blob: 35f7796df661bea858e0aef9be235e36014c905e [file] [log] [blame]
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/device.h>
#include "scic_controller.h"
#include "scic_phy.h"
#include "scic_port.h"
#include "scic_remote_device.h"
#include "scic_sds_controller.h"
#include "scic_sds_controller_registers.h"
#include "scic_sds_pci.h"
#include "scic_sds_phy.h"
#include "scic_sds_port_configuration_agent.h"
#include "scic_sds_port.h"
#include "scic_sds_remote_device.h"
#include "scic_sds_request.h"
#include "scic_user_callback.h"
#include "sci_environment.h"
#include "sci_util.h"
#include "scu_completion_codes.h"
#include "scu_constants.h"
#include "scu_event_codes.h"
#include "scu_remote_node_context.h"
#include "scu_task_context.h"
#include "scu_unsolicited_frame.h"
#define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
/**
* smu_dcc_get_max_ports() -
*
* This macro returns the maximum number of logical ports supported by the
* hardware. The caller passes in the value read from the device context
* capacity register and this macro will mash and shift the value appropriately.
*/
#define smu_dcc_get_max_ports(dcc_value) \
(\
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
)
/**
* smu_dcc_get_max_task_context() -
*
* This macro returns the maximum number of task contexts supported by the
* hardware. The caller passes in the value read from the device context
* capacity register and this macro will mash and shift the value appropriately.
*/
#define smu_dcc_get_max_task_context(dcc_value) \
(\
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
)
/**
* smu_dcc_get_max_remote_node_context() -
*
* This macro returns the maximum number of remote node contexts supported by
* the hardware. The caller passes in the value read from the device context
* capacity register and this macro will mash and shift the value appropriately.
*/
#define smu_dcc_get_max_remote_node_context(dcc_value) \
(\
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
)
static void scic_sds_controller_power_control_timer_handler(
void *controller);
#define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3
#define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3
/**
*
*
* The number of milliseconds to wait for a phy to start.
*/
#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
/**
*
*
* The number of milliseconds to wait while a given phy is consuming power
* before allowing another set of phys to consume power. Ultimately, this will
* be specified by OEM parameter.
*/
#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
/**
* COMPLETION_QUEUE_CYCLE_BIT() -
*
* This macro will return the cycle bit of the completion queue entry
*/
#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
/**
* NORMALIZE_GET_POINTER() -
*
* This macro will normalize the completion queue get pointer so its value can
* be used as an index into an array
*/
#define NORMALIZE_GET_POINTER(x) \
((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
/**
* NORMALIZE_PUT_POINTER() -
*
* This macro will normalize the completion queue put pointer so its value can
* be used as an array inde
*/
#define NORMALIZE_PUT_POINTER(x) \
((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
/**
* NORMALIZE_GET_POINTER_CYCLE_BIT() -
*
* This macro will normalize the completion queue cycle pointer so it matches
* the completion queue cycle bit
*/
#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
/**
* NORMALIZE_EVENT_POINTER() -
*
* This macro will normalize the completion queue event entry so its value can
* be used as an index.
*/
#define NORMALIZE_EVENT_POINTER(x) \
(\
((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
)
/**
* INCREMENT_COMPLETION_QUEUE_GET() -
*
* This macro will increment the controllers completion queue index value and
* possibly toggle the cycle bit if the completion queue index wraps back to 0.
*/
#define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
INCREMENT_QUEUE_GET(\
(index), \
(cycle), \
(controller)->completion_queue_entries, \
SMU_CQGR_CYCLE_BIT \
)
/**
* INCREMENT_EVENT_QUEUE_GET() -
*
* This macro will increment the controllers event queue index value and
* possibly toggle the event cycle bit if the event queue index wraps back to 0.
*/
#define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
INCREMENT_QUEUE_GET(\
(index), \
(cycle), \
(controller)->completion_event_entries, \
SMU_CQGR_EVENT_CYCLE_BIT \
)
struct sci_base_memory_descriptor_list *
sci_controller_get_memory_descriptor_list_handle(struct scic_sds_controller *scic)
{
return &scic->parent.mdl;
}
/*
* ****************************************************************************-
* * SCIC SDS Controller Initialization Methods
* ****************************************************************************- */
/**
* This timer is used to start another phy after we have given up on the
* previous phy to transition to the ready state.
*
*
*/
static void scic_sds_controller_phy_startup_timeout_handler(
void *controller)
{
enum sci_status status;
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)controller;
this_controller->phy_startup_timer_pending = false;
status = SCI_FAILURE;
while (status != SCI_SUCCESS) {
status = scic_sds_controller_start_next_phy(this_controller);
}
}
/**
*
*
* This method initializes the phy startup operations for controller start.
*/
void scic_sds_controller_initialize_phy_startup(
struct scic_sds_controller *this_controller)
{
this_controller->phy_startup_timer = scic_cb_timer_create(
this_controller,
scic_sds_controller_phy_startup_timeout_handler,
this_controller
);
this_controller->next_phy_to_start = 0;
this_controller->phy_startup_timer_pending = false;
}
/**
*
*
* This method initializes the power control operations for the controller
* object.
*/
void scic_sds_controller_initialize_power_control(
struct scic_sds_controller *this_controller)
{
this_controller->power_control.timer = scic_cb_timer_create(
this_controller,
scic_sds_controller_power_control_timer_handler,
this_controller
);
memset(
this_controller->power_control.requesters,
0,
sizeof(this_controller->power_control.requesters)
);
this_controller->power_control.phys_waiting = 0;
}
/* --------------------------------------------------------------------------- */
#define SCU_REMOTE_NODE_CONTEXT_ALIGNMENT (32)
#define SCU_TASK_CONTEXT_ALIGNMENT (256)
#define SCU_UNSOLICITED_FRAME_ADDRESS_ALIGNMENT (64)
#define SCU_UNSOLICITED_FRAME_BUFFER_ALIGNMENT (1024)
#define SCU_UNSOLICITED_FRAME_HEADER_ALIGNMENT (64)
/* --------------------------------------------------------------------------- */
/**
* This method builds the memory descriptor table for this controller.
* @this_controller: This parameter specifies the controller object for which
* to build the memory table.
*
*/
static void scic_sds_controller_build_memory_descriptor_table(
struct scic_sds_controller *this_controller)
{
sci_base_mde_construct(
&this_controller->memory_descriptors[SCU_MDE_COMPLETION_QUEUE],
SCU_COMPLETION_RAM_ALIGNMENT,
(sizeof(u32) * this_controller->completion_queue_entries),
(SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS)
);
sci_base_mde_construct(
&this_controller->memory_descriptors[SCU_MDE_REMOTE_NODE_CONTEXT],
SCU_REMOTE_NODE_CONTEXT_ALIGNMENT,
this_controller->remote_node_entries * sizeof(union scu_remote_node_context),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
sci_base_mde_construct(
&this_controller->memory_descriptors[SCU_MDE_TASK_CONTEXT],
SCU_TASK_CONTEXT_ALIGNMENT,
this_controller->task_context_entries * sizeof(struct scu_task_context),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
/*
* The UF buffer address table size must be programmed to a power
* of 2. Find the first power of 2 that is equal to or greater then
* the number of unsolicited frame buffers to be utilized. */
scic_sds_unsolicited_frame_control_set_address_table_count(
&this_controller->uf_control
);
sci_base_mde_construct(
&this_controller->memory_descriptors[SCU_MDE_UF_BUFFER],
SCU_UNSOLICITED_FRAME_BUFFER_ALIGNMENT,
scic_sds_unsolicited_frame_control_get_mde_size(this_controller->uf_control),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
}
/**
* This method validates the driver supplied memory descriptor table.
* @this_controller:
*
* enum sci_status
*/
enum sci_status scic_sds_controller_validate_memory_descriptor_table(
struct scic_sds_controller *this_controller)
{
bool mde_list_valid;
mde_list_valid = sci_base_mde_is_valid(
&this_controller->memory_descriptors[SCU_MDE_COMPLETION_QUEUE],
SCU_COMPLETION_RAM_ALIGNMENT,
(sizeof(u32) * this_controller->completion_queue_entries),
(SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS)
);
if (mde_list_valid == false)
return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD;
mde_list_valid = sci_base_mde_is_valid(
&this_controller->memory_descriptors[SCU_MDE_REMOTE_NODE_CONTEXT],
SCU_REMOTE_NODE_CONTEXT_ALIGNMENT,
this_controller->remote_node_entries * sizeof(union scu_remote_node_context),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
if (mde_list_valid == false)
return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD;
mde_list_valid = sci_base_mde_is_valid(
&this_controller->memory_descriptors[SCU_MDE_TASK_CONTEXT],
SCU_TASK_CONTEXT_ALIGNMENT,
this_controller->task_context_entries * sizeof(struct scu_task_context),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
if (mde_list_valid == false)
return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD;
mde_list_valid = sci_base_mde_is_valid(
&this_controller->memory_descriptors[SCU_MDE_UF_BUFFER],
SCU_UNSOLICITED_FRAME_BUFFER_ALIGNMENT,
scic_sds_unsolicited_frame_control_get_mde_size(this_controller->uf_control),
SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS
);
if (mde_list_valid == false)
return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD;
return SCI_SUCCESS;
}
/**
* This method initializes the controller with the physical memory addresses
* that are used to communicate with the driver.
* @this_controller:
*
*/
void scic_sds_controller_ram_initialization(
struct scic_sds_controller *this_controller)
{
struct sci_physical_memory_descriptor *mde;
/*
* The completion queue is actually placed in cacheable memory
* Therefore it no longer comes out of memory in the MDL. */
mde = &this_controller->memory_descriptors[SCU_MDE_COMPLETION_QUEUE];
this_controller->completion_queue = (u32 *)mde->virtual_address;
SMU_CQBAR_WRITE(this_controller, mde->physical_address);
/*
* Program the location of the Remote Node Context table
* into the SCU. */
mde = &this_controller->memory_descriptors[SCU_MDE_REMOTE_NODE_CONTEXT];
this_controller->remote_node_context_table = (union scu_remote_node_context *)
mde->virtual_address;
SMU_RNCBAR_WRITE(this_controller, mde->physical_address);
/* Program the location of the Task Context table into the SCU. */
mde = &this_controller->memory_descriptors[SCU_MDE_TASK_CONTEXT];
this_controller->task_context_table = (struct scu_task_context *)
mde->virtual_address;
SMU_HTTBAR_WRITE(this_controller, mde->physical_address);
mde = &this_controller->memory_descriptors[SCU_MDE_UF_BUFFER];
scic_sds_unsolicited_frame_control_construct(
&this_controller->uf_control, mde, this_controller
);
/*
* Inform the silicon as to the location of the UF headers and
* address table. */
SCU_UFHBAR_WRITE(
this_controller,
this_controller->uf_control.headers.physical_address);
SCU_PUFATHAR_WRITE(
this_controller,
this_controller->uf_control.address_table.physical_address);
}
/**
* This method initializes the task context data for the controller.
* @this_controller:
*
*/
void scic_sds_controller_assign_task_entries(
struct scic_sds_controller *this_controller)
{
u32 task_assignment;
/*
* Assign all the TCs to function 0
* TODO: Do we actually need to read this register to write it back? */
task_assignment = SMU_TCA_READ(this_controller, 0);
task_assignment =
(
task_assignment
| (SMU_TCA_GEN_VAL(STARTING, 0))
| (SMU_TCA_GEN_VAL(ENDING, this_controller->task_context_entries - 1))
| (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE))
);
SMU_TCA_WRITE(this_controller, 0, task_assignment);
}
/**
* This method initializes the hardware completion queue.
*
*
*/
void scic_sds_controller_initialize_completion_queue(
struct scic_sds_controller *this_controller)
{
u32 index;
u32 completion_queue_control_value;
u32 completion_queue_get_value;
u32 completion_queue_put_value;
this_controller->completion_queue_get = 0;
completion_queue_control_value = (
SMU_CQC_QUEUE_LIMIT_SET(this_controller->completion_queue_entries - 1)
| SMU_CQC_EVENT_LIMIT_SET(this_controller->completion_event_entries - 1)
);
SMU_CQC_WRITE(this_controller, completion_queue_control_value);
/* Set the completion queue get pointer and enable the queue */
completion_queue_get_value = (
(SMU_CQGR_GEN_VAL(POINTER, 0))
| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
| (SMU_CQGR_GEN_BIT(ENABLE))
| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
);
SMU_CQGR_WRITE(this_controller, completion_queue_get_value);
/* Set the completion queue put pointer */
completion_queue_put_value = (
(SMU_CQPR_GEN_VAL(POINTER, 0))
| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
);
SMU_CQPR_WRITE(this_controller, completion_queue_put_value);
/* Initialize the cycle bit of the completion queue entries */
for (index = 0; index < this_controller->completion_queue_entries; index++) {
/*
* If get.cycle_bit != completion_queue.cycle_bit
* its not a valid completion queue entry
* so at system start all entries are invalid */
this_controller->completion_queue[index] = 0x80000000;
}
}
/**
* This method initializes the hardware unsolicited frame queue.
*
*
*/
void scic_sds_controller_initialize_unsolicited_frame_queue(
struct scic_sds_controller *this_controller)
{
u32 frame_queue_control_value;
u32 frame_queue_get_value;
u32 frame_queue_put_value;
/* Write the queue size */
frame_queue_control_value =
SCU_UFQC_GEN_VAL(QUEUE_SIZE, this_controller->uf_control.address_table.count);
SCU_UFQC_WRITE(this_controller, frame_queue_control_value);
/* Setup the get pointer for the unsolicited frame queue */
frame_queue_get_value = (
SCU_UFQGP_GEN_VAL(POINTER, 0)
| SCU_UFQGP_GEN_BIT(ENABLE_BIT)
);
SCU_UFQGP_WRITE(this_controller, frame_queue_get_value);
/* Setup the put pointer for the unsolicited frame queue */
frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
SCU_UFQPP_WRITE(this_controller, frame_queue_put_value);
}
/**
* This method enables the hardware port task scheduler.
*
*
*/
void scic_sds_controller_enable_port_task_scheduler(
struct scic_sds_controller *this_controller)
{
u32 port_task_scheduler_value;
port_task_scheduler_value = SCU_PTSGCR_READ(this_controller);
port_task_scheduler_value |=
(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
SCU_PTSGCR_WRITE(this_controller, port_task_scheduler_value);
}
/* --------------------------------------------------------------------------- */
/**
*
*
* This macro is used to delay between writes to the AFE registers during AFE
* initialization.
*/
#define AFE_REGISTER_WRITE_DELAY 10
static bool is_a0(void)
{
return isci_si_rev == ISCI_SI_REVA0;
}
static bool is_a2(void)
{
return isci_si_rev == ISCI_SI_REVA2;
}
static bool is_b0(void)
{
return isci_si_rev > ISCI_SI_REVA2;
}
/* Initialize the AFE for this phy index. We need to read the AFE setup from
* the OEM parameters none
*/
void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
{
u32 afe_status;
u32 phy_id;
/* Clear DFX Status registers */
scu_afe_register_write(scic, afe_dfx_master_control0, 0x0081000f);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
/* Configure bias currents to normal */
if (is_a0())
scu_afe_register_write(scic, afe_bias_control, 0x00005500);
else
scu_afe_register_write(scic, afe_bias_control, 0x00005A00);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
/* Enable PLL */
if (is_b0())
scu_afe_register_write(scic, afe_pll_control0, 0x80040A08);
else
scu_afe_register_write(scic, afe_pll_control0, 0x80040908);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
/* Wait for the PLL to lock */
do {
afe_status = scu_afe_register_read(
scic, afe_common_block_status);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
} while ((afe_status & 0x00001000) == 0);
if (is_b0()) {
/* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
scu_afe_register_write(scic, afe_pmsn_master_control0, 0x7bcc96ad);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
if (is_b0()) {
/* Configure transmitter SSC parameters */
scu_afe_txreg_write(scic, phy_id, afe_tx_ssc_control, 0x00030000);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
} else {
/*
* All defaults, except the Receive Word Alignament/Comma Detect
* Enable....(0xe800) */
scu_afe_txreg_write(scic, phy_id, afe_xcvr_control0, 0x00004512);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_txreg_write(scic, phy_id, afe_xcvr_control1, 0x0050100F);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
/*
* Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
* & increase TX int & ext bias 20%....(0xe85c) */
if (is_a0())
scu_afe_txreg_write(scic, phy_id, afe_channel_control, 0x000003D4);
else if (is_a2())
scu_afe_txreg_write(scic, phy_id, afe_channel_control, 0x000003F0);
else {
/* Power down TX and RX (PWRDNTX and PWRDNRX) */
scu_afe_txreg_write(scic, phy_id, afe_channel_control, 0x000003d7);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
/*
* Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
* & increase TX int & ext bias 20%....(0xe85c) */
scu_afe_txreg_write(scic, phy_id, afe_channel_control, 0x000003d4);
}
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
if (is_a0() || is_a2()) {
/* Enable TX equalization (0xe824) */
scu_afe_txreg_write(scic, phy_id, afe_tx_control, 0x00040000);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
/*
* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
* RDD=0x0(RX Detect Enabled) ....(0xe800) */
scu_afe_txreg_write(scic, phy_id, afe_xcvr_control0, 0x00004100);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
/* Leave DFE/FFE on */
if (is_a0())
scu_afe_txreg_write(scic, phy_id, afe_rx_ssc_control0, 0x3F09983F);
else if (is_a2())
scu_afe_txreg_write(scic, phy_id, afe_rx_ssc_control0, 0x3F11103F);
else {
scu_afe_txreg_write(scic, phy_id, afe_rx_ssc_control0, 0x3F11103F);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
/* Enable TX equalization (0xe824) */
scu_afe_txreg_write(scic, phy_id, afe_tx_control, 0x00040000);
}
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_txreg_write(scic, phy_id, afe_tx_amp_control0, 0x000E7C03);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_txreg_write(scic, phy_id, afe_tx_amp_control1, 0x000E7C03);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_txreg_write(scic, phy_id, afe_tx_amp_control2, 0x000E7C03);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
scu_afe_txreg_write(scic, phy_id, afe_tx_amp_control3, 0x000E7C03);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
/* Transfer control to the PEs */
scu_afe_register_write(scic, afe_dfx_master_control0, 0x00010f00);
scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY);
}
/*
* ****************************************************************************-
* * SCIC SDS Controller Internal Start/Stop Routines
* ****************************************************************************- */
/**
* This method will attempt to transition into the ready state for the
* controller and indicate that the controller start operation has completed
* if all criteria are met.
* @this_controller: This parameter indicates the controller object for which
* to transition to ready.
* @status: This parameter indicates the status value to be pass into the call
* to scic_cb_controller_start_complete().
*
* none.
*/
static void scic_sds_controller_transition_to_ready(
struct scic_sds_controller *this_controller,
enum sci_status status)
{
if (this_controller->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_STARTING) {
/*
* We move into the ready state, because some of the phys/ports
* may be up and operational. */
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_READY
);
scic_cb_controller_start_complete(this_controller, status);
}
}
/**
* This method is the general timeout handler for the controller. It will take
* the correct timetout action based on the current controller state
*/
void scic_sds_controller_timeout_handler(
struct scic_sds_controller *scic)
{
enum sci_base_controller_states current_state;
current_state = sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(scic));
if (current_state == SCI_BASE_CONTROLLER_STATE_STARTING) {
scic_sds_controller_transition_to_ready(
scic, SCI_FAILURE_TIMEOUT);
} else if (current_state == SCI_BASE_CONTROLLER_STATE_STOPPING) {
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(scic),
SCI_BASE_CONTROLLER_STATE_FAILED);
scic_cb_controller_stop_complete(scic, SCI_FAILURE_TIMEOUT);
} else /* / @todo Now what do we want to do in this case? */
dev_err(scic_to_dev(scic),
"%s: Controller timer fired when controller was not "
"in a state being timed.\n",
__func__);
}
/**
* scic_sds_controller_get_port_configuration_mode
* @this_controller: This is the controller to use to determine if we are using
* manual or automatic port configuration.
*
* SCIC_PORT_CONFIGURATION_MODE
*/
enum SCIC_PORT_CONFIGURATION_MODE scic_sds_controller_get_port_configuration_mode(
struct scic_sds_controller *this_controller)
{
u32 index;
enum SCIC_PORT_CONFIGURATION_MODE mode;
mode = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
for (index = 0; index < SCI_MAX_PORTS; index++) {
if (this_controller->oem_parameters.sds1.ports[index].phy_mask != 0) {
mode = SCIC_PORT_MANUAL_CONFIGURATION_MODE;
break;
}
}
return mode;
}
enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
{
u32 index;
enum sci_status port_status;
enum sci_status status = SCI_SUCCESS;
for (index = 0; index < scic->logical_port_entries; index++) {
port_status = scic_port_stop(&scic->port_table[index]);
if ((port_status != SCI_SUCCESS) &&
(port_status != SCI_FAILURE_INVALID_STATE)) {
status = SCI_FAILURE;
dev_warn(scic_to_dev(scic),
"%s: Controller stop operation failed to "
"stop port %d because of status %d.\n",
__func__,
scic->port_table[index].logical_port_index,
port_status);
}
}
return status;
}
/**
*
*
*
*/
static void scic_sds_controller_phy_timer_start(
struct scic_sds_controller *this_controller)
{
scic_cb_timer_start(
this_controller,
this_controller->phy_startup_timer,
SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
);
this_controller->phy_startup_timer_pending = true;
}
/**
*
*
*
*/
void scic_sds_controller_phy_timer_stop(
struct scic_sds_controller *this_controller)
{
scic_cb_timer_stop(
this_controller,
this_controller->phy_startup_timer
);
this_controller->phy_startup_timer_pending = false;
}
/**
* This method is called internally by the controller object to start the next
* phy on the controller. If all the phys have been starte, then this
* method will attempt to transition the controller to the READY state and
* inform the user (scic_cb_controller_start_complete()).
* @this_controller: This parameter specifies the controller object for which
* to start the next phy.
*
* enum sci_status
*/
enum sci_status scic_sds_controller_start_next_phy(
struct scic_sds_controller *this_controller)
{
enum sci_status status;
status = SCI_SUCCESS;
if (this_controller->phy_startup_timer_pending == false) {
if (this_controller->next_phy_to_start == SCI_MAX_PHYS) {
bool is_controller_start_complete = true;
struct scic_sds_phy *the_phy;
u8 index;
for (index = 0; index < SCI_MAX_PHYS; index++) {
the_phy = &this_controller->phy_table[index];
if (scic_sds_phy_get_port(the_phy) != SCI_INVALID_HANDLE) {
/**
* The controller start operation is complete if and only
* if:
* - all links have been given an opportunity to start
* - have no indication of a connected device
* - have an indication of a connected device and it has
* finished the link training process.
*/
if (
(
(the_phy->is_in_link_training == false)
&& (the_phy->parent.state_machine.current_state_id
== SCI_BASE_PHY_STATE_INITIAL)
)
|| (
(the_phy->is_in_link_training == false)
&& (the_phy->parent.state_machine.current_state_id
== SCI_BASE_PHY_STATE_STOPPED)
)
|| (
(the_phy->is_in_link_training == true)
&& (the_phy->parent.state_machine.current_state_id
== SCI_BASE_PHY_STATE_STARTING)
)
) {
is_controller_start_complete = false;
break;
}
}
}
/*
* The controller has successfully finished the start process.
* Inform the SCI Core user and transition to the READY state. */
if (is_controller_start_complete == true) {
scic_sds_controller_transition_to_ready(
this_controller, SCI_SUCCESS
);
scic_sds_controller_phy_timer_stop(this_controller);
}
} else {
struct scic_sds_phy *the_phy;
the_phy = &this_controller->phy_table[this_controller->next_phy_to_start];
if (
scic_sds_controller_get_port_configuration_mode(this_controller)
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
) {
if (scic_sds_phy_get_port(the_phy) == SCI_INVALID_HANDLE) {
this_controller->next_phy_to_start++;
/*
* Caution recursion ahead be forwarned
*
* The PHY was never added to a PORT in MPC mode so start the next phy in sequence
* This phy will never go link up and will not draw power the OEM parameters either
* configured the phy incorrectly for the PORT or it was never assigned to a PORT */
return scic_sds_controller_start_next_phy(this_controller);
}
}
status = scic_sds_phy_start(the_phy);
if (status == SCI_SUCCESS) {
scic_sds_controller_phy_timer_start(this_controller);
} else {
dev_warn(scic_to_dev(this_controller),
"%s: Controller stop operation failed "
"to stop phy %d because of status "
"%d.\n",
__func__,
this_controller->phy_table[this_controller->next_phy_to_start].phy_index,
status);
}
this_controller->next_phy_to_start++;
}
}
return status;
}
/**
*
* @this_controller:
*
* enum sci_status
*/
enum sci_status scic_sds_controller_stop_phys(
struct scic_sds_controller *this_controller)
{
u32 index;
enum sci_status status;
enum sci_status phy_status;
status = SCI_SUCCESS;
for (index = 0; index < SCI_MAX_PHYS; index++) {
phy_status = scic_sds_phy_stop(&this_controller->phy_table[index]);
if (
(phy_status != SCI_SUCCESS)
&& (phy_status != SCI_FAILURE_INVALID_STATE)
) {
status = SCI_FAILURE;
dev_warn(scic_to_dev(this_controller),
"%s: Controller stop operation failed to stop "
"phy %d because of status %d.\n",
__func__,
this_controller->phy_table[index].phy_index, phy_status);
}
}
return status;
}
/**
*
* @this_controller:
*
* enum sci_status
*/
enum sci_status scic_sds_controller_stop_devices(
struct scic_sds_controller *this_controller)
{
u32 index;
enum sci_status status;
enum sci_status device_status;
status = SCI_SUCCESS;
for (index = 0; index < this_controller->remote_node_entries; index++) {
if (this_controller->device_table[index] != SCI_INVALID_HANDLE) {
/* / @todo What timeout value do we want to provide to this request? */
device_status = scic_remote_device_stop(this_controller->device_table[index], 0);
if ((device_status != SCI_SUCCESS) &&
(device_status != SCI_FAILURE_INVALID_STATE)) {
dev_warn(scic_to_dev(this_controller),
"%s: Controller stop operation failed "
"to stop device 0x%p because of "
"status %d.\n",
__func__,
this_controller->device_table[index], device_status);
}
}
}
return status;
}
/*
* ****************************************************************************-
* * SCIC SDS Controller Power Control (Staggered Spinup)
* ****************************************************************************- */
/**
*
*
* This method starts the power control timer for this controller object.
*/
static void scic_sds_controller_power_control_timer_start(
struct scic_sds_controller *this_controller)
{
scic_cb_timer_start(
this_controller, this_controller->power_control.timer,
SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
this_controller->power_control.timer_started = true;
}
/**
*
*
*
*/
static void scic_sds_controller_power_control_timer_handler(
void *controller)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)controller;
if (this_controller->power_control.phys_waiting == 0) {
this_controller->power_control.timer_started = false;
} else {
struct scic_sds_phy *the_phy = NULL;
u8 i;
for (i = 0;
(i < SCI_MAX_PHYS)
&& (this_controller->power_control.phys_waiting != 0);
i++) {
if (this_controller->power_control.requesters[i] != NULL) {
the_phy = this_controller->power_control.requesters[i];
this_controller->power_control.requesters[i] = NULL;
this_controller->power_control.phys_waiting--;
break;
}
}
/*
* It doesn't matter if the power list is empty, we need to start the
* timer in case another phy becomes ready. */
scic_sds_controller_power_control_timer_start(this_controller);
scic_sds_phy_consume_power_handler(the_phy);
}
}
/**
* This method inserts the phy in the stagger spinup control queue.
* @this_controller:
*
*
*/
void scic_sds_controller_power_control_queue_insert(
struct scic_sds_controller *this_controller,
struct scic_sds_phy *the_phy)
{
BUG_ON(the_phy == NULL);
if (
(this_controller->power_control.timer_started)
&& (this_controller->power_control.requesters[the_phy->phy_index] == NULL)
) {
this_controller->power_control.requesters[the_phy->phy_index] = the_phy;
this_controller->power_control.phys_waiting++;
} else {
scic_sds_controller_power_control_timer_start(this_controller);
scic_sds_phy_consume_power_handler(the_phy);
}
}
/**
* This method removes the phy from the stagger spinup control queue.
* @this_controller:
*
*
*/
void scic_sds_controller_power_control_queue_remove(
struct scic_sds_controller *this_controller,
struct scic_sds_phy *the_phy)
{
BUG_ON(the_phy == NULL);
if (this_controller->power_control.requesters[the_phy->phy_index] != NULL) {
this_controller->power_control.phys_waiting--;
}
this_controller->power_control.requesters[the_phy->phy_index] = NULL;
}
/*
* ****************************************************************************-
* * SCIC SDS Controller Completion Routines
* ****************************************************************************- */
/**
* This method returns a true value if the completion queue has entries that
* can be processed
* @this_controller:
*
* bool true if the completion queue has entries to process false if the
* completion queue has no entries to process
*/
static bool scic_sds_controller_completion_queue_has_entries(
struct scic_sds_controller *this_controller)
{
u32 get_value = this_controller->completion_queue_get;
u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
if (
NORMALIZE_GET_POINTER_CYCLE_BIT(get_value)
== COMPLETION_QUEUE_CYCLE_BIT(this_controller->completion_queue[get_index])
) {
return true;
}
return false;
}
/* --------------------------------------------------------------------------- */
/**
* This method processes a task completion notification. This is called from
* within the controller completion handler.
* @this_controller:
* @completion_entry:
*
*/
static void scic_sds_controller_task_completion(
struct scic_sds_controller *this_controller,
u32 completion_entry)
{
u32 index;
struct scic_sds_request *io_request;
index = SCU_GET_COMPLETION_INDEX(completion_entry);
io_request = this_controller->io_request_table[index];
/* Make sure that we really want to process this IO request */
if (
(io_request != SCI_INVALID_HANDLE)
&& (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
&& (
scic_sds_io_tag_get_sequence(io_request->io_tag)
== this_controller->io_request_sequence[index]
)
) {
/* Yep this is a valid io request pass it along to the io request handler */
scic_sds_io_request_tc_completion(io_request, completion_entry);
}
}
/**
* This method processes an SDMA completion event. This is called from within
* the controller completion handler.
* @this_controller:
* @completion_entry:
*
*/
static void scic_sds_controller_sdma_completion(
struct scic_sds_controller *this_controller,
u32 completion_entry)
{
u32 index;
struct scic_sds_request *io_request;
struct scic_sds_remote_device *device;
index = SCU_GET_COMPLETION_INDEX(completion_entry);
switch (scu_get_command_request_type(completion_entry)) {
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
io_request = this_controller->io_request_table[index];
dev_warn(scic_to_dev(this_controller),
"%s: SCIC SDS Completion type SDMA %x for io request "
"%p\n",
__func__,
completion_entry,
io_request);
/* @todo For a post TC operation we need to fail the IO
* request
*/
break;
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
device = this_controller->device_table[index];
dev_warn(scic_to_dev(this_controller),
"%s: SCIC SDS Completion type SDMA %x for remote "
"device %p\n",
__func__,
completion_entry,
device);
/* @todo For a port RNC operation we need to fail the
* device
*/
break;
default:
dev_warn(scic_to_dev(this_controller),
"%s: SCIC SDS Completion unknown SDMA completion "
"type %x\n",
__func__,
completion_entry);
break;
}
}
/**
*
* @this_controller:
* @completion_entry:
*
* This method processes an unsolicited frame message. This is called from
* within the controller completion handler. none
*/
static void scic_sds_controller_unsolicited_frame(
struct scic_sds_controller *this_controller,
u32 completion_entry)
{
u32 index;
u32 frame_index;
struct scu_unsolicited_frame_header *frame_header;
struct scic_sds_phy *phy;
struct scic_sds_remote_device *device;
enum sci_status result = SCI_FAILURE;
frame_index = SCU_GET_FRAME_INDEX(completion_entry);
frame_header
= this_controller->uf_control.buffers.array[frame_index].header;
this_controller->uf_control.buffers.array[frame_index].state
= UNSOLICITED_FRAME_IN_USE;
if (SCU_GET_FRAME_ERROR(completion_entry)) {
/*
* / @todo If the IAF frame or SIGNATURE FIS frame has an error will
* / this cause a problem? We expect the phy initialization will
* / fail if there is an error in the frame. */
scic_sds_controller_release_frame(this_controller, frame_index);
return;
}
if (frame_header->is_address_frame) {
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
phy = &this_controller->phy_table[index];
if (phy != NULL) {
result = scic_sds_phy_frame_handler(phy, frame_index);
}
} else {
index = SCU_GET_COMPLETION_INDEX(completion_entry);
if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
/*
* This is a signature fis or a frame from a direct attached SATA
* device that has not yet been created. In either case forwared
* the frame to the PE and let it take care of the frame data. */
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
phy = &this_controller->phy_table[index];
result = scic_sds_phy_frame_handler(phy, frame_index);
} else {
if (index < this_controller->remote_node_entries)
device = this_controller->device_table[index];
else
device = NULL;
if (device != NULL)
result = scic_sds_remote_device_frame_handler(device, frame_index);
else
scic_sds_controller_release_frame(this_controller, frame_index);
}
}
if (result != SCI_SUCCESS) {
/*
* / @todo Is there any reason to report some additional error message
* / when we get this failure notifiction? */
}
}
/**
* This method processes an event completion entry. This is called from within
* the controller completion handler.
* @this_controller:
* @completion_entry:
*
*/
static void scic_sds_controller_event_completion(
struct scic_sds_controller *this_controller,
u32 completion_entry)
{
u32 index;
struct scic_sds_request *io_request;
struct scic_sds_remote_device *device;
struct scic_sds_phy *phy;
index = SCU_GET_COMPLETION_INDEX(completion_entry);
switch (scu_get_event_type(completion_entry)) {
case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
/* / @todo The driver did something wrong and we need to fix the condtion. */
dev_err(scic_to_dev(this_controller),
"%s: SCIC Controller 0x%p received SMU command error "
"0x%x\n",
__func__,
this_controller,
completion_entry);
break;
case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
case SCU_EVENT_TYPE_SMU_ERROR:
case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
/*
* / @todo This is a hardware failure and its likely that we want to
* / reset the controller. */
dev_err(scic_to_dev(this_controller),
"%s: SCIC Controller 0x%p received fatal controller "
"event 0x%x\n",
__func__,
this_controller,
completion_entry);
break;
case SCU_EVENT_TYPE_TRANSPORT_ERROR:
io_request = this_controller->io_request_table[index];
scic_sds_io_request_event_handler(io_request, completion_entry);
break;
case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
switch (scu_get_event_specifier(completion_entry)) {
case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
io_request = this_controller->io_request_table[index];
if (io_request != SCI_INVALID_HANDLE)
scic_sds_io_request_event_handler(io_request, completion_entry);
else
dev_warn(scic_to_dev(this_controller),
"%s: SCIC Controller 0x%p received "
"event 0x%x for io request object "
"that doesnt exist.\n",
__func__,
this_controller,
completion_entry);
break;
case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
device = this_controller->device_table[index];
if (device != SCI_INVALID_HANDLE)
scic_sds_remote_device_event_handler(device, completion_entry);
else
dev_warn(scic_to_dev(this_controller),
"%s: SCIC Controller 0x%p received "
"event 0x%x for remote device object "
"that doesnt exist.\n",
__func__,
this_controller,
completion_entry);
break;
}
break;
case SCU_EVENT_TYPE_BROADCAST_CHANGE:
/*
* direct the broadcast change event to the phy first and then let
* the phy redirect the broadcast change to the port object */
case SCU_EVENT_TYPE_ERR_CNT_EVENT:
/*
* direct error counter event to the phy object since that is where
* we get the event notification. This is a type 4 event. */
case SCU_EVENT_TYPE_OSSP_EVENT:
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
phy = &this_controller->phy_table[index];
scic_sds_phy_event_handler(phy, completion_entry);
break;
case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
case SCU_EVENT_TYPE_RNC_OPS_MISC:
if (index < this_controller->remote_node_entries) {
device = this_controller->device_table[index];
if (device != NULL)
scic_sds_remote_device_event_handler(device, completion_entry);
} else
dev_err(scic_to_dev(this_controller),
"%s: SCIC Controller 0x%p received event 0x%x "
"for remote device object 0x%0x that doesnt "
"exist.\n",
__func__,
this_controller,
completion_entry,
index);
break;
default:
dev_warn(scic_to_dev(this_controller),
"%s: SCIC Controller received unknown event code %x\n",
__func__,
completion_entry);
break;
}
}
/**
* This method is a private routine for processing the completion queue entries.
* @this_controller:
*
*/
static void scic_sds_controller_process_completions(
struct scic_sds_controller *this_controller)
{
u32 completion_count = 0;
u32 completion_entry;
u32 get_index;
u32 get_cycle;
u32 event_index;
u32 event_cycle;
dev_dbg(scic_to_dev(this_controller),
"%s: completion queue begining get:0x%08x\n",
__func__,
this_controller->completion_queue_get);
/* Get the component parts of the completion queue */
get_index = NORMALIZE_GET_POINTER(this_controller->completion_queue_get);
get_cycle = SMU_CQGR_CYCLE_BIT & this_controller->completion_queue_get;
event_index = NORMALIZE_EVENT_POINTER(this_controller->completion_queue_get);
event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & this_controller->completion_queue_get;
while (
NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
== COMPLETION_QUEUE_CYCLE_BIT(this_controller->completion_queue[get_index])
) {
completion_count++;
completion_entry = this_controller->completion_queue[get_index];
INCREMENT_COMPLETION_QUEUE_GET(this_controller, get_index, get_cycle);
dev_dbg(scic_to_dev(this_controller),
"%s: completion queue entry:0x%08x\n",
__func__,
completion_entry);
switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
case SCU_COMPLETION_TYPE_TASK:
scic_sds_controller_task_completion(this_controller, completion_entry);
break;
case SCU_COMPLETION_TYPE_SDMA:
scic_sds_controller_sdma_completion(this_controller, completion_entry);
break;
case SCU_COMPLETION_TYPE_UFI:
scic_sds_controller_unsolicited_frame(this_controller, completion_entry);
break;
case SCU_COMPLETION_TYPE_EVENT:
INCREMENT_EVENT_QUEUE_GET(this_controller, event_index, event_cycle);
scic_sds_controller_event_completion(this_controller, completion_entry);
break;
case SCU_COMPLETION_TYPE_NOTIFY:
/*
* Presently we do the same thing with a notify event that we do with the
* other event codes. */
INCREMENT_EVENT_QUEUE_GET(this_controller, event_index, event_cycle);
scic_sds_controller_event_completion(this_controller, completion_entry);
break;
default:
dev_warn(scic_to_dev(this_controller),
"%s: SCIC Controller received unknown "
"completion type %x\n",
__func__,
completion_entry);
break;
}
}
/* Update the get register if we completed one or more entries */
if (completion_count > 0) {
this_controller->completion_queue_get =
SMU_CQGR_GEN_BIT(ENABLE)
| SMU_CQGR_GEN_BIT(EVENT_ENABLE)
| event_cycle | SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index)
| get_cycle | SMU_CQGR_GEN_VAL(POINTER, get_index);
SMU_CQGR_WRITE(this_controller,
this_controller->completion_queue_get);
}
dev_dbg(scic_to_dev(this_controller),
"%s: completion queue ending get:0x%08x\n",
__func__,
this_controller->completion_queue_get);
}
/**
* This method is a private routine for processing the completion queue entries.
* @this_controller:
*
*/
static void scic_sds_controller_transitioned_process_completions(
struct scic_sds_controller *this_controller)
{
u32 completion_count = 0;
u32 completion_entry;
u32 get_index;
u32 get_cycle;
u32 event_index;
u32 event_cycle;
dev_dbg(scic_to_dev(this_controller),
"%s: completion queue begining get:0x%08x\n",
__func__,
this_controller->completion_queue_get);
/* Get the component parts of the completion queue */
get_index = NORMALIZE_GET_POINTER(this_controller->completion_queue_get);
get_cycle = SMU_CQGR_CYCLE_BIT & this_controller->completion_queue_get;
event_index = NORMALIZE_EVENT_POINTER(this_controller->completion_queue_get);
event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & this_controller->completion_queue_get;
while (
NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
== COMPLETION_QUEUE_CYCLE_BIT(
this_controller->completion_queue[get_index])
) {
completion_count++;
completion_entry = this_controller->completion_queue[get_index];
INCREMENT_COMPLETION_QUEUE_GET(this_controller, get_index, get_cycle);
dev_dbg(scic_to_dev(this_controller),
"%s: completion queue entry:0x%08x\n",
__func__,
completion_entry);
switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
case SCU_COMPLETION_TYPE_TASK:
scic_sds_controller_task_completion(this_controller, completion_entry);
break;
case SCU_COMPLETION_TYPE_NOTIFY:
case SCU_COMPLETION_TYPE_EVENT:
/*
* Presently we do the same thing with a notify event that we
* do with the other event codes. */
INCREMENT_EVENT_QUEUE_GET(this_controller, event_index, event_cycle);
/* Fall-through */
case SCU_COMPLETION_TYPE_SDMA:
case SCU_COMPLETION_TYPE_UFI:
default:
dev_warn(scic_to_dev(this_controller),
"%s: SCIC Controller ignoring completion type "
"%x\n",
__func__,
completion_entry);
break;
}
}
/* Update the get register if we completed one or more entries */
if (completion_count > 0) {
this_controller->completion_queue_get =
SMU_CQGR_GEN_BIT(ENABLE)
| SMU_CQGR_GEN_BIT(EVENT_ENABLE)
| event_cycle | SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index)
| get_cycle | SMU_CQGR_GEN_VAL(POINTER, get_index);
SMU_CQGR_WRITE(this_controller, this_controller->completion_queue_get);
}
dev_dbg(scic_to_dev(this_controller),
"%s: completion queue ending get:0x%08x\n",
__func__,
this_controller->completion_queue_get);
}
/*
* ****************************************************************************-
* * SCIC SDS Controller Interrupt and Completion functions
* ****************************************************************************- */
/**
* This method provides standard (common) processing of interrupts for polling
* and legacy based interrupts.
* @controller:
* @interrupt_status:
*
* This method returns a boolean (bool) indication as to whether an completions
* are pending to be processed. true if an interrupt is to be processed false
* if no interrupt was pending
*/
static bool scic_sds_controller_standard_interrupt_handler(
struct scic_sds_controller *this_controller,
u32 interrupt_status)
{
bool is_completion_needed = false;
if ((interrupt_status & SMU_ISR_QUEUE_ERROR) ||
((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
(!scic_sds_controller_completion_queue_has_entries(
this_controller)))) {
/*
* We have a fatal error on the read of the completion queue bar
* OR
* We have a fatal error there is nothing in the completion queue
* but we have a report from the hardware that the queue is full
* / @todo how do we request the a controller reset */
is_completion_needed = true;
this_controller->encountered_fatal_error = true;
}
if (scic_sds_controller_completion_queue_has_entries(this_controller)) {
is_completion_needed = true;
}
return is_completion_needed;
}
/**
* This is the method provided to handle polling for interrupts for the
* controller object.
*
* bool true if an interrupt is to be processed false if no interrupt was
* pending
*/
static bool scic_sds_controller_polling_interrupt_handler(
struct scic_sds_controller *scic)
{
u32 interrupt_status;
/*
* In INTERRUPT_POLLING_MODE we exit the interrupt handler if the
* hardware indicates nothing is pending. Since we are not being
* called from a real interrupt, we don't want to confuse the hardware
* by servicing the completion queue before the hardware indicates it
* is ready. We'll simply wait for another polling interval and check
* again.
*/
interrupt_status = SMU_ISR_READ(scic);
if ((interrupt_status &
(SMU_ISR_COMPLETION |
SMU_ISR_QUEUE_ERROR |
SMU_ISR_QUEUE_SUSPEND)) == 0) {
return false;
}
return scic_sds_controller_standard_interrupt_handler(
scic, interrupt_status);
}
/**
* This is the method provided to handle completions when interrupt polling is
* in use.
*/
static void scic_sds_controller_polling_completion_handler(
struct scic_sds_controller *scic)
{
if (scic->encountered_fatal_error == true) {
dev_err(scic_to_dev(scic),
"%s: SCIC Controller has encountered a fatal error.\n",
__func__);
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(scic),
SCI_BASE_CONTROLLER_STATE_FAILED);
} else if (scic_sds_controller_completion_queue_has_entries(scic)) {
if (scic->restrict_completions == false)
scic_sds_controller_process_completions(scic);
else
scic_sds_controller_transitioned_process_completions(
scic);
}
/*
* The interrupt handler does not adjust the CQ's
* get pointer. So, SCU's INTx pin stays asserted during the
* interrupt handler even though it tries to clear the interrupt
* source. Therefore, the completion handler must ensure that the
* interrupt source is cleared. Otherwise, we get a spurious
* interrupt for which the interrupt handler will not issue a
* corresponding completion event. Also, we unmask interrupts.
*/
SMU_ISR_WRITE(
scic,
(u32)(SMU_ISR_COMPLETION | SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)
);
}
/**
* This is the method provided to handle legacy interrupts for the controller
* object.
*
* bool true if an interrupt is processed false if no interrupt was processed
*/
static bool scic_sds_controller_legacy_interrupt_handler(
struct scic_sds_controller *scic)
{
u32 interrupt_status;
bool is_completion_needed;
interrupt_status = SMU_ISR_READ(scic);
is_completion_needed = scic_sds_controller_standard_interrupt_handler(
scic, interrupt_status);
return is_completion_needed;
}
/**
* This is the method provided to handle legacy completions it is expected that
* the SCI User will call this completion handler anytime the interrupt
* handler reports that it has handled an interrupt.
*/
static void scic_sds_controller_legacy_completion_handler(
struct scic_sds_controller *scic)
{
scic_sds_controller_polling_completion_handler(scic);
SMU_IMR_WRITE(scic, 0x00000000);
}
/**
* This is the method provided to handle an MSIX interrupt message when there
* is just a single MSIX message being provided by the hardware. This mode
* of operation is single vector mode.
*
* bool true if an interrupt is processed false if no interrupt was processed
*/
static bool scic_sds_controller_single_vector_interrupt_handler(
struct scic_sds_controller *scic)
{
u32 interrupt_status;
/*
* Mask the interrupts
* There is a race in the hardware that could cause us not to be notified
* of an interrupt completion if we do not take this step. We will unmask
* the interrupts in the completion routine. */
SMU_IMR_WRITE(scic, 0xFFFFFFFF);
interrupt_status = SMU_ISR_READ(scic);
interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
if ((interrupt_status == 0) &&
scic_sds_controller_completion_queue_has_entries(scic)) {
/*
* There is at least one completion queue entry to process so we can
* return a success and ignore for now the case of an error interrupt */
SMU_ISR_WRITE(scic, SMU_ISR_COMPLETION);
return true;
}
if (interrupt_status != 0) {
/*
* There is an error interrupt pending so let it through and handle
* in the callback */
return true;
}
/*
* Clear any offending interrupts since we could not find any to handle
* and unmask them all */
SMU_ISR_WRITE(scic, 0x00000000);
SMU_IMR_WRITE(scic, 0x00000000);
return false;
}
/**
* This is the method provided to handle completions for a single MSIX message.
*/
static void scic_sds_controller_single_vector_completion_handler(
struct scic_sds_controller *scic)
{
u32 interrupt_status;
interrupt_status = SMU_ISR_READ(scic);
interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
if (interrupt_status & SMU_ISR_QUEUE_ERROR) {
dev_err(scic_to_dev(scic),
"%s: SCIC Controller has encountered a fatal error.\n",
__func__);
/*
* We have a fatal condition and must reset the controller
* Leave the interrupt mask in place and get the controller reset */
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(scic),
SCI_BASE_CONTROLLER_STATE_FAILED);
return;
}
if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
!scic_sds_controller_completion_queue_has_entries(scic)) {
dev_err(scic_to_dev(scic),
"%s: SCIC Controller has encountered a fatal error.\n",
__func__);
/*
* We have a fatal condtion and must reset the controller
* Leave the interrupt mask in place and get the controller reset */
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(scic),
SCI_BASE_CONTROLLER_STATE_FAILED);
return;
}
if (scic_sds_controller_completion_queue_has_entries(scic)) {
scic_sds_controller_process_completions(scic);
/*
* We dont care which interrupt got us to processing the completion queu
* so clear them both. */
SMU_ISR_WRITE(
scic,
(SMU_ISR_COMPLETION | SMU_ISR_QUEUE_SUSPEND));
}
SMU_IMR_WRITE(scic, 0x00000000);
}
/**
* This is the method provided to handle a MSIX message for a normal completion.
*
* bool true if an interrupt is processed false if no interrupt was processed
*/
static bool scic_sds_controller_normal_vector_interrupt_handler(
struct scic_sds_controller *scic)
{
if (scic_sds_controller_completion_queue_has_entries(scic)) {
return true;
} else {
/*
* we have a spurious interrupt it could be that we have already
* emptied the completion queue from a previous interrupt */
SMU_ISR_WRITE(scic, SMU_ISR_COMPLETION);
/*
* There is a race in the hardware that could cause us not to be notified
* of an interrupt completion if we do not take this step. We will mask
* then unmask the interrupts so if there is another interrupt pending
* the clearing of the interrupt source we get the next interrupt message. */
SMU_IMR_WRITE(scic, 0xFF000000);
SMU_IMR_WRITE(scic, 0x00000000);
}
return false;
}
/**
* This is the method provided to handle the completions for a normal MSIX
* message.
*/
static void scic_sds_controller_normal_vector_completion_handler(
struct scic_sds_controller *scic)
{
/* Empty out the completion queue */
if (scic_sds_controller_completion_queue_has_entries(scic))
scic_sds_controller_process_completions(scic);
/* Clear the interrupt and enable all interrupts again */
SMU_ISR_WRITE(scic, SMU_ISR_COMPLETION);
/* Could we write the value of SMU_ISR_COMPLETION? */
SMU_IMR_WRITE(scic, 0xFF000000);
SMU_IMR_WRITE(scic, 0x00000000);
}
/**
* This is the method provided to handle the error MSIX message interrupt.
* This is the normal operating mode for the hardware if MSIX is enabled.
*
* bool true if an interrupt is processed false if no interrupt was processed
*/
static bool scic_sds_controller_error_vector_interrupt_handler(
struct scic_sds_controller *scic)
{
u32 interrupt_status;
interrupt_status = SMU_ISR_READ(scic);
interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
if (interrupt_status != 0) {
/*
* There is an error interrupt pending so let it through and handle
* in the callback */
return true;
}
/*
* There is a race in the hardware that could cause us not to be notified
* of an interrupt completion if we do not take this step. We will mask
* then unmask the error interrupts so if there was another interrupt
* pending we will be notified.
* Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
SMU_IMR_WRITE(scic, 0x000000FF);
SMU_IMR_WRITE(scic, 0x00000000);
return false;
}
/**
* This is the method provided to handle the error completions when the
* hardware is using two MSIX messages.
*/
static void scic_sds_controller_error_vector_completion_handler(
struct scic_sds_controller *scic)
{
u32 interrupt_status;
interrupt_status = SMU_ISR_READ(scic);
if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
scic_sds_controller_completion_queue_has_entries(scic)) {
scic_sds_controller_process_completions(scic);
SMU_ISR_WRITE(scic, SMU_ISR_QUEUE_SUSPEND);
} else {
dev_err(scic_to_dev(scic),
"%s: SCIC Controller reports CRC error on completion "
"ISR %x\n",
__func__,
interrupt_status);
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(scic),
SCI_BASE_CONTROLLER_STATE_FAILED);
return;
}
/*
* If we dont process any completions I am not sure that we want to do this.
* We are in the middle of a hardware fault and should probably be reset. */
SMU_IMR_WRITE(scic, 0x00000000);
}
/*
* ****************************************************************************-
* * SCIC SDS Controller External Methods
* ****************************************************************************- */
/**
* This method returns the sizeof the SCIC SDS Controller Object
*/
u32 scic_sds_controller_get_object_size(void)
{
return sizeof(struct scic_sds_controller);
}
void scic_sds_controller_link_up(
struct scic_sds_controller *scic,
struct scic_sds_port *sci_port,
struct scic_sds_phy *sci_phy)
{
scic_sds_controller_phy_handler_t link_up;
u32 state;
state = scic->parent.state_machine.current_state_id;
link_up = scic_sds_controller_state_handler_table[state].link_up;
if (link_up)
link_up(scic, sci_port, sci_phy);
else
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller linkup event from phy %d in "
"unexpected state %d\n",
__func__,
sci_phy->phy_index,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(
scic)));
}
void scic_sds_controller_link_down(
struct scic_sds_controller *scic,
struct scic_sds_port *sci_port,
struct scic_sds_phy *sci_phy)
{
u32 state;
scic_sds_controller_phy_handler_t link_down;
state = scic->parent.state_machine.current_state_id;
link_down = scic_sds_controller_state_handler_table[state].link_down;
if (link_down)
link_down(scic, sci_port, sci_phy);
else
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller linkdown event from phy %d in "
"unexpected state %d\n",
__func__,
sci_phy->phy_index,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(
scic)));
}
/**
* This method will write to the SCU PCP register the request value. The method
* is used to suspend/resume ports, devices, and phys.
* @this_controller:
*
*
*/
void scic_sds_controller_post_request(
struct scic_sds_controller *this_controller,
u32 request)
{
dev_dbg(scic_to_dev(this_controller),
"%s: SCIC Controller 0x%p post request 0x%08x\n",
__func__,
this_controller,
request);
SMU_PCP_WRITE(this_controller, request);
}
/**
* This method will copy the soft copy of the task context into the physical
* memory accessible by the controller.
* @this_controller: This parameter specifies the controller for which to copy
* the task context.
* @this_request: This parameter specifies the request for which the task
* context is being copied.
*
* After this call is made the SCIC_SDS_IO_REQUEST object will always point to
* the physical memory version of the task context. Thus, all subsequent
* updates to the task context are performed in the TC table (i.e. DMAable
* memory). none
*/
void scic_sds_controller_copy_task_context(
struct scic_sds_controller *this_controller,
struct scic_sds_request *this_request)
{
struct scu_task_context *task_context_buffer;
task_context_buffer = scic_sds_controller_get_task_context_buffer(
this_controller, this_request->io_tag
);
memcpy(
task_context_buffer,
this_request->task_context_buffer,
SCI_FIELD_OFFSET(struct scu_task_context, sgl_snapshot_ac)
);
/*
* Now that the soft copy of the TC has been copied into the TC
* table accessible by the silicon. Thus, any further changes to
* the TC (e.g. TC termination) occur in the appropriate location. */
this_request->task_context_buffer = task_context_buffer;
}
/**
* This method returns the task context buffer for the given io tag.
* @this_controller:
* @io_tag:
*
* struct scu_task_context*
*/
struct scu_task_context *scic_sds_controller_get_task_context_buffer(
struct scic_sds_controller *this_controller,
u16 io_tag
) {
u16 task_index = scic_sds_io_tag_get_index(io_tag);
if (task_index < this_controller->task_context_entries) {
return &this_controller->task_context_table[task_index];
}
return NULL;
}
/**
* This method returnst the sequence value from the io tag value
* @this_controller:
* @io_tag:
*
* u16
*/
/**
* This method returns the IO request associated with the tag value
* @this_controller:
* @io_tag:
*
* SCIC_SDS_IO_REQUEST_T* NULL if there is no valid IO request at the tag value
*/
struct scic_sds_request *scic_sds_controller_get_io_request_from_tag(
struct scic_sds_controller *this_controller,
u16 io_tag
) {
u16 task_index;
u16 task_sequence;
task_index = scic_sds_io_tag_get_index(io_tag);
if (task_index < this_controller->task_context_entries) {
if (this_controller->io_request_table[task_index] != SCI_INVALID_HANDLE) {
task_sequence = scic_sds_io_tag_get_sequence(io_tag);
if (task_sequence == this_controller->io_request_sequence[task_index]) {
return this_controller->io_request_table[task_index];
}
}
}
return SCI_INVALID_HANDLE;
}
/**
* This method allocates remote node index and the reserves the remote node
* context space for use. This method can fail if there are no more remote
* node index available.
* @this_controller: This is the controller object which contains the set of
* free remote node ids
* @the_devce: This is the device object which is requesting the a remote node
* id
* @node_id: This is the remote node id that is assinged to the device if one
* is available
*
* enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
* node index available.
*/
enum sci_status scic_sds_controller_allocate_remote_node_context(
struct scic_sds_controller *this_controller,
struct scic_sds_remote_device *the_device,
u16 *node_id)
{
u16 node_index;
u32 remote_node_count = scic_sds_remote_device_node_count(the_device);
node_index = scic_sds_remote_node_table_allocate_remote_node(
&this_controller->available_remote_nodes, remote_node_count
);
if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
this_controller->device_table[node_index] = the_device;
*node_id = node_index;
return SCI_SUCCESS;
}
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}
/**
* This method frees the remote node index back to the available pool. Once
* this is done the remote node context buffer is no longer valid and can
* not be used.
* @this_controller:
* @the_device:
* @node_id:
*
*/
void scic_sds_controller_free_remote_node_context(
struct scic_sds_controller *this_controller,
struct scic_sds_remote_device *the_device,
u16 node_id)
{
u32 remote_node_count = scic_sds_remote_device_node_count(the_device);
if (this_controller->device_table[node_id] == the_device) {
this_controller->device_table[node_id] = SCI_INVALID_HANDLE;
scic_sds_remote_node_table_release_remote_node_index(
&this_controller->available_remote_nodes, remote_node_count, node_id
);
}
}
/**
* This method returns the union scu_remote_node_context for the specified remote
* node id.
* @this_controller:
* @node_id:
*
* union scu_remote_node_context*
*/
union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
struct scic_sds_controller *this_controller,
u16 node_id
) {
if (
(node_id < this_controller->remote_node_entries)
&& (this_controller->device_table[node_id] != SCI_INVALID_HANDLE)
) {
return &this_controller->remote_node_context_table[node_id];
}
return NULL;
}
/**
*
* @resposne_buffer: This is the buffer into which the D2H register FIS will be
* constructed.
* @frame_header: This is the frame header returned by the hardware.
* @frame_buffer: This is the frame buffer returned by the hardware.
*
* This method will combind the frame header and frame buffer to create a SATA
* D2H register FIS none
*/
void scic_sds_controller_copy_sata_response(
void *response_buffer,
void *frame_header,
void *frame_buffer)
{
memcpy(
response_buffer,
frame_header,
sizeof(u32)
);
memcpy(
(char *)((char *)response_buffer + sizeof(u32)),
frame_buffer,
sizeof(struct sata_fis_reg_d2h) - sizeof(u32)
);
}
/**
* This method releases the frame once this is done the frame is available for
* re-use by the hardware. The data contained in the frame header and frame
* buffer is no longer valid. The UF queue get pointer is only updated if UF
* control indicates this is appropriate.
* @this_controller:
* @frame_index:
*
*/
void scic_sds_controller_release_frame(
struct scic_sds_controller *this_controller,
u32 frame_index)
{
if (scic_sds_unsolicited_frame_control_release_frame(
&this_controller->uf_control, frame_index) == true)
SCU_UFQGP_WRITE(this_controller, this_controller->uf_control.get);
}
/**
* This method sets user parameters and OEM parameters to default values.
* Users can override these values utilizing the scic_user_parameters_set()
* and scic_oem_parameters_set() methods.
* @controller: This parameter specifies the controller for which to set the
* configuration parameters to their default values.
*
*/
static void scic_sds_controller_set_default_config_parameters(
struct scic_sds_controller *this_controller)
{
u16 index;
/* Default to no SSC operation. */
this_controller->oem_parameters.sds1.controller.do_enable_ssc = false;
/* Initialize all of the port parameter information to narrow ports. */
for (index = 0; index < SCI_MAX_PORTS; index++) {
this_controller->oem_parameters.sds1.ports[index].phy_mask = 0;
}
/* Initialize all of the phy parameter information. */
for (index = 0; index < SCI_MAX_PHYS; index++) {
/*
* Default to 3G (i.e. Gen 2) for now. User can override if
* they choose. */
this_controller->user_parameters.sds1.phys[index].max_speed_generation = 2;
/*
* Previous Vitesse based expanders had a arbitration issue that
* is worked around by having the upper 32-bits of SAS address
* with a value greater then the Vitesse company identifier.
* Hence, usage of 0x5FCFFFFF. */
this_controller->oem_parameters.sds1.phys[index].sas_address.low
= 0x00000001;
this_controller->oem_parameters.sds1.phys[index].sas_address.high
= 0x5FCFFFFF;
}
this_controller->user_parameters.sds1.stp_inactivity_timeout = 5;
this_controller->user_parameters.sds1.ssp_inactivity_timeout = 5;
this_controller->user_parameters.sds1.stp_max_occupancy_timeout = 5;
this_controller->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
this_controller->user_parameters.sds1.no_outbound_task_timeout = 5;
}
enum sci_status scic_controller_construct(struct scic_sds_controller *controller,
void __iomem *scu_base,
void __iomem *smu_base)
{
u8 index;
sci_base_controller_construct(
&controller->parent,
scic_sds_controller_state_table,
controller->memory_descriptors,
ARRAY_SIZE(controller->memory_descriptors),
NULL
);
controller->scu_registers = scu_base;
controller->smu_registers = smu_base;
scic_sds_port_configuration_agent_construct(&controller->port_agent);
/* Construct the ports for this controller */
for (index = 0; index < SCI_MAX_PORTS; index++)
scic_sds_port_construct(&controller->port_table[index],
index, controller);
scic_sds_port_construct(&controller->port_table[index],
SCIC_SDS_DUMMY_PORT, controller);
/* Construct the phys for this controller */
for (index = 0; index < SCI_MAX_PHYS; index++) {
/* Add all the PHYs to the dummy port */
scic_sds_phy_construct(
&controller->phy_table[index],
&controller->port_table[SCI_MAX_PORTS],
index
);
}
controller->invalid_phy_mask = 0;
/* Set the default maximum values */
controller->completion_event_entries = SCU_EVENT_COUNT;
controller->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT;
controller->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
controller->logical_port_entries = SCI_MAX_PORTS;
controller->task_context_entries = SCU_IO_REQUEST_COUNT;
controller->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT;
controller->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT;
/* Initialize the User and OEM parameters to default values. */
scic_sds_controller_set_default_config_parameters(controller);
return SCI_SUCCESS;
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_initialize(
struct scic_sds_controller *scic)
{
enum sci_status status = SCI_FAILURE_INVALID_STATE;
sci_base_controller_handler_t initialize;
u32 state;
state = scic->parent.state_machine.current_state_id;
initialize = scic_sds_controller_state_handler_table[state].base.initialize;
if (initialize)
status = initialize(&scic->parent);
else
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller initialize operation requested "
"in invalid state %d\n",
__func__,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(
scic)));
return status;
}
/* --------------------------------------------------------------------------- */
u32 scic_controller_get_suggested_start_timeout(
struct scic_sds_controller *sc)
{
/* Validate the user supplied parameters. */
if (sc == SCI_INVALID_HANDLE)
return 0;
/*
* The suggested minimum timeout value for a controller start operation:
*
* Signature FIS Timeout
* + Phy Start Timeout
* + Number of Phy Spin Up Intervals
* ---------------------------------
* Number of milliseconds for the controller start operation.
*
* NOTE: The number of phy spin up intervals will be equivalent
* to the number of phys divided by the number phys allowed
* per interval - 1 (once OEM parameters are supported).
* Currently we assume only 1 phy per interval. */
return (SCIC_SDS_SIGNATURE_FIS_TIMEOUT
+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL));
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_start(
struct scic_sds_controller *scic,
u32 timeout)
{
enum sci_status status = SCI_FAILURE_INVALID_STATE;
sci_base_controller_timed_handler_t start;
u32 state;
state = scic->parent.state_machine.current_state_id;
start = scic_sds_controller_state_handler_table[state].base.start;
if (start)
status = start(&scic->parent, timeout);
else
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller start operation requested in "
"invalid state %d\n",
__func__,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(
scic)));
return status;
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_stop(
struct scic_sds_controller *scic,
u32 timeout)
{
enum sci_status status = SCI_FAILURE_INVALID_STATE;
sci_base_controller_timed_handler_t stop;
u32 state;
state = scic->parent.state_machine.current_state_id;
stop = scic_sds_controller_state_handler_table[state].base.stop;
if (stop)
status = stop(&scic->parent, timeout);
else
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller stop operation requested in "
"invalid state %d\n",
__func__,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(
scic)));
return status;
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_reset(
struct scic_sds_controller *scic)
{
enum sci_status status = SCI_FAILURE_INVALID_STATE;
sci_base_controller_handler_t reset;
u32 state;
state = scic->parent.state_machine.current_state_id;
reset = scic_sds_controller_state_handler_table[state].base.reset;
if (reset)
status = reset(&scic->parent);
else
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller reset operation requested in "
"invalid state %d\n",
__func__,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(
scic)));
return status;
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_get_handler_methods(
enum scic_interrupt_type interrupt_type,
u16 message_count,
struct scic_controller_handler_methods *handler_methods)
{
enum sci_status status = SCI_FAILURE_UNSUPPORTED_MESSAGE_COUNT;
switch (interrupt_type) {
case SCIC_LEGACY_LINE_INTERRUPT_TYPE:
if (message_count == 0) {
handler_methods[0].interrupt_handler
= scic_sds_controller_legacy_interrupt_handler;
handler_methods[0].completion_handler
= scic_sds_controller_legacy_completion_handler;
status = SCI_SUCCESS;
}
break;
case SCIC_MSIX_INTERRUPT_TYPE:
if (message_count == 1) {
handler_methods[0].interrupt_handler
= scic_sds_controller_single_vector_interrupt_handler;
handler_methods[0].completion_handler
= scic_sds_controller_single_vector_completion_handler;
status = SCI_SUCCESS;
} else if (message_count == 2) {
handler_methods[0].interrupt_handler
= scic_sds_controller_normal_vector_interrupt_handler;
handler_methods[0].completion_handler
= scic_sds_controller_normal_vector_completion_handler;
handler_methods[1].interrupt_handler
= scic_sds_controller_error_vector_interrupt_handler;
handler_methods[1].completion_handler
= scic_sds_controller_error_vector_completion_handler;
status = SCI_SUCCESS;
}
break;
case SCIC_NO_INTERRUPTS:
if (message_count == 0) {
handler_methods[0].interrupt_handler
= scic_sds_controller_polling_interrupt_handler;
handler_methods[0].completion_handler
= scic_sds_controller_polling_completion_handler;
status = SCI_SUCCESS;
}
break;
default:
status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
break;
}
return status;
}
/* --------------------------------------------------------------------------- */
enum sci_io_status scic_controller_start_io(
struct scic_sds_controller *scic,
struct scic_sds_remote_device *remote_device,
struct scic_sds_request *io_request,
u16 io_tag)
{
u32 state;
sci_base_controller_start_request_handler_t start_io;
state = scic->parent.state_machine.current_state_id;
start_io = scic_sds_controller_state_handler_table[state].base.start_io;
return start_io(&scic->parent,
(struct sci_base_remote_device *) remote_device,
(struct sci_base_request *)io_request, io_tag);
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_terminate_request(
struct scic_sds_controller *scic,
struct scic_sds_remote_device *remote_device,
struct scic_sds_request *request)
{
sci_base_controller_request_handler_t terminate_request;
u32 state;
state = scic->parent.state_machine.current_state_id;
terminate_request = scic_sds_controller_state_handler_table[state].terminate_request;
return terminate_request(&scic->parent,
(struct sci_base_remote_device *)remote_device,
(struct sci_base_request *)request);
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_complete_io(
struct scic_sds_controller *scic,
struct scic_sds_remote_device *remote_device,
struct scic_sds_request *io_request)
{
u32 state;
sci_base_controller_request_handler_t complete_io;
state = scic->parent.state_machine.current_state_id;
complete_io = scic_sds_controller_state_handler_table[state].base.complete_io;
return complete_io(&scic->parent,
(struct sci_base_remote_device *)remote_device,
(struct sci_base_request *)io_request);
}
/* --------------------------------------------------------------------------- */
enum sci_task_status scic_controller_start_task(
struct scic_sds_controller *scic,
struct scic_sds_remote_device *remote_device,
struct scic_sds_request *task_request,
u16 task_tag)
{
u32 state;
sci_base_controller_start_request_handler_t start_task;
enum sci_task_status status = SCI_TASK_FAILURE_INVALID_STATE;
state = scic->parent.state_machine.current_state_id;
start_task = scic_sds_controller_state_handler_table[state].base.start_task;
if (start_task)
status = start_task(&scic->parent,
(struct sci_base_remote_device *)remote_device,
(struct sci_base_request *)task_request,
task_tag);
else
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller starting task from invalid "
"state\n",
__func__);
return status;
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_complete_task(
struct scic_sds_controller *scic,
struct scic_sds_remote_device *remote_device,
struct scic_sds_request *task_request)
{
u32 state;
sci_base_controller_request_handler_t complete_task;
enum sci_status status = SCI_FAILURE_INVALID_STATE;
state = scic->parent.state_machine.current_state_id;
complete_task = scic_sds_controller_state_handler_table[state].base.complete_task;
if (complete_task)
status = complete_task(&scic->parent,
(struct sci_base_remote_device *)remote_device,
(struct sci_base_request *)task_request);
else
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller completing task from invalid "
"state\n",
__func__);
return status;
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_get_port_handle(
struct scic_sds_controller *scic,
u8 port_index,
struct scic_sds_port **port_handle)
{
if (port_index < scic->logical_port_entries) {
*port_handle = &scic->port_table[port_index];
return SCI_SUCCESS;
}
return SCI_FAILURE_INVALID_PORT;
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_get_phy_handle(
struct scic_sds_controller *scic,
u8 phy_index,
struct scic_sds_phy **phy_handle)
{
if (phy_index < ARRAY_SIZE(scic->phy_table)) {
*phy_handle = &scic->phy_table[phy_index];
return SCI_SUCCESS;
}
dev_err(scic_to_dev(scic),
"%s: Controller:0x%p PhyId:0x%x invalid phy index\n",
__func__, scic, phy_index);
return SCI_FAILURE_INVALID_PHY;
}
/* --------------------------------------------------------------------------- */
u16 scic_controller_allocate_io_tag(
struct scic_sds_controller *scic)
{
u16 task_context;
u16 sequence_count;
if (!sci_pool_empty(scic->tci_pool)) {
sci_pool_get(scic->tci_pool, task_context);
sequence_count = scic->io_request_sequence[task_context];
return scic_sds_io_tag_construct(sequence_count, task_context);
}
return SCI_CONTROLLER_INVALID_IO_TAG;
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_free_io_tag(
struct scic_sds_controller *scic,
u16 io_tag)
{
u16 sequence;
u16 index;
BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
sequence = scic_sds_io_tag_get_sequence(io_tag);
index = scic_sds_io_tag_get_index(io_tag);
if (!sci_pool_full(scic->tci_pool)) {
if (sequence == scic->io_request_sequence[index]) {
scic_sds_io_sequence_increment(
scic->io_request_sequence[index]);
sci_pool_put(scic->tci_pool, index);
return SCI_SUCCESS;
}
}
return SCI_FAILURE_INVALID_IO_TAG;
}
/* --------------------------------------------------------------------------- */
void scic_controller_enable_interrupts(
struct scic_sds_controller *scic)
{
BUG_ON(scic->smu_registers == NULL);
SMU_IMR_WRITE(scic, 0x00000000);
}
/* --------------------------------------------------------------------------- */
void scic_controller_disable_interrupts(
struct scic_sds_controller *scic)
{
BUG_ON(scic->smu_registers == NULL);
SMU_IMR_WRITE(scic, 0xffffffff);
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_controller_set_mode(
struct scic_sds_controller *scic,
enum sci_controller_mode operating_mode)
{
enum sci_status status = SCI_SUCCESS;
if ((scic->parent.state_machine.current_state_id ==
SCI_BASE_CONTROLLER_STATE_INITIALIZING) ||
(scic->parent.state_machine.current_state_id ==
SCI_BASE_CONTROLLER_STATE_INITIALIZED)) {
switch (operating_mode) {
case SCI_MODE_SPEED:
scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
scic->task_context_entries = SCU_IO_REQUEST_COUNT;
scic->uf_control.buffers.count =
SCU_UNSOLICITED_FRAME_COUNT;
scic->completion_event_entries = SCU_EVENT_COUNT;
scic->completion_queue_entries =
SCU_COMPLETION_QUEUE_COUNT;
scic_sds_controller_build_memory_descriptor_table(scic);
break;
case SCI_MODE_SIZE:
scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES;
scic->task_context_entries = SCI_MIN_IO_REQUESTS;
scic->uf_control.buffers.count =
SCU_MIN_UNSOLICITED_FRAMES;
scic->completion_event_entries = SCU_MIN_EVENTS;
scic->completion_queue_entries =
SCU_MIN_COMPLETION_QUEUE_ENTRIES;
scic_sds_controller_build_memory_descriptor_table(scic);
break;
default:
status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
break;
}
} else
status = SCI_FAILURE_INVALID_STATE;
return status;
}
/**
* scic_sds_controller_reset_hardware() -
*
* This method will reset the controller hardware.
*/
void scic_sds_controller_reset_hardware(
struct scic_sds_controller *scic)
{
/* Disable interrupts so we dont take any spurious interrupts */
scic_controller_disable_interrupts(scic);
/* Reset the SCU */
SMU_SMUSRCR_WRITE(scic, 0xFFFFFFFF);
/* Delay for 1ms to before clearing the CQP and UFQPR. */
scic_cb_stall_execution(1000);
/* The write to the CQGR clears the CQP */
SMU_CQGR_WRITE(scic, 0x00000000);
/* The write to the UFQGP clears the UFQPR */
SCU_UFQGP_WRITE(scic, 0x00000000);
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_user_parameters_set(
struct scic_sds_controller *scic,
union scic_user_parameters *scic_parms)
{
if (
(scic->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_RESET)
|| (scic->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_INITIALIZING)
|| (scic->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_INITIALIZED)
) {
u16 index;
/*
* Validate the user parameters. If they are not legal, then
* return a failure. */
for (index = 0; index < SCI_MAX_PHYS; index++) {
if (!
(scic_parms->sds1.phys[index].max_speed_generation
<= SCIC_SDS_PARM_MAX_SPEED
&& scic_parms->sds1.phys[index].max_speed_generation
> SCIC_SDS_PARM_NO_SPEED
)
)
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
return SCI_SUCCESS;
}
return SCI_FAILURE_INVALID_STATE;
}
/* --------------------------------------------------------------------------- */
void scic_user_parameters_get(
struct scic_sds_controller *scic,
union scic_user_parameters *scic_parms)
{
memcpy(scic_parms, (&scic->user_parameters), sizeof(*scic_parms));
}
/* --------------------------------------------------------------------------- */
enum sci_status scic_oem_parameters_set(
struct scic_sds_controller *scic,
union scic_oem_parameters *scic_parms)
{
if (
(scic->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_RESET)
|| (scic->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_INITIALIZING)
|| (scic->parent.state_machine.current_state_id
== SCI_BASE_CONTROLLER_STATE_INITIALIZED)
) {
u16 index;
/*
* Validate the oem parameters. If they are not legal, then
* return a failure. */
for (index = 0; index < SCI_MAX_PORTS; index++) {
if (scic_parms->sds1.ports[index].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) {
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
}
for (index = 0; index < SCI_MAX_PHYS; index++) {
if (
scic_parms->sds1.phys[index].sas_address.high == 0
&& scic_parms->sds1.phys[index].sas_address.low == 0
) {
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
}
memcpy(&scic->oem_parameters, scic_parms, sizeof(*scic_parms));
return SCI_SUCCESS;
}
return SCI_FAILURE_INVALID_STATE;
}
/* --------------------------------------------------------------------------- */
void scic_oem_parameters_get(
struct scic_sds_controller *scic,
union scic_oem_parameters *scic_parms)
{
memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
}
/* --------------------------------------------------------------------------- */
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
#define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
#define INTERRUPT_COALESCE_NUMBER_MAX 256
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
enum sci_status scic_controller_set_interrupt_coalescence(
struct scic_sds_controller *scic_controller,
u32 coalesce_number,
u32 coalesce_timeout)
{
u8 timeout_encode = 0;
u32 min = 0;
u32 max = 0;
/* Check if the input parameters fall in the range. */
if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
/*
* Defined encoding for interrupt coalescing timeout:
* Value Min Max Units
* ----- --- --- -----
* 0 - - Disabled
* 1 13.3 20.0 ns
* 2 26.7 40.0
* 3 53.3 80.0
* 4 106.7 160.0
* 5 213.3 320.0
* 6 426.7 640.0
* 7 853.3 1280.0
* 8 1.7 2.6 us
* 9 3.4 5.1
* 10 6.8 10.2
* 11 13.7 20.5
* 12 27.3 41.0
* 13 54.6 81.9
* 14 109.2 163.8
* 15 218.5 327.7
* 16 436.9 655.4
* 17 873.8 1310.7
* 18 1.7 2.6 ms
* 19 3.5 5.2
* 20 7.0 10.5
* 21 14.0 21.0
* 22 28.0 41.9
* 23 55.9 83.9
* 24 111.8 167.8
* 25 223.7 335.5
* 26 447.4 671.1
* 27 894.8 1342.2
* 28 1.8 2.7 s
* Others Undefined */
/*
* Use the table above to decide the encode of interrupt coalescing timeout
* value for register writing. */
if (coalesce_timeout == 0)
timeout_encode = 0;
else{
/* make the timeout value in unit of (10 ns). */
coalesce_timeout = coalesce_timeout * 100;
min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
/* get the encode of timeout for register writing. */
for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
timeout_encode++) {
if (min <= coalesce_timeout && max > coalesce_timeout)
break;
else if (coalesce_timeout >= max && coalesce_timeout < min * 2
&& coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
break;
else{
timeout_encode++;
break;
}
} else {
max = max * 2;
min = min * 2;
}
}
if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
/* the value is out of range. */
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
SMU_ICC_WRITE(
scic_controller,
(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
SMU_ICC_GEN_VAL(TIMER, timeout_encode))
);
scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
return SCI_SUCCESS;
}
struct scic_sds_controller *scic_controller_alloc(struct device *dev)
{
return devm_kzalloc(dev, sizeof(struct scic_sds_controller), GFP_KERNEL);
}
/*
* *****************************************************************************
* * DEFAULT STATE HANDLERS
* ***************************************************************************** */
/**
*
* @controller: This is struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @remote_device: This is struct sci_base_remote_device which, if it was used, would
* be cast to a struct scic_sds_remote_device.
* @io_request: This is the struct sci_base_request which, if it was used, would be
* cast to a SCIC_SDS_IO_REQUEST.
* @io_tag: This is the IO tag to be assigned to the IO request or
* SCI_CONTROLLER_INVALID_IO_TAG.
*
* This method is called when the struct scic_sds_controller default start io/task
* handler is in place. - Issue a warning message enum sci_status
* SCI_FAILURE_INVALID_STATE
*/
static enum sci_status scic_sds_controller_default_start_operation_handler(
struct sci_base_controller *controller,
struct sci_base_remote_device *remote_device,
struct sci_base_request *io_request,
u16 io_tag)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)controller;
dev_warn(scic_to_dev(this_controller),
"%s: SCIC Controller requested to start an io/task from "
"invalid state %d\n",
__func__,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(
this_controller)));
return SCI_FAILURE_INVALID_STATE;
}
/**
*
* @controller: This is struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @remote_device: This is struct sci_base_remote_device which, if it was used, would
* be cast to a struct scic_sds_remote_device.
* @io_request: This is the struct sci_base_request which, if it was used, would be
* cast to a SCIC_SDS_IO_REQUEST.
*
* This method is called when the struct scic_sds_controller default request handler
* is in place. - Issue a warning message enum sci_status SCI_FAILURE_INVALID_STATE
*/
static enum sci_status scic_sds_controller_default_request_handler(
struct sci_base_controller *controller,
struct sci_base_remote_device *remote_device,
struct sci_base_request *io_request)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)controller;
dev_warn(scic_to_dev(this_controller),
"%s: SCIC Controller request operation from invalid state %d\n",
__func__,
sci_base_state_machine_get_state(
scic_sds_controller_get_base_state_machine(
this_controller)));
return SCI_FAILURE_INVALID_STATE;
}
/*
* *****************************************************************************
* * GENERAL (COMMON) STATE HANDLERS
* ***************************************************************************** */
/**
*
* @controller: The struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
*
* This method is called when the struct scic_sds_controller is in the ready state
* reset handler is in place. - Transition to
* SCI_BASE_CONTROLLER_STATE_RESETTING enum sci_status SCI_SUCCESS
*/
static enum sci_status scic_sds_controller_general_reset_handler(
struct sci_base_controller *controller)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)controller;
/*
* The reset operation is not a graceful cleanup just perform the state
* transition. */
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_RESETTING
);
return SCI_SUCCESS;
}
/*
* *****************************************************************************
* * RESET STATE HANDLERS
* ***************************************************************************** */
/**
*
* @controller: This is the struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
*
* This method is the struct scic_sds_controller initialize handler for the reset
* state. - Currently this function does nothing enum sci_status SCI_FAILURE This
* function is not yet implemented and is a valid request from the reset state.
*/
static enum sci_status scic_sds_controller_reset_state_initialize_handler(
struct sci_base_controller *controller)
{
u32 index;
enum sci_status result = SCI_SUCCESS;
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)controller;
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_INITIALIZING
);
this_controller->timeout_timer = scic_cb_timer_create(
this_controller,
(void (*)(void *))scic_sds_controller_timeout_handler,
(void (*)(void *))controller);
scic_sds_controller_initialize_phy_startup(this_controller);
scic_sds_controller_initialize_power_control(this_controller);
/*
* There is nothing to do here for B0 since we do not have to
* program the AFE registers.
* / @todo The AFE settings are supposed to be correct for the B0 but
* / presently they seem to be wrong. */
scic_sds_controller_afe_initialization(this_controller);
if (SCI_SUCCESS == result) {
u32 status;
u32 terminate_loop;
/* Take the hardware out of reset */
SMU_SMUSRCR_WRITE(this_controller, 0x00000000);
/*
* / @todo Provide meaningfull error code for hardware failure
* result = SCI_FAILURE_CONTROLLER_HARDWARE; */
result = SCI_FAILURE;
terminate_loop = 100;
while (terminate_loop-- && (result != SCI_SUCCESS)) {
/* Loop until the hardware reports success */
scic_cb_stall_execution(SCU_CONTEXT_RAM_INIT_STALL_TIME);
status = SMU_SMUCSR_READ(this_controller);
if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) {
result = SCI_SUCCESS;
}
}
}
if (result == SCI_SUCCESS) {
u32 max_supported_ports;
u32 max_supported_devices;
u32 max_supported_io_requests;
u32 device_context_capacity;
/*
* Determine what are the actaul device capacities that the
* hardware will support */
device_context_capacity = SMU_DCC_READ(this_controller);
max_supported_ports =
smu_dcc_get_max_ports(device_context_capacity);
max_supported_devices =
smu_dcc_get_max_remote_node_context(device_context_capacity);
max_supported_io_requests =
smu_dcc_get_max_task_context(device_context_capacity);
/* Make all PEs that are unassigned match up with the logical ports */
for (index = 0; index < max_supported_ports; index++) {
scu_register_write(
this_controller,
this_controller->scu_registers->peg0.ptsg.protocol_engine[index],
index
);
}
/* Record the smaller of the two capacity values */
this_controller->logical_port_entries =
min(max_supported_ports, this_controller->logical_port_entries);
this_controller->task_context_entries =
min(max_supported_io_requests, this_controller->task_context_entries);
this_controller->remote_node_entries =
min(max_supported_devices, this_controller->remote_node_entries);
/*
* Now that we have the correct hardware reported minimum values
* build the MDL for the controller. Default to a performance
* configuration. */
scic_controller_set_mode(this_controller, SCI_MODE_SPEED);
}
/* Initialize hardware PCI Relaxed ordering in DMA engines */
if (result == SCI_SUCCESS) {
u32 dma_configuration;
/* Configure the payload DMA */
dma_configuration = SCU_PDMACR_READ(this_controller);
dma_configuration |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
SCU_PDMACR_WRITE(this_controller, dma_configuration);
/* Configure the control DMA */
dma_configuration = SCU_CDMACR_READ(this_controller);
dma_configuration |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
SCU_CDMACR_WRITE(this_controller, dma_configuration);
}
/*
* Initialize the PHYs before the PORTs because the PHY registers
* are accessed during the port initialization. */
if (result == SCI_SUCCESS) {
/* Initialize the phys */
for (index = 0;
(result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
index++) {
result = scic_sds_phy_initialize(
&this_controller->phy_table[index],
&this_controller->scu_registers->peg0.pe[index].ll
);
}
}
if (result == SCI_SUCCESS) {
/* Initialize the logical ports */
for (index = 0;
(index < this_controller->logical_port_entries)
&& (result == SCI_SUCCESS);
index++) {
result = scic_sds_port_initialize(
&this_controller->port_table[index],
&this_controller->scu_registers->peg0.pe[index].tl,
&this_controller->scu_registers->peg0.ptsg.port[index],
&this_controller->scu_registers->peg0.ptsg.protocol_engine,
&this_controller->scu_registers->peg0.viit[index]
);
}
}
if (SCI_SUCCESS == result) {
result = scic_sds_port_configuration_agent_initialize(
this_controller,
&this_controller->port_agent
);
}
/* Advance the controller state machine */
if (result == SCI_SUCCESS) {
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_INITIALIZED
);
} else {
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_FAILED
);
}
return result;
}
/*
* *****************************************************************************
* * INITIALIZED STATE HANDLERS
* ***************************************************************************** */
/**
*
* @controller: This is the struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @timeout: This is the allowed time for the controller object to reach the
* started state.
*
* This method is the struct scic_sds_controller start handler for the initialized
* state. - Validate we have a good memory descriptor table - Initialze the
* physical memory before programming the hardware - Program the SCU hardware
* with the physical memory addresses passed in the memory descriptor table. -
* Initialzie the TCi pool - Initialize the RNi pool - Initialize the
* completion queue - Initialize the unsolicited frame data - Take the SCU port
* task scheduler out of reset - Start the first phy object. - Transition to
* SCI_BASE_CONTROLLER_STATE_STARTING. enum sci_status SCI_SUCCESS if all of the
* controller start operations complete
* SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD if one or more of the memory
* descriptor fields is invalid.
*/
static enum sci_status scic_sds_controller_initialized_state_start_handler(
struct sci_base_controller *controller,
u32 timeout)
{
u16 index;
enum sci_status result;
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)controller;
/* Make sure that the SCI User filled in the memory descriptor table correctly */
result = scic_sds_controller_validate_memory_descriptor_table(this_controller);
if (result == SCI_SUCCESS) {
/* The memory descriptor list looks good so program the hardware */
scic_sds_controller_ram_initialization(this_controller);
}
if (SCI_SUCCESS == result) {
/* Build the TCi free pool */
sci_pool_initialize(this_controller->tci_pool);
for (index = 0; index < this_controller->task_context_entries; index++) {
sci_pool_put(this_controller->tci_pool, index);
}
/* Build the RNi free pool */
scic_sds_remote_node_table_initialize(
&this_controller->available_remote_nodes,
this_controller->remote_node_entries
);
}
if (SCI_SUCCESS == result) {
/*
* Before anything else lets make sure we will not be interrupted
* by the hardware. */
scic_controller_disable_interrupts(this_controller);
/* Enable the port task scheduler */
scic_sds_controller_enable_port_task_scheduler(this_controller);
/* Assign all the task entries to this controller physical function */
scic_sds_controller_assign_task_entries(this_controller);
/* Now initialze the completion queue */
scic_sds_controller_initialize_completion_queue(this_controller);
/* Initialize the unsolicited frame queue for use */
scic_sds_controller_initialize_unsolicited_frame_queue(this_controller);
}
if (SCI_SUCCESS == result) {
scic_sds_controller_start_next_phy(this_controller);
scic_cb_timer_start(this_controller,
this_controller->timeout_timer,
timeout);
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_STARTING
);
}
return result;
}
/*
* *****************************************************************************
* * INITIALIZED STATE HANDLERS
* ***************************************************************************** */
/**
*
* @controller: This is struct scic_sds_controller which receives the link up
* notification.
* @port: This is struct scic_sds_port with which the phy is associated.
* @phy: This is the struct scic_sds_phy which has gone link up.
*
* This method is called when the struct scic_sds_controller is in the starting state
* link up handler is called. This method will perform the following: - Stop
* the phy timer - Start the next phy - Report the link up condition to the
* port object none
*/
static void scic_sds_controller_starting_state_link_up_handler(
struct scic_sds_controller *this_controller,
struct scic_sds_port *port,
struct scic_sds_phy *phy)
{
scic_sds_controller_phy_timer_stop(this_controller);
this_controller->port_agent.link_up_handler(
this_controller, &this_controller->port_agent, port, phy
);
/* scic_sds_port_link_up(port, phy); */
scic_sds_controller_start_next_phy(this_controller);
}
/**
*
* @controller: This is struct scic_sds_controller which receives the link down
* notification.
* @port: This is struct scic_sds_port with which the phy is associated.
* @phy: This is the struct scic_sds_phy which has gone link down.
*
* This method is called when the struct scic_sds_controller is in the starting state
* link down handler is called. - Report the link down condition to the port
* object none
*/
static void scic_sds_controller_starting_state_link_down_handler(
struct scic_sds_controller *this_controller,
struct scic_sds_port *port,
struct scic_sds_phy *phy)
{
this_controller->port_agent.link_down_handler(
this_controller, &this_controller->port_agent, port, phy
);
/* scic_sds_port_link_down(port, phy); */
}
/*
* *****************************************************************************
* * READY STATE HANDLERS
* ***************************************************************************** */
/**
*
* @controller: The struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @timeout: The timeout for when the stop operation should report a failure.
*
* This method is called when the struct scic_sds_controller is in the ready state
* stop handler is called. - Start the timeout timer - Transition to
* SCI_BASE_CONTROLLER_STATE_STOPPING. enum sci_status SCI_SUCCESS
*/
static enum sci_status scic_sds_controller_ready_state_stop_handler(
struct sci_base_controller *controller,
u32 timeout)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)controller;
scic_cb_timer_start(this_controller,
this_controller->timeout_timer,
timeout);
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_STOPPING
);
return SCI_SUCCESS;
}
/**
*
* @controller: This is struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @remote_device: This is struct sci_base_remote_device which is cast to a
* struct scic_sds_remote_device object.
* @io_request: This is the struct sci_base_request which is cast to a
* SCIC_SDS_IO_REQUEST object.
* @io_tag: This is the IO tag to be assigned to the IO request or
* SCI_CONTROLLER_INVALID_IO_TAG.
*
* This method is called when the struct scic_sds_controller is in the ready state and
* the start io handler is called. - Start the io request on the remote device
* - if successful - assign the io_request to the io_request_table - post the
* request to the hardware enum sci_status SCI_SUCCESS if the start io operation
* succeeds SCI_FAILURE_INSUFFICIENT_RESOURCES if the IO tag could not be
* allocated for the io request. SCI_FAILURE_INVALID_STATE if one or more
* objects are not in a valid state to accept io requests. How does the io_tag
* parameter get assigned to the io request?
*/
static enum sci_status scic_sds_controller_ready_state_start_io_handler(
struct sci_base_controller *controller,
struct sci_base_remote_device *remote_device,
struct sci_base_request *io_request,
u16 io_tag)
{
enum sci_status status;
struct scic_sds_controller *this_controller;
struct scic_sds_request *the_request;
struct scic_sds_remote_device *the_device;
this_controller = (struct scic_sds_controller *)controller;
the_request = (struct scic_sds_request *)io_request;
the_device = (struct scic_sds_remote_device *)remote_device;
status = scic_sds_remote_device_start_io(this_controller, the_device, the_request);
if (status == SCI_SUCCESS) {
this_controller->io_request_table[
scic_sds_io_tag_get_index(the_request->io_tag)] = the_request;
scic_sds_controller_post_request(
this_controller,
scic_sds_request_get_post_context(the_request)
);
}
return status;
}
/**
*
* @controller: This is struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @remote_device: This is struct sci_base_remote_device which is cast to a
* struct scic_sds_remote_device object.
* @io_request: This is the struct sci_base_request which is cast to a
* SCIC_SDS_IO_REQUEST object.
*
* This method is called when the struct scic_sds_controller is in the ready state and
* the complete io handler is called. - Complete the io request on the remote
* device - if successful - remove the io_request to the io_request_table
* enum sci_status SCI_SUCCESS if the start io operation succeeds
* SCI_FAILURE_INVALID_STATE if one or more objects are not in a valid state to
* accept io requests.
*/
static enum sci_status scic_sds_controller_ready_state_complete_io_handler(
struct sci_base_controller *controller,
struct sci_base_remote_device *remote_device,
struct sci_base_request *io_request)
{
u16 index;
enum sci_status status;
struct scic_sds_controller *this_controller;
struct scic_sds_request *the_request;
struct scic_sds_remote_device *the_device;
this_controller = (struct scic_sds_controller *)controller;
the_request = (struct scic_sds_request *)io_request;
the_device = (struct scic_sds_remote_device *)remote_device;
status = scic_sds_remote_device_complete_io(
this_controller, the_device, the_request);
if (status == SCI_SUCCESS) {
index = scic_sds_io_tag_get_index(the_request->io_tag);
this_controller->io_request_table[index] = SCI_INVALID_HANDLE;
}
return status;
}
/**
*
* @controller: This is struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @remote_device: This is struct sci_base_remote_device which is cast to a
* struct scic_sds_remote_device object.
* @io_request: This is the struct sci_base_request which is cast to a
* SCIC_SDS_IO_REQUEST object.
*
* This method is called when the struct scic_sds_controller is in the ready state and
* the continue io handler is called. enum sci_status
*/
static enum sci_status scic_sds_controller_ready_state_continue_io_handler(
struct sci_base_controller *controller,
struct sci_base_remote_device *remote_device,
struct sci_base_request *io_request)
{
struct scic_sds_controller *this_controller;
struct scic_sds_request *the_request;
the_request = (struct scic_sds_request *)io_request;
this_controller = (struct scic_sds_controller *)controller;
this_controller->io_request_table[
scic_sds_io_tag_get_index(the_request->io_tag)] = the_request;
scic_sds_controller_post_request(
this_controller,
scic_sds_request_get_post_context(the_request)
);
return SCI_SUCCESS;
}
/**
*
* @controller: This is struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @remote_device: This is struct sci_base_remote_device which is cast to a
* struct scic_sds_remote_device object.
* @io_request: This is the struct sci_base_request which is cast to a
* SCIC_SDS_IO_REQUEST object.
* @task_tag: This is the task tag to be assigned to the task request or
* SCI_CONTROLLER_INVALID_IO_TAG.
*
* This method is called when the struct scic_sds_controller is in the ready state and
* the start task handler is called. - The remote device is requested to start
* the task request - if successful - assign the task to the io_request_table -
* post the request to the SCU hardware enum sci_status SCI_SUCCESS if the start io
* operation succeeds SCI_FAILURE_INSUFFICIENT_RESOURCES if the IO tag could
* not be allocated for the io request. SCI_FAILURE_INVALID_STATE if one or
* more objects are not in a valid state to accept io requests. How does the io
* tag get assigned in this code path?
*/
static enum sci_status scic_sds_controller_ready_state_start_task_handler(
struct sci_base_controller *controller,
struct sci_base_remote_device *remote_device,
struct sci_base_request *io_request,
u16 task_tag)
{
struct scic_sds_controller *this_controller = (struct scic_sds_controller *)
controller;
struct scic_sds_request *the_request = (struct scic_sds_request *)
io_request;
struct scic_sds_remote_device *the_device = (struct scic_sds_remote_device *)
remote_device;
enum sci_status status;
status = scic_sds_remote_device_start_task(
this_controller, the_device, the_request
);
if (status == SCI_SUCCESS) {
this_controller->io_request_table[
scic_sds_io_tag_get_index(the_request->io_tag)] = the_request;
scic_sds_controller_post_request(
this_controller,
scic_sds_request_get_post_context(the_request)
);
} else if (status == SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS) {
this_controller->io_request_table[
scic_sds_io_tag_get_index(the_request->io_tag)] = the_request;
/*
* We will let framework know this task request started successfully,
* although core is still woring on starting the request (to post tc when
* RNC is resumed.) */
status = SCI_SUCCESS;
}
return status;
}
/**
*
* @controller: This is struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @remote_device: This is struct sci_base_remote_device which is cast to a
* struct scic_sds_remote_device object.
* @io_request: This is the struct sci_base_request which is cast to a
* SCIC_SDS_IO_REQUEST object.
*
* This method is called when the struct scic_sds_controller is in the ready state and
* the terminate request handler is called. - call the io request terminate
* function - if successful - post the terminate request to the SCU hardware
* enum sci_status SCI_SUCCESS if the start io operation succeeds
* SCI_FAILURE_INVALID_STATE if one or more objects are not in a valid state to
* accept io requests.
*/
static enum sci_status scic_sds_controller_ready_state_terminate_request_handler(
struct sci_base_controller *controller,
struct sci_base_remote_device *remote_device,
struct sci_base_request *io_request)
{
struct scic_sds_controller *this_controller = (struct scic_sds_controller *)
controller;
struct scic_sds_request *the_request = (struct scic_sds_request *)
io_request;
enum sci_status status;
status = scic_sds_io_request_terminate(the_request);
if (status == SCI_SUCCESS) {
/*
* Utilize the original post context command and or in the POST_TC_ABORT
* request sub-type. */
scic_sds_controller_post_request(
this_controller,
scic_sds_request_get_post_context(the_request)
| SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT
);
}
return status;
}
/**
*
* @controller: This is struct scic_sds_controller which receives the link up
* notification.
* @port: This is struct scic_sds_port with which the phy is associated.
* @phy: This is the struct scic_sds_phy which has gone link up.
*
* This method is called when the struct scic_sds_controller is in the starting state
* link up handler is called. This method will perform the following: - Stop
* the phy timer - Start the next phy - Report the link up condition to the
* port object none
*/
static void scic_sds_controller_ready_state_link_up_handler(
struct scic_sds_controller *this_controller,
struct scic_sds_port *port,
struct scic_sds_phy *phy)
{
this_controller->port_agent.link_up_handler(
this_controller, &this_controller->port_agent, port, phy
);
}
/**
*
* @controller: This is struct scic_sds_controller which receives the link down
* notification.
* @port: This is struct scic_sds_port with which the phy is associated.
* @phy: This is the struct scic_sds_phy which has gone link down.
*
* This method is called when the struct scic_sds_controller is in the starting state
* link down handler is called. - Report the link down condition to the port
* object none
*/
static void scic_sds_controller_ready_state_link_down_handler(
struct scic_sds_controller *this_controller,
struct scic_sds_port *port,
struct scic_sds_phy *phy)
{
this_controller->port_agent.link_down_handler(
this_controller, &this_controller->port_agent, port, phy
);
}
/*
* *****************************************************************************
* * STOPPING STATE HANDLERS
* ***************************************************************************** */
/**
*
* @controller: This is struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @remote_device: This is struct sci_base_remote_device which is cast to a
* struct scic_sds_remote_device object.
* @io_request: This is the struct sci_base_request which is cast to a
* SCIC_SDS_IO_REQUEST object.
*
* This method is called when the struct scic_sds_controller is in a stopping state
* and the complete io handler is called. - This function is not yet
* implemented enum sci_status SCI_FAILURE
*/
static enum sci_status scic_sds_controller_stopping_state_complete_io_handler(
struct sci_base_controller *controller,
struct sci_base_remote_device *remote_device,
struct sci_base_request *io_request)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)controller;
/* / @todo Implement this function */
return SCI_FAILURE;
}
/**
*
* @controller: This is struct sci_base_controller object which is cast into a
* struct scic_sds_controller object.
* @remote_device: This is struct sci_base_remote_device which is cast to a
* struct scic_sds_remote_device object.
* @io_request: This is the struct sci_base_request which is cast to a
* SCIC_SDS_IO_REQUEST object.
*
* This method is called when the struct scic_sds_controller is in a stopping state
* and the complete task handler is called. - This function is not yet
* implemented enum sci_status SCI_FAILURE
*/
/*
* *****************************************************************************
* * STOPPED STATE HANDLERS
* ***************************************************************************** */
/*
* *****************************************************************************
* * FAILED STATE HANDLERS
* ***************************************************************************** */
const struct scic_sds_controller_state_handler scic_sds_controller_state_handler_table[] = {
[SCI_BASE_CONTROLLER_STATE_INITIAL] = {
.base.start_io = scic_sds_controller_default_start_operation_handler,
.base.complete_io = scic_sds_controller_default_request_handler,
.base.continue_io = scic_sds_controller_default_request_handler,
.terminate_request = scic_sds_controller_default_request_handler,
},
[SCI_BASE_CONTROLLER_STATE_RESET] = {
.base.initialize = scic_sds_controller_reset_state_initialize_handler,
.base.start_io = scic_sds_controller_default_start_operation_handler,
.base.complete_io = scic_sds_controller_default_request_handler,
.base.continue_io = scic_sds_controller_default_request_handler,
.terminate_request = scic_sds_controller_default_request_handler,
},
[SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {
.base.start_io = scic_sds_controller_default_start_operation_handler,
.base.complete_io = scic_sds_controller_default_request_handler,
.base.continue_io = scic_sds_controller_default_request_handler,
.terminate_request = scic_sds_controller_default_request_handler,
},
[SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {
.base.start = scic_sds_controller_initialized_state_start_handler,
.base.start_io = scic_sds_controller_default_start_operation_handler,
.base.complete_io = scic_sds_controller_default_request_handler,
.base.continue_io = scic_sds_controller_default_request_handler,
.terminate_request = scic_sds_controller_default_request_handler,
},
[SCI_BASE_CONTROLLER_STATE_STARTING] = {
.base.start_io = scic_sds_controller_default_start_operation_handler,
.base.complete_io = scic_sds_controller_default_request_handler,
.base.continue_io = scic_sds_controller_default_request_handler,
.terminate_request = scic_sds_controller_default_request_handler,
.link_up = scic_sds_controller_starting_state_link_up_handler,
.link_down = scic_sds_controller_starting_state_link_down_handler
},
[SCI_BASE_CONTROLLER_STATE_READY] = {
.base.stop = scic_sds_controller_ready_state_stop_handler,
.base.reset = scic_sds_controller_general_reset_handler,
.base.start_io = scic_sds_controller_ready_state_start_io_handler,
.base.complete_io = scic_sds_controller_ready_state_complete_io_handler,
.base.continue_io = scic_sds_controller_ready_state_continue_io_handler,
.base.start_task = scic_sds_controller_ready_state_start_task_handler,
.base.complete_task = scic_sds_controller_ready_state_complete_io_handler,
.terminate_request = scic_sds_controller_ready_state_terminate_request_handler,
.link_up = scic_sds_controller_ready_state_link_up_handler,
.link_down = scic_sds_controller_ready_state_link_down_handler
},
[SCI_BASE_CONTROLLER_STATE_RESETTING] = {
.base.start_io = scic_sds_controller_default_start_operation_handler,
.base.complete_io = scic_sds_controller_default_request_handler,
.base.continue_io = scic_sds_controller_default_request_handler,
.terminate_request = scic_sds_controller_default_request_handler,
},
[SCI_BASE_CONTROLLER_STATE_STOPPING] = {
.base.start_io = scic_sds_controller_default_start_operation_handler,
.base.complete_io = scic_sds_controller_stopping_state_complete_io_handler,
.base.continue_io = scic_sds_controller_default_request_handler,
.terminate_request = scic_sds_controller_default_request_handler,
},
[SCI_BASE_CONTROLLER_STATE_STOPPED] = {
.base.reset = scic_sds_controller_general_reset_handler,
.base.start_io = scic_sds_controller_default_start_operation_handler,
.base.complete_io = scic_sds_controller_default_request_handler,
.base.continue_io = scic_sds_controller_default_request_handler,
.terminate_request = scic_sds_controller_default_request_handler,
},
[SCI_BASE_CONTROLLER_STATE_FAILED] = {
.base.reset = scic_sds_controller_general_reset_handler,
.base.start_io = scic_sds_controller_default_start_operation_handler,
.base.complete_io = scic_sds_controller_default_request_handler,
.base.continue_io = scic_sds_controller_default_request_handler,
.terminate_request = scic_sds_controller_default_request_handler,
},
};
/**
*
* @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller
* object.
*
* This method implements the actions taken by the struct scic_sds_controller on entry
* to the SCI_BASE_CONTROLLER_STATE_INITIAL. - Set the state handlers to the
* controllers initial state. none This function should initialze the
* controller object.
*/
static void scic_sds_controller_initial_state_enter(
struct sci_base_object *object)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)object;
sci_base_state_machine_change_state(
&this_controller->parent.state_machine, SCI_BASE_CONTROLLER_STATE_RESET);
}
/**
*
* @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller
* object.
*
* This method implements the actions taken by the struct scic_sds_controller on exit
* from the SCI_BASE_CONTROLLER_STATE_STARTING. - This function stops the
* controller starting timeout timer. none
*/
static void scic_sds_controller_starting_state_exit(
struct sci_base_object *object)
{
struct scic_sds_controller *scic = (struct scic_sds_controller *)object;
scic_cb_timer_stop(scic, scic->timeout_timer);
}
/**
*
* @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller
* object.
*
* This method implements the actions taken by the struct scic_sds_controller on entry
* to the SCI_BASE_CONTROLLER_STATE_READY. - Set the state handlers to the
* controllers ready state. none
*/
static void scic_sds_controller_ready_state_enter(
struct sci_base_object *object)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)object;
/* set the default interrupt coalescence number and timeout value. */
scic_controller_set_interrupt_coalescence(
this_controller, 0x10, 250);
}
/**
*
* @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller
* object.
*
* This method implements the actions taken by the struct scic_sds_controller on exit
* from the SCI_BASE_CONTROLLER_STATE_READY. - This function does nothing. none
*/
static void scic_sds_controller_ready_state_exit(
struct sci_base_object *object)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)object;
/* disable interrupt coalescence. */
scic_controller_set_interrupt_coalescence(this_controller, 0, 0);
}
/**
*
* @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller
* object.
*
* This method implements the actions taken by the struct scic_sds_controller on entry
* to the SCI_BASE_CONTROLLER_STATE_READY. - Set the state handlers to the
* controllers ready state. - Stop the phys on this controller - Stop the ports
* on this controller - Stop all of the remote devices on this controller none
*/
static void scic_sds_controller_stopping_state_enter(
struct sci_base_object *object)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)object;
/* Stop all of the components for this controller */
scic_sds_controller_stop_phys(this_controller);
scic_sds_controller_stop_ports(this_controller);
scic_sds_controller_stop_devices(this_controller);
}
/**
*
* @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller
* object.
*
* This method implements the actions taken by the struct scic_sds_controller on exit
* from the SCI_BASE_CONTROLLER_STATE_STOPPING. - This function stops the
* controller stopping timeout timer. none
*/
static void scic_sds_controller_stopping_state_exit(
struct sci_base_object *object)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)object;
scic_cb_timer_stop(this_controller, this_controller->timeout_timer);
}
/**
*
* @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller
* object.
*
* This method implements the actions taken by the struct scic_sds_controller on entry
* to the SCI_BASE_CONTROLLER_STATE_RESETTING. - Set the state handlers to the
* controllers resetting state. - Write to the SCU hardware reset register to
* force a reset - Transition to the SCI_BASE_CONTROLLER_STATE_RESET none
*/
static void scic_sds_controller_resetting_state_enter(
struct sci_base_object *object)
{
struct scic_sds_controller *this_controller;
this_controller = (struct scic_sds_controller *)object;
scic_sds_controller_reset_hardware(this_controller);
sci_base_state_machine_change_state(
scic_sds_controller_get_base_state_machine(this_controller),
SCI_BASE_CONTROLLER_STATE_RESET
);
}
/* --------------------------------------------------------------------------- */
const struct sci_base_state scic_sds_controller_state_table[] = {
[SCI_BASE_CONTROLLER_STATE_INITIAL] = {
.enter_state = scic_sds_controller_initial_state_enter,
},
[SCI_BASE_CONTROLLER_STATE_RESET] = {},
[SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {},
[SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {},
[SCI_BASE_CONTROLLER_STATE_STARTING] = {
.exit_state = scic_sds_controller_starting_state_exit,
},
[SCI_BASE_CONTROLLER_STATE_READY] = {
.enter_state = scic_sds_controller_ready_state_enter,
.exit_state = scic_sds_controller_ready_state_exit,
},
[SCI_BASE_CONTROLLER_STATE_RESETTING] = {
.enter_state = scic_sds_controller_resetting_state_enter,
},
[SCI_BASE_CONTROLLER_STATE_STOPPING] = {
.enter_state = scic_sds_controller_stopping_state_enter,
.exit_state = scic_sds_controller_stopping_state_exit,
},
[SCI_BASE_CONTROLLER_STATE_STOPPED] = {},
[SCI_BASE_CONTROLLER_STATE_FAILED] = {}
};