| /* | 
 |  * Isochronous I/O functionality: | 
 |  *   - Isochronous DMA context management | 
 |  *   - Isochronous bus resource management (channels, bandwidth), client side | 
 |  * | 
 |  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software Foundation, | 
 |  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/firewire.h> | 
 | #include <linux/firewire-constants.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #include <asm/byteorder.h> | 
 |  | 
 | #include "core.h" | 
 |  | 
 | /* | 
 |  * Isochronous DMA context management | 
 |  */ | 
 |  | 
 | int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card, | 
 | 		       int page_count, enum dma_data_direction direction) | 
 | { | 
 | 	int i, j; | 
 | 	dma_addr_t address; | 
 |  | 
 | 	buffer->page_count = page_count; | 
 | 	buffer->direction = direction; | 
 |  | 
 | 	buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]), | 
 | 				GFP_KERNEL); | 
 | 	if (buffer->pages == NULL) | 
 | 		goto out; | 
 |  | 
 | 	for (i = 0; i < buffer->page_count; i++) { | 
 | 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); | 
 | 		if (buffer->pages[i] == NULL) | 
 | 			goto out_pages; | 
 |  | 
 | 		address = dma_map_page(card->device, buffer->pages[i], | 
 | 				       0, PAGE_SIZE, direction); | 
 | 		if (dma_mapping_error(card->device, address)) { | 
 | 			__free_page(buffer->pages[i]); | 
 | 			goto out_pages; | 
 | 		} | 
 | 		set_page_private(buffer->pages[i], address); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_pages: | 
 | 	for (j = 0; j < i; j++) { | 
 | 		address = page_private(buffer->pages[j]); | 
 | 		dma_unmap_page(card->device, address, | 
 | 			       PAGE_SIZE, direction); | 
 | 		__free_page(buffer->pages[j]); | 
 | 	} | 
 | 	kfree(buffer->pages); | 
 |  out: | 
 | 	buffer->pages = NULL; | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 | EXPORT_SYMBOL(fw_iso_buffer_init); | 
 |  | 
 | int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma) | 
 | { | 
 | 	unsigned long uaddr; | 
 | 	int i, err; | 
 |  | 
 | 	uaddr = vma->vm_start; | 
 | 	for (i = 0; i < buffer->page_count; i++) { | 
 | 		err = vm_insert_page(vma, uaddr, buffer->pages[i]); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		uaddr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, | 
 | 			   struct fw_card *card) | 
 | { | 
 | 	int i; | 
 | 	dma_addr_t address; | 
 |  | 
 | 	for (i = 0; i < buffer->page_count; i++) { | 
 | 		address = page_private(buffer->pages[i]); | 
 | 		dma_unmap_page(card->device, address, | 
 | 			       PAGE_SIZE, buffer->direction); | 
 | 		__free_page(buffer->pages[i]); | 
 | 	} | 
 |  | 
 | 	kfree(buffer->pages); | 
 | 	buffer->pages = NULL; | 
 | } | 
 | EXPORT_SYMBOL(fw_iso_buffer_destroy); | 
 |  | 
 | struct fw_iso_context *fw_iso_context_create(struct fw_card *card, | 
 | 		int type, int channel, int speed, size_t header_size, | 
 | 		fw_iso_callback_t callback, void *callback_data) | 
 | { | 
 | 	struct fw_iso_context *ctx; | 
 |  | 
 | 	ctx = card->driver->allocate_iso_context(card, | 
 | 						 type, channel, header_size); | 
 | 	if (IS_ERR(ctx)) | 
 | 		return ctx; | 
 |  | 
 | 	ctx->card = card; | 
 | 	ctx->type = type; | 
 | 	ctx->channel = channel; | 
 | 	ctx->speed = speed; | 
 | 	ctx->header_size = header_size; | 
 | 	ctx->callback = callback; | 
 | 	ctx->callback_data = callback_data; | 
 |  | 
 | 	return ctx; | 
 | } | 
 | EXPORT_SYMBOL(fw_iso_context_create); | 
 |  | 
 | void fw_iso_context_destroy(struct fw_iso_context *ctx) | 
 | { | 
 | 	struct fw_card *card = ctx->card; | 
 |  | 
 | 	card->driver->free_iso_context(ctx); | 
 | } | 
 | EXPORT_SYMBOL(fw_iso_context_destroy); | 
 |  | 
 | int fw_iso_context_start(struct fw_iso_context *ctx, | 
 | 			 int cycle, int sync, int tags) | 
 | { | 
 | 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags); | 
 | } | 
 | EXPORT_SYMBOL(fw_iso_context_start); | 
 |  | 
 | int fw_iso_context_queue(struct fw_iso_context *ctx, | 
 | 			 struct fw_iso_packet *packet, | 
 | 			 struct fw_iso_buffer *buffer, | 
 | 			 unsigned long payload) | 
 | { | 
 | 	struct fw_card *card = ctx->card; | 
 |  | 
 | 	return card->driver->queue_iso(ctx, packet, buffer, payload); | 
 | } | 
 | EXPORT_SYMBOL(fw_iso_context_queue); | 
 |  | 
 | int fw_iso_context_stop(struct fw_iso_context *ctx) | 
 | { | 
 | 	return ctx->card->driver->stop_iso(ctx); | 
 | } | 
 | EXPORT_SYMBOL(fw_iso_context_stop); | 
 |  | 
 | /* | 
 |  * Isochronous bus resource management (channels, bandwidth), client side | 
 |  */ | 
 |  | 
 | static int manage_bandwidth(struct fw_card *card, int irm_id, int generation, | 
 | 			    int bandwidth, bool allocate, __be32 data[2]) | 
 | { | 
 | 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0; | 
 |  | 
 | 	/* | 
 | 	 * On a 1394a IRM with low contention, try < 1 is enough. | 
 | 	 * On a 1394-1995 IRM, we need at least try < 2. | 
 | 	 * Let's just do try < 5. | 
 | 	 */ | 
 | 	for (try = 0; try < 5; try++) { | 
 | 		new = allocate ? old - bandwidth : old + bandwidth; | 
 | 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL) | 
 | 			break; | 
 |  | 
 | 		data[0] = cpu_to_be32(old); | 
 | 		data[1] = cpu_to_be32(new); | 
 | 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, | 
 | 				irm_id, generation, SCODE_100, | 
 | 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE, | 
 | 				data, sizeof(data))) { | 
 | 		case RCODE_GENERATION: | 
 | 			/* A generation change frees all bandwidth. */ | 
 | 			return allocate ? -EAGAIN : bandwidth; | 
 |  | 
 | 		case RCODE_COMPLETE: | 
 | 			if (be32_to_cpup(data) == old) | 
 | 				return bandwidth; | 
 |  | 
 | 			old = be32_to_cpup(data); | 
 | 			/* Fall through. */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static int manage_channel(struct fw_card *card, int irm_id, int generation, | 
 | 		u32 channels_mask, u64 offset, bool allocate, __be32 data[2]) | 
 | { | 
 | 	__be32 c, all, old; | 
 | 	int i, retry = 5; | 
 |  | 
 | 	old = all = allocate ? cpu_to_be32(~0) : 0; | 
 |  | 
 | 	for (i = 0; i < 32; i++) { | 
 | 		if (!(channels_mask & 1 << i)) | 
 | 			continue; | 
 |  | 
 | 		c = cpu_to_be32(1 << (31 - i)); | 
 | 		if ((old & c) != (all & c)) | 
 | 			continue; | 
 |  | 
 | 		data[0] = old; | 
 | 		data[1] = old ^ c; | 
 | 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, | 
 | 					   irm_id, generation, SCODE_100, | 
 | 					   offset, data, sizeof(data))) { | 
 | 		case RCODE_GENERATION: | 
 | 			/* A generation change frees all channels. */ | 
 | 			return allocate ? -EAGAIN : i; | 
 |  | 
 | 		case RCODE_COMPLETE: | 
 | 			if (data[0] == old) | 
 | 				return i; | 
 |  | 
 | 			old = data[0]; | 
 |  | 
 | 			/* Is the IRM 1394a-2000 compliant? */ | 
 | 			if ((data[0] & c) == (data[1] & c)) | 
 | 				continue; | 
 |  | 
 | 			/* 1394-1995 IRM, fall through to retry. */ | 
 | 		default: | 
 | 			if (retry--) | 
 | 				i--; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static void deallocate_channel(struct fw_card *card, int irm_id, | 
 | 			       int generation, int channel, __be32 buffer[2]) | 
 | { | 
 | 	u32 mask; | 
 | 	u64 offset; | 
 |  | 
 | 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32); | 
 | 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI : | 
 | 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO; | 
 |  | 
 | 	manage_channel(card, irm_id, generation, mask, offset, false, buffer); | 
 | } | 
 |  | 
 | /** | 
 |  * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth | 
 |  * | 
 |  * In parameters: card, generation, channels_mask, bandwidth, allocate | 
 |  * Out parameters: channel, bandwidth | 
 |  * This function blocks (sleeps) during communication with the IRM. | 
 |  * | 
 |  * Allocates or deallocates at most one channel out of channels_mask. | 
 |  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0. | 
 |  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for | 
 |  * channel 0 and LSB for channel 63.) | 
 |  * Allocates or deallocates as many bandwidth allocation units as specified. | 
 |  * | 
 |  * Returns channel < 0 if no channel was allocated or deallocated. | 
 |  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated. | 
 |  * | 
 |  * If generation is stale, deallocations succeed but allocations fail with | 
 |  * channel = -EAGAIN. | 
 |  * | 
 |  * If channel allocation fails, no bandwidth will be allocated either. | 
 |  * If bandwidth allocation fails, no channel will be allocated either. | 
 |  * But deallocations of channel and bandwidth are tried independently | 
 |  * of each other's success. | 
 |  */ | 
 | void fw_iso_resource_manage(struct fw_card *card, int generation, | 
 | 			    u64 channels_mask, int *channel, int *bandwidth, | 
 | 			    bool allocate, __be32 buffer[2]) | 
 | { | 
 | 	u32 channels_hi = channels_mask;	/* channels 31...0 */ | 
 | 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */ | 
 | 	int irm_id, ret, c = -EINVAL; | 
 |  | 
 | 	spin_lock_irq(&card->lock); | 
 | 	irm_id = card->irm_node->node_id; | 
 | 	spin_unlock_irq(&card->lock); | 
 |  | 
 | 	if (channels_hi) | 
 | 		c = manage_channel(card, irm_id, generation, channels_hi, | 
 | 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, | 
 | 				allocate, buffer); | 
 | 	if (channels_lo && c < 0) { | 
 | 		c = manage_channel(card, irm_id, generation, channels_lo, | 
 | 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, | 
 | 				allocate, buffer); | 
 | 		if (c >= 0) | 
 | 			c += 32; | 
 | 	} | 
 | 	*channel = c; | 
 |  | 
 | 	if (allocate && channels_mask != 0 && c < 0) | 
 | 		*bandwidth = 0; | 
 |  | 
 | 	if (*bandwidth == 0) | 
 | 		return; | 
 |  | 
 | 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, | 
 | 			       allocate, buffer); | 
 | 	if (ret < 0) | 
 | 		*bandwidth = 0; | 
 |  | 
 | 	if (allocate && ret < 0 && c >= 0) { | 
 | 		deallocate_channel(card, irm_id, generation, c, buffer); | 
 | 		*channel = ret; | 
 | 	} | 
 | } |