 Red Hat, Inc. All rights reserved. |
| * Copyright 2003-2004 Jeff Garzik |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; see the file COPYING. If not, write to |
| * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * |
| * libata documentation is available via 'make {ps|pdf}docs', |
| * as Documentation/DocBook/libata.* |
| * |
| * Hardware documentation available from http://www.t13.org/ and |
| * http://www.sata-io.org/ |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/spinlock.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/timer.h> |
| #include <linux/interrupt.h> |
| #include <linux/completion.h> |
| #include <linux/suspend.h> |
| #include <linux/workqueue.h> |
| #include <linux/jiffies.h> |
| #include <linux/scatterlist.h> |
| #include <scsi/scsi.h> |
| #include "scsi_priv.h" |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_host.h> |
| #include <linux/libata.h> |
| #include <asm/io.h> |
| #include <asm/semaphore.h> |
| #include <asm/byteorder.h> |
| |
| #include "libata.h" |
| |
| static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev); |
| static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev); |
| static void ata_set_mode(struct ata_port *ap); |
| static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev); |
| static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift); |
| static int fgb(u32 bitmap); |
| static int ata_choose_xfer_mode(const struct ata_port *ap, |
| u8 *xfer_mode_out, |
| unsigned int *xfer_shift_out); |
| |
| static unsigned int ata_unique_id = 1; |
| static struct workqueue_struct *ata_wq; |
| |
| int atapi_enabled = 0; |
| module_param(atapi_enabled, int, 0444); |
| MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); |
| |
| MODULE_AUTHOR("Jeff Garzik"); |
| MODULE_DESCRIPTION("Library module for ATA devices"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| |
| /** |
| * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure |
| * @tf: Taskfile to convert |
| * @fis: Buffer into which data will output |
| * @pmp: Port multiplier port |
| * |
| * Converts a standard ATA taskfile to a Serial ATA |
| * FIS structure (Register - Host to Device). |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) |
| { |
| fis[0] = 0x27; /* Register - Host to Device FIS */ |
| fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, |
| bit 7 indicates Command FIS */ |
| fis[2] = tf->command; |
| fis[3] = tf->feature; |
| |
| fis[4] = tf->lbal; |
| fis[5] = tf->lbam; |
| fis[6] = tf->lbah; |
| fis[7] = tf->device; |
| |
| fis[8] = tf->hob_lbal; |
| fis[9] = tf->hob_lbam; |
| fis[10] = tf->hob_lbah; |
| fis[11] = tf->hob_feature; |
| |
| fis[12] = tf->nsect; |
| fis[13] = tf->hob_nsect; |
| fis[14] = 0; |
| fis[15] = tf->ctl; |
| |
| fis[16] = 0; |
| fis[17] = 0; |
| fis[18] = 0; |
| fis[19] = 0; |
| } |
| |
| /** |
| * ata_tf_from_fis - Convert SATA FIS to ATA taskfile |
| * @fis: Buffer from which data will be input |
| * @tf: Taskfile to output |
| * |
| * Converts a serial ATA FIS structure to a standard ATA taskfile. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) |
| { |
| tf->command = fis[2]; /* status */ |
| tf->feature = fis[3]; /* error */ |
| |
| tf->lbal = fis[4]; |
| tf->lbam = fis[5]; |
| tf->lbah = fis[6]; |
| tf->device = fis[7]; |
| |
| tf->hob_lbal = fis[8]; |
| tf->hob_lbam = fis[9]; |
| tf->hob_lbah = fis[10]; |
| |
| tf->nsect = fis[12]; |
| tf->hob_nsect = fis[13]; |
| } |
| |
| static const u8 ata_rw_cmds[] = { |
| /* pio multi */ |
| ATA_CMD_READ_MULTI, |
| ATA_CMD_WRITE_MULTI, |
| ATA_CMD_READ_MULTI_EXT, |
| ATA_CMD_WRITE_MULTI_EXT, |
| 0, |
| 0, |
| 0, |
| ATA_CMD_WRITE_MULTI_FUA_EXT, |
| /* pio */ |
| ATA_CMD_PIO_READ, |
| ATA_CMD_PIO_WRITE, |
| ATA_CMD_PIO_READ_EXT, |
| ATA_CMD_PIO_WRITE_EXT, |
| 0, |
| 0, |
| 0, |
| 0, |
| /* dma */ |
| ATA_CMD_READ, |
| ATA_CMD_WRITE, |
| ATA_CMD_READ_EXT, |
| ATA_CMD_WRITE_EXT, |
| 0, |
| 0, |
| 0, |
| ATA_CMD_WRITE_FUA_EXT |
| }; |
| |
| /** |
| * ata_rwcmd_protocol - set taskfile r/w commands and protocol |
| * @qc: command to examine and configure |
| * |
| * Examine the device configuration and tf->flags to calculate |
| * the proper read/write commands and protocol to use. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| int ata_rwcmd_protocol(struct ata_queued_cmd *qc) |
| { |
| struct ata_taskfile *tf = &qc->tf; |
| struct ata_device *dev = qc->dev; |
| u8 cmd; |
| |
| int index, fua, lba48, write; |
| |
| fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; |
| lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; |
| write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; |
| |
| if (dev->flags & ATA_DFLAG_PIO) { |
| tf->protocol = ATA_PROT_PIO; |
| index = dev->multi_count ? 0 : 8; |
| } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) { |
| /* Unable to use DMA due to host limitation */ |
| tf->protocol = ATA_PROT_PIO; |
| index = dev->multi_count ? 0 : 4; |
| } else { |
| tf->protocol = ATA_PROT_DMA; |
| index = 16; |
| } |
| |
| cmd = ata_rw_cmds[index + fua + lba48 + write]; |
| if (cmd) { |
| tf->command = cmd; |
| return 0; |
| } |
| return -1; |
| } |
| |
| static const char * const xfer_mode_str[] = { |
| "UDMA/16", |
| "UDMA/25", |
| "UDMA/33", |
| "UDMA/44", |
| "UDMA/66", |
| "UDMA/100", |
| "UDMA/133", |
| "UDMA7", |
| "MWDMA0", |
| "MWDMA1", |
| "MWDMA2", |
| "PIO0", |
| "PIO1", |
| "PIO2", |
| "PIO3", |
| "PIO4", |
| }; |
| |
| /** |
| * ata_udma_string - convert UDMA bit offset to string |
| * @mask: mask of bits supported; only highest bit counts. |
| * |
| * Determine string which represents the highest speed |
| * (highest bit in @udma_mask). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Constant C string representing highest speed listed in |
| * @udma_mask, or the constant C string "<n/a>". |
| */ |
| |
| static const char *ata_mode_string(unsigned int mask) |
| { |
| int i; |
| |
| for (i = 7; i >= 0; i--) |
| if (mask & (1 << i)) |
| goto out; |
| for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--) |
| if (mask & (1 << i)) |
| goto out; |
| for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--) |
| if (mask & (1 << i)) |
| goto out; |
| |
| return "<n/a>"; |
| |
| out: |
| return xfer_mode_str[i]; |
| } |
| |
| /** |
| * ata_pio_devchk - PATA device presence detection |
| * @ap: ATA channel to examine |
| * @device: Device to examine (starting at zero) |
| * |
| * This technique was originally described in |
| * Hale Landis's ATADRVR (www.ata-atapi.com), and |
| * later found its way into the ATA/ATAPI spec. |
| * |
| * Write a pattern to the ATA shadow registers, |
| * and if a device is present, it will respond by |
| * correctly storing and echoing back the |
| * ATA shadow register contents. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| static unsigned int ata_pio_devchk(struct ata_port *ap, |
| unsigned int device) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| u8 nsect, lbal; |
| |
| ap->ops->dev_select(ap, device); |
| |
| outb(0x55, ioaddr->nsect_addr); |
| outb(0xaa, ioaddr->lbal_addr); |
| |
| outb(0xaa, ioaddr->nsect_addr); |
| outb(0x55, ioaddr->lbal_addr); |
| |
| outb(0x55, ioaddr->nsect_addr); |
| outb(0xaa, ioaddr->lbal_addr); |
| |
| nsect = inb(ioaddr->nsect_addr); |
| lbal = inb(ioaddr->lbal_addr); |
| |
| if ((nsect == 0x55) && (lbal == 0xaa)) |
| return 1; /* we found a device */ |
| |
| return 0; /* nothing found */ |
| } |
| |
| /** |
| * ata_mmio_devchk - PATA device presence detection |
| * @ap: ATA channel to examine |
| * @device: Device to examine (starting at zero) |
| * |
| * This technique was originally described in |
| * Hale Landis's ATADRVR (www.ata-atapi.com), and |
| * later found its way into the ATA/ATAPI spec. |
| * |
| * Write a pattern to the ATA shadow registers, |
| * and if a device is present, it will respond by |
| * correctly storing and echoing back the |
| * ATA shadow register contents. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| static unsigned int ata_mmio_devchk(struct ata_port *ap, |
| unsigned int device) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| u8 nsect, lbal; |
| |
| ap->ops->dev_select(ap, device); |
| |
| writeb(0x55, (void __iomem *) ioaddr->nsect_addr); |
| writeb(0xaa, (void __iomem *) ioaddr->lbal_addr); |
| |
| writeb(0xaa, (void __iomem *) ioaddr->nsect_addr); |
| writeb(0x55, (void __iomem *) ioaddr->lbal_addr); |
| |
| writeb(0x55, (void __iomem *) ioaddr->nsect_addr); |
| writeb(0xaa, (void __iomem *) ioaddr->lbal_addr); |
| |
| nsect = readb((void __iomem *) ioaddr->nsect_addr); |
| lbal = readb((void __iomem *) ioaddr->lbal_addr); |
| |
| if ((nsect == 0x55) && (lbal == 0xaa)) |
| return 1; /* we found a device */ |
| |
| return 0; /* nothing found */ |
| } |
| |
| /** |
| * ata_devchk - PATA device presence detection |
| * @ap: ATA channel to examine |
| * @device: Device to examine (starting at zero) |
| * |
| * Dispatch ATA device presence detection, depending |
| * on whether we are using PIO or MMIO to talk to the |
| * ATA shadow registers. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| static unsigned int ata_devchk(struct ata_port *ap, |
| unsigned int device) |
| { |
| if (ap->flags & ATA_FLAG_MMIO) |
| return ata_mmio_devchk(ap, device); |
| return ata_pio_devchk(ap, device); |
| } |
| |
| /** |
| * ata_dev_classify - determine device type based on ATA-spec signature |
| * @tf: ATA taskfile register set for device to be identified |
| * |
| * Determine from taskfile register contents whether a device is |
| * ATA or ATAPI, as per "Signature and persistence" section |
| * of ATA/PI spec (volume 1, sect 5.14). |
| * |
| * LOCKING: |
| * None. |
| * |
| * RETURNS: |
| * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN |
| * the event of failure. |
| */ |
| |
| unsigned int ata_dev_classify(const struct ata_taskfile *tf) |
| { |
| /* Apple's open source Darwin code hints that some devices only |
| * put a proper signature into the LBA mid/high registers, |
| * So, we only check those. It's sufficient for uniqueness. |
| */ |
| |
| if (((tf->lbam == 0) && (tf->lbah == 0)) || |
| ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { |
| DPRINTK("found ATA device by sig\n"); |
| return ATA_DEV_ATA; |
| } |
| |
| if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || |
| ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { |
| DPRINTK("found ATAPI device by sig\n"); |
| return ATA_DEV_ATAPI; |
| } |
| |
| DPRINTK("unknown device\n"); |
| return ATA_DEV_UNKNOWN; |
| } |
| |
| /** |
| * ata_dev_try_classify - Parse returned ATA device signature |
| * @ap: ATA channel to examine |
| * @device: Device to examine (starting at zero) |
| * @r_err: Value of error register on completion |
| * |
| * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, |
| * an ATA/ATAPI-defined set of values is placed in the ATA |
| * shadow registers, indicating the results of device detection |
| * and diagnostics. |
| * |
| * Select the ATA device, and read the values from the ATA shadow |
| * registers. Then parse according to the Error register value, |
| * and the spec-defined values examined by ata_dev_classify(). |
| * |
| * LOCKING: |
| * caller. |
| * |
| * RETURNS: |
| * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. |
| */ |
| |
| static unsigned int |
| ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err) |
| { |
| struct ata_taskfile tf; |
| unsigned int class; |
| u8 err; |
| |
| ap->ops->dev_select(ap, device); |
| |
| memset(&tf, 0, sizeof(tf)); |
| |
| ap->ops->tf_read(ap, &tf); |
| err = tf.feature; |
| if (r_err) |
| *r_err = err; |
| |
| /* see if device passed diags */ |
| if (err == 1) |
| /* do nothing */ ; |
| else if ((device == 0) && (err == 0x81)) |
| /* do nothing */ ; |
| else |
| return ATA_DEV_NONE; |
| |
| /* determine if device is ATA or ATAPI */ |
| class = ata_dev_classify(&tf); |
| |
| if (class == ATA_DEV_UNKNOWN) |
| return ATA_DEV_NONE; |
| if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) |
| return ATA_DEV_NONE; |
| return class; |
| } |
| |
| /** |
| * ata_dev_id_string - Convert IDENTIFY DEVICE page into string |
| * @id: IDENTIFY DEVICE results we will examine |
| * @s: string into which data is output |
| * @ofs: offset into identify device page |
| * @len: length of string to return. must be an even number. |
| * |
| * The strings in the IDENTIFY DEVICE page are broken up into |
| * 16-bit chunks. Run through the string, and output each |
| * 8-bit chunk linearly, regardless of platform. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| void ata_dev_id_string(const u16 *id, unsigned char *s, |
| unsigned int ofs, unsigned int len) |
| { |
| unsigned int c; |
| |
| while (len > 0) { |
| c = id[ofs] >> 8; |
| *s = c; |
| s++; |
| |
| c = id[ofs] & 0xff; |
| *s = c; |
| s++; |
| |
| ofs++; |
| len -= 2; |
| } |
| } |
| |
| |
| /** |
| * ata_noop_dev_select - Select device 0/1 on ATA bus |
| * @ap: ATA channel to manipulate |
| * @device: ATA device (numbered from zero) to select |
| * |
| * This function performs no actual function. |
| * |
| * May be used as the dev_select() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| void ata_noop_dev_select (struct ata_port *ap, unsigned int device) |
| { |
| } |
| |
| |
| /** |
| * ata_std_dev_select - Select device 0/1 on ATA bus |
| * @ap: ATA channel to manipulate |
| * @device: ATA device (numbered from zero) to select |
| * |
| * Use the method defined in the ATA specification to |
| * make either device 0, or device 1, active on the |
| * ATA channel. Works with both PIO and MMIO. |
| * |
| * May be used as the dev_select() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| void ata_std_dev_select (struct ata_port *ap, unsigned int device) |
| { |
| u8 tmp; |
| |
| if (device == 0) |
| tmp = ATA_DEVICE_OBS; |
| else |
| tmp = ATA_DEVICE_OBS | ATA_DEV1; |
| |
| if (ap->flags & ATA_FLAG_MMIO) { |
| writeb(tmp, (void __iomem *) ap->ioaddr.device_addr); |
| } else { |
| outb(tmp, ap->ioaddr.device_addr); |
| } |
| ata_pause(ap); /* needed; also flushes, for mmio */ |
| } |
| |
| /** |
| * ata_dev_select - Select device 0/1 on ATA bus |
| * @ap: ATA channel to manipulate |
| * @device: ATA device (numbered from zero) to select |
| * @wait: non-zero to wait for Status register BSY bit to clear |
| * @can_sleep: non-zero if context allows sleeping |
| * |
| * Use the method defined in the ATA specification to |
| * make either device 0, or device 1, active on the |
| * ATA channel. |
| * |
| * This is a high-level version of ata_std_dev_select(), |
| * which additionally provides the services of inserting |
| * the proper pauses and status polling, where needed. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| void ata_dev_select(struct ata_port *ap, unsigned int device, |
| unsigned int wait, unsigned int can_sleep) |
| { |
| VPRINTK("ENTER, ata%u: device %u, wait %u\n", |
| ap->id, device, wait); |
| |
| if (wait) |
| ata_wait_idle(ap); |
| |
| ap->ops->dev_select(ap, device); |
| |
| if (wait) { |
| if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) |
| msleep(150); |
| ata_wait_idle(ap); |
| } |
| } |
| |
| /** |
| * ata_dump_id - IDENTIFY DEVICE info debugging output |
| * @dev: Device whose IDENTIFY DEVICE page we will dump |
| * |
| * Dump selected 16-bit words from a detected device's |
| * IDENTIFY PAGE page. |
| * |
| * LOCKING: |
| * caller. |
| */ |
| |
| static inline void ata_dump_id(const struct ata_device *dev) |
| { |
| DPRINTK("49==0x%04x " |
| "53==0x%04x " |
| "63==0x%04x " |
| "64==0x%04x " |
| "75==0x%04x \n", |
| dev->id[49], |
| dev->id[53], |
| dev->id[63], |
| dev->id[64], |
| dev->id[75]); |
| DPRINTK("80==0x%04x " |
| "81==0x%04x " |
| "82==0x%04x " |
| "83==0x%04x " |
| "84==0x%04x \n", |
| dev->id[80], |
| dev->id[81], |
| dev->id[82], |
| dev->id[83], |
| dev->id[84]); |
| DPRINTK("88==0x%04x " |
| "93==0x%04x\n", |
| dev->id[88], |
| dev->id[93]); |
| } |
| |
| /* |
| * Compute the PIO modes available for this device. This is not as |
| * trivial as it seems if we must consider early devices correctly. |
| * |
| * FIXME: pre IDE drive timing (do we care ?). |
| */ |
| |
| static unsigned int ata_pio_modes(const struct ata_device *adev) |
| { |
| u16 modes; |
| |
| /* Usual case. Word 53 indicates word 64 is valid */ |
| if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) { |
| modes = adev->id[ATA_ID_PIO_MODES] & 0x03; |
| modes <<= 3; |
| modes |= 0x7; |
| return modes; |
| } |
| |
| /* If word 64 isn't valid then Word 51 high byte holds the PIO timing |
| number for the maximum. Turn it into a mask and return it */ |
| modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ; |
| return modes; |
| /* But wait.. there's more. Design your standards by committee and |
| you too can get a free iordy field to process. However its the |
| speeds not the modes that are supported... Note drivers using the |
| timing API will get this right anyway */ |
| } |
| |
| static inline void |
| ata_queue_packet_task(struct ata_port *ap) |
| { |
| if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK)) |
| queue_work(ata_wq, &ap->packet_task); |
| } |
| |
| static inline void |
| ata_queue_pio_task(struct ata_port *ap) |
| { |
| if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK)) |
| queue_work(ata_wq, &ap->pio_task); |
| } |
| |
| static inline void |
| ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay) |
| { |
| if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK)) |
| queue_delayed_work(ata_wq, &ap->pio_task, delay); |
| } |
| |
| /** |
| * ata_flush_pio_tasks - Flush pio_task and packet_task |
| * @ap: the target ata_port |
| * |
| * After this function completes, pio_task and packet_task are |
| * guranteed not to be running or scheduled. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| |
| static void ata_flush_pio_tasks(struct ata_port *ap) |
| { |
| int tmp = 0; |
| unsigned long flags; |
| |
| DPRINTK("ENTER\n"); |
| |
| spin_lock_irqsave(&ap->host_set->lock, flags); |
| ap->flags |= ATA_FLAG_FLUSH_PIO_TASK; |
| spin_unlock_irqrestore(&ap->host_set->lock, flags); |
| |
| DPRINTK("flush #1\n"); |
| flush_workqueue(ata_wq); |
| |
| /* |
| * At this point, if a task is running, it's guaranteed to see |
| * the FLUSH flag; thus, it will never queue pio tasks again. |
| * Cancel and flush. |
| */ |
| tmp |= cancel_delayed_work(&ap->pio_task); |
| tmp |= cancel_delayed_work(&ap->packet_task); |
| if (!tmp) { |
| DPRINTK("flush #2\n"); |
| flush_workqueue(ata_wq); |
| } |
| |
| spin_lock_irqsave(&ap->host_set->lock, flags); |
| ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK; |
| spin_unlock_irqrestore(&ap->host_set->lock, flags); |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| void ata_qc_complete_internal(struct ata_queued_cmd *qc) |
| { |
| struct completion *waiting = qc->private_data; |
| |
| qc->ap->ops->tf_read(qc->ap, &qc->tf); |
| complete(waiting); |
| } |
| |
| /** |
| * ata_exec_internal - execute libata internal command |
| * @ap: Port to which the command is sent |
| * @dev: Device to which the command is sent |
| * @tf: Taskfile registers for the command and the result |
| * @dma_dir: Data tranfer direction of the command |
| * @buf: Data buffer of the command |
| * @buflen: Length of data buffer |
| * |
| * Executes libata internal command with timeout. @tf contains |
| * command on entry and result on return. Timeout and error |
| * conditions are reported via return value. No recovery action |
| * is taken after a command times out. It's caller's duty to |
| * clean up after timeout. |
| * |
| * LOCKING: |
| * None. Should be called with kernel context, might sleep. |
| */ |
| |
| static unsigned |
| ata_exec_internal(struct ata_port *ap, struct ata_device *dev, |
| struct ata_taskfile *tf, |
| int dma_dir, void *buf, unsigned int buflen) |
| { |
| u8 command = tf->command; |
| struct ata_queued_cmd *qc; |
| DECLARE_COMPLETION(wait); |
| unsigned long flags; |
| unsigned int err_mask; |
| |
| spin_lock_irqsave(&ap->host_set->lock, flags); |
| |
| qc = ata_qc_new_init(ap, dev); |
| BUG_ON(qc == NULL); |
| |
| qc->tf = *tf; |
| qc->dma_dir = dma_dir; |
| if (dma_dir != DMA_NONE) { |
| ata_sg_init_one(qc, buf, buflen); |
| qc->nsect = buflen / ATA_SECT_SIZE; |
| } |
| |
| qc->private_data = &wait; |
| qc->complete_fn = ata_qc_complete_internal; |
| |
| qc->err_mask = ata_qc_issue(qc); |
| if (qc->err_mask) |
| ata_qc_complete(qc); |
| |
| spin_unlock_irqrestore(&ap->host_set->lock, flags); |
| |
| if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) { |
| spin_lock_irqsave(&ap->host_set->lock, flags); |
| |
| /* We're racing with irq here. If we lose, the |
| * following test prevents us from completing the qc |
| * again. If completion irq occurs after here but |
| * before the caller cleans up, it will result in a |
| * spurious interrupt. We can live with that. |
| */ |
| if (qc->flags & ATA_QCFLAG_ACTIVE) { |
| qc->err_mask = AC_ERR_TIMEOUT; |
| ata_qc_complete(qc); |
| printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n", |
| ap->id, command); |
| } |
| |
| spin_unlock_irqrestore(&ap->host_set->lock, flags); |
| } |
| |
| *tf = qc->tf; |
| err_mask = qc->err_mask; |
| |
| ata_qc_free(qc); |
| |
| return err_mask; |
| } |
| |
| /** |
| * ata_pio_need_iordy - check if iordy needed |
| * @adev: ATA device |
| * |
| * Check if the current speed of the device requires IORDY. Used |
| * by various controllers for chip configuration. |
| */ |
| |
| unsigned int ata_pio_need_iordy(const struct ata_device *adev) |
| { |
| int pio; |
| int speed = adev->pio_mode - XFER_PIO_0; |
| |
| if (speed < 2) |
| return 0; |
| if (speed > 2) |
| return 1; |
| |
| /* If we have no drive specific rule, then PIO 2 is non IORDY */ |
| |
| if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ |
| pio = adev->id[ATA_ID_EIDE_PIO]; |
| /* Is the speed faster than the drive allows non IORDY ? */ |
| if (pio) { |
| /* This is cycle times not frequency - watch the logic! */ |
| if (pio > 240) /* PIO2 is 240nS per cycle */ |
| return 1; |
| return 0; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * ata_dev_identify - obtain IDENTIFY x DEVICE page |
| * @ap: port on which device we wish to probe resides |
| * @device: device bus address, starting at zero |
| * |
| * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE |
| * command, and read back the 512-byte device information page. |
| * The device information page is fed to us via the standard |
| * PIO-IN protocol, but we hand-code it here. (TODO: investigate |
| * using standard PIO-IN paths) |
| * |
| * After reading the device information page, we use several |
| * bits of information from it to initialize data structures |
| * that will be used during the lifetime of the ata_device. |
| * Other data from the info page is used to disqualify certain |
| * older ATA devices we do not wish to support. |
| * |
| * LOCKING: |
| * Inherited from caller. Some functions called by this function |
| * obtain the host_set lock. |
| */ |
| |
| static void ata_dev_identify(struct ata_port *ap, unsigned int device) |
| { |
| struct ata_device *dev = &ap->device[device]; |
| unsigned int major_version; |
| u16 tmp; |
| unsigned long xfer_modes; |
| unsigned int using_edd; |
| struct ata_taskfile tf; |
| unsigned int err_mask; |
| int rc; |
| |
| if (!ata_dev_present(dev)) { |
| DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n", |
| ap->id, device); |
| return; |
| } |
| |
| if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET)) |
| using_edd = 0; |
| else |
| using_edd = 1; |
| |
| DPRINTK("ENTER, host %u, dev %u\n", ap->id, device); |
| |
| assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI || |
| dev->class == ATA_DEV_NONE); |
| |
| ata_dev_select(ap, device, 1, 1); /* select device 0/1 */ |
| |
| retry: |
| ata_tf_init(ap, &tf, device); |
| |
| if (dev->class == ATA_DEV_ATA) { |
| tf.command = ATA_CMD_ID_ATA; |
| DPRINTK("do ATA identify\n"); |
| } else { |
| tf.command = ATA_CMD_ID_ATAPI; |
| DPRINTK("do ATAPI identify\n"); |
| } |
| |
| tf.protocol = ATA_PROT_PIO; |
| |
| err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE, |
| dev->id, sizeof(dev->id)); |
| |
| if (err_mask) { |
| if (err_mask & ~AC_ERR_DEV) |
| goto err_out; |
| |
| /* |
| * arg! EDD works for all test cases, but seems to return |
| * the ATA signature for some ATAPI devices. Until the |
| * reason for this is found and fixed, we fix up the mess |
| * here. If IDENTIFY DEVICE returns command aborted |
| * (as ATAPI devices do), then we issue an |
| * IDENTIFY PACKET DEVICE. |
| * |
| * ATA software reset (SRST, the default) does not appear |
| * to have this problem. |
| */ |
| if ((using_edd) && (dev->class == ATA_DEV_ATA)) { |
| u8 err = tf.feature; |
| if (err & ATA_ABORTED) { |
| dev->class = ATA_DEV_ATAPI; |
| goto retry; |
| } |
| } |
| goto err_out; |
| } |
| |
| swap_buf_le16(dev->id, ATA_ID_WORDS); |
| |
| /* print device capabilities */ |
| printk(KERN_DEBUG "ata%u: dev %u cfg " |
| "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n", |
| ap->id, device, dev->id[49], |
| dev->id[82], dev->id[83], dev->id[84], |
| dev->id[85], dev->id[86], dev->id[87], |
| dev->id[88]); |
| |
| /* |
| * common ATA, ATAPI feature tests |
| */ |
| |
| /* we require DMA support (bits 8 of word 49) */ |
| if (!ata_id_has_dma(dev->id)) { |
| printk(KERN_DEBUG "ata%u: no dma\n", ap->id); |
| goto err_out_nosup; |
| } |
| |
| /* quick-n-dirty find max transfer mode; for printk only */ |
| xfer_modes = dev->id[ATA_ID_UDMA_MODES]; |
| if (!xfer_modes) |
| xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA; |
| if (!xfer_modes) |
| xfer_modes = ata_pio_modes(dev); |
| |
| ata_dump_id(dev); |
| |
| /* ATA-specific feature tests */ |
| if (dev->class == ATA_DEV_ATA) { |
| if (!ata_id_is_ata(dev->id)) /* sanity check */ |
| goto err_out_nosup; |
| |
| /* get major version */ |
| tmp = dev->id[ATA_ID_MAJOR_VER]; |
| for (major_version = 14; major_version >= 1; major_version--) |
| if (tmp & (1 << major_version)) |
| break; |
| |
| /* |
| * The exact sequence expected by certain pre-ATA4 drives is: |
| * SRST RESET |
| * IDENTIFY |
| * INITIALIZE DEVICE PARAMETERS |
| * anything else.. |
| * Some drives were very specific about that exact sequence. |
| */ |
| if (major_version < 4 || (!ata_id_has_lba(dev->id))) { |
| ata_dev_init_params(ap, dev); |
| |
| /* current CHS translation info (id[53-58]) might be |
| * changed. reread the identify device info. |
| */ |
| ata_dev_reread_id(ap, dev); |
| } |
| |
| if (ata_id_has_lba(dev->id)) { |
| dev->flags |= ATA_DFLAG_LBA; |
| |
| if (ata_id_has_lba48(dev->id)) { |
| dev->flags |= ATA_DFLAG_LBA48; |
| dev->n_sectors = ata_id_u64(dev->id, 100); |
| } else { |
| dev->n_sectors = ata_id_u32(dev->id, 60); |
| } |
| |
| /* print device info to dmesg */ |
| printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n", |
| ap->id, device, |
| major_version, |
| ata_mode_string(xfer_modes), |
| (unsigned long long)dev->n_sectors, |
| dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA"); |
| } else { |
| /* CHS */ |
| |
| /* Default translation */ |
| dev->cylinders = dev->id[1]; |
| dev->heads = dev->id[3]; |
| dev->sectors = dev->id[6]; |
| dev->n_sectors = dev->cylinders * dev->heads * dev->sectors; |
| |
| if (ata_id_current_chs_valid(dev->id)) { |
| /* Current CHS translation is valid. */ |
| dev->cylinders = dev->id[54]; |
| dev->heads = dev->id[55]; |
| dev->sectors = dev->id[56]; |
| |
| dev->n_sectors = ata_id_u32(dev->id, 57); |
| } |
| |
| /* print device info to dmesg */ |
| printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n", |
| ap->id, device, |
| major_version, |
| ata_mode_string(xfer_modes), |
| (unsigned long long)dev->n_sectors, |
| (int)dev->cylinders, (int)dev->heads, (int)dev->sectors); |
| |
| } |
| |
| ap->host->max_cmd_len = 16; |
| } |
| |
| /* ATAPI-specific feature tests */ |
| else if (dev->class == ATA_DEV_ATAPI) { |
| if (ata_id_is_ata(dev->id)) /* sanity check */ |
| goto err_out_nosup; |
| |
| rc = atapi_cdb_len(dev->id); |
| if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { |
| printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id); |
| goto err_out_nosup; |
| } |
| ap->cdb_len = (unsigned int) rc; |
| ap->host->max_cmd_len = (unsigned char) ap->cdb_len; |
| |
| /* print device info to dmesg */ |
| printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n", |
| ap->id, device, |
| ata_mode_string(xfer_modes)); |
| } |
| |
| DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap)); |
| return; |
| |
| err_out_nosup: |
| printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n", |
| ap->id, device); |
| err_out: |
| dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */ |
| DPRINTK("EXIT, err\n"); |
| } |
| |
| |
| static inline u8 ata_dev_knobble(const struct ata_port *ap) |
| { |
| return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id))); |
| } |
| |
| /** |
| * ata_dev_config - Run device specific handlers & check for SATA->PATA bridges |
| * @ap: Bus |
| * @i: Device |
| * |
| * LOCKING: |
| */ |
| |
| void ata_dev_config(struct ata_port *ap, unsigned int i) |
| { |
| /* limit bridge transfers to udma5, 200 sectors */ |
| if (ata_dev_knobble(ap)) { |
| printk(KERN_INFO "ata%u(%u): applying bridge limits\n", |
| ap->id, ap->device->devno); |
| ap->udma_mask &= ATA_UDMA5; |
| ap->host->max_sectors = ATA_MAX_SECTORS; |
| ap->host->hostt->max_sectors = ATA_MAX_SECTORS; |
| ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS; |
| } |
| |
| if (ap->ops->dev_config) |
| ap->ops->dev_config(ap, &ap->device[i]); |
| } |
| |
| /** |
| * ata_bus_probe - Reset and probe ATA bus |
| * @ap: Bus to probe |
| * |
| * Master ATA bus probing function. Initiates a hardware-dependent |
| * bus reset, then attempts to identify any devices found on |
| * the bus. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * Zero on success, non-zero on error. |
| */ |
| |
| static int ata_bus_probe(struct ata_port *ap) |
| { |
| unsigned int i, found = 0; |
| |
| if (ap->ops->probe_reset) { |
| unsigned int classes[ATA_MAX_DEVICES]; |
| int rc; |
| |
| ata_port_probe(ap); |
| |
| rc = ap->ops->probe_reset(ap, classes); |
| if (rc == 0) { |
| for (i = 0; i < ATA_MAX_DEVICES; i++) |
| ap->device[i].class = classes[i]; |
| } else { |
| printk(KERN_ERR "ata%u: probe reset failed, " |
| "disabling port\n", ap->id); |
| ata_port_disable(ap); |
| } |
| } else |
| ap->ops->phy_reset(ap); |
| |
| if (ap->flags & ATA_FLAG_PORT_DISABLED) |
| goto err_out; |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| ata_dev_identify(ap, i); |
| if (ata_dev_present(&ap->device[i])) { |
| found = 1; |
| ata_dev_config(ap,i); |
| } |
| } |
| |
| if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED)) |
| goto err_out_disable; |
| |
| ata_set_mode(ap); |
| if (ap->flags & ATA_FLAG_PORT_DISABLED) |
| goto err_out_disable; |
| |
| return 0; |
| |
| err_out_disable: |
| ap->ops->port_disable(ap); |
| err_out: |
| return -1; |
| } |
| |
| /** |
| * ata_port_probe - Mark port as enabled |
| * @ap: Port for which we indicate enablement |
| * |
| * Modify @ap data structure such that the system |
| * thinks that the entire port is enabled. |
| * |
| * LOCKING: host_set lock, or some other form of |
| * serialization. |
| */ |
| |
| void ata_port_probe(struct ata_port *ap) |
| { |
| ap->flags &= ~ATA_FLAG_PORT_DISABLED; |
| } |
| |
| /** |
| * sata_print_link_status - Print SATA link status |
| * @ap: SATA port to printk link status about |
| * |
| * This function prints link speed and status of a SATA link. |
| * |
| * LOCKING: |
| * None. |
| */ |
| static void sata_print_link_status(struct ata_port *ap) |
| { |
| u32 sstatus, tmp; |
| const char *speed; |
| |
| if (!ap->ops->scr_read) |
| return; |
| |
| sstatus = scr_read(ap, SCR_STATUS); |
| |
| if (sata_dev_present(ap)) { |
| tmp = (sstatus >> 4) & 0xf; |
| if (tmp & (1 << 0)) |
| speed = "1.5"; |
| else if (tmp & (1 << 1)) |
| speed = "3.0"; |
| else |
| speed = "<unknown>"; |
| printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n", |
| ap->id, speed, sstatus); |
| } else { |
| printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n", |
| ap->id, sstatus); |
| } |
| } |
| |
| /** |
| * __sata_phy_reset - Wake/reset a low-level SATA PHY |
| * @ap: SATA port associated with target SATA PHY. |
| * |
| * This function issues commands to standard SATA Sxxx |
| * PHY registers, to wake up the phy (and device), and |
| * clear any reset condition. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| */ |
| void __sata_phy_reset(struct ata_port *ap) |
| { |
| u32 sstatus; |
| unsigned long timeout = jiffies + (HZ * 5); |
| |
| if (ap->flags & ATA_FLAG_SATA_RESET) { |
| /* issue phy wake/reset */ |
| scr_write_flush(ap, SCR_CONTROL, 0x301); |
| /* Couldn't find anything in SATA I/II specs, but |
| * AHCI-1.1 10.4.2 says at least 1 ms. */ |
| mdelay(1); |
| } |
| scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */ |
| |
| /* wait for phy to become ready, if necessary */ |
| do { |
| msleep(200); |
| sstatus = scr_read(ap, SCR_STATUS); |
| if ((sstatus & 0xf) != 1) |
| break; |
| } while (time_before(jiffies, timeout)); |
| |
| /* print link status */ |
| sata_print_link_status(ap); |
| |
| /* TODO: phy layer with polling, timeouts, etc. */ |
| if (sata_dev_present(ap)) |
| ata_port_probe(ap); |
| else |
| ata_port_disable(ap); |
| |
| if (ap->flags & ATA_FLAG_PORT_DISABLED) |
| return; |
| |
| if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { |
| ata_port_disable(ap); |
| return; |
| } |
| |
| ap->cbl = ATA_CBL_SATA; |
| } |
| |
| /** |
| * sata_phy_reset - Reset SATA bus. |
| * @ap: SATA port associated with target SATA PHY. |
| * |
| * This function resets the SATA bus, and then probes |
| * the bus for devices. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| */ |
| void sata_phy_reset(struct ata_port *ap) |
| { |
| __sata_phy_reset(ap); |
| if (ap->flags & ATA_FLAG_PORT_DISABLED) |
| return; |
| ata_bus_reset(ap); |
| } |
| |
| /** |
| * ata_port_disable - Disable port. |
| * @ap: Port to be disabled. |
| * |
| * Modify @ap data structure such that the system |
| * thinks that the entire port is disabled, and should |
| * never attempt to probe or communicate with devices |
| * on this port. |
| * |
| * LOCKING: host_set lock, or some other form of |
| * serialization. |
| */ |
| |
| void ata_port_disable(struct ata_port *ap) |
| { |
| ap->device[0].class = ATA_DEV_NONE; |
| ap->device[1].class = ATA_DEV_NONE; |
| ap->flags |= ATA_FLAG_PORT_DISABLED; |
| } |
| |
| /* |
| * This mode timing computation functionality is ported over from |
| * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik |
| */ |
| /* |
| * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). |
| * These were taken from ATA/ATAPI-6 standard, rev 0a, except |
| * for PIO 5, which is a nonstandard extension and UDMA6, which |
| * is currently supported only by Maxtor drives. |
| */ |
| |
| static const struct ata_timing ata_timing[] = { |
| |
| { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, |
| { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, |
| { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, |
| { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, |
| |
| { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, |
| { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, |
| { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, |
| |
| /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ |
| |
| { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, |
| { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, |
| { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, |
| |
| { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, |
| { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, |
| { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, |
| |
| /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */ |
| { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, |
| { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, |
| |
| { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, |
| { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, |
| { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, |
| |
| /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ |
| |
| { 0xFF } |
| }; |
| |
| #define ENOUGH(v,unit) (((v)-1)/(unit)+1) |
| #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) |
| |
| static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) |
| { |
| q->setup = EZ(t->setup * 1000, T); |
| q->act8b = EZ(t->act8b * 1000, T); |
| q->rec8b = EZ(t->rec8b * 1000, T); |
| q->cyc8b = EZ(t->cyc8b * 1000, T); |
| q->active = EZ(t->active * 1000, T); |
| q->recover = EZ(t->recover * 1000, T); |
| q->cycle = EZ(t->cycle * 1000, T); |
| q->udma = EZ(t->udma * 1000, UT); |
| } |
| |
| void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, |
| struct ata_timing *m, unsigned int what) |
| { |
| if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); |
| if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); |
| if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); |
| if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); |
| if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); |
| if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); |
| if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); |
| if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); |
| } |
| |
| static const struct ata_timing* ata_timing_find_mode(unsigned short speed) |
| { |
| const struct ata_timing *t; |
| |
| for (t = ata_timing; t->mode != speed; t++) |
| if (t->mode == 0xFF) |
| return NULL; |
| return t; |
| } |
| |
| int ata_timing_compute(struct ata_device *adev, unsigned short speed, |
| struct ata_timing *t, int T, int UT) |
| { |
| const struct ata_timing *s; |
| struct ata_timing p; |
| |
| /* |
| * Find the mode. |
| */ |
| |
| if (!(s = ata_timing_find_mode(speed))) |
| return -EINVAL; |
| |
| memcpy(t, s, sizeof(*s)); |
| |
| /* |
| * If the drive is an EIDE drive, it can tell us it needs extended |
| * PIO/MW_DMA cycle timing. |
| */ |
| |
| if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ |
| memset(&p, 0, sizeof(p)); |
| if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { |
| if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; |
| else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; |
| } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { |
| p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; |
| } |
| ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); |
| } |
| |
| /* |
| * Convert the timing to bus clock counts. |
| */ |
| |
| ata_timing_quantize(t, t, T, UT); |
| |
| /* |
| * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, |
| * S.M.A.R.T * and some other commands. We have to ensure that the |
| * DMA cycle timing is slower/equal than the fastest PIO timing. |
| */ |
| |
| if (speed > XFER_PIO_4) { |
| ata_timing_compute(adev, adev->pio_mode, &p, T, UT); |
| ata_timing_merge(&p, t, t, ATA_TIMING_ALL); |
| } |
| |
| /* |
| * Lengthen active & recovery time so that cycle time is correct. |
| */ |
| |
| if (t->act8b + t->rec8b < t->cyc8b) { |
| t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; |
| t->rec8b = t->cyc8b - t->act8b; |
| } |
| |
| if (t->active + t->recover < t->cycle) { |
| t->active += (t->cycle - (t->active + t->recover)) / 2; |
| t->recover = t->cycle - t->active; |
| } |
| |
| return 0; |
| } |
| |
| static const struct { |
| unsigned int shift; |
| u8 base; |
| } xfer_mode_classes[] = { |
| { ATA_SHIFT_UDMA, XFER_UDMA_0 }, |
| { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 }, |
| { ATA_SHIFT_PIO, XFER_PIO_0 }, |
| }; |
| |
| static u8 base_from_shift(unsigned int shift) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) |
| if (xfer_mode_classes[i].shift == shift) |
| return xfer_mode_classes[i].base; |
| |
| return 0xff; |
| } |
| |
| static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev) |
| { |
| int ofs, idx; |
| u8 base; |
| |
| if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED)) |
| return; |
| |
| if (dev->xfer_shift == ATA_SHIFT_PIO) |
| dev->flags |= ATA_DFLAG_PIO; |
| |
| ata_dev_set_xfermode(ap, dev); |
| |
| base = base_from_shift(dev->xfer_shift); |
| ofs = dev->xfer_mode - base; |
| idx = ofs + dev->xfer_shift; |
| WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str)); |
| |
| DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n", |
| idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs); |
| |
| printk(KERN_INFO "ata%u: dev %u configured for %s\n", |
| ap->id, dev->devno, xfer_mode_str[idx]); |
| } |
| |
| static int ata_host_set_pio(struct ata_port *ap) |
| { |
| unsigned int mask; |
| int x, i; |
| u8 base, xfer_mode; |
| |
| mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO); |
| x = fgb(mask); |
| if (x < 0) { |
| printk(KERN_WARNING "ata%u: no PIO support\n", ap->id); |
| return -1; |
| } |
| |
| base = base_from_shift(ATA_SHIFT_PIO); |
| xfer_mode = base + x; |
| |
| DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n", |
| (int)base, (int)xfer_mode, mask, x); |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| struct ata_device *dev = &ap->device[i]; |
| if (ata_dev_present(dev)) { |
| dev->pio_mode = xfer_mode; |
| dev->xfer_mode = xfer_mode; |
| dev->xfer_shift = ATA_SHIFT_PIO; |
| if (ap->ops->set_piomode) |
| ap->ops->set_piomode(ap, dev); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode, |
| unsigned int xfer_shift) |
| { |
| int i; |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) { |
| struct ata_device *dev = &ap->device[i]; |
| if (ata_dev_present(dev)) { |
| dev->dma_mode = xfer_mode; |
| dev->xfer_mode = xfer_mode; |
| dev->xfer_shift = xfer_shift; |
| if (ap->ops->set_dmamode) |
| ap->ops->set_dmamode(ap, dev); |
| } |
| } |
| } |
| |
| /** |
| * ata_set_mode - Program timings and issue SET FEATURES - XFER |
| * @ap: port on which timings will be programmed |
| * |
| * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| */ |
| static void ata_set_mode(struct ata_port *ap) |
| { |
| unsigned int xfer_shift; |
| u8 xfer_mode; |
| int rc; |
| |
| /* step 1: always set host PIO timings */ |
| rc = ata_host_set_pio(ap); |
| if (rc) |
| goto err_out; |
| |
| /* step 2: choose the best data xfer mode */ |
| xfer_mode = xfer_shift = 0; |
| rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift); |
| if (rc) |
| goto err_out; |
| |
| /* step 3: if that xfer mode isn't PIO, set host DMA timings */ |
| if (xfer_shift != ATA_SHIFT_PIO) |
| ata_host_set_dma(ap, xfer_mode, xfer_shift); |
| |
| /* step 4: update devices' xfer mode */ |
| ata_dev_set_mode(ap, &ap->device[0]); |
| ata_dev_set_mode(ap, &ap->device[1]); |
| |
| if (ap->flags & ATA_FLAG_PORT_DISABLED) |
| return; |
| |
| if (ap->ops->post_set_mode) |
| ap->ops->post_set_mode(ap); |
| |
| return; |
| |
| err_out: |
| ata_port_disable(ap); |
| } |
| |
| /** |
| * ata_tf_to_host - issue ATA taskfile to host controller |
| * @ap: port to which command is being issued |
| * @tf: ATA taskfile register set |
| * |
| * Issues ATA taskfile register set to ATA host controller, |
| * with proper synchronization with interrupt handler and |
| * other threads. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| static inline void ata_tf_to_host(struct ata_port *ap, |
| const struct ata_taskfile *tf) |
| { |
| ap->ops->tf_load(ap, tf); |
| ap->ops->exec_command(ap, tf); |
| } |
| |
| /** |
| * ata_busy_sleep - sleep until BSY clears, or timeout |
| * @ap: port containing status register to be polled |
| * @tmout_pat: impatience timeout |
| * @tmout: overall timeout |
| * |
| * Sleep until ATA Status register bit BSY clears, |
| * or a timeout occurs. |
| * |
| * LOCKING: None. |
| */ |
| |
| unsigned int ata_busy_sleep (struct ata_port *ap, |
| unsigned long tmout_pat, unsigned long tmout) |
| { |
| unsigned long timer_start, timeout; |
| u8 status; |
| |
| status = ata_busy_wait(ap, ATA_BUSY, 300); |
| timer_start = jiffies; |
| timeout = timer_start + tmout_pat; |
| while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) { |
| msleep(50); |
| status = ata_busy_wait(ap, ATA_BUSY, 3); |
| } |
| |
| if (status & ATA_BUSY) |
| printk(KERN_WARNING "ata%u is slow to respond, " |
| "please be patient\n", ap->id); |
| |
| timeout = timer_start + tmout; |
| while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) { |
| msleep(50); |
| status = ata_chk_status(ap); |
| } |
| |
| if (status & ATA_BUSY) { |
| printk(KERN_ERR "ata%u failed to respond (%lu secs)\n", |
| ap->id, tmout / HZ); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| unsigned int dev0 = devmask & (1 << 0); |
| unsigned int dev1 = devmask & (1 << 1); |
| unsigned long timeout; |
| |
| /* if device 0 was found in ata_devchk, wait for its |
| * BSY bit to clear |
| */ |
| if (dev0) |
| ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); |
| |
| /* if device 1 was found in ata_devchk, wait for |
| * register access, then wait for BSY to clear |
| */ |
| timeout = jiffies + ATA_TMOUT_BOOT; |
| while (dev1) { |
| u8 nsect, lbal; |
| |
| ap->ops->dev_select(ap, 1); |
| if (ap->flags & ATA_FLAG_MMIO) { |
| nsect = readb((void __iomem *) ioaddr->nsect_addr); |
| lbal = readb((void __iomem *) ioaddr->lbal_addr); |
| } else { |
| nsect = inb(ioaddr->nsect_addr); |
| lbal = inb(ioaddr->lbal_addr); |
| } |
| if ((nsect == 1) && (lbal == 1)) |
| break; |
| if (time_after(jiffies, timeout)) { |
| dev1 = 0; |
| break; |
| } |
| msleep(50); /* give drive a breather */ |
| } |
| if (dev1) |
| ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); |
| |
| /* is all this really necessary? */ |
| ap->ops->dev_select(ap, 0); |
| if (dev1) |
| ap->ops->dev_select(ap, 1); |
| if (dev0) |
| ap->ops->dev_select(ap, 0); |
| } |
| |
| /** |
| * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command. |
| * @ap: Port to reset and probe |
| * |
| * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and |
| * probe the bus. Not often used these days. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * Obtains host_set lock. |
| * |
| */ |
| |
| static unsigned int ata_bus_edd(struct ata_port *ap) |
| { |
| struct ata_taskfile tf; |
| unsigned long flags; |
| |
| /* set up execute-device-diag (bus reset) taskfile */ |
| /* also, take interrupts to a known state (disabled) */ |
| DPRINTK("execute-device-diag\n"); |
| ata_tf_init(ap, &tf, 0); |
| tf.ctl |= ATA_NIEN; |
| tf.command = ATA_CMD_EDD; |
| tf.protocol = ATA_PROT_NODATA; |
| |
| /* do bus reset */ |
| spin_lock_irqsave(&ap->host_set->lock, flags); |
| ata_tf_to_host(ap, &tf); |
| spin_unlock_irqrestore(&ap->host_set->lock, flags); |
| |
| /* spec says at least 2ms. but who knows with those |
| * crazy ATAPI devices... |
| */ |
| msleep(150); |
| |
| return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); |
| } |
| |
| static unsigned int ata_bus_softreset(struct ata_port *ap, |
| unsigned int devmask) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| |
| DPRINTK("ata%u: bus reset via SRST\n", ap->id); |
| |
| /* software reset. causes dev0 to be selected */ |
| if (ap->flags & ATA_FLAG_MMIO) { |
| writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); |
| udelay(20); /* FIXME: flush */ |
| writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr); |
| udelay(20); /* FIXME: flush */ |
| writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); |
| } else { |
| outb(ap->ctl, ioaddr->ctl_addr); |
| udelay(10); |
| outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr); |
| udelay(10); |
| outb(ap->ctl, ioaddr->ctl_addr); |
| } |
| |
| /* spec mandates ">= 2ms" before checking status. |
| * We wait 150ms, because that was the magic delay used for |
| * ATAPI devices in Hale Landis's ATADRVR, for the period of time |
| * between when the ATA command register is written, and then |
| * status is checked. Because waiting for "a while" before |
| * checking status is fine, post SRST, we perform this magic |
| * delay here as well. |
| */ |
| msleep(150); |
| |
| ata_bus_post_reset(ap, devmask); |
| |
| return 0; |
| } |
| |
| /** |
| * ata_bus_reset - reset host port and associated ATA channel |
| * @ap: port to reset |
| * |
| * This is typically the first time we actually start issuing |
| * commands to the ATA channel. We wait for BSY to clear, then |
| * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its |
| * result. Determine what devices, if any, are on the channel |
| * by looking at the device 0/1 error register. Look at the signature |
| * stored in each device's taskfile registers, to determine if |
| * the device is ATA or ATAPI. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * Obtains host_set lock. |
| * |
| * SIDE EFFECTS: |
| * Sets ATA_FLAG_PORT_DISABLED if bus reset fails. |
| */ |
| |
| void ata_bus_reset(struct ata_port *ap) |
| { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; |
| u8 err; |
| unsigned int dev0, dev1 = 0, rc = 0, devmask = 0; |
| |
| DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no); |
| |
| /* determine if device 0/1 are present */ |
| if (ap->flags & ATA_FLAG_SATA_RESET) |
| dev0 = 1; |
| else { |
| dev0 = ata_devchk(ap, 0); |
| if (slave_possible) |
| dev1 = ata_devchk(ap, 1); |
| } |
| |
| if (dev0) |
| devmask |= (1 << 0); |
| if (dev1) |
| devmask |= (1 << 1); |
| |
| /* select device 0 again */ |
| ap->ops->dev_select(ap, 0); |
| |
| /* issue bus reset */ |
| if (ap->flags & ATA_FLAG_SRST) |
| rc = ata_bus_softreset(ap, devmask); |
| else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) { |
| /* set up device control */ |
| if (ap->flags & ATA_FLAG_MMIO) |
| writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); |
| else |
| outb(ap->ctl, ioaddr->ctl_addr); |
| rc = ata_bus_edd(ap); |
| } |
| |
| if (rc) |
| goto err_out; |
| |
| /* |
| * determine by signature whether we have ATA or ATAPI devices |
| */ |
| ap->device[0].class = ata_dev_try_classify(ap, 0, &err); |
| if ((slave_possible) && (err != 0x81)) |
| ap->device[1].class = ata_dev_try_classify(ap, 1, &err); |
| |
| /* re-enable interrupts */ |
| if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */ |
| ata_irq_on(ap); |
| |
| /* is double-select really necessary? */ |
| if (ap->device[1].class != ATA_DEV_NONE) |
| ap->ops->dev_select(ap, 1); |
| if (ap->device[0].class != ATA_DEV_NONE) |
| ap->ops->dev_select(ap, 0); |
| |
| /* if no devices were detected, disable this port */ |
| if ((ap->device[0].class == ATA_DEV_NONE) && |
| (ap->device[1].class == ATA_DEV_NONE)) |
| goto err_out; |
| |
| if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { |
| /* set up device control for ATA_FLAG_SATA_RESET */ |
| if (ap->flags & ATA_FLAG_MMIO) |
| writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); |
| else |
| outb(ap->ctl, ioaddr->ctl_addr); |
| } |
| |
| DPRINTK("EXIT\n"); |
| return; |
| |
| err_out: |
| printk(KERN_ERR "ata%u: disabling port\n", ap->id); |
| ap->ops->port_disable(ap); |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| static int sata_phy_resume(struct ata_port *ap) |
| { |
| unsigned long timeout = jiffies + (HZ * 5); |
| u32 sstatus; |
| |
| scr_write_flush(ap, SCR_CONTROL, 0x300); |
| |
| /* Wait for phy to become ready, if necessary. */ |
| do { |
| msleep(200); |
| sstatus = scr_read(ap, SCR_STATUS); |
| if ((sstatus & 0xf) != 1) |
| return 0; |
| } while (time_before(jiffies, timeout)); |
| |
| return -1; |
| } |
| |
| /** |
| * ata_std_probeinit - initialize probing |
| * @ap: port to be probed |
| * |
| * @ap is about to be probed. Initialize it. This function is |
| * to be used as standard callback for ata_drive_probe_reset(). |
| * |
| * NOTE!!! Do not use this function as probeinit if a low level |
| * driver implements only hardreset. Just pass NULL as probeinit |
| * in that case. Using this function is probably okay but doing |
| * so makes reset sequence different from the original |
| * ->phy_reset implementation and Jeff nervous. :-P |
| */ |
| extern void ata_std_probeinit(struct ata_port *ap) |
| { |
| if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) { |
| sata_phy_resume(ap); |
| if (sata_dev_present(ap)) |
| ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); |
| } |
| } |
| |
| /** |
| * ata_std_softreset - reset host port via ATA SRST |
| * @ap: port to reset |
| * @verbose: fail verbosely |
| * @classes: resulting classes of attached devices |
| * |
| * Reset host port using ATA SRST. This function is to be used |
| * as standard callback for ata_drive_*_reset() functions. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes) |
| { |
| unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; |
| unsigned int devmask = 0, err_mask; |
| u8 err; |
| |
| DPRINTK("ENTER\n"); |
| |
| if (ap->ops->scr_read && !sata_dev_present(ap)) { |
| classes[0] = ATA_DEV_NONE; |
| goto out; |
| } |
| |
| /* determine if device 0/1 are present */ |
| if (ata_devchk(ap, 0)) |
| devmask |= (1 << 0); |
| if (slave_possible && ata_devchk(ap, 1)) |
| devmask |= (1 << 1); |
| |
| /* select device 0 again */ |
| ap->ops->dev_select(ap, 0); |
| |
| /* issue bus reset */ |
| DPRINTK("about to softreset, devmask=%x\n", devmask); |
| err_mask = ata_bus_softreset(ap, devmask); |
| if (err_mask) { |
| if (verbose) |
| printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n", |
| ap->id, err_mask); |
| else |
| DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n", |
| err_mask); |
| return -EIO; |
| } |
| |
| /* determine by signature whether we have ATA or ATAPI devices */ |
| classes[0] = ata_dev_try_classify(ap, 0, &err); |
| if (slave_possible && err != 0x81) |
| classes[1] = ata_dev_try_classify(ap, 1, &err); |
| |
| out: |
| DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); |
| return 0; |
| } |
| |
| /** |
| * sata_std_hardreset - reset host port via SATA phy reset |
| * @ap: port to reset |
| * @verbose: fail verbosely |
| * @class: resulting class of attached device |
| * |
| * SATA phy-reset host port using DET bits of SControl register. |
| * This function is to be used as standard callback for |
| * ata_drive_*_reset(). |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class) |
| { |
| DPRINTK("ENTER\n"); |
| |
| /* Issue phy wake/reset */ |
| scr_write_flush(ap, SCR_CONTROL, 0x301); |
| |
| /* |
| * Couldn't find anything in SATA I/II specs, but AHCI-1.1 |
| * 10.4.2 says at least 1 ms. |
| */ |
| msleep(1); |
| |
| /* Bring phy back */ |
| sata_phy_resume(ap); |
| |
| /* TODO: phy layer with polling, timeouts, etc. */ |
| if (!sata_dev_present(ap)) { |
| *class = ATA_DEV_NONE; |
| DPRINTK("EXIT, link offline\n"); |
| return 0; |
| } |
| |
| if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { |
| if (verbose) |
| printk(KERN_ERR "ata%u: COMRESET failed " |
| "(device not ready)\n", ap->id); |
| else |
| DPRINTK("EXIT, device not ready\n"); |
| return -EIO; |
| } |
| |
| ap->ops->dev_select(ap, 0); /* probably unnecessary */ |
| |
| *class = ata_dev_try_classify(ap, 0, NULL); |
| |
| DPRINTK("EXIT, class=%u\n", *class); |
| return 0; |
| } |
| |
| /** |
| * ata_std_postreset - standard postreset callback |
| * @ap: the target ata_port |
| * @classes: classes of attached devices |
| * |
| * This function is invoked after a successful reset. Note that |
| * the device might have been reset more than once using |
| * different reset methods before postreset is invoked. |
| * postreset is also reponsible for setting cable type. |
| * |
| * This function is to be used as standard callback for |
| * ata_drive_*_reset(). |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| void ata_std_postreset(struct ata_port *ap, unsigned int *classes) |
| { |
| DPRINTK("ENTER\n"); |
| |
| /* set cable type */ |
| if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA) |
| ap->cbl = ATA_CBL_SATA; |
| |
| /* print link status */ |
| if (ap->cbl == ATA_CBL_SATA) |
| sata_print_link_status(ap); |
| |
| /* re-enable interrupts */ |
| if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */ |
| ata_irq_on(ap); |
| |
| /* is double-select really necessary? */ |
| if (classes[0] != ATA_DEV_NONE) |
| ap->ops->dev_select(ap, 1); |
| if (classes[1] != ATA_DEV_NONE) |
| ap->ops->dev_select(ap, 0); |
| |
| /* bail out if no device is present */ |
| if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { |
| DPRINTK("EXIT, no device\n"); |
| return; |
| } |
| |
| /* set up device control */ |
| if (ap->ioaddr.ctl_addr) { |
| if (ap->flags & ATA_FLAG_MMIO) |
| writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr); |
| else |
| outb(ap->ctl, ap->ioaddr.ctl_addr); |
| } |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| /** |
| * ata_std_probe_reset - standard probe reset method |
| * @ap: prot to perform probe-reset |
| * @classes: resulting classes of attached devices |
| * |
| * The stock off-the-shelf ->probe_reset method. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -errno otherwise. |
| */ |
| int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes) |
| { |
| ata_reset_fn_t hardreset; |
| |
| hardreset = NULL; |
| if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) |
| hardreset = sata_std_hardreset; |
| |
| return ata_drive_probe_reset(ap, ata_std_probeinit, |
| ata_std_softreset, hardreset, |
| ata_std_postreset, classes); |
| } |
| |
| static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset, |
| ata_postreset_fn_t postreset, |
| unsigned int *classes) |
| { |
| int i, rc; |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) |
| classes[i] = ATA_DEV_UNKNOWN; |
| |
| rc = reset(ap, 0, classes); |
| if (rc) |
| return rc; |
| |
| /* If any class isn't ATA_DEV_UNKNOWN, consider classification |
| * is complete and convert all ATA_DEV_UNKNOWN to |
| * ATA_DEV_NONE. |
| */ |
| for (i = 0; i < ATA_MAX_DEVICES; i++) |
| if (classes[i] != ATA_DEV_UNKNOWN) |
| break; |
| |
| if (i < ATA_MAX_DEVICES) |
| for (i = 0; i < ATA_MAX_DEVICES; i++) |
| if (classes[i] == ATA_DEV_UNKNOWN) |
| classes[i] = ATA_DEV_NONE; |
| |
| if (postreset) |
| postreset(ap, classes); |
| |
| return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV; |
| } |
| |
| /** |
| * ata_drive_probe_reset - Perform probe reset with given methods |
| * @ap: port to reset |
| * @probeinit: probeinit method (can be NULL) |
| * @softreset: softreset method (can be NULL) |
| * @hardreset: hardreset method (can be NULL) |
| * @postreset: postreset method (can be NULL) |
| * @classes: resulting classes of attached devices |
| * |
| * Reset the specified port and classify attached devices using |
| * given methods. This function prefers softreset but tries all |
| * possible reset sequences to reset and classify devices. This |
| * function is intended to be used for constructing ->probe_reset |
| * callback by low level drivers. |
| * |
| * Reset methods should follow the following rules. |
| * |
| * - Return 0 on sucess, -errno on failure. |
| * - If classification is supported, fill classes[] with |
| * recognized class codes. |
| * - If classification is not supported, leave classes[] alone. |
| * - If verbose is non-zero, print error message on failure; |
| * otherwise, shut up. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| * |
| * RETURNS: |
| * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV |
| * if classification fails, and any error code from reset |
| * methods. |
| */ |
| int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit, |
| ata_reset_fn_t softreset, ata_reset_fn_t hardreset, |
| ata_postreset_fn_t postreset, unsigned int *classes) |
| { |
| int rc = -EINVAL; |
| |
| if (probeinit) |
| probeinit(ap); |
| |
| if (softreset) { |
| rc = do_probe_reset(ap, softreset, postreset, classes); |
| if (rc == 0) |
| return 0; |
| } |
| |
| if (!hardreset) |
| return rc; |
| |
| rc = do_probe_reset(ap, hardreset, postreset, classes); |
| if (rc == 0 || rc != -ENODEV) |
| return rc; |
| |
| if (softreset) |
| rc = do_probe_reset(ap, softreset, postreset, classes); |
| |
| return rc; |
| } |
| |
| static void ata_pr_blacklisted(const struct ata_port *ap, |
| const struct ata_device *dev) |
| { |
| printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n", |
| ap->id, dev->devno); |
| } |
| |
| static const char * const ata_dma_blacklist [] = { |
| "WDC AC11000H", |
| "WDC AC22100H", |
| "WDC AC32500H", |
| "WDC AC33100H", |
| "WDC AC31600H", |
| "WDC AC32100H", |
| "WDC AC23200L", |
| "Compaq CRD-8241B", |
| "CRD-8400B", |
| "CRD-8480B", |
| "CRD-8482B", |
| "CRD-84", |
| "SanDisk SDP3B", |
| "SanDisk SDP3B-64", |
| "SANYO CD-ROM CRD", |
| "HITACHI CDR-8", |
| "HITACHI CDR-8335", |
| "HITACHI CDR-8435", |
| "Toshiba CD-ROM XM-6202B", |
| "TOSHIBA CD-ROM XM-1702BC", |
| "CD-532E-A", |
| "E-IDE CD-ROM CR-840", |
| "CD-ROM Drive/F5A", |
| "WPI CDD-820", |
| "SAMSUNG CD-ROM SC-148C", |
| "SAMSUNG CD-ROM SC", |
| "SanDisk SDP3B-64", |
| "ATAPI CD-ROM DRIVE 40X MAXIMUM", |
| "_NEC DV5800A", |
| }; |
| |
| static int ata_dma_blacklisted(const struct ata_device *dev) |
| { |
| unsigned char model_num[40]; |
| char *s; |
| unsigned int len; |
| int i; |
| |
| ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS, |
| sizeof(model_num)); |
| s = &model_num[0]; |
| len = strnlen(s, sizeof(model_num)); |
| |
| /* ATAPI specifies that empty space is blank-filled; remove blanks */ |
| while ((len > 0) && (s[len - 1] == ' ')) { |
| len--; |
| s[len] = 0; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++) |
| if (!strncmp(ata_dma_blacklist[i], s, len)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift) |
| { |
| const struct ata_device *master, *slave; |
| unsigned int mask; |
| |
| master = &ap->device[0]; |
| slave = &ap->device[1]; |
| |
| assert (ata_dev_present(master) || ata_dev_present(slave)); |
| |
| if (shift == ATA_SHIFT_UDMA) { |
| mask = ap->udma_mask; |
| if (ata_dev_present(master)) { |
| mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff); |
| if (ata_dma_blacklisted(master)) { |
| mask = 0; |
| ata_pr_blacklisted(ap, master); |
| } |
| } |
| if (ata_dev_present(slave)) { |
| mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff); |
| if (ata_dma_blacklisted(slave)) { |
| mask = 0; |
| ata_pr_blacklisted(ap, slave); |
| } |
| } |
| } |
| else if (shift == ATA_SHIFT_MWDMA) { |
| mask = ap->mwdma_mask; |
| if (ata_dev_present(master)) { |
| mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07); |
| if (ata_dma_blacklisted(master)) { |
| mask = 0; |
| ata_pr_blacklisted(ap, master); |
| } |
| } |
| if (ata_dev_present(slave)) { |
| mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07); |
| if (ata_dma_blacklisted(slave)) { |
| mask = 0; |
| ata_pr_blacklisted(ap, slave); |
| } |
| } |
| } |
| else if (shift == ATA_SHIFT_PIO) { |
| mask = ap->pio_mask; |
| if (ata_dev_present(master)) { |
| /* spec doesn't return explicit support for |
| * PIO0-2, so we fake it |
| */ |
| u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03; |
| tmp_mode <<= 3; |
| tmp_mode |= 0x7; |
| mask &= tmp_mode; |
| } |
| if (ata_dev_present(slave)) { |
| /* spec doesn't return explicit support for |
| * PIO0-2, so we fake it |
| */ |
| u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03; |
| tmp_mode <<= 3; |
| tmp_mode |= 0x7; |
| mask &= tmp_mode; |
| } |
| } |
| else { |
| mask = 0xffffffff; /* shut up compiler warning */ |
| BUG(); |
| } |
| |
| return mask; |
| } |
| |
| /* find greatest bit */ |
| static int fgb(u32 bitmap) |
| { |
| unsigned int i; |
| int x = -1; |
| |
| for (i = 0; i < 32; i++) |
| if (bitmap & (1 << i)) |
| x = i; |
| |
| return x; |
| } |
| |
| /** |
| * ata_choose_xfer_mode - attempt to find best transfer mode |
| * @ap: Port for which an xfer mode will be selected |
| * @xfer_mode_out: (output) SET FEATURES - XFER MODE code |
| * @xfer_shift_out: (output) bit shift that selects this mode |
| * |
| * Based on host and device capabilities, determine the |
| * maximum transfer mode that is amenable to all. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * Zero on success, negative on error. |
| */ |
| |
| static int ata_choose_xfer_mode(const struct ata_port *ap, |
| u8 *xfer_mode_out, |
| unsigned int *xfer_shift_out) |
| { |
| unsigned int mask, shift; |
| int x, i; |
| |
| for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) { |
| shift = xfer_mode_classes[i].shift; |
| mask = ata_get_mode_mask(ap, shift); |
| |
| x = fgb(mask); |
| if (x >= 0) { |
| *xfer_mode_out = xfer_mode_classes[i].base + x; |
| *xfer_shift_out = shift; |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| /** |
| * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command |
| * @ap: Port associated with device @dev |
| * @dev: Device to which command will be sent |
| * |
| * Issue SET FEATURES - XFER MODE command to device @dev |
| * on port @ap. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| */ |
| |
| static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev) |
| { |
| struct ata_taskfile tf; |
| |
| /* set up set-features taskfile */ |
| DPRINTK("set features - xfer mode\n"); |
| |
| ata_tf_init(ap, &tf, dev->devno); |
| tf.command = ATA_CMD_SET_FEATURES; |
| tf.feature = SETFEATURES_XFER; |
| tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| tf.protocol = ATA_PROT_NODATA; |
| tf.nsect = dev->xfer_mode; |
| |
| if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) { |
| printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n", |
| ap->id); |
| ata_port_disable(ap); |
| } |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| /** |
| * ata_dev_reread_id - Reread the device identify device info |
| * @ap: port where the device is |
| * @dev: device to reread the identify device info |
| * |
| * LOCKING: |
| */ |
| |
| static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev) |
| { |
| struct ata_taskfile tf; |
| |
| ata_tf_init(ap, &tf, dev->devno); |
| |
| if (dev->class == ATA_DEV_ATA) { |
| tf.command = ATA_CMD_ID_ATA; |
| DPRINTK("do ATA identify\n"); |
| } else { |
| tf.command = ATA_CMD_ID_ATAPI; |
| DPRINTK("do ATAPI identify\n"); |
| } |
| |
| tf.flags |= ATA_TFLAG_DEVICE; |
| tf.protocol = ATA_PROT_PIO; |
| |
| if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE, |
| dev->id, sizeof(dev->id))) |
| goto err_out; |
| |
| swap_buf_le16(dev->id, ATA_ID_WORDS); |
| |
| ata_dump_id(dev); |
| |
| DPRINTK("EXIT\n"); |
| |
| return; |
| err_out: |
| printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id); |
| ata_port_disable(ap); |
| } |
| |
| /** |
| * ata_dev_init_params - Issue INIT DEV PARAMS command |
| * @ap: Port associated with device @dev |
| * @dev: Device to which command will be sent |
| * |
| * LOCKING: |
| */ |
| |
| static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev) |
| { |
| struct ata_taskfile tf; |
| u16 sectors = dev->id[6]; |
| u16 heads = dev->id[3]; |
| |
| /* Number of sectors per track 1-255. Number of heads 1-16 */ |
| if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) |
| return; |
| |
| /* set up init dev params taskfile */ |
| DPRINTK("init dev params \n"); |
| |
| ata_tf_init(ap, &tf, dev->devno); |
| tf.command = ATA_CMD_INIT_DEV_PARAMS; |
| tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; |
| tf.protocol = ATA_PROT_NODATA; |
| tf.nsect = sectors; |
| tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ |
| |
| if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) { |
| printk(KERN_ERR "ata%u: failed to init parameters, disabled\n", |
| ap->id); |
| ata_port_disable(ap); |
| } |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| /** |
| * ata_sg_clean - Unmap DMA memory associated with command |
| * @qc: Command containing DMA memory to be released |
| * |
| * Unmap all mapped DMA memory associated with this command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| static void ata_sg_clean(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct scatterlist *sg = qc->__sg; |
| int dir = qc->dma_dir; |
| void *pad_buf = NULL; |
| |
| assert(qc->flags & ATA_QCFLAG_DMAMAP); |
| assert(sg != NULL); |
| |
| if (qc->flags & ATA_QCFLAG_SINGLE) |
| assert(qc->n_elem == 1); |
| |
| VPRINTK("unmapping %u sg elements\n", qc->n_elem); |
| |
| /* if we padded the buffer out to 32-bit bound, and data |
| * xfer direction is from-device, we must copy from the |
| * pad buffer back into the supplied buffer |
| */ |
| if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) |
| pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); |
| |
| if (qc->flags & ATA_QCFLAG_SG) { |
| if (qc->n_elem) |
| dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir); |
| /* restore last sg */ |
| sg[qc->orig_n_elem - 1].length += qc->pad_len; |
| if (pad_buf) { |
| struct scatterlist *psg = &qc->pad_sgent; |
| void *addr = kmap_atomic(psg->page, KM_IRQ0); |
| memcpy(addr + psg->offset, pad_buf, qc->pad_len); |
| kunmap_atomic(addr, KM_IRQ0); |
| } |
| } else { |
| if (sg_dma_len(&sg[0]) > 0) |
| dma_unmap_single(ap->host_set->dev, |
| sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), |
| dir); |
| /* restore sg */ |
| sg->length += qc->pad_len; |
| if (pad_buf) |
| memcpy(qc->buf_virt + sg->length - qc->pad_len, |
| pad_buf, qc->pad_len); |
| } |
| |
| qc->flags &= ~ATA_QCFLAG_DMAMAP; |
| qc->__sg = NULL; |
| } |
| |
| /** |
| * ata_fill_sg - Fill PCI IDE PRD table |
| * @qc: Metadata associated with taskfile to be transferred |
| * |
| * Fill PCI IDE PRD (scatter-gather) table with segments |
| * associated with the current disk command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| * |
| */ |
| static void ata_fill_sg(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct scatterlist *sg; |
| unsigned int idx; |
| |
| assert(qc->__sg != NULL); |
| assert(qc->n_elem > 0); |
| |
| idx = 0; |
| ata_for_each_sg(sg, qc) { |
| u32 addr, offset; |
| u32 sg_len, len; |
| |
| /* determine if physical DMA addr spans 64K boundary. |
| * Note h/w doesn't support 64-bit, so we unconditionally |
| * truncate dma_addr_t to u32. |
| */ |
| addr = (u32) sg_dma_address(sg); |
| sg_len = sg_dma_len(sg); |
| |
| while (sg_len) { |
| offset = addr & 0xffff; |
| len = sg_len; |
| if ((offset + sg_len) > 0x10000) |
| len = 0x10000 - offset; |
| |
| ap->prd[idx].addr = cpu_to_le32(addr); |
| ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); |
| VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); |
| |
| idx++; |
| sg_len -= len; |
| addr += len; |
| } |
| } |
| |
| if (idx) |
| ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); |
| } |
| /** |
| * ata_check_atapi_dma - Check whether ATAPI DMA can be supported |
| * @qc: Metadata associated with taskfile to check |
| * |
| * Allow low-level driver to filter ATA PACKET commands, returning |
| * a status indicating whether or not it is OK to use DMA for the |
| * supplied PACKET command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| * |
| * RETURNS: 0 when ATAPI DMA can be used |
| * nonzero otherwise |
| */ |
| int ata_check_atapi_dma(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| int rc = 0; /* Assume ATAPI DMA is OK by default */ |
| |
| if (ap->ops->check_atapi_dma) |
| rc = ap->ops->check_atapi_dma(qc); |
| |
| return rc; |
| } |
| /** |
| * ata_qc_prep - Prepare taskfile for submission |
| * @qc: Metadata associated with taskfile to be prepared |
| * |
| * Prepare ATA taskfile for submission. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| void ata_qc_prep(struct ata_queued_cmd *qc) |
| { |
| if (!(qc->flags & ATA_QCFLAG_DMAMAP)) |
| return; |
| |
| ata_fill_sg(qc); |
| } |
| |
| /** |
| * ata_sg_init_one - Associate command with memory buffer |
| * @qc: Command to be associated |
| * @buf: Memory buffer |
| * @buflen: Length of memory buffer, in bytes. |
| * |
| * Initialize the data-related elements of queued_cmd @qc |
| * to point to a single memory buffer, @buf of byte length @buflen. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) |
| { |
| struct scatterlist *sg; |
| |
| qc->flags |= ATA_QCFLAG_SINGLE; |
| |
| memset(&qc->sgent, 0, sizeof(qc->sgent)); |
| qc->__sg = &qc->sgent; |
| qc->n_elem = 1; |
| qc->orig_n_elem = 1; |
| qc->buf_virt = buf; |
| |
| sg = qc->__sg; |
| sg_init_one(sg, buf, buflen); |
| } |
| |
| /** |
| * ata_sg_init - Associate command with scatter-gather table. |
| * @qc: Command to be associated |
| * @sg: Scatter-gather table. |
| * @n_elem: Number of elements in s/g table. |
| * |
| * Initialize the data-related elements of queued_cmd @qc |
| * to point to a scatter-gather table @sg, containing @n_elem |
| * elements. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, |
| unsigned int n_elem) |
| { |
| qc->flags |= ATA_QCFLAG_SG; |
| qc->__sg = sg; |
| qc->n_elem = n_elem; |
| qc->orig_n_elem = n_elem; |
| } |
| |
| /** |
| * ata_sg_setup_one - DMA-map the memory buffer associated with a command. |
| * @qc: Command with memory buffer to be mapped. |
| * |
| * DMA-map the memory buffer associated with queued_cmd @qc. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| * |
| * RETURNS: |
| * Zero on success, negative on error. |
| */ |
| |
| static int ata_sg_setup_one(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| int dir = qc->dma_dir; |
| struct scatterlist *sg = qc->__sg; |
| dma_addr_t dma_address; |
| |
| /* we must lengthen transfers to end on a 32-bit boundary */ |
| qc->pad_len = sg->length & 3; |
| if (qc->pad_len) { |
| void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); |
| struct scatterlist *psg = &qc->pad_sgent; |
| |
| assert(qc->dev->class == ATA_DEV_ATAPI); |
| |
| memset(pad_buf, 0, ATA_DMA_PAD_SZ); |
| |
| if (qc->tf.flags & ATA_TFLAG_WRITE) |
| memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, |
| qc->pad_len); |
| |
| sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); |
| sg_dma_len(psg) = ATA_DMA_PAD_SZ; |
| /* trim sg */ |
| sg->length -= qc->pad_len; |
| |
| DPRINTK("padding done, sg->length=%u pad_len=%u\n", |
| sg->length, qc->pad_len); |
| } |
| |
| if (!sg->length) { |
| sg_dma_address(sg) = 0; |
| goto skip_map; |
| } |
| |
| dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt, |
| sg->length, dir); |
| if (dma_mapping_error(dma_address)) { |
| /* restore sg */ |
| sg->length += qc->pad_len; |
| return -1; |
| } |
| |
| sg_dma_address(sg) = dma_address; |
| skip_map: |
| sg_dma_len(sg) = sg->length; |
| |
| DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), |
| qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); |
| |
| return 0; |
| } |
| |
| /** |
| * ata_sg_setup - DMA-map the scatter-gather table associated with a command. |
| * @qc: Command with scatter-gather table to be mapped. |
| * |
| * DMA-map the scatter-gather table associated with queued_cmd @qc. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| * |
| * RETURNS: |
| * Zero on success, negative on error. |
| * |
| */ |
| |
| static int ata_sg_setup(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct scatterlist *sg = qc->__sg; |
| struct scatterlist *lsg = &sg[qc->n_elem - 1]; |
| int n_elem, pre_n_elem, dir, trim_sg = 0; |
| |
| VPRINTK("ENTER, ata%u\n", ap->id); |
| assert(qc->flags & ATA_QCFLAG_SG); |
| |
| /* we must lengthen transfers to end on a 32-bit boundary */ |
| qc->pad_len = lsg->length & 3; |
| if (qc->pad_len) { |
| void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); |
| struct scatterlist *psg = &qc->pad_sgent; |
| unsigned int offset; |
| |
| assert(qc->dev->class == ATA_DEV_ATAPI); |
| |
| memset(pad_buf, 0, ATA_DMA_PAD_SZ); |
| |
| /* |
| * psg->page/offset are used to copy to-be-written |
| * data in this function or read data in ata_sg_clean. |
| */ |
| offset = lsg->offset + lsg->length - qc->pad_len; |
| psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); |
| psg->offset = offset_in_page(offset); |
| |
| if (qc->tf.flags & ATA_TFLAG_WRITE) { |
| void *addr = kmap_atomic(psg->page, KM_IRQ0); |
| memcpy(pad_buf, addr + psg->offset, qc->pad_len); |
| kunmap_atomic(addr, KM_IRQ0); |
| } |
| |
| sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); |
| sg_dma_len(psg) = ATA_DMA_PAD_SZ; |
| /* trim last sg */ |
| lsg->length -= qc->pad_len; |
| if (lsg->length == 0) |
| trim_sg = 1; |
| |
| DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", |
| qc->n_elem - 1, lsg->length, qc->pad_len); |
| } |
| |
| pre_n_elem = qc->n_elem; |
| if (trim_sg && pre_n_elem) |
| pre_n_elem--; |
| |
| if (!pre_n_elem) { |
| n_elem = 0; |
| goto skip_map; |
| } |
| |
| dir = qc->dma_dir; |
| n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir); |
| if (n_elem < 1) { |
| /* restore last sg */ |
| lsg->length += qc->pad_len; |
| return -1; |
| } |
| |
| DPRINTK("%d sg elements mapped\n", n_elem); |
| |
| skip_map: |
| qc->n_elem = n_elem; |
| |
| return 0; |
| } |
| |
| /** |
| * ata_poll_qc_complete - turn irq back on and finish qc |
| * @qc: Command to complete |
| * @err_mask: ATA status register content |
| * |
| * LOCKING: |
| * None. (grabs host lock) |
| */ |
| |
| void ata_poll_qc_complete(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ap->host_set->lock, flags); |
| ap->flags &= ~ATA_FLAG_NOINTR; |
| ata_irq_on(ap); |
| ata_qc_complete(qc); |
| spin_unlock_irqrestore(&ap->host_set->lock, flags); |
| } |
| |
| /** |
| * ata_pio_poll - poll using PIO, depending on current state |
| * @ap: the target ata_port |
| * |
| * LOCKING: |
| * None. (executing in kernel thread context) |
| * |
| * RETURNS: |
| * timeout value to use |
| */ |
| |
| static unsigned long ata_pio_poll(struct ata_port *ap) |
| { |
| struct ata_queued_cmd *qc; |
| u8 status; |
| unsigned int poll_state = HSM_ST_UNKNOWN; |
| unsigned int reg_state = HSM_ST_UNKNOWN; |
| |
| qc = ata_qc_from_tag(ap, ap->active_tag); |
| assert(qc != NULL); |
| |
| switch (ap->hsm_task_state) { |
| case HSM_ST: |
| case HSM_ST_POLL: |
| poll_state = HSM_ST_POLL; |
| reg_state = HSM_ST; |
| break; |
| case HSM_ST_LAST: |
| case HSM_ST_LAST_POLL: |
| poll_state = HSM_ST_LAST_POLL; |
| reg_state = HSM_ST_LAST; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| status = ata_chk_status(ap); |
| if (status & ATA_BUSY) { |
| if (time_after(jiffies, ap->pio_task_timeout)) { |
| qc->err_mask |= AC_ERR_TIMEOUT; |
| ap->hsm_task_state = HSM_ST_TMOUT; |
| return 0; |
| } |
| ap->hsm_task_state = poll_state; |
| return ATA_SHORT_PAUSE; |
| } |
| |
| ap->hsm_task_state = reg_state; |
| return 0; |
| } |
| |
| /** |
| * ata_pio_complete - check if drive is busy or idle |
| * @ap: the target ata_port |
| * |
| * LOCKING: |
| * None. (executing in kernel thread context) |
| * |
| * RETURNS: |
| * Non-zero if qc completed, zero otherwise. |
| */ |
| |
| static int ata_pio_complete (struct ata_port *ap) |
| { |
| struct ata_queued_cmd *qc; |
| u8 drv_stat; |
| |
| /* |
| * This is purely heuristic. This is a fast path. Sometimes when |
| * we enter, BSY will be cleared in a chk-status or two. If not, |
| * the drive is probably seeking or something. Snooze for a couple |
| * msecs, then chk-status again. If still busy, fall back to |
| * HSM_ST_POLL state. |
| */ |
| drv_stat = ata_busy_wait(ap, ATA_BUSY, 10); |
| if (drv_stat & ATA_BUSY) { |
| msleep(2); |
| drv_stat = ata_busy_wait(ap, ATA_BUSY, 10); |
| if (drv_stat & ATA_BUSY) { |
| ap->hsm_task_state = HSM_ST_LAST_POLL; |
| ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO; |
| return 0; |
| } |
| } |
| |
| qc = ata_qc_from_tag(ap, ap->active_tag); |
| assert(qc != NULL); |
| |
| drv_stat = ata_wait_idle(ap); |
| if (!ata_ok(drv_stat)) { |
| qc->err_mask |= __ac_err_mask(drv_stat); |
| ap->hsm_task_state = HSM_ST_ERR; |
| return 0; |
| } |
| |
| ap->hsm_task_state = HSM_ST_IDLE; |
| |
| assert(qc->err_mask == 0); |
| ata_poll_qc_complete(qc); |
| |
| /* another command may start at this point */ |
| |
| return 1; |
| } |
| |
| |
| /** |
| * swap_buf_le16 - swap halves of 16-bit words in place |
| * @buf: Buffer to swap |
| * @buf_words: Number of 16-bit words in buffer. |
| * |
| * Swap halves of 16-bit words if needed to convert from |
| * little-endian byte order to native cpu byte order, or |
| * vice-versa. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| void swap_buf_le16(u16 *buf, unsigned int buf_words) |
| { |
| #ifdef __BIG_ENDIAN |
| unsigned int i; |
| |
| for (i = 0; i < buf_words; i++) |
| buf[i] = le16_to_cpu(buf[i]); |
| #endif /* __BIG_ENDIAN */ |
| } |
| |
| /** |
| * ata_mmio_data_xfer - Transfer data by MMIO |
| * @ap: port to read/write |
| * @buf: data buffer |
| * @buflen: buffer length |
| * @write_data: read/write |
| * |
| * Transfer data from/to the device data register by MMIO. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf, |
| unsigned int buflen, int write_data) |
| { |
| unsigned int i; |
| unsigned int words = buflen >> 1; |
| u16 *buf16 = (u16 *) buf; |
| void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr; |
| |
| /* Transfer multiple of 2 bytes */ |
| if (write_data) { |
| for (i = 0; i < words; i++) |
| writew(le16_to_cpu(buf16[i]), mmio); |
| } else { |
| for (i = 0; i < words; i++) |
| buf16[i] = cpu_to_le16(readw(mmio)); |
| } |
| |
| /* Transfer trailing 1 byte, if any. */ |
| if (unlikely(buflen & 0x01)) { |
| u16 align_buf[1] = { 0 }; |
| unsigned char *trailing_buf = buf + buflen - 1; |
| |
| if (write_data) { |
| memcpy(align_buf, trailing_buf, 1); |
| writew(le16_to_cpu(align_buf[0]), mmio); |
| } else { |
| align_buf[0] = cpu_to_le16(readw(mmio)); |
| memcpy(trailing_buf, align_buf, 1); |
| } |
| } |
| } |
| |
| /** |
| * ata_pio_data_xfer - Transfer data by PIO |
| * @ap: port to read/write |
| * @buf: data buffer |
| * @buflen: buffer length |
| * @write_data: read/write |
| * |
| * Transfer data from/to the device data register by PIO. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf, |
| unsigned int buflen, int write_data) |
| { |
| unsigned int words = buflen >> 1; |
| |
| /* Transfer multiple of 2 bytes */ |
| if (write_data) |
| outsw(ap->ioaddr.data_addr, buf, words); |
| else |
| insw(ap->ioaddr.data_addr, buf, words); |
| |
| /* Transfer trailing 1 byte, if any. */ |
| if (unlikely(buflen & 0x01)) { |
| u16 align_buf[1] = { 0 }; |
| unsigned char *trailing_buf = buf + buflen - 1; |
| |
| if (write_data) { |
| memcpy(align_buf, trailing_buf, 1); |
| outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); |
| } else { |
| align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr)); |
| memcpy(trailing_buf, align_buf, 1); |
| } |
| } |
| } |
| |
| /** |
| * ata_data_xfer - Transfer data from/to the data register. |
| * @ap: port to read/write |
| * @buf: data buffer |
| * @buflen: buffer length |
| * @do_write: read/write |
| * |
| * Transfer data from/to the device data register. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void ata_data_xfer(struct ata_port *ap, unsigned char *buf, |
| unsigned int buflen, int do_write) |
| { |
| /* Make the crap hardware pay the costs not the good stuff */ |
| if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) { |
| unsigned long flags; |
| local_irq_save(flags); |
| if (ap->flags & ATA_FLAG_MMIO) |
| ata_mmio_data_xfer(ap, buf, buflen, do_write); |
| else |
| ata_pio_data_xfer(ap, buf, buflen, do_write); |
| local_irq_restore(flags); |
| } else { |
| if (ap->flags & ATA_FLAG_MMIO) |
| ata_mmio_data_xfer(ap, buf, buflen, do_write); |
| else |
| ata_pio_data_xfer(ap, buf, buflen, do_write); |
| } |
| } |
| |
| /** |
| * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data. |
| * @qc: Command on going |
| * |
| * Transfer ATA_SECT_SIZE of data from/to the ATA device. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void ata_pio_sector(struct ata_queued_cmd *qc) |
| { |
| int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); |
| struct scatterlist *sg = qc->__sg; |
| struct ata_port *ap = qc->ap; |
| struct page *page; |
| unsigned int offset; |
| unsigned char *buf; |
| |
| if (qc->cursect == (qc->nsect - 1)) |
| ap->hsm_task_state = HSM_ST_LAST; |
| |
| page = sg[qc->cursg].page; |
| offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE; |
| |
| /* get the current page and offset */ |
| page = nth_page(page, (offset >> PAGE_SHIFT)); |
| offset %= PAGE_SIZE; |
| |
| buf = kmap(page) + offset; |
| |
| qc->cursect++; |
| qc->cursg_ofs++; |
| |
| if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) { |
| qc->cursg++; |
| qc->cursg_ofs = 0; |
| } |
| |
| DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); |
| |
| /* do the actual data transfer */ |
| do_write = (qc->tf.flags & ATA_TFLAG_WRITE); |
| ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write); |
| |
| kunmap(page); |
| } |
| |
| /** |
| * __atapi_pio_bytes - Transfer data from/to the ATAPI device. |
| * @qc: Command on going |
| * @bytes: number of bytes |
| * |
| * Transfer Transfer data from/to the ATAPI device. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| * |
| */ |
| |
| static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) |
| { |
| int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); |
| struct scatterlist *sg = qc->__sg; |
| struct ata_port *ap = qc->ap; |
| struct page *page; |
| unsigned char *buf; |
| unsigned int offset, count; |
| |
| if (qc->curbytes + bytes >= qc->nbytes) |
| ap->hsm_task_state = HSM_ST_LAST; |
| |
| next_sg: |
| if (unlikely(qc->cursg >= qc->n_elem)) { |
| /* |
| * The end of qc->sg is reached and the device expects |
| * more data to transfer. In order not to overrun qc->sg |
| * and fulfill length specified in the byte count register, |
| * - for read case, discard trailing data from the device |
| * - for write case, padding zero data to the device |
| */ |
| u16 pad_buf[1] = { 0 }; |
| unsigned int words = bytes >> 1; |
| unsigned int i; |
| |
| if (words) /* warning if bytes > 1 */ |
| printk(KERN_WARNING "ata%u: %u bytes trailing data\n", |
| ap->id, bytes); |
| |
| for (i = 0; i < words; i++) |
| ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write); |
| |
| ap->hsm_task_state = HSM_ST_LAST; |
| return; |
| } |
| |
| sg = &qc->__sg[qc->cursg]; |
| |
| page = sg->page; |
| offset = sg->offset + qc->cursg_ofs; |
| |
| /* get the current page and offset */ |
| page = nth_page(page, (offset >> PAGE_SHIFT)); |
| offset %= PAGE_SIZE; |
| |
| /* don't overrun current sg */ |
| count = min(sg->length - qc->cursg_ofs, bytes); |
| |
| /* don't cross page boundaries */ |
| count = min(count, (unsigned int)PAGE_SIZE - offset); |
| |
| buf = kmap(page) + offset; |
| |
| bytes -= count; |
| qc->curbytes += count; |
| qc->cursg_ofs += count; |
| |
| if (qc->cursg_ofs == sg->length) { |
| qc->cursg++; |
| qc->cursg_ofs = 0; |
| } |
| |
| DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); |
| |
| /* do the actual data transfer */ |
| ata_data_xfer(ap, buf, count, do_write); |
| |
| kunmap(page); |
| |
| if (bytes) |
| goto next_sg; |
| } |
| |
| /** |
| * atapi_pio_bytes - Transfer data from/to the ATAPI device. |
| * @qc: Command on going |
| * |
| * Transfer Transfer data from/to the ATAPI device. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void atapi_pio_bytes(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct ata_device *dev = qc->dev; |
| unsigned int ireason, bc_lo, bc_hi, bytes; |
| int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; |
| |
| ap->ops->tf_read(ap, &qc->tf); |
| ireason = qc->tf.nsect; |
| bc_lo = qc->tf.lbam; |
| bc_hi = qc->tf.lbah; |
| bytes = (bc_hi << 8) | bc_lo; |
| |
| /* shall be cleared to zero, indicating xfer of data */ |
| if (ireason & (1 << 0)) |
| goto err_out; |
| |
| /* make sure transfer direction matches expected */ |
| i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; |
| if (do_write != i_write) |
| goto err_out; |
| |
| __atapi_pio_bytes(qc, bytes); |
| |
| return; |
| |
| err_out: |
| printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n", |
| ap->id, dev->devno); |
| qc->err_mask |= AC_ERR_HSM; |
| ap->hsm_task_state = HSM_ST_ERR; |
| } |
| |
| /** |
| * ata_pio_block - start PIO on a block |
| * @ap: the target ata_port |
| * |
| * LOCKING: |
| * None. (executing in kernel thread context) |
| */ |
| |
| static void ata_pio_block(struct ata_port *ap) |
| { |
| struct ata_queued_cmd *qc; |
| u8 status; |
| |
| /* |
| * This is purely heuristic. This is a fast path. |
| * Sometimes when we enter, BSY will be cleared in |
| * a chk-status or two. If not, the drive is probably seeking |
| * or something. Snooze for a couple msecs, then |
| * chk-status again. If still busy, fall back to |
| * HSM_ST_POLL state. |
| */ |
| status = ata_busy_wait(ap, ATA_BUSY, 5); |
| if (status & ATA_BUSY) { |
| msleep(2); |
| status = ata_busy_wait(ap, ATA_BUSY, 10); |
| if (status & ATA_BUSY) { |
| ap->hsm_task_state = HSM_ST_POLL; |
| ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO; |
| return; |
| } |
| } |
| |
| qc = ata_qc_from_tag(ap, ap->active_tag); |
| assert(qc != NULL); |
| |
| /* check error */ |
| if (status & (ATA_ERR | ATA_DF)) { |
| qc->err_mask |= AC_ERR_DEV; |
| ap->hsm_task_state = HSM_ST_ERR; |
| return; |
| } |
| |
| /* transfer data if any */ |
| if (is_atapi_taskfile(&qc->tf)) { |
| /* DRQ=0 means no more data to transfer */ |
| if ((status & ATA_DRQ) == 0) { |
| ap->hsm_task_state = HSM_ST_LAST; |
| return; |
| } |
| |
| atapi_pio_bytes(qc); |
| } else { |
| /* handle BSY=0, DRQ=0 as error */ |
| if ((status & ATA_DRQ) == 0) { |
| qc->err_mask |= AC_ERR_HSM; |
| ap->hsm_task_state = HSM_ST_ERR; |
| return; |
| } |
| |
| ata_pio_sector(qc); |
| } |
| } |
| |
| static void ata_pio_error(struct ata_port *ap) |
| { |
| struct ata_queued_cmd *qc; |
| |
| printk(KERN_WARNING "ata%u: PIO error\n", ap->id); |
| |
| qc = ata_qc_from_tag(ap, ap->active_tag); |
| assert(qc != NULL); |
| |
| /* make sure qc->err_mask is available to |
| * know what's wrong and recover |
| */ |
| assert(qc->err_mask); |
| |
| ap->hsm_task_state = HSM_ST_IDLE; |
| |
| ata_poll_qc_complete(qc); |
| } |
| |
| static void ata_pio_task(void *_data) |
| { |
| struct ata_port *ap = _data; |
| unsigned long timeout; |
| int qc_completed; |
| |
| fsm_start: |
| timeout = 0; |
| qc_completed = 0; |
| |
| switch (ap->hsm_task_state) { |
| case HSM_ST_IDLE: |
| return; |
| |
| case HSM_ST: |
| ata_pio_block(ap); |
| break; |
| |
| case HSM_ST_LAST: |
| qc_completed = ata_pio_complete(ap); |
| break; |
| |
| case HSM_ST_POLL: |
| case HSM_ST_LAST_POLL: |
| timeout = ata_pio_poll(ap); |
| break; |
| |
| case HSM_ST_TMOUT: |
| case HSM_ST_ERR: |
| ata_pio_error(ap); |
| return; |
| } |
| |
| if (timeout) |
| ata_queue_delayed_pio_task(ap, timeout); |
| else if (!qc_completed) |
| goto fsm_start; |
| } |
| |
| /** |
| * ata_qc_timeout - Handle timeout of queued command |
| * @qc: Command that timed out |
| * |
| * Some part of the kernel (currently, only the SCSI layer) |
| * has noticed that the active command on port @ap has not |
| * completed after a specified length of time. Handle this |
| * condition by disabling DMA (if necessary) and completing |
| * transactions, with error if necessary. |
| * |
| * This also handles the case of the "lost interrupt", where |
| * for some reason (possibly hardware bug, possibly driver bug) |
| * an interrupt was not delivered to the driver, even though the |
| * transaction completed successfully. |
| * |
| * LOCKING: |
| * Inherited from SCSI layer (none, can sleep) |
| */ |
| |
| static void ata_qc_timeout(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| struct ata_host_set *host_set = ap->host_set; |
| u8 host_stat = 0, drv_stat; |
| unsigned long flags; |
| |
| DPRINTK("ENTER\n"); |
| |
| ata_flush_pio_tasks(ap); |
| ap->hsm_task_state = HSM_ST_IDLE; |
| |
| spin_lock_irqsave(&host_set->lock, flags); |
| |
| switch (qc->tf.protocol) { |
| |
| case ATA_PROT_DMA: |
| case ATA_PROT_ATAPI_DMA: |
| host_stat = ap->ops->bmdma_status(ap); |
| |
| /* before we do anything else, clear DMA-Start bit */ |
| ap->ops->bmdma_stop(qc); |
| |
| /* fall through */ |
| |
| default: |
| ata_altstatus(ap); |
| drv_stat = ata_chk_status(ap); |
| |
| /* ack bmdma irq events */ |
| ap->ops->irq_clear(ap); |
| |
| printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n", |
| ap->id, qc->tf.command, drv_stat, host_stat); |
| |
| /* complete taskfile transaction */ |
| qc->err_mask |= ac_err_mask(drv_stat); |
| break; |
| } |
| |
| spin_unlock_irqrestore(&host_set->lock, flags); |
| |
| ata_eh_qc_complete(qc); |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| /** |
| * ata_eng_timeout - Handle timeout of queued command |
| * @ap: Port on which timed-out command is active |
| * |
| * Some part of the kernel (currently, only the SCSI layer) |
| * has noticed that the active command on port @ap has not |
| * completed after a specified length of time. Handle this |
| * condition by disabling DMA (if necessary) and completing |
| * transactions, with error if necessary. |
| * |
| * This also handles the case of the "lost interrupt", where |
| * for some reason (possibly hardware bug, possibly driver bug) |
| * an interrupt was not delivered to the driver, even though the |
| * transaction completed successfully. |
| * |
| * LOCKING: |
| * Inherited from SCSI layer (none, can sleep) |
| */ |
| |
| void ata_eng_timeout(struct ata_port *ap) |
| { |
| DPRINTK("ENTER\n"); |
| |
| ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag)); |
| |
| DPRINTK("EXIT\n"); |
| } |
| |
| /** |
| * ata_qc_new - Request an available ATA command, for queueing |
| * @ap: Port associated with device @dev |
| * @dev: Device from whom we request an available command structure |
| * |
| * LOCKING: |
| * None. |
| */ |
| |
| static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) |
| { |
| struct ata_queued_cmd *qc = NULL; |
| unsigned int i; |
| |
| for (i = 0; i < ATA_MAX_QUEUE; i++) |
| if (!test_and_set_bit(i, &ap->qactive)) { |
| qc = ata_qc_from_tag(ap, i); |
| break; |
| } |
| |
| if (qc) |
| qc->tag = i; |
| |
| return qc; |
| } |
| |
| /** |
| * ata_qc_new_init - Request an available ATA command, and initialize it |
| * @ap: Port associated with device @dev |
| * @dev: Device from whom we request an available command structure |
| * |
| * LOCKING: |
| * None. |
| */ |
| |
| struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap, |
| struct ata_device *dev) |
| { |
| struct ata_queued_cmd *qc; |
| |
| qc = ata_qc_new(ap); |
| if (qc) { |
| qc->scsicmd = NULL; |
| qc->ap = ap; |
| qc->dev = dev; |
| |
| ata_qc_reinit(qc); |
| } |
| |
| return qc; |
| } |
| |
| /** |
| * ata_qc_free - free unused ata_queued_cmd |
| * @qc: Command to complete |
| * |
| * Designed to free unused ata_queued_cmd object |
| * in case something prevents using it. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| void ata_qc_free(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| unsigned int tag; |
| |
| assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */ |
| |
| qc->flags = 0; |
| tag = qc->tag; |
| if (likely(ata_tag_valid(tag))) { |
| if (tag == ap->active_tag) |
| ap->active_tag = ATA_TAG_POISON; |
| qc->tag = ATA_TAG_POISON; |
| clear_bit(tag, &ap->qactive); |
| } |
| } |
| |
| void __ata_qc_complete(struct ata_queued_cmd *qc) |
| { |
| assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */ |
| assert(qc->flags & ATA_QCFLAG_ACTIVE); |
| |
| if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) |
| ata_sg_clean(qc); |
| |
| /* atapi: mark qc as inactive to prevent the interrupt handler |
| * from completing the command twice later, before the error handler |
| * is called. (when rc != 0 and atapi request sense is needed) |
| */ |
| qc->flags &= ~ATA_QCFLAG_ACTIVE; |
| |
| /* call completion callback */ |
| qc->complete_fn(qc); |
| } |
| |
| static inline int ata_should_dma_map(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| switch (qc->tf.protocol) { |
| case ATA_PROT_DMA: |
| case ATA_PROT_ATAPI_DMA: |
| return 1; |
| |
| case ATA_PROT_ATAPI: |
| case ATA_PROT_PIO: |
| case ATA_PROT_PIO_MULT: |
| if (ap->flags & ATA_FLAG_PIO_DMA) |
| return 1; |
| |
| /* fall through */ |
| |
| default: |
| return 0; |
| } |
| |
| /* never reached */ |
| } |
| |
| /** |
| * ata_qc_issue - issue taskfile to device |
| * @qc: command to issue to device |
| * |
| * Prepare an ATA command to submission to device. |
| * This includes mapping the data into a DMA-able |
| * area, filling in the S/G table, and finally |
| * writing the taskfile to hardware, starting the command. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| * |
| * RETURNS: |
| * Zero on success, AC_ERR_* mask on failure |
| */ |
| |
| unsigned int ata_qc_issue(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| if (ata_should_dma_map(qc)) { |
| if (qc->flags & ATA_QCFLAG_SG) { |
| if (ata_sg_setup(qc)) |
| goto sg_err; |
| } else if (qc->flags & ATA_QCFLAG_SINGLE) { |
| if (ata_sg_setup_one(qc)) |
| goto sg_err; |
| } |
| } else { |
| qc->flags &= ~ATA_QCFLAG_DMAMAP; |
| } |
| |
| ap->ops->qc_prep(qc); |
| |
| qc->ap->active_tag = qc->tag; |
| qc->flags |= ATA_QCFLAG_ACTIVE; |
| |
| return ap->ops->qc_issue(qc); |
| |
| sg_err: |
| qc->flags &= ~ATA_QCFLAG_DMAMAP; |
| return AC_ERR_SYSTEM; |
| } |
| |
| |
| /** |
| * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner |
| * @qc: command to issue to device |
| * |
| * Using various libata functions and hooks, this function |
| * starts an ATA command. ATA commands are grouped into |
| * classes called "protocols", and issuing each type of protocol |
| * is slightly different. |
| * |
| * May be used as the qc_issue() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| * |
| * RETURNS: |
| * Zero on success, AC_ERR_* mask on failure |
| */ |
| |
| unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| |
| ata_dev_select(ap, qc->dev->devno, 1, 0); |
| |
| switch (qc->tf.protocol) { |
| case ATA_PROT_NODATA: |
| ata_tf_to_host(ap, &qc->tf); |
| break; |
| |
| case ATA_PROT_DMA: |
| ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ |
| ap->ops->bmdma_setup(qc); /* set up bmdma */ |
| ap->ops->bmdma_start(qc); /* initiate bmdma */ |
| break; |
| |
| case ATA_PROT_PIO: /* load tf registers, initiate polling pio */ |
| ata_qc_set_polling(qc); |
| ata_tf_to_host(ap, &qc->tf); |
| ap->hsm_task_state = HSM_ST; |
| ata_queue_pio_task(ap); |
| break; |
| |
| case ATA_PROT_ATAPI: |
| ata_qc_set_polling(qc); |
| ata_tf_to_host(ap, &qc->tf); |
| ata_queue_packet_task(ap); |
| break; |
| |
| case ATA_PROT_ATAPI_NODATA: |
| ap->flags |= ATA_FLAG_NOINTR; |
| ata_tf_to_host(ap, &qc->tf); |
| ata_queue_packet_task(ap); |
| break; |
| |
| case ATA_PROT_ATAPI_DMA: |
| ap->flags |= ATA_FLAG_NOINTR; |
| ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ |
| ap->ops->bmdma_setup(qc); /* set up bmdma */ |
| ata_queue_packet_task(ap); |
| break; |
| |
| default: |
| WARN_ON(1); |
| return AC_ERR_SYSTEM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction |
| * @qc: Info associated with this ATA transaction. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); |
| u8 dmactl; |
| void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; |
| |
| /* load PRD table addr. */ |
| mb(); /* make sure PRD table writes are visible to controller */ |
| writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS); |
| |
| /* specify data direction, triple-check start bit is clear */ |
| dmactl = readb(mmio + ATA_DMA_CMD); |
| dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); |
| if (!rw) |
| dmactl |= ATA_DMA_WR; |
| writeb(dmactl, mmio + ATA_DMA_CMD); |
| |
| /* issue r/w command */ |
| ap->ops->exec_command(ap, &qc->tf); |
| } |
| |
| /** |
| * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction |
| * @qc: Info associated with this ATA transaction. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; |
| u8 dmactl; |
| |
| /* start host DMA transaction */ |
| dmactl = readb(mmio + ATA_DMA_CMD); |
| writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD); |
| |
| /* Strictly, one may wish to issue a readb() here, to |
| * flush the mmio write. However, control also passes |
| * to the hardware at this point, and it will interrupt |
| * us when we are to resume control. So, in effect, |
| * we don't care when the mmio write flushes. |
| * Further, a read of the DMA status register _immediately_ |
| * following the write may not be what certain flaky hardware |
| * is expected, so I think it is best to not add a readb() |
| * without first all the MMIO ATA cards/mobos. |
| * Or maybe I'm just being paranoid. |
| */ |
| } |
| |
| /** |
| * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO) |
| * @qc: Info associated with this ATA transaction. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); |
| u8 dmactl; |
| |
| /* load PRD table addr. */ |
| outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); |
| |
| /* specify data direction, triple-check start bit is clear */ |
| dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); |
| if (!rw) |
| dmactl |= ATA_DMA_WR; |
| outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| |
| /* issue r/w command */ |
| ap->ops->exec_command(ap, &qc->tf); |
| } |
| |
| /** |
| * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO) |
| * @qc: Info associated with this ATA transaction. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| static void ata_bmdma_start_pio (struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| u8 dmactl; |
| |
| /* start host DMA transaction */ |
| dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| outb(dmactl | ATA_DMA_START, |
| ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| } |
| |
| |
| /** |
| * ata_bmdma_start - Start a PCI IDE BMDMA transaction |
| * @qc: Info associated with this ATA transaction. |
| * |
| * Writes the ATA_DMA_START flag to the DMA command register. |
| * |
| * May be used as the bmdma_start() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| void ata_bmdma_start(struct ata_queued_cmd *qc) |
| { |
| if (qc->ap->flags & ATA_FLAG_MMIO) |
| ata_bmdma_start_mmio(qc); |
| else |
| ata_bmdma_start_pio(qc); |
| } |
| |
| |
| /** |
| * ata_bmdma_setup - Set up PCI IDE BMDMA transaction |
| * @qc: Info associated with this ATA transaction. |
| * |
| * Writes address of PRD table to device's PRD Table Address |
| * register, sets the DMA control register, and calls |
| * ops->exec_command() to start the transfer. |
| * |
| * May be used as the bmdma_setup() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| void ata_bmdma_setup(struct ata_queued_cmd *qc) |
| { |
| if (qc->ap->flags & ATA_FLAG_MMIO) |
| ata_bmdma_setup_mmio(qc); |
| else |
| ata_bmdma_setup_pio(qc); |
| } |
| |
| |
| /** |
| * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. |
| * @ap: Port associated with this ATA transaction. |
| * |
| * Clear interrupt and error flags in DMA status register. |
| * |
| * May be used as the irq_clear() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| void ata_bmdma_irq_clear(struct ata_port *ap) |
| { |
| if (ap->flags & ATA_FLAG_MMIO) { |
| void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS; |
| writeb(readb(mmio), mmio); |
| } else { |
| unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS; |
| outb(inb(addr), addr); |
| } |
| |
| } |
| |
| |
| /** |
| * ata_bmdma_status - Read PCI IDE BMDMA status |
| * @ap: Port associated with this ATA transaction. |
| * |
| * Read and return BMDMA status register. |
| * |
| * May be used as the bmdma_status() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| u8 ata_bmdma_status(struct ata_port *ap) |
| { |
| u8 host_stat; |
| if (ap->flags & ATA_FLAG_MMIO) { |
| void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; |
| host_stat = readb(mmio + ATA_DMA_STATUS); |
| } else |
| host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); |
| return host_stat; |
| } |
| |
| |
| /** |
| * ata_bmdma_stop - Stop PCI IDE BMDMA transfer |
| * @qc: Command we are ending DMA for |
| * |
| * Clears the ATA_DMA_START flag in the dma control register |
| * |
| * May be used as the bmdma_stop() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| */ |
| |
| void ata_bmdma_stop(struct ata_queued_cmd *qc) |
| { |
| struct ata_port *ap = qc->ap; |
| if (ap->flags & ATA_FLAG_MMIO) { |
| void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; |
| |
| /* clear start/stop bit */ |
| writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, |
| mmio + ATA_DMA_CMD); |
| } else { |
| /* clear start/stop bit */ |
| outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START, |
| ap->ioaddr.bmdma_addr + ATA_DMA_CMD); |
| } |
| |
| /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ |
| ata_altstatus(ap); /* dummy read */ |
| } |
| |
| /** |
| * ata_host_intr - Handle host interrupt for given (port, task) |
| * @ap: Port on which interrupt arrived (possibly...) |
| * @qc: Taskfile currently active in engine |
| * |
| * Handle host interrupt for given queued command. Currently, |
| * only DMA interrupts are handled. All other commands are |
| * handled via polling with interrupts disabled (nIEN bit). |
| * |
| * LOCKING: |
| * spin_lock_irqsave(host_set lock) |
| * |
| * RETURNS: |
| * One if interrupt was handled, zero if not (shared irq). |
| */ |
| |
| inline unsigned int ata_host_intr (struct ata_port *ap, |
| struct ata_queued_cmd *qc) |
| { |
| u8 status, host_stat; |
| |
| switch (qc->tf.protocol) { |
| |
| case ATA_PROT_DMA: |
| case ATA_PROT_ATAPI_DMA: |
| case ATA_PROT_ATAPI: |
| /* check status of DMA engine */ |
| host_stat = ap->ops->bmdma_status(ap); |
| VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat); |
| |
| /* if it's not our irq... */ |
| if (!(host_stat & ATA_DMA_INTR)) |
| goto idle_irq; |
| |
| /* before we do anything else, clear DMA-Start bit */ |
| ap->ops->bmdma_stop(qc); |
| |
| /* fall through */ |
| |
| case ATA_PROT_ATAPI_NODATA: |
| case ATA_PROT_NODATA: |
| /* check altstatus */ |
| status = ata_altstatus(ap); |
| if (status & ATA_BUSY) |
| goto idle_irq; |
| |
| /* check main status, clearing INTRQ */ |
| status = ata_chk_status(ap); |
| if (unlikely(status & ATA_BUSY)) |
| goto idle_irq; |
| DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n", |
| ap->id, qc->tf.protocol, status); |
| |
| /* ack bmdma irq events */ |
| ap->ops->irq_clear(ap); |
| |
| /* complete taskfile transaction */ |
| qc->err_mask |= ac_err_mask(status); |
| ata_qc_complete(qc); |
| break; |
| |
| default: |
| goto idle_irq; |
| } |
| |
| return 1; /* irq handled */ |
| |
| idle_irq: |
| ap->stats.idle_irq++; |
| |
| #ifdef ATA_IRQ_TRAP |
| if ((ap->stats.idle_irq % 1000) == 0) { |
| handled = 1; |
| ata_irq_ack(ap, 0); /* debug trap */ |
| printk(KERN_WARNING "ata%d: irq trap\n", ap->id); |
| } |
| #endif |
| return 0; /* irq not handled */ |
| } |
| |
| /** |
| * ata_interrupt - Default ATA host interrupt handler |
| * @irq: irq line (unused) |
| * @dev_instance: pointer to our ata_host_set information structure |
| * @regs: unused |
| * |
| * Default interrupt handler for PCI IDE devices. Calls |
| * ata_host_intr() for each port that is not disabled. |
| * |
| * LOCKING: |
| * Obtains host_set lock during operation. |
| * |
| * RETURNS: |
| * IRQ_NONE or IRQ_HANDLED. |
| */ |
| |
| irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs) |
| { |
| struct ata_host_set *host_set = dev_instance; |
| unsigned int i; |
| unsigned int handled = 0; |
| unsigned long flags; |
| |
| /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ |
| spin_lock_irqsave(&host_set->lock, flags); |
| |
| for (i = 0; i < host_set->n_ports; i++) { |
| struct ata_port *ap; |
| |
| ap = host_set->ports[i]; |
| if (ap && |
| !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) { |
| struct ata_queued_cmd *qc; |
| |
| qc = ata_qc_from_tag(ap, ap->active_tag); |
| if (qc && (!(qc->tf.ctl & ATA_NIEN)) && |
| (qc->flags & ATA_QCFLAG_ACTIVE)) |
| handled |= ata_host_intr(ap, qc); |
| } |
| } |
| |
| spin_unlock_irqrestore(&host_set->lock, flags); |
| |
| return IRQ_RETVAL(handled); |
| } |
| |
| /** |
| * atapi_packet_task - Write CDB bytes to hardware |
| * @_data: Port to which ATAPI device is attached. |
| * |
| * When device has indicated its readiness to accept |
| * a CDB, this function is called. Send the CDB. |
| * If DMA is to be performed, exit immediately. |
| * Otherwise, we are in polling mode, so poll |
| * status under operation succeeds or fails. |
| * |
| * LOCKING: |
| * Kernel thread context (may sleep) |
| */ |
| |
| static void atapi_packet_task(void *_data) |
| { |
| struct ata_port *ap = _data; |
| struct ata_queued_cmd *qc; |
| u8 status; |
| |
| qc = ata_qc_from_tag(ap, ap->active_tag); |
| assert(qc != NULL); |
| assert(qc->flags & ATA_QCFLAG_ACTIVE); |
| |
| /* sleep-wait for BSY to clear */ |
| DPRINTK("busy wait\n"); |
| if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) { |
| qc->err_mask |= AC_ERR_TIMEOUT; |
| goto err_out; |
| } |
| |
| /* make sure DRQ is set */ |
| status = ata_chk_status(ap); |
| if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) { |
| qc->err_mask |= AC_ERR_HSM; |
| goto err_out; |
| } |
| |
| /* send SCSI cdb */ |
| DPRINTK("send cdb\n"); |
| assert(ap->cdb_len >= 12); |
| |
| if (qc->tf.protocol == ATA_PROT_ATAPI_DMA || |
| qc->tf.protocol == ATA_PROT_ATAPI_NODATA) { |
| unsigned long flags; |
| |
| /* Once we're done issuing command and kicking bmdma, |
| * irq handler takes over. To not lose irq, we need |
| * to clear NOINTR flag before sending cdb, but |
| * interrupt handler shouldn't be invoked before we're |
| * finished. Hence, the following locking. |
| */ |
| spin_lock_irqsave(&ap->host_set->lock, flags); |
| ap->flags &= ~ATA_FLAG_NOINTR; |
| ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1); |
| if (qc->tf.protocol == ATA_PROT_ATAPI_DMA) |
| ap->ops->bmdma_start(qc); /* initiate bmdma */ |
| spin_unlock_irqrestore(&ap->host_set->lock, flags); |
| } else { |
| ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1); |
| |
| /* PIO commands are handled by polling */ |
| ap->hsm_task_state = HSM_ST; |
| ata_queue_pio_task(ap); |
| } |
| |
| return; |
| |
| err_out: |
| ata_poll_qc_complete(qc); |
| } |
| |
| |
| /* |
| * Execute a 'simple' command, that only consists of the opcode 'cmd' itself, |
| * without filling any other registers |
| */ |
| static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev, |
| u8 cmd) |
| { |
| struct ata_taskfile tf; |
| int err; |
| |
| ata_tf_init(ap, &tf, dev->devno); |
| |
| tf.command = cmd; |
| tf.flags |= ATA_TFLAG_DEVICE; |
| tf.protocol = ATA_PROT_NODATA; |
| |
| err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0); |
| if (err) |
| printk(KERN_ERR "%s: ata command failed: %d\n", |
| __FUNCTION__, err); |
| |
| return err; |
| } |
| |
| static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev) |
| { |
| u8 cmd; |
| |
| if (!ata_try_flush_cache(dev)) |
| return 0; |
| |
| if (ata_id_has_flush_ext(dev->id)) |
| cmd = ATA_CMD_FLUSH_EXT; |
| else |
| cmd = ATA_CMD_FLUSH; |
| |
| return ata_do_simple_cmd(ap, dev, cmd); |
| } |
| |
| static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev) |
| { |
| return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1); |
| } |
| |
| static int ata_start_drive(struct ata_port *ap, struct ata_device *dev) |
| { |
| return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE); |
| } |
| |
| /** |
| * ata_device_resume - wakeup a previously suspended devices |
| * @ap: port the device is connected to |
| * @dev: the device to resume |
| * |
| * Kick the drive back into action, by sending it an idle immediate |
| * command and making sure its transfer mode matches between drive |
| * and host. |
| * |
| */ |
| int ata_device_resume(struct ata_port *ap, struct ata_device *dev) |
| { |
| if (ap->flags & ATA_FLAG_SUSPENDED) { |
| ap->flags &= ~ATA_FLAG_SUSPENDED; |
| ata_set_mode(ap); |
| } |
| if (!ata_dev_present(dev)) |
| return 0; |
| if (dev->class == ATA_DEV_ATA) |
| ata_start_drive(ap, dev); |
| |
| return 0; |
| } |
| |
| /** |
| * ata_device_suspend - prepare a device for suspend |
| * @ap: port the device is connected to |
| * @dev: the device to suspend |
| * |
| * Flush the cache on the drive, if appropriate, then issue a |
| * standbynow command. |
| */ |
| int ata_device_suspend(struct ata_port *ap, struct ata_device *dev) |
| { |
| if (!ata_dev_present(dev)) |
| return 0; |
| if (dev->class == ATA_DEV_ATA) |
| ata_flush_cache(ap, dev); |
| |
| ata_standby_drive(ap, dev); |
| ap->flags |= ATA_FLAG_SUSPENDED; |
| return 0; |
| } |
| |
| /** |
| * ata_port_start - Set port up for dma. |
| * @ap: Port to initialize |
| * |
| * Called just after data structures for each port are |
| * initialized. Allocates space for PRD table. |
| * |
| * May be used as the port_start() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| int ata_port_start (struct ata_port *ap) |
| { |
| struct device *dev = ap->host_set->dev; |
| int rc; |
| |
| ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL); |
| if (!ap->prd) |
| return -ENOMEM; |
| |
| rc = ata_pad_alloc(ap, dev); |
| if (rc) { |
| dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma); |
| return rc; |
| } |
| |
| DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma); |
| |
| return 0; |
| } |
| |
| |
| /** |
| * ata_port_stop - Undo ata_port_start() |
| * @ap: Port to shut down |
| * |
| * Frees the PRD table. |
| * |
| * May be used as the port_stop() entry in ata_port_operations. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| void ata_port_stop (struct ata_port *ap) |
| { |
| struct device *dev = ap->host_set->dev; |
| |
| dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma); |
| ata_pad_free(ap, dev); |
| } |
| |
| void ata_host_stop (struct ata_host_set *host_set) |
| { |
| if (host_set->mmio_base) |
| iounmap(host_set->mmio_base); |
| } |
| |
| |
| /** |
| * ata_host_remove - Unregister SCSI host structure with upper layers |
| * @ap: Port to unregister |
| * @do_unregister: 1 if we fully unregister, 0 to just stop the port |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister) |
| { |
| struct Scsi_Host *sh = ap->host; |
| |
| DPRINTK("ENTER\n"); |
| |
| if (do_unregister) |
| scsi_remove_host(sh); |
| |
| ap->ops->port_stop(ap); |
| } |
| |
| /** |
| * ata_host_init - Initialize an ata_port structure |
| * @ap: Structure to initialize |
| * @host: associated SCSI mid-layer structure |
| * @host_set: Collection of hosts to which @ap belongs |
| * @ent: Probe information provided by low-level driver |
| * @port_no: Port number associated with this ata_port |
| * |
| * Initialize a new ata_port structure, and its associated |
| * scsi_host. |
| * |
| * LOCKING: |
| * Inherited from caller. |
| */ |
| |
| static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host, |
| struct ata_host_set *host_set, |
| const struct ata_probe_ent *ent, unsigned int port_no) |
| { |
| unsigned int i; |
| |
| host->max_id = 16; |
| host->max_lun = 1; |
| host->max_channel = 1; |
| host->unique_id = ata_unique_id++; |
| host->max_cmd_len = 12; |
| |
| ap->flags = ATA_FLAG_PORT_DISABLED; |
| ap->id = host->unique_id; |
| ap->host = host; |
| ap->ctl = ATA_DEVCTL_OBS; |
| ap->host_set = host_set; |
| ap->port_no = port_no; |
| ap->hard_port_no = |
| ent->legacy_mode ? ent->hard_port_no : port_no; |
| ap->pio_mask = ent->pio_mask; |
| ap->mwdma_mask = ent->mwdma_mask; |
| ap->udma_mask = ent->udma_mask; |
| ap->flags |= ent->host_flags; |
| ap->ops = ent->port_ops; |
| ap->cbl = ATA_CBL_NONE; |
| ap->active_tag = ATA_TAG_POISON; |
| ap->last_ctl = 0xFF; |
| |
| INIT_WORK(&ap->packet_task, atapi_packet_task, ap); |
| INIT_WORK(&ap->pio_task, ata_pio_task, ap); |
| INIT_LIST_HEAD(&ap->eh_done_q); |
| |
| for (i = 0; i < ATA_MAX_DEVICES; i++) |
| ap->device[i].devno = i; |
| |
| #ifdef ATA_IRQ_TRAP |
| ap->stats.unhandled_irq = 1; |
| ap->stats.idle_irq = 1; |
| #endif |
| |
| memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports)); |
| } |
| |
| /** |
| * ata_host_add - Attach low-level ATA driver to system |
| * @ent: Information provided by low-level driver |
| * @host_set: Collections of ports to which we add |
| * @port_no: Port number associated with this host |
| * |
| * Attach low-level ATA driver to system. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * New ata_port on success, for NULL on error. |
| */ |
| |
| static struct ata_port * ata_host_add(const struct ata_probe_ent *ent, |
| struct ata_host_set *host_set, |
| unsigned int port_no) |
| { |
| struct Scsi_Host *host; |
| struct ata_port *ap; |
| int rc; |
| |
| DPRINTK("ENTER\n"); |
| host = scsi_host_alloc(ent->sht, sizeof(struct ata_port)); |
| if (!host) |
| return NULL; |
| |
| ap = (struct ata_port *) &host->hostdata[0]; |
| |
| ata_host_init(ap, host, host_set, ent, port_no); |
| |
| rc = ap->ops->port_start(ap); |
| if (rc) |
| goto err_out; |
| |
| return ap; |
| |
| err_out: |
| scsi_host_put(host); |
| return NULL; |
| } |
| |
| /** |
| * ata_device_add - Register hardware device with ATA and SCSI layers |
| * @ent: Probe information describing hardware device to be registered |
| * |
| * This function processes the information provided in the probe |
| * information struct @ent, allocates the necessary ATA and SCSI |
| * host information structures, initializes them, and registers |
| * everything with requisite kernel subsystems. |
| * |
| * This function requests irqs, probes the ATA bus, and probes |
| * the SCSI bus. |
| * |
| * LOCKING: |
| * PCI/etc. bus probe sem. |
| * |
| * RETURNS: |
| * Number of ports registered. Zero on error (no ports registered). |
| */ |
| |
| int ata_device_add(const struct ata_probe_ent *ent) |
| { |
| unsigned int count = 0, i; |
| struct device *dev = ent->dev; |
| struct ata_host_set *host_set; |
| |
| DPRINTK("ENTER\n"); |
| /* alloc a container for our list of ATA ports (buses) */ |
| host_set = kzalloc(sizeof(struct ata_host_set) + |
| (ent->n_ports * sizeof(void *)), GFP_KERNEL); |
| if (!host_set) |
| return 0; |
| spin_lock_init(&host_set->lock); |
| |
| host_set->dev = dev; |
| host_set->n_ports = ent->n_ports; |
| host_set->irq = ent->irq; |
| host_set->mmio_base = ent->mmio_base; |
| host_set->private_data = ent->private_data; |
| host_set->ops = ent->port_ops; |
| |
| /* register each port bound to this device */ |
| for (i = 0; i < ent->n_ports; i++) { |
| struct ata_port *ap; |
| unsigned long xfer_mode_mask; |
| |
| ap = ata_host_add(ent, host_set, i); |
| if (!ap) |
| goto err_out; |
| |
| host_set->ports[i] = ap; |
| xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) | |
| (ap->mwdma_mask << ATA_SHIFT_MWDMA) | |
| (ap->pio_mask << ATA_SHIFT_PIO); |
| |
| /* print per-port info to dmesg */ |
| printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX " |
| "bmdma 0x%lX irq %lu\n", |
| ap->id, |
| ap->flags & ATA_FLAG_SATA ? 'S' : 'P', |
| ata_mode_string(xfer_mode_mask), |
| ap->ioaddr.cmd_addr, |
| ap->ioaddr.ctl_addr, |
| ap->ioaddr.bmdma_addr, |
| ent->irq); |
| |
| ata_chk_status(ap); |
| host_set->ops->irq_clear(ap); |
| count++; |
| } |
| |
| if (!count) |
| goto err_free_ret; |
| |
| /* obtain irq, that is shared between channels */ |
| if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags, |
| DRV_NAME, host_set)) |
| goto err_out; |
| |
| /* perform each probe synchronously */ |
| DPRINTK("probe begin\n"); |
| for (i = 0; i < count; i++) { |
| struct ata_port *ap; |
| int rc; |
| |
| ap = host_set->ports[i]; |
| |
| DPRINTK("ata%u: bus probe begin\n", ap->id); |
| rc = ata_bus_probe(ap); |
| DPRINTK("ata%u: bus probe end\n", ap->id); |
| |
| if (rc) { |
| /* FIXME: do something useful here? |
| * Current libata behavior will |
| * tear down everything when |
| * the module is removed |
| * or the h/w is unplugged. |
| */ |
| } |
| |
| rc = scsi_add_host(ap->host, dev); |
| if (rc) { |
| printk(KERN_ERR "ata%u: scsi_add_host failed\n", |
| ap->id); |
| /* FIXME: do something useful here */ |
| /* FIXME: handle unconditional calls to |
| * scsi_scan_host and ata_host_remove, below, |
| * at the very least |
| */ |
| } |
| } |
| |
| /* probes are done, now scan each port's disk(s) */ |
| DPRINTK("host probe begin\n"); |
| for (i = 0; i < count; i++) { |
| struct ata_port *ap = host_set->ports[i]; |
| |
| ata_scsi_scan_host(ap); |
| } |
| |
| dev_set_drvdata(dev, host_set); |
| |
| VPRINTK("EXIT, returning %u\n", ent->n_ports); |
| return ent->n_ports; /* success */ |
| |
| err_out: |
| for (i = 0; i < count; i++) { |
| ata_host_remove(host_set->ports[i], 1); |
| scsi_host_put(host_set->ports[i]->host); |
| } |
| err_free_ret: |
| kfree(host_set); |
| VPRINTK("EXIT, returning 0\n"); |
| return 0; |
| } |
| |
| /** |
| * ata_host_set_remove - PCI layer callback for device removal |
| * @host_set: ATA host set that was removed |
| * |
| * Unregister all objects associated with this host set. Free those |
| * objects. |
| * |
| * LOCKING: |
| * Inherited from calling layer (may sleep). |
| */ |
| |
| void ata_host_set_remove(struct ata_host_set *host_set) |
| { |
| struct ata_port *ap; |
| unsigned int i; |
| |
| for (i = 0; i < host_set->n_ports; i++) { |
| ap = host_set->ports[i]; |
| scsi_remove_host(ap->host); |
| } |
| |
| free_irq(host_set->irq, host_set); |
| |
| for (i = 0; i < host_set->n_ports; i++) { |
| ap = host_set->ports[i]; |
| |
| ata_scsi_release(ap->host); |
| |
| if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) { |
| struct ata_ioports *ioaddr = &ap->ioaddr; |
| |
| if (ioaddr->cmd_addr == 0x1f0) |
| release_region(0x1f0, 8); |
| else if (ioaddr->cmd_addr == 0x170) |
| release_region(0x170, 8); |
| } |
| |
| scsi_host_put(ap->host); |
| } |
| |
| if (host_set->ops->host_stop) |
| host_set->ops->host_stop(host_set); |
| |
| kfree(host_set); |
| } |
| |
| /** |
| * ata_scsi_release - SCSI layer callback hook for host unload |
| * @host: libata host to be unloaded |
| * |
| * Performs all duties necessary to shut down a libata port... |
| * Kill port kthread, disable port, and release resources. |
| * |
| * LOCKING: |
| * Inherited from SCSI layer. |
| * |
| * RETURNS: |
| * One. |
| */ |
| |
| int ata_scsi_release(struct Scsi_Host *host) |
| { |
| struct ata_port *ap = (struct ata_port *) &host->hostdata[0]; |
| |
| DPRINTK("ENTER\n"); |
| |
| ap->ops->port_disable(ap); |
| ata_host_remove(ap, 0); |
| |
| DPRINTK("EXIT\n"); |
| return 1; |
| } |
| |
| /** |
| * ata_std_ports - initialize ioaddr with standard port offsets. |
| * @ioaddr: IO address structure to be initialized |
| * |
| * Utility function which initializes data_addr, error_addr, |
| * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, |
| * device_addr, status_addr, and command_addr to standard offsets |
| * relative to cmd_addr. |
| * |
| * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. |
| */ |
| |
| void ata_std_ports(struct ata_ioports *ioaddr) |
| { |
| ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; |
| ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; |
| ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; |
| ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; |
| ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; |
| ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; |
| ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; |
| ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; |
| ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; |
| ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; |
| } |
| |
| |
| #ifdef CONFIG_PCI |
| |
| void ata_pci_host_stop (struct ata_host_set *host_set) |
| { |
| struct pci_dev *pdev = to_pci_dev(host_set->dev); |
| |
| pci_iounmap(pdev, host_set->mmio_base); |
| } |
| |
| /** |
| * ata_pci_remove_one - PCI layer callback for device removal |
| * @pdev: PCI device that was removed |
| * |
| * PCI layer indicates to libata via this hook that |
| * hot-unplug or module unload event has occurred. |
| * Handle this by unregistering all objects associated |
| * with this PCI device. Free those objects. Then finally |
| * release PCI resources and disable device. |
| * |
| * LOCKING: |
| * Inherited from PCI layer (may sleep). |
| */ |
| |
| void ata_pci_remove_one (struct pci_dev *pdev) |
| { |
| struct device *dev = pci_dev_to_dev(pdev); |
| struct ata_host_set *host_set = dev_get_drvdata(dev); |
| |
| ata_host_set_remove(host_set); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| dev_set_drvdata(dev, NULL); |
| } |
| |
| /* move to PCI subsystem */ |
| int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) |
| { |
| unsigned long tmp = 0; |
| |
| switch (bits->width) { |
| case 1: { |
| u8 tmp8 = 0; |
| pci_read_config_byte(pdev, bits->reg, &tmp8); |
| tmp = tmp8; |
| break; |
| } |
| case 2: { |
| u16 tmp16 = 0; |
| pci_read_config_word(pdev, bits->reg, &tmp16); |
| tmp = tmp16; |
| break; |
| } |
| case 4: { |
| u32 tmp32 = 0; |
| pci_read_config_dword(pdev, bits->reg, &tmp32); |
| tmp = tmp32; |
| break; |
| } |
| |
| default: |
| return -EINVAL; |
| } |
| |
| tmp &= bits->mask; |
| |
| return (tmp == bits->val) ? 1 : 0; |
| } |
| |
| int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| pci_save_state(pdev); |
| pci_disable_device(pdev); |
| pci_set_power_state(pdev, PCI_D3hot); |
| return 0; |
| } |
| |
| int ata_pci_device_resume(struct pci_dev *pdev) |
| { |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| pci_enable_device(pdev); |
| pci_set_master(pdev); |
| return 0; |
| } |
| #endif /* CONFIG_PCI */ |
| |
| |
| static int __init ata_init(void) |
| { |
| ata_wq = create_workqueue("ata"); |
| if (!ata_wq) |
| return -ENOMEM; |
| |
| printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); |
| return 0; |
| } |
| |
| static void __exit ata_exit(void) |
| { |
| destroy_workqueue(ata_wq); |
| } |
| |
| module_init(ata_init); |
| module_exit(ata_exit); |
| |
| static unsigned long ratelimit_time; |
| static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED; |
| |
| int ata_ratelimit(void) |
| { |
| int rc; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ata_ratelimit_lock, flags); |
| |
| if (time_after(jiffies, ratelimit_time)) { |
| rc = 1; |
| ratelimit_time = jiffies + (HZ/5); |
| } else |
| rc = 0; |
| |
| spin_unlock_irqrestore(&ata_ratelimit_lock, flags); |
| |
| return rc; |
| } |
| |
| /* |
| * libata is essentially a library of internal helper functions for |
| * low-level ATA host controller drivers. As such, the API/ABI is |
| * likely to change as new drivers are added and updated. |
| * Do not depend on ABI/API stability. |
| */ |
| |
| EXPORT_SYMBOL_GPL(ata_std_bios_param); |
| EXPORT_SYMBOL_GPL(ata_std_ports); |
| EXPORT_SYMBOL_GPL(ata_device_add); |
| EXPORT_SYMBOL_GPL(ata_host_set_remove); |
| EXPORT_SYMBOL_GPL(ata_sg_init); |
| EXPORT_SYMBOL_GPL(ata_sg_init_one); |
| EXPORT_SYMBOL_GPL(__ata_qc_complete); |
| EXPORT_SYMBOL_GPL(ata_qc_issue_prot); |
| EXPORT_SYMBOL_GPL(ata_eng_timeout); |
| EXPORT_SYMBOL_GPL(ata_tf_load); |
| EXPORT_SYMBOL_GPL(ata_tf_read); |
| EXPORT_SYMBOL_GPL(ata_noop_dev_select); |
| EXPORT_SYMBOL_GPL(ata_std_dev_select); |
| EXPORT_SYMBOL_GPL(ata_tf_to_fis); |
| EXPORT_SYMBOL_GPL(ata_tf_from_fis); |
| EXPORT_SYMBOL_GPL(ata_check_status); |
| EXPORT_SYMBOL_GPL(ata_altstatus); |
| EXPORT_SYMBOL_GPL(ata_exec_command); |
| EXPORT_SYMBOL_GPL(ata_port_start); |
| EXPORT_SYMBOL_GPL(ata_port_stop); |
| EXPORT_SYMBOL_GPL(ata_host_stop); |
| EXPORT_SYMBOL_GPL(ata_interrupt); |
| EXPORT_SYMBOL_GPL(ata_qc_prep); |
| EXPORT_SYMBOL_GPL(ata_bmdma_setup); |
| EXPORT_SYMBOL_GPL(ata_bmdma_start); |
| EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); |
| EXPORT_SYMBOL_GPL(ata_bmdma_status); |
| EXPORT_SYMBOL_GPL(ata_bmdma_stop); |
| EXPORT_SYMBOL_GPL(ata_port_probe); |
| EXPORT_SYMBOL_GPL(sata_phy_reset); |
| EXPORT_SYMBOL_GPL(__sata_phy_reset); |
| EXPORT_SYMBOL_GPL(ata_bus_reset); |
| EXPORT_SYMBOL_GPL(ata_std_probeinit); |
| EXPORT_SYMBOL_GPL(ata_std_softreset); |
| EXPORT_SYMBOL_GPL(sata_std_hardreset); |
| EXPORT_SYMBOL_GPL(ata_std_postreset); |
| EXPORT_SYMBOL_GPL(ata_std_probe_reset); |
| EXPORT_SYMBOL_GPL(ata_drive_probe_reset); |
| EXPORT_SYMBOL_GPL(ata_port_disable); |
| EXPORT_SYMBOL_GPL(ata_ratelimit); |
| EXPORT_SYMBOL_GPL(ata_busy_sleep); |
| EXPORT_SYMBOL_GPL(ata_scsi_ioctl); |
| EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); |
| EXPORT_SYMBOL_GPL(ata_scsi_timed_out); |
| EXPORT_SYMBOL_GPL(ata_scsi_error); |
| EXPORT_SYMBOL_GPL(ata_scsi_slave_config); |
| EXPORT_SYMBOL_GPL(ata_scsi_release); |
| EXPORT_SYMBOL_GPL(ata_host_intr); |
| EXPORT_SYMBOL_GPL(ata_dev_classify); |
| EXPORT_SYMBOL_GPL(ata_dev_id_string); |
| EXPORT_SYMBOL_GPL(ata_dev_config); |
| EXPORT_SYMBOL_GPL(ata_scsi_simulate); |
| EXPORT_SYMBOL_GPL(ata_eh_qc_complete); |
| EXPORT_SYMBOL_GPL(ata_eh_qc_retry); |
| |
| EXPORT_SYMBOL_GPL(ata_pio_need_iordy); |
| EXPORT_SYMBOL_GPL(ata_timing_compute); |
| EXPORT_SYMBOL_GPL(ata_timing_merge); |
| |
| #ifdef CONFIG_PCI |
| EXPORT_SYMBOL_GPL(pci_test_config_bits); |
| EXPORT_SYMBOL_GPL(ata_pci_host_stop); |
| EXPORT_SYMBOL_GPL(ata_pci_init_native_mode); |
| EXPORT_SYMBOL_GPL(ata_pci_init_one); |
| EXPORT_SYMBOL_GPL(ata_pci_remove_one); |
| EXPORT_SYMBOL_GPL(ata_pci_device_suspend); |
| EXPORT_SYMBOL_GPL(ata_pci_device_resume); |
| #endif /* CONFIG_PCI */ |
| |
| EXPORT_SYMBOL_GPL(ata_device_suspend); |
| EXPORT_SYMBOL_GPL(ata_device_resume); |
| EXPORT_SYMBOL_GPL(ata_scsi_device_suspend); |
| EXPORT_SYMBOL_GPL(ata_scsi_device_resume); |