| /* |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * The full GNU General Public License is included in this distribution |
| * in the file called LICENSE.GPL. |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <linux/device.h> |
| #include "scic_controller.h" |
| #include "scic_phy.h" |
| #include "scic_port.h" |
| #include "scic_remote_device.h" |
| #include "scic_sds_controller.h" |
| #include "scic_sds_controller_registers.h" |
| #include "scic_sds_pci.h" |
| #include "scic_sds_phy.h" |
| #include "scic_sds_port_configuration_agent.h" |
| #include "scic_sds_port.h" |
| #include "scic_sds_remote_device.h" |
| #include "scic_sds_request.h" |
| #include "scic_user_callback.h" |
| #include "sci_environment.h" |
| #include "sci_util.h" |
| #include "scu_completion_codes.h" |
| #include "scu_constants.h" |
| #include "scu_event_codes.h" |
| #include "scu_remote_node_context.h" |
| #include "scu_task_context.h" |
| #include "scu_unsolicited_frame.h" |
| |
| #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 |
| |
| /** |
| * smu_dcc_get_max_ports() - |
| * |
| * This macro returns the maximum number of logical ports supported by the |
| * hardware. The caller passes in the value read from the device context |
| * capacity register and this macro will mash and shift the value appropriately. |
| */ |
| #define smu_dcc_get_max_ports(dcc_value) \ |
| (\ |
| (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ |
| >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ |
| ) |
| |
| /** |
| * smu_dcc_get_max_task_context() - |
| * |
| * This macro returns the maximum number of task contexts supported by the |
| * hardware. The caller passes in the value read from the device context |
| * capacity register and this macro will mash and shift the value appropriately. |
| */ |
| #define smu_dcc_get_max_task_context(dcc_value) \ |
| (\ |
| (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ |
| >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ |
| ) |
| |
| /** |
| * smu_dcc_get_max_remote_node_context() - |
| * |
| * This macro returns the maximum number of remote node contexts supported by |
| * the hardware. The caller passes in the value read from the device context |
| * capacity register and this macro will mash and shift the value appropriately. |
| */ |
| #define smu_dcc_get_max_remote_node_context(dcc_value) \ |
| (\ |
| (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ |
| >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ |
| ) |
| |
| |
| static void scic_sds_controller_power_control_timer_handler( |
| void *controller); |
| #define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3 |
| #define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3 |
| |
| /** |
| * |
| * |
| * The number of milliseconds to wait for a phy to start. |
| */ |
| #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 |
| |
| /** |
| * |
| * |
| * The number of milliseconds to wait while a given phy is consuming power |
| * before allowing another set of phys to consume power. Ultimately, this will |
| * be specified by OEM parameter. |
| */ |
| #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 |
| |
| /** |
| * COMPLETION_QUEUE_CYCLE_BIT() - |
| * |
| * This macro will return the cycle bit of the completion queue entry |
| */ |
| #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) |
| |
| /** |
| * NORMALIZE_GET_POINTER() - |
| * |
| * This macro will normalize the completion queue get pointer so its value can |
| * be used as an index into an array |
| */ |
| #define NORMALIZE_GET_POINTER(x) \ |
| ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) |
| |
| /** |
| * NORMALIZE_PUT_POINTER() - |
| * |
| * This macro will normalize the completion queue put pointer so its value can |
| * be used as an array inde |
| */ |
| #define NORMALIZE_PUT_POINTER(x) \ |
| ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) |
| |
| |
| /** |
| * NORMALIZE_GET_POINTER_CYCLE_BIT() - |
| * |
| * This macro will normalize the completion queue cycle pointer so it matches |
| * the completion queue cycle bit |
| */ |
| #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ |
| ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) |
| |
| /** |
| * NORMALIZE_EVENT_POINTER() - |
| * |
| * This macro will normalize the completion queue event entry so its value can |
| * be used as an index. |
| */ |
| #define NORMALIZE_EVENT_POINTER(x) \ |
| (\ |
| ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ |
| >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ |
| ) |
| |
| /** |
| * INCREMENT_COMPLETION_QUEUE_GET() - |
| * |
| * This macro will increment the controllers completion queue index value and |
| * possibly toggle the cycle bit if the completion queue index wraps back to 0. |
| */ |
| #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \ |
| INCREMENT_QUEUE_GET(\ |
| (index), \ |
| (cycle), \ |
| (controller)->completion_queue_entries, \ |
| SMU_CQGR_CYCLE_BIT \ |
| ) |
| |
| /** |
| * INCREMENT_EVENT_QUEUE_GET() - |
| * |
| * This macro will increment the controllers event queue index value and |
| * possibly toggle the event cycle bit if the event queue index wraps back to 0. |
| */ |
| #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \ |
| INCREMENT_QUEUE_GET(\ |
| (index), \ |
| (cycle), \ |
| (controller)->completion_event_entries, \ |
| SMU_CQGR_EVENT_CYCLE_BIT \ |
| ) |
| |
| struct sci_base_memory_descriptor_list * |
| sci_controller_get_memory_descriptor_list_handle(struct scic_sds_controller *scic) |
| { |
| return &scic->parent.mdl; |
| } |
| |
| /* |
| * ****************************************************************************- |
| * * SCIC SDS Controller Initialization Methods |
| * ****************************************************************************- */ |
| |
| /** |
| * This timer is used to start another phy after we have given up on the |
| * previous phy to transition to the ready state. |
| * |
| * |
| */ |
| static void scic_sds_controller_phy_startup_timeout_handler( |
| void *controller) |
| { |
| enum sci_status status; |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| |
| this_controller->phy_startup_timer_pending = false; |
| |
| status = SCI_FAILURE; |
| |
| while (status != SCI_SUCCESS) { |
| status = scic_sds_controller_start_next_phy(this_controller); |
| } |
| } |
| |
| /** |
| * |
| * |
| * This method initializes the phy startup operations for controller start. |
| */ |
| void scic_sds_controller_initialize_phy_startup( |
| struct scic_sds_controller *this_controller) |
| { |
| this_controller->phy_startup_timer = scic_cb_timer_create( |
| this_controller, |
| scic_sds_controller_phy_startup_timeout_handler, |
| this_controller |
| ); |
| |
| this_controller->next_phy_to_start = 0; |
| this_controller->phy_startup_timer_pending = false; |
| } |
| |
| /** |
| * |
| * |
| * This method initializes the power control operations for the controller |
| * object. |
| */ |
| void scic_sds_controller_initialize_power_control( |
| struct scic_sds_controller *this_controller) |
| { |
| this_controller->power_control.timer = scic_cb_timer_create( |
| this_controller, |
| scic_sds_controller_power_control_timer_handler, |
| this_controller |
| ); |
| |
| memset( |
| this_controller->power_control.requesters, |
| 0, |
| sizeof(this_controller->power_control.requesters) |
| ); |
| |
| this_controller->power_control.phys_waiting = 0; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| #define SCU_REMOTE_NODE_CONTEXT_ALIGNMENT (32) |
| #define SCU_TASK_CONTEXT_ALIGNMENT (256) |
| #define SCU_UNSOLICITED_FRAME_ADDRESS_ALIGNMENT (64) |
| #define SCU_UNSOLICITED_FRAME_BUFFER_ALIGNMENT (1024) |
| #define SCU_UNSOLICITED_FRAME_HEADER_ALIGNMENT (64) |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| /** |
| * This method builds the memory descriptor table for this controller. |
| * @this_controller: This parameter specifies the controller object for which |
| * to build the memory table. |
| * |
| */ |
| static void scic_sds_controller_build_memory_descriptor_table( |
| struct scic_sds_controller *this_controller) |
| { |
| sci_base_mde_construct( |
| &this_controller->memory_descriptors[SCU_MDE_COMPLETION_QUEUE], |
| SCU_COMPLETION_RAM_ALIGNMENT, |
| (sizeof(u32) * this_controller->completion_queue_entries), |
| (SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS) |
| ); |
| |
| sci_base_mde_construct( |
| &this_controller->memory_descriptors[SCU_MDE_REMOTE_NODE_CONTEXT], |
| SCU_REMOTE_NODE_CONTEXT_ALIGNMENT, |
| this_controller->remote_node_entries * sizeof(union scu_remote_node_context), |
| SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS |
| ); |
| |
| sci_base_mde_construct( |
| &this_controller->memory_descriptors[SCU_MDE_TASK_CONTEXT], |
| SCU_TASK_CONTEXT_ALIGNMENT, |
| this_controller->task_context_entries * sizeof(struct scu_task_context), |
| SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS |
| ); |
| |
| /* |
| * The UF buffer address table size must be programmed to a power |
| * of 2. Find the first power of 2 that is equal to or greater then |
| * the number of unsolicited frame buffers to be utilized. */ |
| scic_sds_unsolicited_frame_control_set_address_table_count( |
| &this_controller->uf_control |
| ); |
| |
| sci_base_mde_construct( |
| &this_controller->memory_descriptors[SCU_MDE_UF_BUFFER], |
| SCU_UNSOLICITED_FRAME_BUFFER_ALIGNMENT, |
| scic_sds_unsolicited_frame_control_get_mde_size(this_controller->uf_control), |
| SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS |
| ); |
| } |
| |
| /** |
| * This method validates the driver supplied memory descriptor table. |
| * @this_controller: |
| * |
| * enum sci_status |
| */ |
| enum sci_status scic_sds_controller_validate_memory_descriptor_table( |
| struct scic_sds_controller *this_controller) |
| { |
| bool mde_list_valid; |
| |
| mde_list_valid = sci_base_mde_is_valid( |
| &this_controller->memory_descriptors[SCU_MDE_COMPLETION_QUEUE], |
| SCU_COMPLETION_RAM_ALIGNMENT, |
| (sizeof(u32) * this_controller->completion_queue_entries), |
| (SCI_MDE_ATTRIBUTE_CACHEABLE | SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS) |
| ); |
| |
| if (mde_list_valid == false) |
| return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD; |
| |
| mde_list_valid = sci_base_mde_is_valid( |
| &this_controller->memory_descriptors[SCU_MDE_REMOTE_NODE_CONTEXT], |
| SCU_REMOTE_NODE_CONTEXT_ALIGNMENT, |
| this_controller->remote_node_entries * sizeof(union scu_remote_node_context), |
| SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS |
| ); |
| |
| if (mde_list_valid == false) |
| return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD; |
| |
| mde_list_valid = sci_base_mde_is_valid( |
| &this_controller->memory_descriptors[SCU_MDE_TASK_CONTEXT], |
| SCU_TASK_CONTEXT_ALIGNMENT, |
| this_controller->task_context_entries * sizeof(struct scu_task_context), |
| SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS |
| ); |
| |
| if (mde_list_valid == false) |
| return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD; |
| |
| mde_list_valid = sci_base_mde_is_valid( |
| &this_controller->memory_descriptors[SCU_MDE_UF_BUFFER], |
| SCU_UNSOLICITED_FRAME_BUFFER_ALIGNMENT, |
| scic_sds_unsolicited_frame_control_get_mde_size(this_controller->uf_control), |
| SCI_MDE_ATTRIBUTE_PHYSICALLY_CONTIGUOUS |
| ); |
| |
| if (mde_list_valid == false) |
| return SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD; |
| |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * This method initializes the controller with the physical memory addresses |
| * that are used to communicate with the driver. |
| * @this_controller: |
| * |
| */ |
| void scic_sds_controller_ram_initialization( |
| struct scic_sds_controller *this_controller) |
| { |
| struct sci_physical_memory_descriptor *mde; |
| |
| /* |
| * The completion queue is actually placed in cacheable memory |
| * Therefore it no longer comes out of memory in the MDL. */ |
| mde = &this_controller->memory_descriptors[SCU_MDE_COMPLETION_QUEUE]; |
| this_controller->completion_queue = (u32 *)mde->virtual_address; |
| SMU_CQBAR_WRITE(this_controller, mde->physical_address); |
| |
| /* |
| * Program the location of the Remote Node Context table |
| * into the SCU. */ |
| mde = &this_controller->memory_descriptors[SCU_MDE_REMOTE_NODE_CONTEXT]; |
| this_controller->remote_node_context_table = (union scu_remote_node_context *) |
| mde->virtual_address; |
| SMU_RNCBAR_WRITE(this_controller, mde->physical_address); |
| |
| /* Program the location of the Task Context table into the SCU. */ |
| mde = &this_controller->memory_descriptors[SCU_MDE_TASK_CONTEXT]; |
| this_controller->task_context_table = (struct scu_task_context *) |
| mde->virtual_address; |
| SMU_HTTBAR_WRITE(this_controller, mde->physical_address); |
| |
| mde = &this_controller->memory_descriptors[SCU_MDE_UF_BUFFER]; |
| scic_sds_unsolicited_frame_control_construct( |
| &this_controller->uf_control, mde, this_controller |
| ); |
| |
| /* |
| * Inform the silicon as to the location of the UF headers and |
| * address table. */ |
| SCU_UFHBAR_WRITE( |
| this_controller, |
| this_controller->uf_control.headers.physical_address); |
| SCU_PUFATHAR_WRITE( |
| this_controller, |
| this_controller->uf_control.address_table.physical_address); |
| } |
| |
| /** |
| * This method initializes the task context data for the controller. |
| * @this_controller: |
| * |
| */ |
| void scic_sds_controller_assign_task_entries( |
| struct scic_sds_controller *this_controller) |
| { |
| u32 task_assignment; |
| |
| /* |
| * Assign all the TCs to function 0 |
| * TODO: Do we actually need to read this register to write it back? */ |
| task_assignment = SMU_TCA_READ(this_controller, 0); |
| |
| task_assignment = |
| ( |
| task_assignment |
| | (SMU_TCA_GEN_VAL(STARTING, 0)) |
| | (SMU_TCA_GEN_VAL(ENDING, this_controller->task_context_entries - 1)) |
| | (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)) |
| ); |
| |
| SMU_TCA_WRITE(this_controller, 0, task_assignment); |
| } |
| |
| /** |
| * This method initializes the hardware completion queue. |
| * |
| * |
| */ |
| void scic_sds_controller_initialize_completion_queue( |
| struct scic_sds_controller *this_controller) |
| { |
| u32 index; |
| u32 completion_queue_control_value; |
| u32 completion_queue_get_value; |
| u32 completion_queue_put_value; |
| |
| this_controller->completion_queue_get = 0; |
| |
| completion_queue_control_value = ( |
| SMU_CQC_QUEUE_LIMIT_SET(this_controller->completion_queue_entries - 1) |
| | SMU_CQC_EVENT_LIMIT_SET(this_controller->completion_event_entries - 1) |
| ); |
| |
| SMU_CQC_WRITE(this_controller, completion_queue_control_value); |
| |
| /* Set the completion queue get pointer and enable the queue */ |
| completion_queue_get_value = ( |
| (SMU_CQGR_GEN_VAL(POINTER, 0)) |
| | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) |
| | (SMU_CQGR_GEN_BIT(ENABLE)) |
| | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) |
| ); |
| |
| SMU_CQGR_WRITE(this_controller, completion_queue_get_value); |
| |
| /* Set the completion queue put pointer */ |
| completion_queue_put_value = ( |
| (SMU_CQPR_GEN_VAL(POINTER, 0)) |
| | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) |
| ); |
| |
| SMU_CQPR_WRITE(this_controller, completion_queue_put_value); |
| |
| /* Initialize the cycle bit of the completion queue entries */ |
| for (index = 0; index < this_controller->completion_queue_entries; index++) { |
| /* |
| * If get.cycle_bit != completion_queue.cycle_bit |
| * its not a valid completion queue entry |
| * so at system start all entries are invalid */ |
| this_controller->completion_queue[index] = 0x80000000; |
| } |
| } |
| |
| /** |
| * This method initializes the hardware unsolicited frame queue. |
| * |
| * |
| */ |
| void scic_sds_controller_initialize_unsolicited_frame_queue( |
| struct scic_sds_controller *this_controller) |
| { |
| u32 frame_queue_control_value; |
| u32 frame_queue_get_value; |
| u32 frame_queue_put_value; |
| |
| /* Write the queue size */ |
| frame_queue_control_value = |
| SCU_UFQC_GEN_VAL(QUEUE_SIZE, this_controller->uf_control.address_table.count); |
| |
| SCU_UFQC_WRITE(this_controller, frame_queue_control_value); |
| |
| /* Setup the get pointer for the unsolicited frame queue */ |
| frame_queue_get_value = ( |
| SCU_UFQGP_GEN_VAL(POINTER, 0) |
| | SCU_UFQGP_GEN_BIT(ENABLE_BIT) |
| ); |
| |
| SCU_UFQGP_WRITE(this_controller, frame_queue_get_value); |
| |
| /* Setup the put pointer for the unsolicited frame queue */ |
| frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); |
| |
| SCU_UFQPP_WRITE(this_controller, frame_queue_put_value); |
| } |
| |
| /** |
| * This method enables the hardware port task scheduler. |
| * |
| * |
| */ |
| void scic_sds_controller_enable_port_task_scheduler( |
| struct scic_sds_controller *this_controller) |
| { |
| u32 port_task_scheduler_value; |
| |
| port_task_scheduler_value = SCU_PTSGCR_READ(this_controller); |
| |
| port_task_scheduler_value |= |
| (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); |
| |
| SCU_PTSGCR_WRITE(this_controller, port_task_scheduler_value); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| /** |
| * |
| * |
| * This macro is used to delay between writes to the AFE registers during AFE |
| * initialization. |
| */ |
| #define AFE_REGISTER_WRITE_DELAY 10 |
| |
| static bool is_a0(void) |
| { |
| return isci_si_rev == ISCI_SI_REVA0; |
| } |
| |
| static bool is_a2(void) |
| { |
| return isci_si_rev == ISCI_SI_REVA2; |
| } |
| |
| static bool is_b0(void) |
| { |
| return isci_si_rev > ISCI_SI_REVA2; |
| } |
| |
| /* Initialize the AFE for this phy index. We need to read the AFE setup from |
| * the OEM parameters none |
| */ |
| void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic) |
| { |
| u32 afe_status; |
| u32 phy_id; |
| |
| /* Clear DFX Status registers */ |
| scu_afe_register_write(scic, afe_dfx_master_control0, 0x0081000f); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Configure bias currents to normal */ |
| if (is_a0()) |
| scu_afe_register_write(scic, afe_bias_control, 0x00005500); |
| else |
| scu_afe_register_write(scic, afe_bias_control, 0x00005A00); |
| |
| |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Enable PLL */ |
| if (is_b0()) |
| scu_afe_register_write(scic, afe_pll_control0, 0x80040A08); |
| else |
| scu_afe_register_write(scic, afe_pll_control0, 0x80040908); |
| |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Wait for the PLL to lock */ |
| do { |
| afe_status = scu_afe_register_read( |
| scic, afe_common_block_status); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| } while ((afe_status & 0x00001000) == 0); |
| |
| if (is_b0()) { |
| /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */ |
| scu_afe_register_write(scic, afe_pmsn_master_control0, 0x7bcc96ad); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { |
| if (is_b0()) { |
| /* Configure transmitter SSC parameters */ |
| scu_afe_txreg_write(scic, phy_id, afe_tx_ssc_control, 0x00030000); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| } else { |
| /* |
| * All defaults, except the Receive Word Alignament/Comma Detect |
| * Enable....(0xe800) */ |
| scu_afe_txreg_write(scic, phy_id, afe_xcvr_control0, 0x00004512); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| scu_afe_txreg_write(scic, phy_id, afe_xcvr_control1, 0x0050100F); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* |
| * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) |
| * & increase TX int & ext bias 20%....(0xe85c) */ |
| if (is_a0()) |
| scu_afe_txreg_write(scic, phy_id, afe_channel_control, 0x000003D4); |
| else if (is_a2()) |
| scu_afe_txreg_write(scic, phy_id, afe_channel_control, 0x000003F0); |
| else { |
| /* Power down TX and RX (PWRDNTX and PWRDNRX) */ |
| scu_afe_txreg_write(scic, phy_id, afe_channel_control, 0x000003d7); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| /* |
| * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) |
| * & increase TX int & ext bias 20%....(0xe85c) */ |
| scu_afe_txreg_write(scic, phy_id, afe_channel_control, 0x000003d4); |
| } |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| if (is_a0() || is_a2()) { |
| /* Enable TX equalization (0xe824) */ |
| scu_afe_txreg_write(scic, phy_id, afe_tx_control, 0x00040000); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* |
| * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On), |
| * RDD=0x0(RX Detect Enabled) ....(0xe800) */ |
| scu_afe_txreg_write(scic, phy_id, afe_xcvr_control0, 0x00004100); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| /* Leave DFE/FFE on */ |
| if (is_a0()) |
| scu_afe_txreg_write(scic, phy_id, afe_rx_ssc_control0, 0x3F09983F); |
| else if (is_a2()) |
| scu_afe_txreg_write(scic, phy_id, afe_rx_ssc_control0, 0x3F11103F); |
| else { |
| scu_afe_txreg_write(scic, phy_id, afe_rx_ssc_control0, 0x3F11103F); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| /* Enable TX equalization (0xe824) */ |
| scu_afe_txreg_write(scic, phy_id, afe_tx_control, 0x00040000); |
| } |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| scu_afe_txreg_write(scic, phy_id, afe_tx_amp_control0, 0x000E7C03); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| scu_afe_txreg_write(scic, phy_id, afe_tx_amp_control1, 0x000E7C03); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| scu_afe_txreg_write(scic, phy_id, afe_tx_amp_control2, 0x000E7C03); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| |
| scu_afe_txreg_write(scic, phy_id, afe_tx_amp_control3, 0x000E7C03); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* Transfer control to the PEs */ |
| scu_afe_register_write(scic, afe_dfx_master_control0, 0x00010f00); |
| scic_cb_stall_execution(AFE_REGISTER_WRITE_DELAY); |
| } |
| |
| /* |
| * ****************************************************************************- |
| * * SCIC SDS Controller Internal Start/Stop Routines |
| * ****************************************************************************- */ |
| |
| |
| /** |
| * This method will attempt to transition into the ready state for the |
| * controller and indicate that the controller start operation has completed |
| * if all criteria are met. |
| * @this_controller: This parameter indicates the controller object for which |
| * to transition to ready. |
| * @status: This parameter indicates the status value to be pass into the call |
| * to scic_cb_controller_start_complete(). |
| * |
| * none. |
| */ |
| static void scic_sds_controller_transition_to_ready( |
| struct scic_sds_controller *this_controller, |
| enum sci_status status) |
| { |
| if (this_controller->parent.state_machine.current_state_id |
| == SCI_BASE_CONTROLLER_STATE_STARTING) { |
| /* |
| * We move into the ready state, because some of the phys/ports |
| * may be up and operational. */ |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(this_controller), |
| SCI_BASE_CONTROLLER_STATE_READY |
| ); |
| |
| scic_cb_controller_start_complete(this_controller, status); |
| } |
| } |
| |
| /** |
| * This method is the general timeout handler for the controller. It will take |
| * the correct timetout action based on the current controller state |
| */ |
| void scic_sds_controller_timeout_handler( |
| struct scic_sds_controller *scic) |
| { |
| enum sci_base_controller_states current_state; |
| |
| current_state = sci_base_state_machine_get_state( |
| scic_sds_controller_get_base_state_machine(scic)); |
| |
| if (current_state == SCI_BASE_CONTROLLER_STATE_STARTING) { |
| scic_sds_controller_transition_to_ready( |
| scic, SCI_FAILURE_TIMEOUT); |
| } else if (current_state == SCI_BASE_CONTROLLER_STATE_STOPPING) { |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(scic), |
| SCI_BASE_CONTROLLER_STATE_FAILED); |
| scic_cb_controller_stop_complete(scic, SCI_FAILURE_TIMEOUT); |
| } else /* / @todo Now what do we want to do in this case? */ |
| dev_err(scic_to_dev(scic), |
| "%s: Controller timer fired when controller was not " |
| "in a state being timed.\n", |
| __func__); |
| } |
| |
| /** |
| * scic_sds_controller_get_port_configuration_mode |
| * @this_controller: This is the controller to use to determine if we are using |
| * manual or automatic port configuration. |
| * |
| * SCIC_PORT_CONFIGURATION_MODE |
| */ |
| enum SCIC_PORT_CONFIGURATION_MODE scic_sds_controller_get_port_configuration_mode( |
| struct scic_sds_controller *this_controller) |
| { |
| u32 index; |
| enum SCIC_PORT_CONFIGURATION_MODE mode; |
| |
| mode = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE; |
| |
| for (index = 0; index < SCI_MAX_PORTS; index++) { |
| if (this_controller->oem_parameters.sds1.ports[index].phy_mask != 0) { |
| mode = SCIC_PORT_MANUAL_CONFIGURATION_MODE; |
| break; |
| } |
| } |
| |
| return mode; |
| } |
| |
| enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic) |
| { |
| u32 index; |
| enum sci_status port_status; |
| enum sci_status status = SCI_SUCCESS; |
| |
| for (index = 0; index < scic->logical_port_entries; index++) { |
| port_status = scic_port_stop(&scic->port_table[index]); |
| |
| if ((port_status != SCI_SUCCESS) && |
| (port_status != SCI_FAILURE_INVALID_STATE)) { |
| status = SCI_FAILURE; |
| |
| dev_warn(scic_to_dev(scic), |
| "%s: Controller stop operation failed to " |
| "stop port %d because of status %d.\n", |
| __func__, |
| scic->port_table[index].logical_port_index, |
| port_status); |
| } |
| } |
| |
| return status; |
| } |
| |
| /** |
| * |
| * |
| * |
| */ |
| static void scic_sds_controller_phy_timer_start( |
| struct scic_sds_controller *this_controller) |
| { |
| scic_cb_timer_start( |
| this_controller, |
| this_controller->phy_startup_timer, |
| SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT |
| ); |
| |
| this_controller->phy_startup_timer_pending = true; |
| } |
| |
| /** |
| * |
| * |
| * |
| */ |
| void scic_sds_controller_phy_timer_stop( |
| struct scic_sds_controller *this_controller) |
| { |
| scic_cb_timer_stop( |
| this_controller, |
| this_controller->phy_startup_timer |
| ); |
| |
| this_controller->phy_startup_timer_pending = false; |
| } |
| |
| /** |
| * This method is called internally by the controller object to start the next |
| * phy on the controller. If all the phys have been starte, then this |
| * method will attempt to transition the controller to the READY state and |
| * inform the user (scic_cb_controller_start_complete()). |
| * @this_controller: This parameter specifies the controller object for which |
| * to start the next phy. |
| * |
| * enum sci_status |
| */ |
| enum sci_status scic_sds_controller_start_next_phy( |
| struct scic_sds_controller *this_controller) |
| { |
| enum sci_status status; |
| |
| status = SCI_SUCCESS; |
| |
| if (this_controller->phy_startup_timer_pending == false) { |
| if (this_controller->next_phy_to_start == SCI_MAX_PHYS) { |
| bool is_controller_start_complete = true; |
| struct scic_sds_phy *the_phy; |
| u8 index; |
| |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| the_phy = &this_controller->phy_table[index]; |
| |
| if (scic_sds_phy_get_port(the_phy) != SCI_INVALID_HANDLE) { |
| /** |
| * The controller start operation is complete if and only |
| * if: |
| * - all links have been given an opportunity to start |
| * - have no indication of a connected device |
| * - have an indication of a connected device and it has |
| * finished the link training process. |
| */ |
| if ( |
| ( |
| (the_phy->is_in_link_training == false) |
| && (the_phy->parent.state_machine.current_state_id |
| == SCI_BASE_PHY_STATE_INITIAL) |
| ) |
| || ( |
| (the_phy->is_in_link_training == false) |
| && (the_phy->parent.state_machine.current_state_id |
| == SCI_BASE_PHY_STATE_STOPPED) |
| ) |
| || ( |
| (the_phy->is_in_link_training == true) |
| && (the_phy->parent.state_machine.current_state_id |
| == SCI_BASE_PHY_STATE_STARTING) |
| ) |
| ) { |
| is_controller_start_complete = false; |
| break; |
| } |
| } |
| } |
| |
| /* |
| * The controller has successfully finished the start process. |
| * Inform the SCI Core user and transition to the READY state. */ |
| if (is_controller_start_complete == true) { |
| scic_sds_controller_transition_to_ready( |
| this_controller, SCI_SUCCESS |
| ); |
| scic_sds_controller_phy_timer_stop(this_controller); |
| } |
| } else { |
| struct scic_sds_phy *the_phy; |
| |
| the_phy = &this_controller->phy_table[this_controller->next_phy_to_start]; |
| |
| if ( |
| scic_sds_controller_get_port_configuration_mode(this_controller) |
| == SCIC_PORT_MANUAL_CONFIGURATION_MODE |
| ) { |
| if (scic_sds_phy_get_port(the_phy) == SCI_INVALID_HANDLE) { |
| this_controller->next_phy_to_start++; |
| |
| /* |
| * Caution recursion ahead be forwarned |
| * |
| * The PHY was never added to a PORT in MPC mode so start the next phy in sequence |
| * This phy will never go link up and will not draw power the OEM parameters either |
| * configured the phy incorrectly for the PORT or it was never assigned to a PORT */ |
| return scic_sds_controller_start_next_phy(this_controller); |
| } |
| } |
| |
| status = scic_sds_phy_start(the_phy); |
| |
| if (status == SCI_SUCCESS) { |
| scic_sds_controller_phy_timer_start(this_controller); |
| } else { |
| dev_warn(scic_to_dev(this_controller), |
| "%s: Controller stop operation failed " |
| "to stop phy %d because of status " |
| "%d.\n", |
| __func__, |
| this_controller->phy_table[this_controller->next_phy_to_start].phy_index, |
| status); |
| } |
| |
| this_controller->next_phy_to_start++; |
| } |
| } |
| |
| return status; |
| } |
| |
| /** |
| * |
| * @this_controller: |
| * |
| * enum sci_status |
| */ |
| enum sci_status scic_sds_controller_stop_phys( |
| struct scic_sds_controller *this_controller) |
| { |
| u32 index; |
| enum sci_status status; |
| enum sci_status phy_status; |
| |
| status = SCI_SUCCESS; |
| |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| phy_status = scic_sds_phy_stop(&this_controller->phy_table[index]); |
| |
| if ( |
| (phy_status != SCI_SUCCESS) |
| && (phy_status != SCI_FAILURE_INVALID_STATE) |
| ) { |
| status = SCI_FAILURE; |
| |
| dev_warn(scic_to_dev(this_controller), |
| "%s: Controller stop operation failed to stop " |
| "phy %d because of status %d.\n", |
| __func__, |
| this_controller->phy_table[index].phy_index, phy_status); |
| } |
| } |
| |
| return status; |
| } |
| |
| /** |
| * |
| * @this_controller: |
| * |
| * enum sci_status |
| */ |
| enum sci_status scic_sds_controller_stop_devices( |
| struct scic_sds_controller *this_controller) |
| { |
| u32 index; |
| enum sci_status status; |
| enum sci_status device_status; |
| |
| status = SCI_SUCCESS; |
| |
| for (index = 0; index < this_controller->remote_node_entries; index++) { |
| if (this_controller->device_table[index] != SCI_INVALID_HANDLE) { |
| /* / @todo What timeout value do we want to provide to this request? */ |
| device_status = scic_remote_device_stop(this_controller->device_table[index], 0); |
| |
| if ((device_status != SCI_SUCCESS) && |
| (device_status != SCI_FAILURE_INVALID_STATE)) { |
| dev_warn(scic_to_dev(this_controller), |
| "%s: Controller stop operation failed " |
| "to stop device 0x%p because of " |
| "status %d.\n", |
| __func__, |
| this_controller->device_table[index], device_status); |
| } |
| } |
| } |
| |
| return status; |
| } |
| |
| /* |
| * ****************************************************************************- |
| * * SCIC SDS Controller Power Control (Staggered Spinup) |
| * ****************************************************************************- */ |
| |
| /** |
| * |
| * |
| * This method starts the power control timer for this controller object. |
| */ |
| static void scic_sds_controller_power_control_timer_start( |
| struct scic_sds_controller *this_controller) |
| { |
| scic_cb_timer_start( |
| this_controller, this_controller->power_control.timer, |
| SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL |
| ); |
| |
| this_controller->power_control.timer_started = true; |
| } |
| |
| /** |
| * |
| * |
| * |
| */ |
| static void scic_sds_controller_power_control_timer_handler( |
| void *controller) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| |
| if (this_controller->power_control.phys_waiting == 0) { |
| this_controller->power_control.timer_started = false; |
| } else { |
| struct scic_sds_phy *the_phy = NULL; |
| u8 i; |
| |
| for (i = 0; |
| (i < SCI_MAX_PHYS) |
| && (this_controller->power_control.phys_waiting != 0); |
| i++) { |
| if (this_controller->power_control.requesters[i] != NULL) { |
| the_phy = this_controller->power_control.requesters[i]; |
| this_controller->power_control.requesters[i] = NULL; |
| this_controller->power_control.phys_waiting--; |
| break; |
| } |
| } |
| |
| /* |
| * It doesn't matter if the power list is empty, we need to start the |
| * timer in case another phy becomes ready. */ |
| scic_sds_controller_power_control_timer_start(this_controller); |
| |
| scic_sds_phy_consume_power_handler(the_phy); |
| } |
| } |
| |
| /** |
| * This method inserts the phy in the stagger spinup control queue. |
| * @this_controller: |
| * |
| * |
| */ |
| void scic_sds_controller_power_control_queue_insert( |
| struct scic_sds_controller *this_controller, |
| struct scic_sds_phy *the_phy) |
| { |
| BUG_ON(the_phy == NULL); |
| |
| if ( |
| (this_controller->power_control.timer_started) |
| && (this_controller->power_control.requesters[the_phy->phy_index] == NULL) |
| ) { |
| this_controller->power_control.requesters[the_phy->phy_index] = the_phy; |
| this_controller->power_control.phys_waiting++; |
| } else { |
| scic_sds_controller_power_control_timer_start(this_controller); |
| scic_sds_phy_consume_power_handler(the_phy); |
| } |
| } |
| |
| /** |
| * This method removes the phy from the stagger spinup control queue. |
| * @this_controller: |
| * |
| * |
| */ |
| void scic_sds_controller_power_control_queue_remove( |
| struct scic_sds_controller *this_controller, |
| struct scic_sds_phy *the_phy) |
| { |
| BUG_ON(the_phy == NULL); |
| |
| if (this_controller->power_control.requesters[the_phy->phy_index] != NULL) { |
| this_controller->power_control.phys_waiting--; |
| } |
| |
| this_controller->power_control.requesters[the_phy->phy_index] = NULL; |
| } |
| |
| /* |
| * ****************************************************************************- |
| * * SCIC SDS Controller Completion Routines |
| * ****************************************************************************- */ |
| |
| /** |
| * This method returns a true value if the completion queue has entries that |
| * can be processed |
| * @this_controller: |
| * |
| * bool true if the completion queue has entries to process false if the |
| * completion queue has no entries to process |
| */ |
| static bool scic_sds_controller_completion_queue_has_entries( |
| struct scic_sds_controller *this_controller) |
| { |
| u32 get_value = this_controller->completion_queue_get; |
| u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; |
| |
| if ( |
| NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) |
| == COMPLETION_QUEUE_CYCLE_BIT(this_controller->completion_queue[get_index]) |
| ) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| /** |
| * This method processes a task completion notification. This is called from |
| * within the controller completion handler. |
| * @this_controller: |
| * @completion_entry: |
| * |
| */ |
| static void scic_sds_controller_task_completion( |
| struct scic_sds_controller *this_controller, |
| u32 completion_entry) |
| { |
| u32 index; |
| struct scic_sds_request *io_request; |
| |
| index = SCU_GET_COMPLETION_INDEX(completion_entry); |
| io_request = this_controller->io_request_table[index]; |
| |
| /* Make sure that we really want to process this IO request */ |
| if ( |
| (io_request != SCI_INVALID_HANDLE) |
| && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG) |
| && ( |
| scic_sds_io_tag_get_sequence(io_request->io_tag) |
| == this_controller->io_request_sequence[index] |
| ) |
| ) { |
| /* Yep this is a valid io request pass it along to the io request handler */ |
| scic_sds_io_request_tc_completion(io_request, completion_entry); |
| } |
| } |
| |
| /** |
| * This method processes an SDMA completion event. This is called from within |
| * the controller completion handler. |
| * @this_controller: |
| * @completion_entry: |
| * |
| */ |
| static void scic_sds_controller_sdma_completion( |
| struct scic_sds_controller *this_controller, |
| u32 completion_entry) |
| { |
| u32 index; |
| struct scic_sds_request *io_request; |
| struct scic_sds_remote_device *device; |
| |
| index = SCU_GET_COMPLETION_INDEX(completion_entry); |
| |
| switch (scu_get_command_request_type(completion_entry)) { |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: |
| io_request = this_controller->io_request_table[index]; |
| dev_warn(scic_to_dev(this_controller), |
| "%s: SCIC SDS Completion type SDMA %x for io request " |
| "%p\n", |
| __func__, |
| completion_entry, |
| io_request); |
| /* @todo For a post TC operation we need to fail the IO |
| * request |
| */ |
| break; |
| |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: |
| case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: |
| device = this_controller->device_table[index]; |
| dev_warn(scic_to_dev(this_controller), |
| "%s: SCIC SDS Completion type SDMA %x for remote " |
| "device %p\n", |
| __func__, |
| completion_entry, |
| device); |
| /* @todo For a port RNC operation we need to fail the |
| * device |
| */ |
| break; |
| |
| default: |
| dev_warn(scic_to_dev(this_controller), |
| "%s: SCIC SDS Completion unknown SDMA completion " |
| "type %x\n", |
| __func__, |
| completion_entry); |
| break; |
| |
| } |
| } |
| |
| /** |
| * |
| * @this_controller: |
| * @completion_entry: |
| * |
| * This method processes an unsolicited frame message. This is called from |
| * within the controller completion handler. none |
| */ |
| static void scic_sds_controller_unsolicited_frame( |
| struct scic_sds_controller *this_controller, |
| u32 completion_entry) |
| { |
| u32 index; |
| u32 frame_index; |
| |
| struct scu_unsolicited_frame_header *frame_header; |
| struct scic_sds_phy *phy; |
| struct scic_sds_remote_device *device; |
| |
| enum sci_status result = SCI_FAILURE; |
| |
| frame_index = SCU_GET_FRAME_INDEX(completion_entry); |
| |
| frame_header |
| = this_controller->uf_control.buffers.array[frame_index].header; |
| this_controller->uf_control.buffers.array[frame_index].state |
| = UNSOLICITED_FRAME_IN_USE; |
| |
| if (SCU_GET_FRAME_ERROR(completion_entry)) { |
| /* |
| * / @todo If the IAF frame or SIGNATURE FIS frame has an error will |
| * / this cause a problem? We expect the phy initialization will |
| * / fail if there is an error in the frame. */ |
| scic_sds_controller_release_frame(this_controller, frame_index); |
| return; |
| } |
| |
| if (frame_header->is_address_frame) { |
| index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); |
| phy = &this_controller->phy_table[index]; |
| if (phy != NULL) { |
| result = scic_sds_phy_frame_handler(phy, frame_index); |
| } |
| } else { |
| |
| index = SCU_GET_COMPLETION_INDEX(completion_entry); |
| |
| if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { |
| /* |
| * This is a signature fis or a frame from a direct attached SATA |
| * device that has not yet been created. In either case forwared |
| * the frame to the PE and let it take care of the frame data. */ |
| index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); |
| phy = &this_controller->phy_table[index]; |
| result = scic_sds_phy_frame_handler(phy, frame_index); |
| } else { |
| if (index < this_controller->remote_node_entries) |
| device = this_controller->device_table[index]; |
| else |
| device = NULL; |
| |
| if (device != NULL) |
| result = scic_sds_remote_device_frame_handler(device, frame_index); |
| else |
| scic_sds_controller_release_frame(this_controller, frame_index); |
| } |
| } |
| |
| if (result != SCI_SUCCESS) { |
| /* |
| * / @todo Is there any reason to report some additional error message |
| * / when we get this failure notifiction? */ |
| } |
| } |
| |
| /** |
| * This method processes an event completion entry. This is called from within |
| * the controller completion handler. |
| * @this_controller: |
| * @completion_entry: |
| * |
| */ |
| static void scic_sds_controller_event_completion( |
| struct scic_sds_controller *this_controller, |
| u32 completion_entry) |
| { |
| u32 index; |
| struct scic_sds_request *io_request; |
| struct scic_sds_remote_device *device; |
| struct scic_sds_phy *phy; |
| |
| index = SCU_GET_COMPLETION_INDEX(completion_entry); |
| |
| switch (scu_get_event_type(completion_entry)) { |
| case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: |
| /* / @todo The driver did something wrong and we need to fix the condtion. */ |
| dev_err(scic_to_dev(this_controller), |
| "%s: SCIC Controller 0x%p received SMU command error " |
| "0x%x\n", |
| __func__, |
| this_controller, |
| completion_entry); |
| break; |
| |
| case SCU_EVENT_TYPE_SMU_PCQ_ERROR: |
| case SCU_EVENT_TYPE_SMU_ERROR: |
| case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: |
| /* |
| * / @todo This is a hardware failure and its likely that we want to |
| * / reset the controller. */ |
| dev_err(scic_to_dev(this_controller), |
| "%s: SCIC Controller 0x%p received fatal controller " |
| "event 0x%x\n", |
| __func__, |
| this_controller, |
| completion_entry); |
| break; |
| |
| case SCU_EVENT_TYPE_TRANSPORT_ERROR: |
| io_request = this_controller->io_request_table[index]; |
| scic_sds_io_request_event_handler(io_request, completion_entry); |
| break; |
| |
| case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: |
| switch (scu_get_event_specifier(completion_entry)) { |
| case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: |
| case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: |
| io_request = this_controller->io_request_table[index]; |
| if (io_request != SCI_INVALID_HANDLE) |
| scic_sds_io_request_event_handler(io_request, completion_entry); |
| else |
| dev_warn(scic_to_dev(this_controller), |
| "%s: SCIC Controller 0x%p received " |
| "event 0x%x for io request object " |
| "that doesnt exist.\n", |
| __func__, |
| this_controller, |
| completion_entry); |
| |
| break; |
| |
| case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: |
| device = this_controller->device_table[index]; |
| if (device != SCI_INVALID_HANDLE) |
| scic_sds_remote_device_event_handler(device, completion_entry); |
| else |
| dev_warn(scic_to_dev(this_controller), |
| "%s: SCIC Controller 0x%p received " |
| "event 0x%x for remote device object " |
| "that doesnt exist.\n", |
| __func__, |
| this_controller, |
| completion_entry); |
| |
| break; |
| } |
| break; |
| |
| case SCU_EVENT_TYPE_BROADCAST_CHANGE: |
| /* |
| * direct the broadcast change event to the phy first and then let |
| * the phy redirect the broadcast change to the port object */ |
| case SCU_EVENT_TYPE_ERR_CNT_EVENT: |
| /* |
| * direct error counter event to the phy object since that is where |
| * we get the event notification. This is a type 4 event. */ |
| case SCU_EVENT_TYPE_OSSP_EVENT: |
| index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); |
| phy = &this_controller->phy_table[index]; |
| scic_sds_phy_event_handler(phy, completion_entry); |
| break; |
| |
| case SCU_EVENT_TYPE_RNC_SUSPEND_TX: |
| case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: |
| case SCU_EVENT_TYPE_RNC_OPS_MISC: |
| if (index < this_controller->remote_node_entries) { |
| device = this_controller->device_table[index]; |
| |
| if (device != NULL) |
| scic_sds_remote_device_event_handler(device, completion_entry); |
| } else |
| dev_err(scic_to_dev(this_controller), |
| "%s: SCIC Controller 0x%p received event 0x%x " |
| "for remote device object 0x%0x that doesnt " |
| "exist.\n", |
| __func__, |
| this_controller, |
| completion_entry, |
| index); |
| |
| break; |
| |
| default: |
| dev_warn(scic_to_dev(this_controller), |
| "%s: SCIC Controller received unknown event code %x\n", |
| __func__, |
| completion_entry); |
| break; |
| } |
| } |
| |
| /** |
| * This method is a private routine for processing the completion queue entries. |
| * @this_controller: |
| * |
| */ |
| static void scic_sds_controller_process_completions( |
| struct scic_sds_controller *this_controller) |
| { |
| u32 completion_count = 0; |
| u32 completion_entry; |
| u32 get_index; |
| u32 get_cycle; |
| u32 event_index; |
| u32 event_cycle; |
| |
| dev_dbg(scic_to_dev(this_controller), |
| "%s: completion queue begining get:0x%08x\n", |
| __func__, |
| this_controller->completion_queue_get); |
| |
| /* Get the component parts of the completion queue */ |
| get_index = NORMALIZE_GET_POINTER(this_controller->completion_queue_get); |
| get_cycle = SMU_CQGR_CYCLE_BIT & this_controller->completion_queue_get; |
| |
| event_index = NORMALIZE_EVENT_POINTER(this_controller->completion_queue_get); |
| event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & this_controller->completion_queue_get; |
| |
| while ( |
| NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) |
| == COMPLETION_QUEUE_CYCLE_BIT(this_controller->completion_queue[get_index]) |
| ) { |
| completion_count++; |
| |
| completion_entry = this_controller->completion_queue[get_index]; |
| INCREMENT_COMPLETION_QUEUE_GET(this_controller, get_index, get_cycle); |
| |
| dev_dbg(scic_to_dev(this_controller), |
| "%s: completion queue entry:0x%08x\n", |
| __func__, |
| completion_entry); |
| |
| switch (SCU_GET_COMPLETION_TYPE(completion_entry)) { |
| case SCU_COMPLETION_TYPE_TASK: |
| scic_sds_controller_task_completion(this_controller, completion_entry); |
| break; |
| |
| case SCU_COMPLETION_TYPE_SDMA: |
| scic_sds_controller_sdma_completion(this_controller, completion_entry); |
| break; |
| |
| case SCU_COMPLETION_TYPE_UFI: |
| scic_sds_controller_unsolicited_frame(this_controller, completion_entry); |
| break; |
| |
| case SCU_COMPLETION_TYPE_EVENT: |
| INCREMENT_EVENT_QUEUE_GET(this_controller, event_index, event_cycle); |
| scic_sds_controller_event_completion(this_controller, completion_entry); |
| break; |
| |
| case SCU_COMPLETION_TYPE_NOTIFY: |
| /* |
| * Presently we do the same thing with a notify event that we do with the |
| * other event codes. */ |
| INCREMENT_EVENT_QUEUE_GET(this_controller, event_index, event_cycle); |
| scic_sds_controller_event_completion(this_controller, completion_entry); |
| break; |
| |
| default: |
| dev_warn(scic_to_dev(this_controller), |
| "%s: SCIC Controller received unknown " |
| "completion type %x\n", |
| __func__, |
| completion_entry); |
| break; |
| } |
| } |
| |
| /* Update the get register if we completed one or more entries */ |
| if (completion_count > 0) { |
| this_controller->completion_queue_get = |
| SMU_CQGR_GEN_BIT(ENABLE) |
| | SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
| | event_cycle | SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
| | get_cycle | SMU_CQGR_GEN_VAL(POINTER, get_index); |
| |
| SMU_CQGR_WRITE(this_controller, |
| this_controller->completion_queue_get); |
| } |
| |
| dev_dbg(scic_to_dev(this_controller), |
| "%s: completion queue ending get:0x%08x\n", |
| __func__, |
| this_controller->completion_queue_get); |
| |
| } |
| |
| /** |
| * This method is a private routine for processing the completion queue entries. |
| * @this_controller: |
| * |
| */ |
| static void scic_sds_controller_transitioned_process_completions( |
| struct scic_sds_controller *this_controller) |
| { |
| u32 completion_count = 0; |
| u32 completion_entry; |
| u32 get_index; |
| u32 get_cycle; |
| u32 event_index; |
| u32 event_cycle; |
| |
| dev_dbg(scic_to_dev(this_controller), |
| "%s: completion queue begining get:0x%08x\n", |
| __func__, |
| this_controller->completion_queue_get); |
| |
| /* Get the component parts of the completion queue */ |
| get_index = NORMALIZE_GET_POINTER(this_controller->completion_queue_get); |
| get_cycle = SMU_CQGR_CYCLE_BIT & this_controller->completion_queue_get; |
| |
| event_index = NORMALIZE_EVENT_POINTER(this_controller->completion_queue_get); |
| event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & this_controller->completion_queue_get; |
| |
| while ( |
| NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) |
| == COMPLETION_QUEUE_CYCLE_BIT( |
| this_controller->completion_queue[get_index]) |
| ) { |
| completion_count++; |
| |
| completion_entry = this_controller->completion_queue[get_index]; |
| INCREMENT_COMPLETION_QUEUE_GET(this_controller, get_index, get_cycle); |
| |
| dev_dbg(scic_to_dev(this_controller), |
| "%s: completion queue entry:0x%08x\n", |
| __func__, |
| completion_entry); |
| |
| switch (SCU_GET_COMPLETION_TYPE(completion_entry)) { |
| case SCU_COMPLETION_TYPE_TASK: |
| scic_sds_controller_task_completion(this_controller, completion_entry); |
| break; |
| |
| case SCU_COMPLETION_TYPE_NOTIFY: |
| case SCU_COMPLETION_TYPE_EVENT: |
| /* |
| * Presently we do the same thing with a notify event that we |
| * do with the other event codes. */ |
| INCREMENT_EVENT_QUEUE_GET(this_controller, event_index, event_cycle); |
| /* Fall-through */ |
| |
| case SCU_COMPLETION_TYPE_SDMA: |
| case SCU_COMPLETION_TYPE_UFI: |
| default: |
| dev_warn(scic_to_dev(this_controller), |
| "%s: SCIC Controller ignoring completion type " |
| "%x\n", |
| __func__, |
| completion_entry); |
| break; |
| } |
| } |
| |
| /* Update the get register if we completed one or more entries */ |
| if (completion_count > 0) { |
| this_controller->completion_queue_get = |
| SMU_CQGR_GEN_BIT(ENABLE) |
| | SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
| | event_cycle | SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
| | get_cycle | SMU_CQGR_GEN_VAL(POINTER, get_index); |
| |
| SMU_CQGR_WRITE(this_controller, this_controller->completion_queue_get); |
| } |
| |
| dev_dbg(scic_to_dev(this_controller), |
| "%s: completion queue ending get:0x%08x\n", |
| __func__, |
| this_controller->completion_queue_get); |
| } |
| |
| /* |
| * ****************************************************************************- |
| * * SCIC SDS Controller Interrupt and Completion functions |
| * ****************************************************************************- */ |
| |
| /** |
| * This method provides standard (common) processing of interrupts for polling |
| * and legacy based interrupts. |
| * @controller: |
| * @interrupt_status: |
| * |
| * This method returns a boolean (bool) indication as to whether an completions |
| * are pending to be processed. true if an interrupt is to be processed false |
| * if no interrupt was pending |
| */ |
| static bool scic_sds_controller_standard_interrupt_handler( |
| struct scic_sds_controller *this_controller, |
| u32 interrupt_status) |
| { |
| bool is_completion_needed = false; |
| |
| if ((interrupt_status & SMU_ISR_QUEUE_ERROR) || |
| ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && |
| (!scic_sds_controller_completion_queue_has_entries( |
| this_controller)))) { |
| /* |
| * We have a fatal error on the read of the completion queue bar |
| * OR |
| * We have a fatal error there is nothing in the completion queue |
| * but we have a report from the hardware that the queue is full |
| * / @todo how do we request the a controller reset */ |
| is_completion_needed = true; |
| this_controller->encountered_fatal_error = true; |
| } |
| |
| if (scic_sds_controller_completion_queue_has_entries(this_controller)) { |
| is_completion_needed = true; |
| } |
| |
| return is_completion_needed; |
| } |
| |
| /** |
| * This is the method provided to handle polling for interrupts for the |
| * controller object. |
| * |
| * bool true if an interrupt is to be processed false if no interrupt was |
| * pending |
| */ |
| static bool scic_sds_controller_polling_interrupt_handler( |
| struct scic_sds_controller *scic) |
| { |
| u32 interrupt_status; |
| |
| /* |
| * In INTERRUPT_POLLING_MODE we exit the interrupt handler if the |
| * hardware indicates nothing is pending. Since we are not being |
| * called from a real interrupt, we don't want to confuse the hardware |
| * by servicing the completion queue before the hardware indicates it |
| * is ready. We'll simply wait for another polling interval and check |
| * again. |
| */ |
| interrupt_status = SMU_ISR_READ(scic); |
| if ((interrupt_status & |
| (SMU_ISR_COMPLETION | |
| SMU_ISR_QUEUE_ERROR | |
| SMU_ISR_QUEUE_SUSPEND)) == 0) { |
| return false; |
| } |
| |
| return scic_sds_controller_standard_interrupt_handler( |
| scic, interrupt_status); |
| } |
| |
| /** |
| * This is the method provided to handle completions when interrupt polling is |
| * in use. |
| */ |
| static void scic_sds_controller_polling_completion_handler( |
| struct scic_sds_controller *scic) |
| { |
| if (scic->encountered_fatal_error == true) { |
| dev_err(scic_to_dev(scic), |
| "%s: SCIC Controller has encountered a fatal error.\n", |
| __func__); |
| |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(scic), |
| SCI_BASE_CONTROLLER_STATE_FAILED); |
| } else if (scic_sds_controller_completion_queue_has_entries(scic)) { |
| if (scic->restrict_completions == false) |
| scic_sds_controller_process_completions(scic); |
| else |
| scic_sds_controller_transitioned_process_completions( |
| scic); |
| } |
| |
| /* |
| * The interrupt handler does not adjust the CQ's |
| * get pointer. So, SCU's INTx pin stays asserted during the |
| * interrupt handler even though it tries to clear the interrupt |
| * source. Therefore, the completion handler must ensure that the |
| * interrupt source is cleared. Otherwise, we get a spurious |
| * interrupt for which the interrupt handler will not issue a |
| * corresponding completion event. Also, we unmask interrupts. |
| */ |
| SMU_ISR_WRITE( |
| scic, |
| (u32)(SMU_ISR_COMPLETION | SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND) |
| ); |
| } |
| |
| /** |
| * This is the method provided to handle legacy interrupts for the controller |
| * object. |
| * |
| * bool true if an interrupt is processed false if no interrupt was processed |
| */ |
| static bool scic_sds_controller_legacy_interrupt_handler( |
| struct scic_sds_controller *scic) |
| { |
| u32 interrupt_status; |
| bool is_completion_needed; |
| |
| interrupt_status = SMU_ISR_READ(scic); |
| is_completion_needed = scic_sds_controller_standard_interrupt_handler( |
| scic, interrupt_status); |
| |
| return is_completion_needed; |
| } |
| |
| |
| /** |
| * This is the method provided to handle legacy completions it is expected that |
| * the SCI User will call this completion handler anytime the interrupt |
| * handler reports that it has handled an interrupt. |
| */ |
| static void scic_sds_controller_legacy_completion_handler( |
| struct scic_sds_controller *scic) |
| { |
| scic_sds_controller_polling_completion_handler(scic); |
| SMU_IMR_WRITE(scic, 0x00000000); |
| } |
| |
| /** |
| * This is the method provided to handle an MSIX interrupt message when there |
| * is just a single MSIX message being provided by the hardware. This mode |
| * of operation is single vector mode. |
| * |
| * bool true if an interrupt is processed false if no interrupt was processed |
| */ |
| static bool scic_sds_controller_single_vector_interrupt_handler( |
| struct scic_sds_controller *scic) |
| { |
| u32 interrupt_status; |
| |
| /* |
| * Mask the interrupts |
| * There is a race in the hardware that could cause us not to be notified |
| * of an interrupt completion if we do not take this step. We will unmask |
| * the interrupts in the completion routine. */ |
| SMU_IMR_WRITE(scic, 0xFFFFFFFF); |
| |
| interrupt_status = SMU_ISR_READ(scic); |
| interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); |
| |
| if ((interrupt_status == 0) && |
| scic_sds_controller_completion_queue_has_entries(scic)) { |
| /* |
| * There is at least one completion queue entry to process so we can |
| * return a success and ignore for now the case of an error interrupt */ |
| SMU_ISR_WRITE(scic, SMU_ISR_COMPLETION); |
| return true; |
| } |
| |
| if (interrupt_status != 0) { |
| /* |
| * There is an error interrupt pending so let it through and handle |
| * in the callback */ |
| return true; |
| } |
| |
| /* |
| * Clear any offending interrupts since we could not find any to handle |
| * and unmask them all */ |
| SMU_ISR_WRITE(scic, 0x00000000); |
| SMU_IMR_WRITE(scic, 0x00000000); |
| |
| return false; |
| } |
| |
| /** |
| * This is the method provided to handle completions for a single MSIX message. |
| */ |
| static void scic_sds_controller_single_vector_completion_handler( |
| struct scic_sds_controller *scic) |
| { |
| u32 interrupt_status; |
| |
| interrupt_status = SMU_ISR_READ(scic); |
| interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); |
| |
| if (interrupt_status & SMU_ISR_QUEUE_ERROR) { |
| dev_err(scic_to_dev(scic), |
| "%s: SCIC Controller has encountered a fatal error.\n", |
| __func__); |
| |
| /* |
| * We have a fatal condition and must reset the controller |
| * Leave the interrupt mask in place and get the controller reset */ |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(scic), |
| SCI_BASE_CONTROLLER_STATE_FAILED); |
| return; |
| } |
| |
| if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && |
| !scic_sds_controller_completion_queue_has_entries(scic)) { |
| dev_err(scic_to_dev(scic), |
| "%s: SCIC Controller has encountered a fatal error.\n", |
| __func__); |
| |
| /* |
| * We have a fatal condtion and must reset the controller |
| * Leave the interrupt mask in place and get the controller reset */ |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(scic), |
| SCI_BASE_CONTROLLER_STATE_FAILED); |
| return; |
| } |
| |
| if (scic_sds_controller_completion_queue_has_entries(scic)) { |
| scic_sds_controller_process_completions(scic); |
| |
| /* |
| * We dont care which interrupt got us to processing the completion queu |
| * so clear them both. */ |
| SMU_ISR_WRITE( |
| scic, |
| (SMU_ISR_COMPLETION | SMU_ISR_QUEUE_SUSPEND)); |
| } |
| |
| SMU_IMR_WRITE(scic, 0x00000000); |
| } |
| |
| /** |
| * This is the method provided to handle a MSIX message for a normal completion. |
| * |
| * bool true if an interrupt is processed false if no interrupt was processed |
| */ |
| static bool scic_sds_controller_normal_vector_interrupt_handler( |
| struct scic_sds_controller *scic) |
| { |
| if (scic_sds_controller_completion_queue_has_entries(scic)) { |
| return true; |
| } else { |
| /* |
| * we have a spurious interrupt it could be that we have already |
| * emptied the completion queue from a previous interrupt */ |
| SMU_ISR_WRITE(scic, SMU_ISR_COMPLETION); |
| |
| /* |
| * There is a race in the hardware that could cause us not to be notified |
| * of an interrupt completion if we do not take this step. We will mask |
| * then unmask the interrupts so if there is another interrupt pending |
| * the clearing of the interrupt source we get the next interrupt message. */ |
| SMU_IMR_WRITE(scic, 0xFF000000); |
| SMU_IMR_WRITE(scic, 0x00000000); |
| } |
| |
| return false; |
| } |
| |
| /** |
| * This is the method provided to handle the completions for a normal MSIX |
| * message. |
| */ |
| static void scic_sds_controller_normal_vector_completion_handler( |
| struct scic_sds_controller *scic) |
| { |
| /* Empty out the completion queue */ |
| if (scic_sds_controller_completion_queue_has_entries(scic)) |
| scic_sds_controller_process_completions(scic); |
| |
| /* Clear the interrupt and enable all interrupts again */ |
| SMU_ISR_WRITE(scic, SMU_ISR_COMPLETION); |
| /* Could we write the value of SMU_ISR_COMPLETION? */ |
| SMU_IMR_WRITE(scic, 0xFF000000); |
| SMU_IMR_WRITE(scic, 0x00000000); |
| } |
| |
| /** |
| * This is the method provided to handle the error MSIX message interrupt. |
| * This is the normal operating mode for the hardware if MSIX is enabled. |
| * |
| * bool true if an interrupt is processed false if no interrupt was processed |
| */ |
| static bool scic_sds_controller_error_vector_interrupt_handler( |
| struct scic_sds_controller *scic) |
| { |
| u32 interrupt_status; |
| |
| interrupt_status = SMU_ISR_READ(scic); |
| interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); |
| |
| if (interrupt_status != 0) { |
| /* |
| * There is an error interrupt pending so let it through and handle |
| * in the callback */ |
| return true; |
| } |
| |
| /* |
| * There is a race in the hardware that could cause us not to be notified |
| * of an interrupt completion if we do not take this step. We will mask |
| * then unmask the error interrupts so if there was another interrupt |
| * pending we will be notified. |
| * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ |
| SMU_IMR_WRITE(scic, 0x000000FF); |
| SMU_IMR_WRITE(scic, 0x00000000); |
| |
| return false; |
| } |
| |
| /** |
| * This is the method provided to handle the error completions when the |
| * hardware is using two MSIX messages. |
| */ |
| static void scic_sds_controller_error_vector_completion_handler( |
| struct scic_sds_controller *scic) |
| { |
| u32 interrupt_status; |
| |
| interrupt_status = SMU_ISR_READ(scic); |
| |
| if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && |
| scic_sds_controller_completion_queue_has_entries(scic)) { |
| |
| scic_sds_controller_process_completions(scic); |
| SMU_ISR_WRITE(scic, SMU_ISR_QUEUE_SUSPEND); |
| |
| } else { |
| dev_err(scic_to_dev(scic), |
| "%s: SCIC Controller reports CRC error on completion " |
| "ISR %x\n", |
| __func__, |
| interrupt_status); |
| |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(scic), |
| SCI_BASE_CONTROLLER_STATE_FAILED); |
| |
| return; |
| } |
| |
| /* |
| * If we dont process any completions I am not sure that we want to do this. |
| * We are in the middle of a hardware fault and should probably be reset. */ |
| SMU_IMR_WRITE(scic, 0x00000000); |
| } |
| |
| |
| /* |
| * ****************************************************************************- |
| * * SCIC SDS Controller External Methods |
| * ****************************************************************************- */ |
| |
| /** |
| * This method returns the sizeof the SCIC SDS Controller Object |
| */ |
| u32 scic_sds_controller_get_object_size(void) |
| { |
| return sizeof(struct scic_sds_controller); |
| } |
| |
| |
| void scic_sds_controller_link_up( |
| struct scic_sds_controller *scic, |
| struct scic_sds_port *sci_port, |
| struct scic_sds_phy *sci_phy) |
| { |
| scic_sds_controller_phy_handler_t link_up; |
| u32 state; |
| |
| state = scic->parent.state_machine.current_state_id; |
| link_up = scic_sds_controller_state_handler_table[state].link_up; |
| |
| if (link_up) |
| link_up(scic, sci_port, sci_phy); |
| else |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller linkup event from phy %d in " |
| "unexpected state %d\n", |
| __func__, |
| sci_phy->phy_index, |
| sci_base_state_machine_get_state( |
| scic_sds_controller_get_base_state_machine( |
| scic))); |
| } |
| |
| |
| void scic_sds_controller_link_down( |
| struct scic_sds_controller *scic, |
| struct scic_sds_port *sci_port, |
| struct scic_sds_phy *sci_phy) |
| { |
| u32 state; |
| scic_sds_controller_phy_handler_t link_down; |
| |
| state = scic->parent.state_machine.current_state_id; |
| link_down = scic_sds_controller_state_handler_table[state].link_down; |
| |
| if (link_down) |
| link_down(scic, sci_port, sci_phy); |
| else |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller linkdown event from phy %d in " |
| "unexpected state %d\n", |
| __func__, |
| sci_phy->phy_index, |
| sci_base_state_machine_get_state( |
| scic_sds_controller_get_base_state_machine( |
| scic))); |
| } |
| |
| /** |
| * This method will write to the SCU PCP register the request value. The method |
| * is used to suspend/resume ports, devices, and phys. |
| * @this_controller: |
| * |
| * |
| */ |
| void scic_sds_controller_post_request( |
| struct scic_sds_controller *this_controller, |
| u32 request) |
| { |
| dev_dbg(scic_to_dev(this_controller), |
| "%s: SCIC Controller 0x%p post request 0x%08x\n", |
| __func__, |
| this_controller, |
| request); |
| |
| SMU_PCP_WRITE(this_controller, request); |
| } |
| |
| /** |
| * This method will copy the soft copy of the task context into the physical |
| * memory accessible by the controller. |
| * @this_controller: This parameter specifies the controller for which to copy |
| * the task context. |
| * @this_request: This parameter specifies the request for which the task |
| * context is being copied. |
| * |
| * After this call is made the SCIC_SDS_IO_REQUEST object will always point to |
| * the physical memory version of the task context. Thus, all subsequent |
| * updates to the task context are performed in the TC table (i.e. DMAable |
| * memory). none |
| */ |
| void scic_sds_controller_copy_task_context( |
| struct scic_sds_controller *this_controller, |
| struct scic_sds_request *this_request) |
| { |
| struct scu_task_context *task_context_buffer; |
| |
| task_context_buffer = scic_sds_controller_get_task_context_buffer( |
| this_controller, this_request->io_tag |
| ); |
| |
| memcpy( |
| task_context_buffer, |
| this_request->task_context_buffer, |
| SCI_FIELD_OFFSET(struct scu_task_context, sgl_snapshot_ac) |
| ); |
| |
| /* |
| * Now that the soft copy of the TC has been copied into the TC |
| * table accessible by the silicon. Thus, any further changes to |
| * the TC (e.g. TC termination) occur in the appropriate location. */ |
| this_request->task_context_buffer = task_context_buffer; |
| } |
| |
| /** |
| * This method returns the task context buffer for the given io tag. |
| * @this_controller: |
| * @io_tag: |
| * |
| * struct scu_task_context* |
| */ |
| struct scu_task_context *scic_sds_controller_get_task_context_buffer( |
| struct scic_sds_controller *this_controller, |
| u16 io_tag |
| ) { |
| u16 task_index = scic_sds_io_tag_get_index(io_tag); |
| |
| if (task_index < this_controller->task_context_entries) { |
| return &this_controller->task_context_table[task_index]; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * This method returnst the sequence value from the io tag value |
| * @this_controller: |
| * @io_tag: |
| * |
| * u16 |
| */ |
| |
| /** |
| * This method returns the IO request associated with the tag value |
| * @this_controller: |
| * @io_tag: |
| * |
| * SCIC_SDS_IO_REQUEST_T* NULL if there is no valid IO request at the tag value |
| */ |
| struct scic_sds_request *scic_sds_controller_get_io_request_from_tag( |
| struct scic_sds_controller *this_controller, |
| u16 io_tag |
| ) { |
| u16 task_index; |
| u16 task_sequence; |
| |
| task_index = scic_sds_io_tag_get_index(io_tag); |
| |
| if (task_index < this_controller->task_context_entries) { |
| if (this_controller->io_request_table[task_index] != SCI_INVALID_HANDLE) { |
| task_sequence = scic_sds_io_tag_get_sequence(io_tag); |
| |
| if (task_sequence == this_controller->io_request_sequence[task_index]) { |
| return this_controller->io_request_table[task_index]; |
| } |
| } |
| } |
| |
| return SCI_INVALID_HANDLE; |
| } |
| |
| /** |
| * This method allocates remote node index and the reserves the remote node |
| * context space for use. This method can fail if there are no more remote |
| * node index available. |
| * @this_controller: This is the controller object which contains the set of |
| * free remote node ids |
| * @the_devce: This is the device object which is requesting the a remote node |
| * id |
| * @node_id: This is the remote node id that is assinged to the device if one |
| * is available |
| * |
| * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote |
| * node index available. |
| */ |
| enum sci_status scic_sds_controller_allocate_remote_node_context( |
| struct scic_sds_controller *this_controller, |
| struct scic_sds_remote_device *the_device, |
| u16 *node_id) |
| { |
| u16 node_index; |
| u32 remote_node_count = scic_sds_remote_device_node_count(the_device); |
| |
| node_index = scic_sds_remote_node_table_allocate_remote_node( |
| &this_controller->available_remote_nodes, remote_node_count |
| ); |
| |
| if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { |
| this_controller->device_table[node_index] = the_device; |
| |
| *node_id = node_index; |
| |
| return SCI_SUCCESS; |
| } |
| |
| return SCI_FAILURE_INSUFFICIENT_RESOURCES; |
| } |
| |
| /** |
| * This method frees the remote node index back to the available pool. Once |
| * this is done the remote node context buffer is no longer valid and can |
| * not be used. |
| * @this_controller: |
| * @the_device: |
| * @node_id: |
| * |
| */ |
| void scic_sds_controller_free_remote_node_context( |
| struct scic_sds_controller *this_controller, |
| struct scic_sds_remote_device *the_device, |
| u16 node_id) |
| { |
| u32 remote_node_count = scic_sds_remote_device_node_count(the_device); |
| |
| if (this_controller->device_table[node_id] == the_device) { |
| this_controller->device_table[node_id] = SCI_INVALID_HANDLE; |
| |
| scic_sds_remote_node_table_release_remote_node_index( |
| &this_controller->available_remote_nodes, remote_node_count, node_id |
| ); |
| } |
| } |
| |
| /** |
| * This method returns the union scu_remote_node_context for the specified remote |
| * node id. |
| * @this_controller: |
| * @node_id: |
| * |
| * union scu_remote_node_context* |
| */ |
| union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer( |
| struct scic_sds_controller *this_controller, |
| u16 node_id |
| ) { |
| if ( |
| (node_id < this_controller->remote_node_entries) |
| && (this_controller->device_table[node_id] != SCI_INVALID_HANDLE) |
| ) { |
| return &this_controller->remote_node_context_table[node_id]; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * |
| * @resposne_buffer: This is the buffer into which the D2H register FIS will be |
| * constructed. |
| * @frame_header: This is the frame header returned by the hardware. |
| * @frame_buffer: This is the frame buffer returned by the hardware. |
| * |
| * This method will combind the frame header and frame buffer to create a SATA |
| * D2H register FIS none |
| */ |
| void scic_sds_controller_copy_sata_response( |
| void *response_buffer, |
| void *frame_header, |
| void *frame_buffer) |
| { |
| memcpy( |
| response_buffer, |
| frame_header, |
| sizeof(u32) |
| ); |
| |
| memcpy( |
| (char *)((char *)response_buffer + sizeof(u32)), |
| frame_buffer, |
| sizeof(struct sata_fis_reg_d2h) - sizeof(u32) |
| ); |
| } |
| |
| /** |
| * This method releases the frame once this is done the frame is available for |
| * re-use by the hardware. The data contained in the frame header and frame |
| * buffer is no longer valid. The UF queue get pointer is only updated if UF |
| * control indicates this is appropriate. |
| * @this_controller: |
| * @frame_index: |
| * |
| */ |
| void scic_sds_controller_release_frame( |
| struct scic_sds_controller *this_controller, |
| u32 frame_index) |
| { |
| if (scic_sds_unsolicited_frame_control_release_frame( |
| &this_controller->uf_control, frame_index) == true) |
| SCU_UFQGP_WRITE(this_controller, this_controller->uf_control.get); |
| } |
| |
| /** |
| * This method sets user parameters and OEM parameters to default values. |
| * Users can override these values utilizing the scic_user_parameters_set() |
| * and scic_oem_parameters_set() methods. |
| * @controller: This parameter specifies the controller for which to set the |
| * configuration parameters to their default values. |
| * |
| */ |
| static void scic_sds_controller_set_default_config_parameters( |
| struct scic_sds_controller *this_controller) |
| { |
| u16 index; |
| |
| /* Default to no SSC operation. */ |
| this_controller->oem_parameters.sds1.controller.do_enable_ssc = false; |
| |
| /* Initialize all of the port parameter information to narrow ports. */ |
| for (index = 0; index < SCI_MAX_PORTS; index++) { |
| this_controller->oem_parameters.sds1.ports[index].phy_mask = 0; |
| } |
| |
| /* Initialize all of the phy parameter information. */ |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| /* |
| * Default to 3G (i.e. Gen 2) for now. User can override if |
| * they choose. */ |
| this_controller->user_parameters.sds1.phys[index].max_speed_generation = 2; |
| |
| /* |
| * Previous Vitesse based expanders had a arbitration issue that |
| * is worked around by having the upper 32-bits of SAS address |
| * with a value greater then the Vitesse company identifier. |
| * Hence, usage of 0x5FCFFFFF. */ |
| this_controller->oem_parameters.sds1.phys[index].sas_address.low |
| = 0x00000001; |
| this_controller->oem_parameters.sds1.phys[index].sas_address.high |
| = 0x5FCFFFFF; |
| } |
| |
| this_controller->user_parameters.sds1.stp_inactivity_timeout = 5; |
| this_controller->user_parameters.sds1.ssp_inactivity_timeout = 5; |
| this_controller->user_parameters.sds1.stp_max_occupancy_timeout = 5; |
| this_controller->user_parameters.sds1.ssp_max_occupancy_timeout = 20; |
| this_controller->user_parameters.sds1.no_outbound_task_timeout = 5; |
| |
| } |
| |
| |
| enum sci_status scic_controller_construct(struct scic_sds_controller *controller, |
| void __iomem *scu_base, |
| void __iomem *smu_base) |
| { |
| u8 index; |
| |
| sci_base_controller_construct( |
| &controller->parent, |
| scic_sds_controller_state_table, |
| controller->memory_descriptors, |
| ARRAY_SIZE(controller->memory_descriptors), |
| NULL |
| ); |
| |
| controller->scu_registers = scu_base; |
| controller->smu_registers = smu_base; |
| |
| scic_sds_port_configuration_agent_construct(&controller->port_agent); |
| |
| /* Construct the ports for this controller */ |
| for (index = 0; index < SCI_MAX_PORTS; index++) |
| scic_sds_port_construct(&controller->port_table[index], |
| index, controller); |
| scic_sds_port_construct(&controller->port_table[index], |
| SCIC_SDS_DUMMY_PORT, controller); |
| |
| /* Construct the phys for this controller */ |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| /* Add all the PHYs to the dummy port */ |
| scic_sds_phy_construct( |
| &controller->phy_table[index], |
| &controller->port_table[SCI_MAX_PORTS], |
| index |
| ); |
| } |
| |
| controller->invalid_phy_mask = 0; |
| |
| /* Set the default maximum values */ |
| controller->completion_event_entries = SCU_EVENT_COUNT; |
| controller->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT; |
| controller->remote_node_entries = SCI_MAX_REMOTE_DEVICES; |
| controller->logical_port_entries = SCI_MAX_PORTS; |
| controller->task_context_entries = SCU_IO_REQUEST_COUNT; |
| controller->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT; |
| controller->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT; |
| |
| /* Initialize the User and OEM parameters to default values. */ |
| scic_sds_controller_set_default_config_parameters(controller); |
| |
| return SCI_SUCCESS; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_initialize( |
| struct scic_sds_controller *scic) |
| { |
| enum sci_status status = SCI_FAILURE_INVALID_STATE; |
| sci_base_controller_handler_t initialize; |
| u32 state; |
| |
| state = scic->parent.state_machine.current_state_id; |
| initialize = scic_sds_controller_state_handler_table[state].base.initialize; |
| |
| if (initialize) |
| status = initialize(&scic->parent); |
| else |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller initialize operation requested " |
| "in invalid state %d\n", |
| __func__, |
| sci_base_state_machine_get_state( |
| scic_sds_controller_get_base_state_machine( |
| scic))); |
| |
| return status; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| u32 scic_controller_get_suggested_start_timeout( |
| struct scic_sds_controller *sc) |
| { |
| /* Validate the user supplied parameters. */ |
| if (sc == SCI_INVALID_HANDLE) |
| return 0; |
| |
| /* |
| * The suggested minimum timeout value for a controller start operation: |
| * |
| * Signature FIS Timeout |
| * + Phy Start Timeout |
| * + Number of Phy Spin Up Intervals |
| * --------------------------------- |
| * Number of milliseconds for the controller start operation. |
| * |
| * NOTE: The number of phy spin up intervals will be equivalent |
| * to the number of phys divided by the number phys allowed |
| * per interval - 1 (once OEM parameters are supported). |
| * Currently we assume only 1 phy per interval. */ |
| |
| return (SCIC_SDS_SIGNATURE_FIS_TIMEOUT |
| + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT |
| + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL)); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_start( |
| struct scic_sds_controller *scic, |
| u32 timeout) |
| { |
| enum sci_status status = SCI_FAILURE_INVALID_STATE; |
| sci_base_controller_timed_handler_t start; |
| u32 state; |
| |
| state = scic->parent.state_machine.current_state_id; |
| start = scic_sds_controller_state_handler_table[state].base.start; |
| |
| if (start) |
| status = start(&scic->parent, timeout); |
| else |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller start operation requested in " |
| "invalid state %d\n", |
| __func__, |
| sci_base_state_machine_get_state( |
| scic_sds_controller_get_base_state_machine( |
| scic))); |
| |
| return status; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_stop( |
| struct scic_sds_controller *scic, |
| u32 timeout) |
| { |
| enum sci_status status = SCI_FAILURE_INVALID_STATE; |
| sci_base_controller_timed_handler_t stop; |
| u32 state; |
| |
| state = scic->parent.state_machine.current_state_id; |
| stop = scic_sds_controller_state_handler_table[state].base.stop; |
| |
| if (stop) |
| status = stop(&scic->parent, timeout); |
| else |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller stop operation requested in " |
| "invalid state %d\n", |
| __func__, |
| sci_base_state_machine_get_state( |
| scic_sds_controller_get_base_state_machine( |
| scic))); |
| |
| return status; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_reset( |
| struct scic_sds_controller *scic) |
| { |
| enum sci_status status = SCI_FAILURE_INVALID_STATE; |
| sci_base_controller_handler_t reset; |
| u32 state; |
| |
| state = scic->parent.state_machine.current_state_id; |
| reset = scic_sds_controller_state_handler_table[state].base.reset; |
| |
| if (reset) |
| status = reset(&scic->parent); |
| else |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller reset operation requested in " |
| "invalid state %d\n", |
| __func__, |
| sci_base_state_machine_get_state( |
| scic_sds_controller_get_base_state_machine( |
| scic))); |
| |
| return status; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_get_handler_methods( |
| enum scic_interrupt_type interrupt_type, |
| u16 message_count, |
| struct scic_controller_handler_methods *handler_methods) |
| { |
| enum sci_status status = SCI_FAILURE_UNSUPPORTED_MESSAGE_COUNT; |
| |
| switch (interrupt_type) { |
| case SCIC_LEGACY_LINE_INTERRUPT_TYPE: |
| if (message_count == 0) { |
| handler_methods[0].interrupt_handler |
| = scic_sds_controller_legacy_interrupt_handler; |
| handler_methods[0].completion_handler |
| = scic_sds_controller_legacy_completion_handler; |
| |
| status = SCI_SUCCESS; |
| } |
| break; |
| |
| case SCIC_MSIX_INTERRUPT_TYPE: |
| if (message_count == 1) { |
| handler_methods[0].interrupt_handler |
| = scic_sds_controller_single_vector_interrupt_handler; |
| handler_methods[0].completion_handler |
| = scic_sds_controller_single_vector_completion_handler; |
| |
| status = SCI_SUCCESS; |
| } else if (message_count == 2) { |
| handler_methods[0].interrupt_handler |
| = scic_sds_controller_normal_vector_interrupt_handler; |
| handler_methods[0].completion_handler |
| = scic_sds_controller_normal_vector_completion_handler; |
| |
| handler_methods[1].interrupt_handler |
| = scic_sds_controller_error_vector_interrupt_handler; |
| handler_methods[1].completion_handler |
| = scic_sds_controller_error_vector_completion_handler; |
| |
| status = SCI_SUCCESS; |
| } |
| break; |
| |
| case SCIC_NO_INTERRUPTS: |
| if (message_count == 0) { |
| |
| handler_methods[0].interrupt_handler |
| = scic_sds_controller_polling_interrupt_handler; |
| handler_methods[0].completion_handler |
| = scic_sds_controller_polling_completion_handler; |
| |
| status = SCI_SUCCESS; |
| } |
| break; |
| |
| default: |
| status = SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| break; |
| } |
| |
| return status; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_io_status scic_controller_start_io( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *remote_device, |
| struct scic_sds_request *io_request, |
| u16 io_tag) |
| { |
| u32 state; |
| sci_base_controller_start_request_handler_t start_io; |
| |
| state = scic->parent.state_machine.current_state_id; |
| start_io = scic_sds_controller_state_handler_table[state].base.start_io; |
| |
| return start_io(&scic->parent, |
| (struct sci_base_remote_device *) remote_device, |
| (struct sci_base_request *)io_request, io_tag); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_terminate_request( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *remote_device, |
| struct scic_sds_request *request) |
| { |
| sci_base_controller_request_handler_t terminate_request; |
| u32 state; |
| |
| state = scic->parent.state_machine.current_state_id; |
| terminate_request = scic_sds_controller_state_handler_table[state].terminate_request; |
| |
| return terminate_request(&scic->parent, |
| (struct sci_base_remote_device *)remote_device, |
| (struct sci_base_request *)request); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_complete_io( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *remote_device, |
| struct scic_sds_request *io_request) |
| { |
| u32 state; |
| sci_base_controller_request_handler_t complete_io; |
| |
| state = scic->parent.state_machine.current_state_id; |
| complete_io = scic_sds_controller_state_handler_table[state].base.complete_io; |
| |
| return complete_io(&scic->parent, |
| (struct sci_base_remote_device *)remote_device, |
| (struct sci_base_request *)io_request); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| |
| enum sci_task_status scic_controller_start_task( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *remote_device, |
| struct scic_sds_request *task_request, |
| u16 task_tag) |
| { |
| u32 state; |
| sci_base_controller_start_request_handler_t start_task; |
| enum sci_task_status status = SCI_TASK_FAILURE_INVALID_STATE; |
| |
| state = scic->parent.state_machine.current_state_id; |
| start_task = scic_sds_controller_state_handler_table[state].base.start_task; |
| |
| if (start_task) |
| status = start_task(&scic->parent, |
| (struct sci_base_remote_device *)remote_device, |
| (struct sci_base_request *)task_request, |
| task_tag); |
| else |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller starting task from invalid " |
| "state\n", |
| __func__); |
| |
| return status; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_complete_task( |
| struct scic_sds_controller *scic, |
| struct scic_sds_remote_device *remote_device, |
| struct scic_sds_request *task_request) |
| { |
| u32 state; |
| sci_base_controller_request_handler_t complete_task; |
| enum sci_status status = SCI_FAILURE_INVALID_STATE; |
| |
| state = scic->parent.state_machine.current_state_id; |
| complete_task = scic_sds_controller_state_handler_table[state].base.complete_task; |
| |
| if (complete_task) |
| status = complete_task(&scic->parent, |
| (struct sci_base_remote_device *)remote_device, |
| (struct sci_base_request *)task_request); |
| else |
| dev_warn(scic_to_dev(scic), |
| "%s: SCIC Controller completing task from invalid " |
| "state\n", |
| __func__); |
| |
| return status; |
| } |
| |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_get_port_handle( |
| struct scic_sds_controller *scic, |
| u8 port_index, |
| struct scic_sds_port **port_handle) |
| { |
| if (port_index < scic->logical_port_entries) { |
| *port_handle = &scic->port_table[port_index]; |
| |
| return SCI_SUCCESS; |
| } |
| |
| return SCI_FAILURE_INVALID_PORT; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_get_phy_handle( |
| struct scic_sds_controller *scic, |
| u8 phy_index, |
| struct scic_sds_phy **phy_handle) |
| { |
| if (phy_index < ARRAY_SIZE(scic->phy_table)) { |
| *phy_handle = &scic->phy_table[phy_index]; |
| |
| return SCI_SUCCESS; |
| } |
| |
| dev_err(scic_to_dev(scic), |
| "%s: Controller:0x%p PhyId:0x%x invalid phy index\n", |
| __func__, scic, phy_index); |
| |
| return SCI_FAILURE_INVALID_PHY; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| u16 scic_controller_allocate_io_tag( |
| struct scic_sds_controller *scic) |
| { |
| u16 task_context; |
| u16 sequence_count; |
| |
| if (!sci_pool_empty(scic->tci_pool)) { |
| sci_pool_get(scic->tci_pool, task_context); |
| |
| sequence_count = scic->io_request_sequence[task_context]; |
| |
| return scic_sds_io_tag_construct(sequence_count, task_context); |
| } |
| |
| return SCI_CONTROLLER_INVALID_IO_TAG; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_free_io_tag( |
| struct scic_sds_controller *scic, |
| u16 io_tag) |
| { |
| u16 sequence; |
| u16 index; |
| |
| BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG); |
| |
| sequence = scic_sds_io_tag_get_sequence(io_tag); |
| index = scic_sds_io_tag_get_index(io_tag); |
| |
| if (!sci_pool_full(scic->tci_pool)) { |
| if (sequence == scic->io_request_sequence[index]) { |
| scic_sds_io_sequence_increment( |
| scic->io_request_sequence[index]); |
| |
| sci_pool_put(scic->tci_pool, index); |
| |
| return SCI_SUCCESS; |
| } |
| } |
| |
| return SCI_FAILURE_INVALID_IO_TAG; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| void scic_controller_enable_interrupts( |
| struct scic_sds_controller *scic) |
| { |
| BUG_ON(scic->smu_registers == NULL); |
| SMU_IMR_WRITE(scic, 0x00000000); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| void scic_controller_disable_interrupts( |
| struct scic_sds_controller *scic) |
| { |
| BUG_ON(scic->smu_registers == NULL); |
| SMU_IMR_WRITE(scic, 0xffffffff); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_controller_set_mode( |
| struct scic_sds_controller *scic, |
| enum sci_controller_mode operating_mode) |
| { |
| enum sci_status status = SCI_SUCCESS; |
| |
| if ((scic->parent.state_machine.current_state_id == |
| SCI_BASE_CONTROLLER_STATE_INITIALIZING) || |
| (scic->parent.state_machine.current_state_id == |
| SCI_BASE_CONTROLLER_STATE_INITIALIZED)) { |
| switch (operating_mode) { |
| case SCI_MODE_SPEED: |
| scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES; |
| scic->task_context_entries = SCU_IO_REQUEST_COUNT; |
| scic->uf_control.buffers.count = |
| SCU_UNSOLICITED_FRAME_COUNT; |
| scic->completion_event_entries = SCU_EVENT_COUNT; |
| scic->completion_queue_entries = |
| SCU_COMPLETION_QUEUE_COUNT; |
| scic_sds_controller_build_memory_descriptor_table(scic); |
| break; |
| |
| case SCI_MODE_SIZE: |
| scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES; |
| scic->task_context_entries = SCI_MIN_IO_REQUESTS; |
| scic->uf_control.buffers.count = |
| SCU_MIN_UNSOLICITED_FRAMES; |
| scic->completion_event_entries = SCU_MIN_EVENTS; |
| scic->completion_queue_entries = |
| SCU_MIN_COMPLETION_QUEUE_ENTRIES; |
| scic_sds_controller_build_memory_descriptor_table(scic); |
| break; |
| |
| default: |
| status = SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| break; |
| } |
| } else |
| status = SCI_FAILURE_INVALID_STATE; |
| |
| return status; |
| } |
| |
| /** |
| * scic_sds_controller_reset_hardware() - |
| * |
| * This method will reset the controller hardware. |
| */ |
| void scic_sds_controller_reset_hardware( |
| struct scic_sds_controller *scic) |
| { |
| /* Disable interrupts so we dont take any spurious interrupts */ |
| scic_controller_disable_interrupts(scic); |
| |
| /* Reset the SCU */ |
| SMU_SMUSRCR_WRITE(scic, 0xFFFFFFFF); |
| |
| /* Delay for 1ms to before clearing the CQP and UFQPR. */ |
| scic_cb_stall_execution(1000); |
| |
| /* The write to the CQGR clears the CQP */ |
| SMU_CQGR_WRITE(scic, 0x00000000); |
| |
| /* The write to the UFQGP clears the UFQPR */ |
| SCU_UFQGP_WRITE(scic, 0x00000000); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_user_parameters_set( |
| struct scic_sds_controller *scic, |
| union scic_user_parameters *scic_parms) |
| { |
| if ( |
| (scic->parent.state_machine.current_state_id |
| == SCI_BASE_CONTROLLER_STATE_RESET) |
| || (scic->parent.state_machine.current_state_id |
| == SCI_BASE_CONTROLLER_STATE_INITIALIZING) |
| || (scic->parent.state_machine.current_state_id |
| == SCI_BASE_CONTROLLER_STATE_INITIALIZED) |
| ) { |
| u16 index; |
| |
| /* |
| * Validate the user parameters. If they are not legal, then |
| * return a failure. */ |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| if (! |
| (scic_parms->sds1.phys[index].max_speed_generation |
| <= SCIC_SDS_PARM_MAX_SPEED |
| && scic_parms->sds1.phys[index].max_speed_generation |
| > SCIC_SDS_PARM_NO_SPEED |
| ) |
| ) |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| } |
| |
| memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms)); |
| |
| return SCI_SUCCESS; |
| } |
| |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| void scic_user_parameters_get( |
| struct scic_sds_controller *scic, |
| union scic_user_parameters *scic_parms) |
| { |
| memcpy(scic_parms, (&scic->user_parameters), sizeof(*scic_parms)); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| enum sci_status scic_oem_parameters_set( |
| struct scic_sds_controller *scic, |
| union scic_oem_parameters *scic_parms) |
| { |
| if ( |
| (scic->parent.state_machine.current_state_id |
| == SCI_BASE_CONTROLLER_STATE_RESET) |
| || (scic->parent.state_machine.current_state_id |
| == SCI_BASE_CONTROLLER_STATE_INITIALIZING) |
| || (scic->parent.state_machine.current_state_id |
| == SCI_BASE_CONTROLLER_STATE_INITIALIZED) |
| ) { |
| u16 index; |
| |
| /* |
| * Validate the oem parameters. If they are not legal, then |
| * return a failure. */ |
| for (index = 0; index < SCI_MAX_PORTS; index++) { |
| if (scic_parms->sds1.ports[index].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) { |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| } |
| } |
| |
| for (index = 0; index < SCI_MAX_PHYS; index++) { |
| if ( |
| scic_parms->sds1.phys[index].sas_address.high == 0 |
| && scic_parms->sds1.phys[index].sas_address.low == 0 |
| ) { |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| } |
| } |
| |
| memcpy(&scic->oem_parameters, scic_parms, sizeof(*scic_parms)); |
| return SCI_SUCCESS; |
| } |
| |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| void scic_oem_parameters_get( |
| struct scic_sds_controller *scic, |
| union scic_oem_parameters *scic_parms) |
| { |
| memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms)); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| |
| #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 |
| #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 |
| #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 |
| #define INTERRUPT_COALESCE_NUMBER_MAX 256 |
| #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 |
| #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 |
| |
| enum sci_status scic_controller_set_interrupt_coalescence( |
| struct scic_sds_controller *scic_controller, |
| u32 coalesce_number, |
| u32 coalesce_timeout) |
| { |
| u8 timeout_encode = 0; |
| u32 min = 0; |
| u32 max = 0; |
| |
| /* Check if the input parameters fall in the range. */ |
| if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| |
| /* |
| * Defined encoding for interrupt coalescing timeout: |
| * Value Min Max Units |
| * ----- --- --- ----- |
| * 0 - - Disabled |
| * 1 13.3 20.0 ns |
| * 2 26.7 40.0 |
| * 3 53.3 80.0 |
| * 4 106.7 160.0 |
| * 5 213.3 320.0 |
| * 6 426.7 640.0 |
| * 7 853.3 1280.0 |
| * 8 1.7 2.6 us |
| * 9 3.4 5.1 |
| * 10 6.8 10.2 |
| * 11 13.7 20.5 |
| * 12 27.3 41.0 |
| * 13 54.6 81.9 |
| * 14 109.2 163.8 |
| * 15 218.5 327.7 |
| * 16 436.9 655.4 |
| * 17 873.8 1310.7 |
| * 18 1.7 2.6 ms |
| * 19 3.5 5.2 |
| * 20 7.0 10.5 |
| * 21 14.0 21.0 |
| * 22 28.0 41.9 |
| * 23 55.9 83.9 |
| * 24 111.8 167.8 |
| * 25 223.7 335.5 |
| * 26 447.4 671.1 |
| * 27 894.8 1342.2 |
| * 28 1.8 2.7 s |
| * Others Undefined */ |
| |
| /* |
| * Use the table above to decide the encode of interrupt coalescing timeout |
| * value for register writing. */ |
| if (coalesce_timeout == 0) |
| timeout_encode = 0; |
| else{ |
| /* make the timeout value in unit of (10 ns). */ |
| coalesce_timeout = coalesce_timeout * 100; |
| min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; |
| max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; |
| |
| /* get the encode of timeout for register writing. */ |
| for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; |
| timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; |
| timeout_encode++) { |
| if (min <= coalesce_timeout && max > coalesce_timeout) |
| break; |
| else if (coalesce_timeout >= max && coalesce_timeout < min * 2 |
| && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { |
| if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) |
| break; |
| else{ |
| timeout_encode++; |
| break; |
| } |
| } else { |
| max = max * 2; |
| min = min * 2; |
| } |
| } |
| |
| if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) |
| /* the value is out of range. */ |
| return SCI_FAILURE_INVALID_PARAMETER_VALUE; |
| } |
| |
| SMU_ICC_WRITE( |
| scic_controller, |
| (SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | |
| SMU_ICC_GEN_VAL(TIMER, timeout_encode)) |
| ); |
| |
| scic_controller->interrupt_coalesce_number = (u16)coalesce_number; |
| scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100; |
| |
| return SCI_SUCCESS; |
| } |
| |
| |
| struct scic_sds_controller *scic_controller_alloc(struct device *dev) |
| { |
| return devm_kzalloc(dev, sizeof(struct scic_sds_controller), GFP_KERNEL); |
| } |
| |
| /* |
| * ***************************************************************************** |
| * * DEFAULT STATE HANDLERS |
| * ***************************************************************************** */ |
| |
| /** |
| * |
| * @controller: This is struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @remote_device: This is struct sci_base_remote_device which, if it was used, would |
| * be cast to a struct scic_sds_remote_device. |
| * @io_request: This is the struct sci_base_request which, if it was used, would be |
| * cast to a SCIC_SDS_IO_REQUEST. |
| * @io_tag: This is the IO tag to be assigned to the IO request or |
| * SCI_CONTROLLER_INVALID_IO_TAG. |
| * |
| * This method is called when the struct scic_sds_controller default start io/task |
| * handler is in place. - Issue a warning message enum sci_status |
| * SCI_FAILURE_INVALID_STATE |
| */ |
| static enum sci_status scic_sds_controller_default_start_operation_handler( |
| struct sci_base_controller *controller, |
| struct sci_base_remote_device *remote_device, |
| struct sci_base_request *io_request, |
| u16 io_tag) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| |
| dev_warn(scic_to_dev(this_controller), |
| "%s: SCIC Controller requested to start an io/task from " |
| "invalid state %d\n", |
| __func__, |
| sci_base_state_machine_get_state( |
| scic_sds_controller_get_base_state_machine( |
| this_controller))); |
| |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| /** |
| * |
| * @controller: This is struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @remote_device: This is struct sci_base_remote_device which, if it was used, would |
| * be cast to a struct scic_sds_remote_device. |
| * @io_request: This is the struct sci_base_request which, if it was used, would be |
| * cast to a SCIC_SDS_IO_REQUEST. |
| * |
| * This method is called when the struct scic_sds_controller default request handler |
| * is in place. - Issue a warning message enum sci_status SCI_FAILURE_INVALID_STATE |
| */ |
| static enum sci_status scic_sds_controller_default_request_handler( |
| struct sci_base_controller *controller, |
| struct sci_base_remote_device *remote_device, |
| struct sci_base_request *io_request) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| |
| dev_warn(scic_to_dev(this_controller), |
| "%s: SCIC Controller request operation from invalid state %d\n", |
| __func__, |
| sci_base_state_machine_get_state( |
| scic_sds_controller_get_base_state_machine( |
| this_controller))); |
| |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| /* |
| * ***************************************************************************** |
| * * GENERAL (COMMON) STATE HANDLERS |
| * ***************************************************************************** */ |
| |
| /** |
| * |
| * @controller: The struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * |
| * This method is called when the struct scic_sds_controller is in the ready state |
| * reset handler is in place. - Transition to |
| * SCI_BASE_CONTROLLER_STATE_RESETTING enum sci_status SCI_SUCCESS |
| */ |
| static enum sci_status scic_sds_controller_general_reset_handler( |
| struct sci_base_controller *controller) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| |
| /* |
| * The reset operation is not a graceful cleanup just perform the state |
| * transition. */ |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(this_controller), |
| SCI_BASE_CONTROLLER_STATE_RESETTING |
| ); |
| |
| return SCI_SUCCESS; |
| } |
| |
| /* |
| * ***************************************************************************** |
| * * RESET STATE HANDLERS |
| * ***************************************************************************** */ |
| |
| /** |
| * |
| * @controller: This is the struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * |
| * This method is the struct scic_sds_controller initialize handler for the reset |
| * state. - Currently this function does nothing enum sci_status SCI_FAILURE This |
| * function is not yet implemented and is a valid request from the reset state. |
| */ |
| static enum sci_status scic_sds_controller_reset_state_initialize_handler( |
| struct sci_base_controller *controller) |
| { |
| u32 index; |
| enum sci_status result = SCI_SUCCESS; |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(this_controller), |
| SCI_BASE_CONTROLLER_STATE_INITIALIZING |
| ); |
| |
| this_controller->timeout_timer = scic_cb_timer_create( |
| this_controller, |
| (void (*)(void *))scic_sds_controller_timeout_handler, |
| (void (*)(void *))controller); |
| |
| scic_sds_controller_initialize_phy_startup(this_controller); |
| |
| scic_sds_controller_initialize_power_control(this_controller); |
| |
| /* |
| * There is nothing to do here for B0 since we do not have to |
| * program the AFE registers. |
| * / @todo The AFE settings are supposed to be correct for the B0 but |
| * / presently they seem to be wrong. */ |
| scic_sds_controller_afe_initialization(this_controller); |
| |
| if (SCI_SUCCESS == result) { |
| u32 status; |
| u32 terminate_loop; |
| |
| /* Take the hardware out of reset */ |
| SMU_SMUSRCR_WRITE(this_controller, 0x00000000); |
| |
| /* |
| * / @todo Provide meaningfull error code for hardware failure |
| * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ |
| result = SCI_FAILURE; |
| terminate_loop = 100; |
| |
| while (terminate_loop-- && (result != SCI_SUCCESS)) { |
| /* Loop until the hardware reports success */ |
| scic_cb_stall_execution(SCU_CONTEXT_RAM_INIT_STALL_TIME); |
| status = SMU_SMUCSR_READ(this_controller); |
| |
| if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) { |
| result = SCI_SUCCESS; |
| } |
| } |
| } |
| |
| if (result == SCI_SUCCESS) { |
| u32 max_supported_ports; |
| u32 max_supported_devices; |
| u32 max_supported_io_requests; |
| u32 device_context_capacity; |
| |
| /* |
| * Determine what are the actaul device capacities that the |
| * hardware will support */ |
| device_context_capacity = SMU_DCC_READ(this_controller); |
| |
| max_supported_ports = |
| smu_dcc_get_max_ports(device_context_capacity); |
| max_supported_devices = |
| smu_dcc_get_max_remote_node_context(device_context_capacity); |
| max_supported_io_requests = |
| smu_dcc_get_max_task_context(device_context_capacity); |
| |
| /* Make all PEs that are unassigned match up with the logical ports */ |
| for (index = 0; index < max_supported_ports; index++) { |
| scu_register_write( |
| this_controller, |
| this_controller->scu_registers->peg0.ptsg.protocol_engine[index], |
| index |
| ); |
| } |
| |
| /* Record the smaller of the two capacity values */ |
| this_controller->logical_port_entries = |
| min(max_supported_ports, this_controller->logical_port_entries); |
| |
| this_controller->task_context_entries = |
| min(max_supported_io_requests, this_controller->task_context_entries); |
| |
| this_controller->remote_node_entries = |
| min(max_supported_devices, this_controller->remote_node_entries); |
| |
| /* |
| * Now that we have the correct hardware reported minimum values |
| * build the MDL for the controller. Default to a performance |
| * configuration. */ |
| scic_controller_set_mode(this_controller, SCI_MODE_SPEED); |
| } |
| |
| /* Initialize hardware PCI Relaxed ordering in DMA engines */ |
| if (result == SCI_SUCCESS) { |
| u32 dma_configuration; |
| |
| /* Configure the payload DMA */ |
| dma_configuration = SCU_PDMACR_READ(this_controller); |
| dma_configuration |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); |
| SCU_PDMACR_WRITE(this_controller, dma_configuration); |
| |
| /* Configure the control DMA */ |
| dma_configuration = SCU_CDMACR_READ(this_controller); |
| dma_configuration |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); |
| SCU_CDMACR_WRITE(this_controller, dma_configuration); |
| } |
| |
| /* |
| * Initialize the PHYs before the PORTs because the PHY registers |
| * are accessed during the port initialization. */ |
| if (result == SCI_SUCCESS) { |
| /* Initialize the phys */ |
| for (index = 0; |
| (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS); |
| index++) { |
| result = scic_sds_phy_initialize( |
| &this_controller->phy_table[index], |
| &this_controller->scu_registers->peg0.pe[index].ll |
| ); |
| } |
| } |
| |
| if (result == SCI_SUCCESS) { |
| /* Initialize the logical ports */ |
| for (index = 0; |
| (index < this_controller->logical_port_entries) |
| && (result == SCI_SUCCESS); |
| index++) { |
| result = scic_sds_port_initialize( |
| &this_controller->port_table[index], |
| &this_controller->scu_registers->peg0.pe[index].tl, |
| &this_controller->scu_registers->peg0.ptsg.port[index], |
| &this_controller->scu_registers->peg0.ptsg.protocol_engine, |
| &this_controller->scu_registers->peg0.viit[index] |
| ); |
| } |
| } |
| |
| if (SCI_SUCCESS == result) { |
| result = scic_sds_port_configuration_agent_initialize( |
| this_controller, |
| &this_controller->port_agent |
| ); |
| } |
| |
| /* Advance the controller state machine */ |
| if (result == SCI_SUCCESS) { |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(this_controller), |
| SCI_BASE_CONTROLLER_STATE_INITIALIZED |
| ); |
| } else { |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(this_controller), |
| SCI_BASE_CONTROLLER_STATE_FAILED |
| ); |
| } |
| |
| return result; |
| } |
| |
| /* |
| * ***************************************************************************** |
| * * INITIALIZED STATE HANDLERS |
| * ***************************************************************************** */ |
| |
| /** |
| * |
| * @controller: This is the struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @timeout: This is the allowed time for the controller object to reach the |
| * started state. |
| * |
| * This method is the struct scic_sds_controller start handler for the initialized |
| * state. - Validate we have a good memory descriptor table - Initialze the |
| * physical memory before programming the hardware - Program the SCU hardware |
| * with the physical memory addresses passed in the memory descriptor table. - |
| * Initialzie the TCi pool - Initialize the RNi pool - Initialize the |
| * completion queue - Initialize the unsolicited frame data - Take the SCU port |
| * task scheduler out of reset - Start the first phy object. - Transition to |
| * SCI_BASE_CONTROLLER_STATE_STARTING. enum sci_status SCI_SUCCESS if all of the |
| * controller start operations complete |
| * SCI_FAILURE_UNSUPPORTED_INFORMATION_FIELD if one or more of the memory |
| * descriptor fields is invalid. |
| */ |
| static enum sci_status scic_sds_controller_initialized_state_start_handler( |
| struct sci_base_controller *controller, |
| u32 timeout) |
| { |
| u16 index; |
| enum sci_status result; |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| |
| /* Make sure that the SCI User filled in the memory descriptor table correctly */ |
| result = scic_sds_controller_validate_memory_descriptor_table(this_controller); |
| |
| if (result == SCI_SUCCESS) { |
| /* The memory descriptor list looks good so program the hardware */ |
| scic_sds_controller_ram_initialization(this_controller); |
| } |
| |
| if (SCI_SUCCESS == result) { |
| /* Build the TCi free pool */ |
| sci_pool_initialize(this_controller->tci_pool); |
| for (index = 0; index < this_controller->task_context_entries; index++) { |
| sci_pool_put(this_controller->tci_pool, index); |
| } |
| |
| /* Build the RNi free pool */ |
| scic_sds_remote_node_table_initialize( |
| &this_controller->available_remote_nodes, |
| this_controller->remote_node_entries |
| ); |
| } |
| |
| if (SCI_SUCCESS == result) { |
| /* |
| * Before anything else lets make sure we will not be interrupted |
| * by the hardware. */ |
| scic_controller_disable_interrupts(this_controller); |
| |
| /* Enable the port task scheduler */ |
| scic_sds_controller_enable_port_task_scheduler(this_controller); |
| |
| /* Assign all the task entries to this controller physical function */ |
| scic_sds_controller_assign_task_entries(this_controller); |
| |
| /* Now initialze the completion queue */ |
| scic_sds_controller_initialize_completion_queue(this_controller); |
| |
| /* Initialize the unsolicited frame queue for use */ |
| scic_sds_controller_initialize_unsolicited_frame_queue(this_controller); |
| } |
| |
| if (SCI_SUCCESS == result) { |
| scic_sds_controller_start_next_phy(this_controller); |
| |
| scic_cb_timer_start(this_controller, |
| this_controller->timeout_timer, |
| timeout); |
| |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(this_controller), |
| SCI_BASE_CONTROLLER_STATE_STARTING |
| ); |
| } |
| |
| return result; |
| } |
| |
| /* |
| * ***************************************************************************** |
| * * INITIALIZED STATE HANDLERS |
| * ***************************************************************************** */ |
| |
| /** |
| * |
| * @controller: This is struct scic_sds_controller which receives the link up |
| * notification. |
| * @port: This is struct scic_sds_port with which the phy is associated. |
| * @phy: This is the struct scic_sds_phy which has gone link up. |
| * |
| * This method is called when the struct scic_sds_controller is in the starting state |
| * link up handler is called. This method will perform the following: - Stop |
| * the phy timer - Start the next phy - Report the link up condition to the |
| * port object none |
| */ |
| static void scic_sds_controller_starting_state_link_up_handler( |
| struct scic_sds_controller *this_controller, |
| struct scic_sds_port *port, |
| struct scic_sds_phy *phy) |
| { |
| scic_sds_controller_phy_timer_stop(this_controller); |
| |
| this_controller->port_agent.link_up_handler( |
| this_controller, &this_controller->port_agent, port, phy |
| ); |
| /* scic_sds_port_link_up(port, phy); */ |
| |
| scic_sds_controller_start_next_phy(this_controller); |
| } |
| |
| /** |
| * |
| * @controller: This is struct scic_sds_controller which receives the link down |
| * notification. |
| * @port: This is struct scic_sds_port with which the phy is associated. |
| * @phy: This is the struct scic_sds_phy which has gone link down. |
| * |
| * This method is called when the struct scic_sds_controller is in the starting state |
| * link down handler is called. - Report the link down condition to the port |
| * object none |
| */ |
| static void scic_sds_controller_starting_state_link_down_handler( |
| struct scic_sds_controller *this_controller, |
| struct scic_sds_port *port, |
| struct scic_sds_phy *phy) |
| { |
| this_controller->port_agent.link_down_handler( |
| this_controller, &this_controller->port_agent, port, phy |
| ); |
| /* scic_sds_port_link_down(port, phy); */ |
| } |
| |
| /* |
| * ***************************************************************************** |
| * * READY STATE HANDLERS |
| * ***************************************************************************** */ |
| |
| /** |
| * |
| * @controller: The struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @timeout: The timeout for when the stop operation should report a failure. |
| * |
| * This method is called when the struct scic_sds_controller is in the ready state |
| * stop handler is called. - Start the timeout timer - Transition to |
| * SCI_BASE_CONTROLLER_STATE_STOPPING. enum sci_status SCI_SUCCESS |
| */ |
| static enum sci_status scic_sds_controller_ready_state_stop_handler( |
| struct sci_base_controller *controller, |
| u32 timeout) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| |
| scic_cb_timer_start(this_controller, |
| this_controller->timeout_timer, |
| timeout); |
| |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(this_controller), |
| SCI_BASE_CONTROLLER_STATE_STOPPING |
| ); |
| |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * |
| * @controller: This is struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @remote_device: This is struct sci_base_remote_device which is cast to a |
| * struct scic_sds_remote_device object. |
| * @io_request: This is the struct sci_base_request which is cast to a |
| * SCIC_SDS_IO_REQUEST object. |
| * @io_tag: This is the IO tag to be assigned to the IO request or |
| * SCI_CONTROLLER_INVALID_IO_TAG. |
| * |
| * This method is called when the struct scic_sds_controller is in the ready state and |
| * the start io handler is called. - Start the io request on the remote device |
| * - if successful - assign the io_request to the io_request_table - post the |
| * request to the hardware enum sci_status SCI_SUCCESS if the start io operation |
| * succeeds SCI_FAILURE_INSUFFICIENT_RESOURCES if the IO tag could not be |
| * allocated for the io request. SCI_FAILURE_INVALID_STATE if one or more |
| * objects are not in a valid state to accept io requests. How does the io_tag |
| * parameter get assigned to the io request? |
| */ |
| static enum sci_status scic_sds_controller_ready_state_start_io_handler( |
| struct sci_base_controller *controller, |
| struct sci_base_remote_device *remote_device, |
| struct sci_base_request *io_request, |
| u16 io_tag) |
| { |
| enum sci_status status; |
| |
| struct scic_sds_controller *this_controller; |
| struct scic_sds_request *the_request; |
| struct scic_sds_remote_device *the_device; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| the_request = (struct scic_sds_request *)io_request; |
| the_device = (struct scic_sds_remote_device *)remote_device; |
| |
| status = scic_sds_remote_device_start_io(this_controller, the_device, the_request); |
| |
| if (status == SCI_SUCCESS) { |
| this_controller->io_request_table[ |
| scic_sds_io_tag_get_index(the_request->io_tag)] = the_request; |
| |
| scic_sds_controller_post_request( |
| this_controller, |
| scic_sds_request_get_post_context(the_request) |
| ); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * |
| * @controller: This is struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @remote_device: This is struct sci_base_remote_device which is cast to a |
| * struct scic_sds_remote_device object. |
| * @io_request: This is the struct sci_base_request which is cast to a |
| * SCIC_SDS_IO_REQUEST object. |
| * |
| * This method is called when the struct scic_sds_controller is in the ready state and |
| * the complete io handler is called. - Complete the io request on the remote |
| * device - if successful - remove the io_request to the io_request_table |
| * enum sci_status SCI_SUCCESS if the start io operation succeeds |
| * SCI_FAILURE_INVALID_STATE if one or more objects are not in a valid state to |
| * accept io requests. |
| */ |
| static enum sci_status scic_sds_controller_ready_state_complete_io_handler( |
| struct sci_base_controller *controller, |
| struct sci_base_remote_device *remote_device, |
| struct sci_base_request *io_request) |
| { |
| u16 index; |
| enum sci_status status; |
| struct scic_sds_controller *this_controller; |
| struct scic_sds_request *the_request; |
| struct scic_sds_remote_device *the_device; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| the_request = (struct scic_sds_request *)io_request; |
| the_device = (struct scic_sds_remote_device *)remote_device; |
| |
| status = scic_sds_remote_device_complete_io( |
| this_controller, the_device, the_request); |
| |
| if (status == SCI_SUCCESS) { |
| index = scic_sds_io_tag_get_index(the_request->io_tag); |
| this_controller->io_request_table[index] = SCI_INVALID_HANDLE; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * |
| * @controller: This is struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @remote_device: This is struct sci_base_remote_device which is cast to a |
| * struct scic_sds_remote_device object. |
| * @io_request: This is the struct sci_base_request which is cast to a |
| * SCIC_SDS_IO_REQUEST object. |
| * |
| * This method is called when the struct scic_sds_controller is in the ready state and |
| * the continue io handler is called. enum sci_status |
| */ |
| static enum sci_status scic_sds_controller_ready_state_continue_io_handler( |
| struct sci_base_controller *controller, |
| struct sci_base_remote_device *remote_device, |
| struct sci_base_request *io_request) |
| { |
| struct scic_sds_controller *this_controller; |
| struct scic_sds_request *the_request; |
| |
| the_request = (struct scic_sds_request *)io_request; |
| this_controller = (struct scic_sds_controller *)controller; |
| |
| this_controller->io_request_table[ |
| scic_sds_io_tag_get_index(the_request->io_tag)] = the_request; |
| |
| scic_sds_controller_post_request( |
| this_controller, |
| scic_sds_request_get_post_context(the_request) |
| ); |
| |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * |
| * @controller: This is struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @remote_device: This is struct sci_base_remote_device which is cast to a |
| * struct scic_sds_remote_device object. |
| * @io_request: This is the struct sci_base_request which is cast to a |
| * SCIC_SDS_IO_REQUEST object. |
| * @task_tag: This is the task tag to be assigned to the task request or |
| * SCI_CONTROLLER_INVALID_IO_TAG. |
| * |
| * This method is called when the struct scic_sds_controller is in the ready state and |
| * the start task handler is called. - The remote device is requested to start |
| * the task request - if successful - assign the task to the io_request_table - |
| * post the request to the SCU hardware enum sci_status SCI_SUCCESS if the start io |
| * operation succeeds SCI_FAILURE_INSUFFICIENT_RESOURCES if the IO tag could |
| * not be allocated for the io request. SCI_FAILURE_INVALID_STATE if one or |
| * more objects are not in a valid state to accept io requests. How does the io |
| * tag get assigned in this code path? |
| */ |
| static enum sci_status scic_sds_controller_ready_state_start_task_handler( |
| struct sci_base_controller *controller, |
| struct sci_base_remote_device *remote_device, |
| struct sci_base_request *io_request, |
| u16 task_tag) |
| { |
| struct scic_sds_controller *this_controller = (struct scic_sds_controller *) |
| controller; |
| struct scic_sds_request *the_request = (struct scic_sds_request *) |
| io_request; |
| struct scic_sds_remote_device *the_device = (struct scic_sds_remote_device *) |
| remote_device; |
| enum sci_status status; |
| |
| status = scic_sds_remote_device_start_task( |
| this_controller, the_device, the_request |
| ); |
| |
| if (status == SCI_SUCCESS) { |
| this_controller->io_request_table[ |
| scic_sds_io_tag_get_index(the_request->io_tag)] = the_request; |
| |
| scic_sds_controller_post_request( |
| this_controller, |
| scic_sds_request_get_post_context(the_request) |
| ); |
| } else if (status == SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS) { |
| this_controller->io_request_table[ |
| scic_sds_io_tag_get_index(the_request->io_tag)] = the_request; |
| |
| /* |
| * We will let framework know this task request started successfully, |
| * although core is still woring on starting the request (to post tc when |
| * RNC is resumed.) */ |
| status = SCI_SUCCESS; |
| } |
| return status; |
| } |
| |
| /** |
| * |
| * @controller: This is struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @remote_device: This is struct sci_base_remote_device which is cast to a |
| * struct scic_sds_remote_device object. |
| * @io_request: This is the struct sci_base_request which is cast to a |
| * SCIC_SDS_IO_REQUEST object. |
| * |
| * This method is called when the struct scic_sds_controller is in the ready state and |
| * the terminate request handler is called. - call the io request terminate |
| * function - if successful - post the terminate request to the SCU hardware |
| * enum sci_status SCI_SUCCESS if the start io operation succeeds |
| * SCI_FAILURE_INVALID_STATE if one or more objects are not in a valid state to |
| * accept io requests. |
| */ |
| static enum sci_status scic_sds_controller_ready_state_terminate_request_handler( |
| struct sci_base_controller *controller, |
| struct sci_base_remote_device *remote_device, |
| struct sci_base_request *io_request) |
| { |
| struct scic_sds_controller *this_controller = (struct scic_sds_controller *) |
| controller; |
| struct scic_sds_request *the_request = (struct scic_sds_request *) |
| io_request; |
| enum sci_status status; |
| |
| status = scic_sds_io_request_terminate(the_request); |
| if (status == SCI_SUCCESS) { |
| /* |
| * Utilize the original post context command and or in the POST_TC_ABORT |
| * request sub-type. */ |
| scic_sds_controller_post_request( |
| this_controller, |
| scic_sds_request_get_post_context(the_request) |
| | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT |
| ); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * |
| * @controller: This is struct scic_sds_controller which receives the link up |
| * notification. |
| * @port: This is struct scic_sds_port with which the phy is associated. |
| * @phy: This is the struct scic_sds_phy which has gone link up. |
| * |
| * This method is called when the struct scic_sds_controller is in the starting state |
| * link up handler is called. This method will perform the following: - Stop |
| * the phy timer - Start the next phy - Report the link up condition to the |
| * port object none |
| */ |
| static void scic_sds_controller_ready_state_link_up_handler( |
| struct scic_sds_controller *this_controller, |
| struct scic_sds_port *port, |
| struct scic_sds_phy *phy) |
| { |
| this_controller->port_agent.link_up_handler( |
| this_controller, &this_controller->port_agent, port, phy |
| ); |
| } |
| |
| /** |
| * |
| * @controller: This is struct scic_sds_controller which receives the link down |
| * notification. |
| * @port: This is struct scic_sds_port with which the phy is associated. |
| * @phy: This is the struct scic_sds_phy which has gone link down. |
| * |
| * This method is called when the struct scic_sds_controller is in the starting state |
| * link down handler is called. - Report the link down condition to the port |
| * object none |
| */ |
| static void scic_sds_controller_ready_state_link_down_handler( |
| struct scic_sds_controller *this_controller, |
| struct scic_sds_port *port, |
| struct scic_sds_phy *phy) |
| { |
| this_controller->port_agent.link_down_handler( |
| this_controller, &this_controller->port_agent, port, phy |
| ); |
| } |
| |
| /* |
| * ***************************************************************************** |
| * * STOPPING STATE HANDLERS |
| * ***************************************************************************** */ |
| |
| /** |
| * |
| * @controller: This is struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @remote_device: This is struct sci_base_remote_device which is cast to a |
| * struct scic_sds_remote_device object. |
| * @io_request: This is the struct sci_base_request which is cast to a |
| * SCIC_SDS_IO_REQUEST object. |
| * |
| * This method is called when the struct scic_sds_controller is in a stopping state |
| * and the complete io handler is called. - This function is not yet |
| * implemented enum sci_status SCI_FAILURE |
| */ |
| static enum sci_status scic_sds_controller_stopping_state_complete_io_handler( |
| struct sci_base_controller *controller, |
| struct sci_base_remote_device *remote_device, |
| struct sci_base_request *io_request) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)controller; |
| |
| /* / @todo Implement this function */ |
| return SCI_FAILURE; |
| } |
| |
| /** |
| * |
| * @controller: This is struct sci_base_controller object which is cast into a |
| * struct scic_sds_controller object. |
| * @remote_device: This is struct sci_base_remote_device which is cast to a |
| * struct scic_sds_remote_device object. |
| * @io_request: This is the struct sci_base_request which is cast to a |
| * SCIC_SDS_IO_REQUEST object. |
| * |
| * This method is called when the struct scic_sds_controller is in a stopping state |
| * and the complete task handler is called. - This function is not yet |
| * implemented enum sci_status SCI_FAILURE |
| */ |
| |
| /* |
| * ***************************************************************************** |
| * * STOPPED STATE HANDLERS |
| * ***************************************************************************** */ |
| |
| /* |
| * ***************************************************************************** |
| * * FAILED STATE HANDLERS |
| * ***************************************************************************** */ |
| |
| const struct scic_sds_controller_state_handler scic_sds_controller_state_handler_table[] = { |
| [SCI_BASE_CONTROLLER_STATE_INITIAL] = { |
| .base.start_io = scic_sds_controller_default_start_operation_handler, |
| .base.complete_io = scic_sds_controller_default_request_handler, |
| .base.continue_io = scic_sds_controller_default_request_handler, |
| .terminate_request = scic_sds_controller_default_request_handler, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_RESET] = { |
| .base.initialize = scic_sds_controller_reset_state_initialize_handler, |
| .base.start_io = scic_sds_controller_default_start_operation_handler, |
| .base.complete_io = scic_sds_controller_default_request_handler, |
| .base.continue_io = scic_sds_controller_default_request_handler, |
| .terminate_request = scic_sds_controller_default_request_handler, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = { |
| .base.start_io = scic_sds_controller_default_start_operation_handler, |
| .base.complete_io = scic_sds_controller_default_request_handler, |
| .base.continue_io = scic_sds_controller_default_request_handler, |
| .terminate_request = scic_sds_controller_default_request_handler, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = { |
| .base.start = scic_sds_controller_initialized_state_start_handler, |
| .base.start_io = scic_sds_controller_default_start_operation_handler, |
| .base.complete_io = scic_sds_controller_default_request_handler, |
| .base.continue_io = scic_sds_controller_default_request_handler, |
| .terminate_request = scic_sds_controller_default_request_handler, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_STARTING] = { |
| .base.start_io = scic_sds_controller_default_start_operation_handler, |
| .base.complete_io = scic_sds_controller_default_request_handler, |
| .base.continue_io = scic_sds_controller_default_request_handler, |
| .terminate_request = scic_sds_controller_default_request_handler, |
| .link_up = scic_sds_controller_starting_state_link_up_handler, |
| .link_down = scic_sds_controller_starting_state_link_down_handler |
| }, |
| [SCI_BASE_CONTROLLER_STATE_READY] = { |
| .base.stop = scic_sds_controller_ready_state_stop_handler, |
| .base.reset = scic_sds_controller_general_reset_handler, |
| .base.start_io = scic_sds_controller_ready_state_start_io_handler, |
| .base.complete_io = scic_sds_controller_ready_state_complete_io_handler, |
| .base.continue_io = scic_sds_controller_ready_state_continue_io_handler, |
| .base.start_task = scic_sds_controller_ready_state_start_task_handler, |
| .base.complete_task = scic_sds_controller_ready_state_complete_io_handler, |
| .terminate_request = scic_sds_controller_ready_state_terminate_request_handler, |
| .link_up = scic_sds_controller_ready_state_link_up_handler, |
| .link_down = scic_sds_controller_ready_state_link_down_handler |
| }, |
| [SCI_BASE_CONTROLLER_STATE_RESETTING] = { |
| .base.start_io = scic_sds_controller_default_start_operation_handler, |
| .base.complete_io = scic_sds_controller_default_request_handler, |
| .base.continue_io = scic_sds_controller_default_request_handler, |
| .terminate_request = scic_sds_controller_default_request_handler, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_STOPPING] = { |
| .base.start_io = scic_sds_controller_default_start_operation_handler, |
| .base.complete_io = scic_sds_controller_stopping_state_complete_io_handler, |
| .base.continue_io = scic_sds_controller_default_request_handler, |
| .terminate_request = scic_sds_controller_default_request_handler, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_STOPPED] = { |
| .base.reset = scic_sds_controller_general_reset_handler, |
| .base.start_io = scic_sds_controller_default_start_operation_handler, |
| .base.complete_io = scic_sds_controller_default_request_handler, |
| .base.continue_io = scic_sds_controller_default_request_handler, |
| .terminate_request = scic_sds_controller_default_request_handler, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_FAILED] = { |
| .base.reset = scic_sds_controller_general_reset_handler, |
| .base.start_io = scic_sds_controller_default_start_operation_handler, |
| .base.complete_io = scic_sds_controller_default_request_handler, |
| .base.continue_io = scic_sds_controller_default_request_handler, |
| .terminate_request = scic_sds_controller_default_request_handler, |
| }, |
| }; |
| |
| /** |
| * |
| * @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on entry |
| * to the SCI_BASE_CONTROLLER_STATE_INITIAL. - Set the state handlers to the |
| * controllers initial state. none This function should initialze the |
| * controller object. |
| */ |
| static void scic_sds_controller_initial_state_enter( |
| struct sci_base_object *object) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)object; |
| |
| sci_base_state_machine_change_state( |
| &this_controller->parent.state_machine, SCI_BASE_CONTROLLER_STATE_RESET); |
| } |
| |
| /** |
| * |
| * @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on exit |
| * from the SCI_BASE_CONTROLLER_STATE_STARTING. - This function stops the |
| * controller starting timeout timer. none |
| */ |
| static void scic_sds_controller_starting_state_exit( |
| struct sci_base_object *object) |
| { |
| struct scic_sds_controller *scic = (struct scic_sds_controller *)object; |
| |
| scic_cb_timer_stop(scic, scic->timeout_timer); |
| } |
| |
| /** |
| * |
| * @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on entry |
| * to the SCI_BASE_CONTROLLER_STATE_READY. - Set the state handlers to the |
| * controllers ready state. none |
| */ |
| static void scic_sds_controller_ready_state_enter( |
| struct sci_base_object *object) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)object; |
| |
| /* set the default interrupt coalescence number and timeout value. */ |
| scic_controller_set_interrupt_coalescence( |
| this_controller, 0x10, 250); |
| } |
| |
| /** |
| * |
| * @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on exit |
| * from the SCI_BASE_CONTROLLER_STATE_READY. - This function does nothing. none |
| */ |
| static void scic_sds_controller_ready_state_exit( |
| struct sci_base_object *object) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)object; |
| |
| /* disable interrupt coalescence. */ |
| scic_controller_set_interrupt_coalescence(this_controller, 0, 0); |
| } |
| |
| /** |
| * |
| * @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on entry |
| * to the SCI_BASE_CONTROLLER_STATE_READY. - Set the state handlers to the |
| * controllers ready state. - Stop the phys on this controller - Stop the ports |
| * on this controller - Stop all of the remote devices on this controller none |
| */ |
| static void scic_sds_controller_stopping_state_enter( |
| struct sci_base_object *object) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)object; |
| |
| /* Stop all of the components for this controller */ |
| scic_sds_controller_stop_phys(this_controller); |
| scic_sds_controller_stop_ports(this_controller); |
| scic_sds_controller_stop_devices(this_controller); |
| } |
| |
| /** |
| * |
| * @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on exit |
| * from the SCI_BASE_CONTROLLER_STATE_STOPPING. - This function stops the |
| * controller stopping timeout timer. none |
| */ |
| static void scic_sds_controller_stopping_state_exit( |
| struct sci_base_object *object) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)object; |
| |
| scic_cb_timer_stop(this_controller, this_controller->timeout_timer); |
| } |
| |
| /** |
| * |
| * @object: This is the struct sci_base_object which is cast to a struct scic_sds_controller |
| * object. |
| * |
| * This method implements the actions taken by the struct scic_sds_controller on entry |
| * to the SCI_BASE_CONTROLLER_STATE_RESETTING. - Set the state handlers to the |
| * controllers resetting state. - Write to the SCU hardware reset register to |
| * force a reset - Transition to the SCI_BASE_CONTROLLER_STATE_RESET none |
| */ |
| static void scic_sds_controller_resetting_state_enter( |
| struct sci_base_object *object) |
| { |
| struct scic_sds_controller *this_controller; |
| |
| this_controller = (struct scic_sds_controller *)object; |
| |
| scic_sds_controller_reset_hardware(this_controller); |
| |
| sci_base_state_machine_change_state( |
| scic_sds_controller_get_base_state_machine(this_controller), |
| SCI_BASE_CONTROLLER_STATE_RESET |
| ); |
| } |
| |
| /* --------------------------------------------------------------------------- */ |
| |
| const struct sci_base_state scic_sds_controller_state_table[] = { |
| [SCI_BASE_CONTROLLER_STATE_INITIAL] = { |
| .enter_state = scic_sds_controller_initial_state_enter, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_RESET] = {}, |
| [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {}, |
| [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {}, |
| [SCI_BASE_CONTROLLER_STATE_STARTING] = { |
| .exit_state = scic_sds_controller_starting_state_exit, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_READY] = { |
| .enter_state = scic_sds_controller_ready_state_enter, |
| .exit_state = scic_sds_controller_ready_state_exit, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_RESETTING] = { |
| .enter_state = scic_sds_controller_resetting_state_enter, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_STOPPING] = { |
| .enter_state = scic_sds_controller_stopping_state_enter, |
| .exit_state = scic_sds_controller_stopping_state_exit, |
| }, |
| [SCI_BASE_CONTROLLER_STATE_STOPPED] = {}, |
| [SCI_BASE_CONTROLLER_STATE_FAILED] = {} |
| }; |
| |