| // |
| // Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions |
| // |
| // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org> |
| // |
| // This program is free software; you can redistribute it and/or modify |
| // it under the terms of the GNU General Public License version 2 as |
| // published by the Free Software Foundation. |
| // |
| |
| // |
| // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions |
| // |
| // Copyright (c) 2013, Intel Corporation |
| // |
| // Authors: |
| // Erdinc Ozturk <erdinc.ozturk@intel.com> |
| // Vinodh Gopal <vinodh.gopal@intel.com> |
| // James Guilford <james.guilford@intel.com> |
| // Tim Chen <tim.c.chen@linux.intel.com> |
| // |
| // This software is available to you under a choice of one of two |
| // licenses. You may choose to be licensed under the terms of the GNU |
| // General Public License (GPL) Version 2, available from the file |
| // COPYING in the main directory of this source tree, or the |
| // OpenIB.org BSD license below: |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // |
| // * Redistributions in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the |
| // distribution. |
| // |
| // * Neither the name of the Intel Corporation nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // |
| // THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY |
| // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Function API: |
| // UINT16 crc_t10dif_pcl( |
| // UINT16 init_crc, //initial CRC value, 16 bits |
| // const unsigned char *buf, //buffer pointer to calculate CRC on |
| // UINT64 len //buffer length in bytes (64-bit data) |
| // ); |
| // |
| // Reference paper titled "Fast CRC Computation for Generic |
| // Polynomials Using PCLMULQDQ Instruction" |
| // URL: http://www.intel.com/content/dam/www/public/us/en/documents |
| // /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf |
| // |
| // |
| |
| #include <linux/linkage.h> |
| #include <asm/assembler.h> |
| |
| .text |
| .cpu generic+crypto |
| |
| arg1_low32 .req w19 |
| arg2 .req x20 |
| arg3 .req x21 |
| |
| vzr .req v13 |
| |
| ENTRY(crc_t10dif_pmull) |
| frame_push 3, 128 |
| |
| mov arg1_low32, w0 |
| mov arg2, x1 |
| mov arg3, x2 |
| |
| movi vzr.16b, #0 // init zero register |
| |
| // adjust the 16-bit initial_crc value, scale it to 32 bits |
| lsl arg1_low32, arg1_low32, #16 |
| |
| // check if smaller than 256 |
| cmp arg3, #256 |
| |
| // for sizes less than 128, we can't fold 64B at a time... |
| b.lt _less_than_128 |
| |
| // load the initial crc value |
| // crc value does not need to be byte-reflected, but it needs |
| // to be moved to the high part of the register. |
| // because data will be byte-reflected and will align with |
| // initial crc at correct place. |
| movi v10.16b, #0 |
| mov v10.s[3], arg1_low32 // initial crc |
| |
| // receive the initial 64B data, xor the initial crc value |
| ldp q0, q1, [arg2] |
| ldp q2, q3, [arg2, #0x20] |
| ldp q4, q5, [arg2, #0x40] |
| ldp q6, q7, [arg2, #0x60] |
| add arg2, arg2, #0x80 |
| |
| CPU_LE( rev64 v0.16b, v0.16b ) |
| CPU_LE( rev64 v1.16b, v1.16b ) |
| CPU_LE( rev64 v2.16b, v2.16b ) |
| CPU_LE( rev64 v3.16b, v3.16b ) |
| CPU_LE( rev64 v4.16b, v4.16b ) |
| CPU_LE( rev64 v5.16b, v5.16b ) |
| CPU_LE( rev64 v6.16b, v6.16b ) |
| CPU_LE( rev64 v7.16b, v7.16b ) |
| |
| CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) |
| CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 ) |
| CPU_LE( ext v2.16b, v2.16b, v2.16b, #8 ) |
| CPU_LE( ext v3.16b, v3.16b, v3.16b, #8 ) |
| CPU_LE( ext v4.16b, v4.16b, v4.16b, #8 ) |
| CPU_LE( ext v5.16b, v5.16b, v5.16b, #8 ) |
| CPU_LE( ext v6.16b, v6.16b, v6.16b, #8 ) |
| CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) |
| |
| // XOR the initial_crc value |
| eor v0.16b, v0.16b, v10.16b |
| |
| ldr_l q10, rk3, x8 // xmm10 has rk3 and rk4 |
| // type of pmull instruction |
| // will determine which constant to use |
| |
| // |
| // we subtract 256 instead of 128 to save one instruction from the loop |
| // |
| sub arg3, arg3, #256 |
| |
| // at this section of the code, there is 64*x+y (0<=y<64) bytes of |
| // buffer. The _fold_64_B_loop will fold 64B at a time |
| // until we have 64+y Bytes of buffer |
| |
| |
| // fold 64B at a time. This section of the code folds 4 vector |
| // registers in parallel |
| _fold_64_B_loop: |
| |
| .macro fold64, reg1, reg2 |
| ldp q11, q12, [arg2], #0x20 |
| |
| pmull2 v8.1q, \reg1\().2d, v10.2d |
| pmull \reg1\().1q, \reg1\().1d, v10.1d |
| |
| CPU_LE( rev64 v11.16b, v11.16b ) |
| CPU_LE( rev64 v12.16b, v12.16b ) |
| |
| pmull2 v9.1q, \reg2\().2d, v10.2d |
| pmull \reg2\().1q, \reg2\().1d, v10.1d |
| |
| CPU_LE( ext v11.16b, v11.16b, v11.16b, #8 ) |
| CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 ) |
| |
| eor \reg1\().16b, \reg1\().16b, v8.16b |
| eor \reg2\().16b, \reg2\().16b, v9.16b |
| eor \reg1\().16b, \reg1\().16b, v11.16b |
| eor \reg2\().16b, \reg2\().16b, v12.16b |
| .endm |
| |
| fold64 v0, v1 |
| fold64 v2, v3 |
| fold64 v4, v5 |
| fold64 v6, v7 |
| |
| subs arg3, arg3, #128 |
| |
| // check if there is another 64B in the buffer to be able to fold |
| b.lt _fold_64_B_end |
| |
| if_will_cond_yield_neon |
| stp q0, q1, [sp, #.Lframe_local_offset] |
| stp q2, q3, [sp, #.Lframe_local_offset + 32] |
| stp q4, q5, [sp, #.Lframe_local_offset + 64] |
| stp q6, q7, [sp, #.Lframe_local_offset + 96] |
| do_cond_yield_neon |
| ldp q0, q1, [sp, #.Lframe_local_offset] |
| ldp q2, q3, [sp, #.Lframe_local_offset + 32] |
| ldp q4, q5, [sp, #.Lframe_local_offset + 64] |
| ldp q6, q7, [sp, #.Lframe_local_offset + 96] |
| ldr_l q10, rk3, x8 |
| movi vzr.16b, #0 // init zero register |
| endif_yield_neon |
| |
| b _fold_64_B_loop |
| |
| _fold_64_B_end: |
| // at this point, the buffer pointer is pointing at the last y Bytes |
| // of the buffer the 64B of folded data is in 4 of the vector |
| // registers: v0, v1, v2, v3 |
| |
| // fold the 8 vector registers to 1 vector register with different |
| // constants |
| |
| ldr_l q10, rk9, x8 |
| |
| .macro fold16, reg, rk |
| pmull v8.1q, \reg\().1d, v10.1d |
| pmull2 \reg\().1q, \reg\().2d, v10.2d |
| .ifnb \rk |
| ldr_l q10, \rk, x8 |
| .endif |
| eor v7.16b, v7.16b, v8.16b |
| eor v7.16b, v7.16b, \reg\().16b |
| .endm |
| |
| fold16 v0, rk11 |
| fold16 v1, rk13 |
| fold16 v2, rk15 |
| fold16 v3, rk17 |
| fold16 v4, rk19 |
| fold16 v5, rk1 |
| fold16 v6 |
| |
| // instead of 64, we add 48 to the loop counter to save 1 instruction |
| // from the loop instead of a cmp instruction, we use the negative |
| // flag with the jl instruction |
| adds arg3, arg3, #(128-16) |
| b.lt _final_reduction_for_128 |
| |
| // now we have 16+y bytes left to reduce. 16 Bytes is in register v7 |
| // and the rest is in memory. We can fold 16 bytes at a time if y>=16 |
| // continue folding 16B at a time |
| |
| _16B_reduction_loop: |
| pmull v8.1q, v7.1d, v10.1d |
| pmull2 v7.1q, v7.2d, v10.2d |
| eor v7.16b, v7.16b, v8.16b |
| |
| ldr q0, [arg2], #16 |
| CPU_LE( rev64 v0.16b, v0.16b ) |
| CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 ) |
| eor v7.16b, v7.16b, v0.16b |
| subs arg3, arg3, #16 |
| |
| // instead of a cmp instruction, we utilize the flags with the |
| // jge instruction equivalent of: cmp arg3, 16-16 |
| // check if there is any more 16B in the buffer to be able to fold |
| b.ge _16B_reduction_loop |
| |
| // now we have 16+z bytes left to reduce, where 0<= z < 16. |
| // first, we reduce the data in the xmm7 register |
| |
| _final_reduction_for_128: |
| // check if any more data to fold. If not, compute the CRC of |
| // the final 128 bits |
| adds arg3, arg3, #16 |
| b.eq _128_done |
| |
| // here we are getting data that is less than 16 bytes. |
| // since we know that there was data before the pointer, we can |
| // offset the input pointer before the actual point, to receive |
| // exactly 16 bytes. after that the registers need to be adjusted. |
| _get_last_two_regs: |
| add arg2, arg2, arg3 |
| ldr q1, [arg2, #-16] |
| CPU_LE( rev64 v1.16b, v1.16b ) |
| CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 ) |
| |
| // get rid of the extra data that was loaded before |
| // load the shift constant |
| adr_l x4, tbl_shf_table + 16 |
| sub x4, x4, arg3 |
| ld1 {v0.16b}, [x4] |
| |
| // shift v2 to the left by arg3 bytes |
| tbl v2.16b, {v7.16b}, v0.16b |
| |
| // shift v7 to the right by 16-arg3 bytes |
| movi v9.16b, #0x80 |
| eor v0.16b, v0.16b, v9.16b |
| tbl v7.16b, {v7.16b}, v0.16b |
| |
| // blend |
| sshr v0.16b, v0.16b, #7 // convert to 8-bit mask |
| bsl v0.16b, v2.16b, v1.16b |
| |
| // fold 16 Bytes |
| pmull v8.1q, v7.1d, v10.1d |
| pmull2 v7.1q, v7.2d, v10.2d |
| eor v7.16b, v7.16b, v8.16b |
| eor v7.16b, v7.16b, v0.16b |
| |
| _128_done: |
| // compute crc of a 128-bit value |
| ldr_l q10, rk5, x8 // rk5 and rk6 in xmm10 |
| |
| // 64b fold |
| ext v0.16b, vzr.16b, v7.16b, #8 |
| mov v7.d[0], v7.d[1] |
| pmull v7.1q, v7.1d, v10.1d |
| eor v7.16b, v7.16b, v0.16b |
| |
| // 32b fold |
| ext v0.16b, v7.16b, vzr.16b, #4 |
| mov v7.s[3], vzr.s[0] |
| pmull2 v0.1q, v0.2d, v10.2d |
| eor v7.16b, v7.16b, v0.16b |
| |
| // barrett reduction |
| _barrett: |
| ldr_l q10, rk7, x8 |
| mov v0.d[0], v7.d[1] |
| |
| pmull v0.1q, v0.1d, v10.1d |
| ext v0.16b, vzr.16b, v0.16b, #12 |
| pmull2 v0.1q, v0.2d, v10.2d |
| ext v0.16b, vzr.16b, v0.16b, #12 |
| eor v7.16b, v7.16b, v0.16b |
| mov w0, v7.s[1] |
| |
| _cleanup: |
| // scale the result back to 16 bits |
| lsr x0, x0, #16 |
| frame_pop |
| ret |
| |
| _less_than_128: |
| cbz arg3, _cleanup |
| |
| movi v0.16b, #0 |
| mov v0.s[3], arg1_low32 // get the initial crc value |
| |
| ldr q7, [arg2], #0x10 |
| CPU_LE( rev64 v7.16b, v7.16b ) |
| CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 ) |
| eor v7.16b, v7.16b, v0.16b // xor the initial crc value |
| |
| cmp arg3, #16 |
| b.eq _128_done // exactly 16 left |
| b.lt _less_than_16_left |
| |
| ldr_l q10, rk1, x8 // rk1 and rk2 in xmm10 |
| |
| // update the counter. subtract 32 instead of 16 to save one |
| // instruction from the loop |
| subs arg3, arg3, #32 |
| b.ge _16B_reduction_loop |
| |
| add arg3, arg3, #16 |
| b _get_last_two_regs |
| |
| _less_than_16_left: |
| // shl r9, 4 |
| adr_l x0, tbl_shf_table + 16 |
| sub x0, x0, arg3 |
| ld1 {v0.16b}, [x0] |
| movi v9.16b, #0x80 |
| eor v0.16b, v0.16b, v9.16b |
| tbl v7.16b, {v7.16b}, v0.16b |
| b _128_done |
| ENDPROC(crc_t10dif_pmull) |
| |
| // precomputed constants |
| // these constants are precomputed from the poly: |
| // 0x8bb70000 (0x8bb7 scaled to 32 bits) |
| .section ".rodata", "a" |
| .align 4 |
| // Q = 0x18BB70000 |
| // rk1 = 2^(32*3) mod Q << 32 |
| // rk2 = 2^(32*5) mod Q << 32 |
| // rk3 = 2^(32*15) mod Q << 32 |
| // rk4 = 2^(32*17) mod Q << 32 |
| // rk5 = 2^(32*3) mod Q << 32 |
| // rk6 = 2^(32*2) mod Q << 32 |
| // rk7 = floor(2^64/Q) |
| // rk8 = Q |
| |
| rk1: .octa 0x06df0000000000002d56000000000000 |
| rk3: .octa 0x7cf50000000000009d9d000000000000 |
| rk5: .octa 0x13680000000000002d56000000000000 |
| rk7: .octa 0x000000018bb7000000000001f65a57f8 |
| rk9: .octa 0xbfd6000000000000ceae000000000000 |
| rk11: .octa 0x713c0000000000001e16000000000000 |
| rk13: .octa 0x80a6000000000000f7f9000000000000 |
| rk15: .octa 0xe658000000000000044c000000000000 |
| rk17: .octa 0xa497000000000000ad18000000000000 |
| rk19: .octa 0xe7b50000000000006ee3000000000000 |
| |
| tbl_shf_table: |
| // use these values for shift constants for the tbl/tbx instruction |
| // different alignments result in values as shown: |
| // DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1 |
| // DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2 |
| // DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3 |
| // DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4 |
| // DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5 |
| // DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6 |
| // DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7 |
| // DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8 |
| // DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9 |
| // DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10 |
| // DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11 |
| // DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12 |
| // DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13 |
| // DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14 |
| // DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15 |
| |
| .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 |
| .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f |
| .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 |
| .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0 |