| #include <linux/bitmap.h> | 
 | #include <linux/bug.h> | 
 | #include <linux/export.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 |  | 
 | DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap); | 
 | static DEFINE_SPINLOCK(simple_ida_lock); | 
 |  | 
 | /** | 
 |  * idr_alloc_u32() - Allocate an ID. | 
 |  * @idr: IDR handle. | 
 |  * @ptr: Pointer to be associated with the new ID. | 
 |  * @nextid: Pointer to an ID. | 
 |  * @max: The maximum ID to allocate (inclusive). | 
 |  * @gfp: Memory allocation flags. | 
 |  * | 
 |  * Allocates an unused ID in the range specified by @nextid and @max. | 
 |  * Note that @max is inclusive whereas the @end parameter to idr_alloc() | 
 |  * is exclusive.  The new ID is assigned to @nextid before the pointer | 
 |  * is inserted into the IDR, so if @nextid points into the object pointed | 
 |  * to by @ptr, a concurrent lookup will not find an uninitialised ID. | 
 |  * | 
 |  * The caller should provide their own locking to ensure that two | 
 |  * concurrent modifications to the IDR are not possible.  Read-only | 
 |  * accesses to the IDR may be done under the RCU read lock or may | 
 |  * exclude simultaneous writers. | 
 |  * | 
 |  * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed, | 
 |  * or -ENOSPC if no free IDs could be found.  If an error occurred, | 
 |  * @nextid is unchanged. | 
 |  */ | 
 | int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid, | 
 | 			unsigned long max, gfp_t gfp) | 
 | { | 
 | 	struct radix_tree_iter iter; | 
 | 	void __rcu **slot; | 
 | 	int base = idr->idr_base; | 
 | 	int id = *nextid; | 
 |  | 
 | 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr))) | 
 | 		return -EINVAL; | 
 | 	if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR))) | 
 | 		idr->idr_rt.gfp_mask |= IDR_RT_MARKER; | 
 |  | 
 | 	id = (id < base) ? 0 : id - base; | 
 | 	radix_tree_iter_init(&iter, id); | 
 | 	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base); | 
 | 	if (IS_ERR(slot)) | 
 | 		return PTR_ERR(slot); | 
 |  | 
 | 	*nextid = iter.index + base; | 
 | 	/* there is a memory barrier inside radix_tree_iter_replace() */ | 
 | 	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr); | 
 | 	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(idr_alloc_u32); | 
 |  | 
 | /** | 
 |  * idr_alloc() - Allocate an ID. | 
 |  * @idr: IDR handle. | 
 |  * @ptr: Pointer to be associated with the new ID. | 
 |  * @start: The minimum ID (inclusive). | 
 |  * @end: The maximum ID (exclusive). | 
 |  * @gfp: Memory allocation flags. | 
 |  * | 
 |  * Allocates an unused ID in the range specified by @start and @end.  If | 
 |  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows | 
 |  * callers to use @start + N as @end as long as N is within integer range. | 
 |  * | 
 |  * The caller should provide their own locking to ensure that two | 
 |  * concurrent modifications to the IDR are not possible.  Read-only | 
 |  * accesses to the IDR may be done under the RCU read lock or may | 
 |  * exclude simultaneous writers. | 
 |  * | 
 |  * Return: The newly allocated ID, -ENOMEM if memory allocation failed, | 
 |  * or -ENOSPC if no free IDs could be found. | 
 |  */ | 
 | int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) | 
 | { | 
 | 	u32 id = start; | 
 | 	int ret; | 
 |  | 
 | 	if (WARN_ON_ONCE(start < 0)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return id; | 
 | } | 
 | EXPORT_SYMBOL_GPL(idr_alloc); | 
 |  | 
 | /** | 
 |  * idr_alloc_cyclic() - Allocate an ID cyclically. | 
 |  * @idr: IDR handle. | 
 |  * @ptr: Pointer to be associated with the new ID. | 
 |  * @start: The minimum ID (inclusive). | 
 |  * @end: The maximum ID (exclusive). | 
 |  * @gfp: Memory allocation flags. | 
 |  * | 
 |  * Allocates an unused ID in the range specified by @nextid and @end.  If | 
 |  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows | 
 |  * callers to use @start + N as @end as long as N is within integer range. | 
 |  * The search for an unused ID will start at the last ID allocated and will | 
 |  * wrap around to @start if no free IDs are found before reaching @end. | 
 |  * | 
 |  * The caller should provide their own locking to ensure that two | 
 |  * concurrent modifications to the IDR are not possible.  Read-only | 
 |  * accesses to the IDR may be done under the RCU read lock or may | 
 |  * exclude simultaneous writers. | 
 |  * | 
 |  * Return: The newly allocated ID, -ENOMEM if memory allocation failed, | 
 |  * or -ENOSPC if no free IDs could be found. | 
 |  */ | 
 | int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) | 
 | { | 
 | 	u32 id = idr->idr_next; | 
 | 	int err, max = end > 0 ? end - 1 : INT_MAX; | 
 |  | 
 | 	if ((int)id < start) | 
 | 		id = start; | 
 |  | 
 | 	err = idr_alloc_u32(idr, ptr, &id, max, gfp); | 
 | 	if ((err == -ENOSPC) && (id > start)) { | 
 | 		id = start; | 
 | 		err = idr_alloc_u32(idr, ptr, &id, max, gfp); | 
 | 	} | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	idr->idr_next = id + 1; | 
 | 	return id; | 
 | } | 
 | EXPORT_SYMBOL(idr_alloc_cyclic); | 
 |  | 
 | /** | 
 |  * idr_remove() - Remove an ID from the IDR. | 
 |  * @idr: IDR handle. | 
 |  * @id: Pointer ID. | 
 |  * | 
 |  * Removes this ID from the IDR.  If the ID was not previously in the IDR, | 
 |  * this function returns %NULL. | 
 |  * | 
 |  * Since this function modifies the IDR, the caller should provide their | 
 |  * own locking to ensure that concurrent modification of the same IDR is | 
 |  * not possible. | 
 |  * | 
 |  * Return: The pointer formerly associated with this ID. | 
 |  */ | 
 | void *idr_remove(struct idr *idr, unsigned long id) | 
 | { | 
 | 	return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(idr_remove); | 
 |  | 
 | /** | 
 |  * idr_find() - Return pointer for given ID. | 
 |  * @idr: IDR handle. | 
 |  * @id: Pointer ID. | 
 |  * | 
 |  * Looks up the pointer associated with this ID.  A %NULL pointer may | 
 |  * indicate that @id is not allocated or that the %NULL pointer was | 
 |  * associated with this ID. | 
 |  * | 
 |  * This function can be called under rcu_read_lock(), given that the leaf | 
 |  * pointers lifetimes are correctly managed. | 
 |  * | 
 |  * Return: The pointer associated with this ID. | 
 |  */ | 
 | void *idr_find(const struct idr *idr, unsigned long id) | 
 | { | 
 | 	return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base); | 
 | } | 
 | EXPORT_SYMBOL_GPL(idr_find); | 
 |  | 
 | /** | 
 |  * idr_for_each() - Iterate through all stored pointers. | 
 |  * @idr: IDR handle. | 
 |  * @fn: Function to be called for each pointer. | 
 |  * @data: Data passed to callback function. | 
 |  * | 
 |  * The callback function will be called for each entry in @idr, passing | 
 |  * the ID, the entry and @data. | 
 |  * | 
 |  * If @fn returns anything other than %0, the iteration stops and that | 
 |  * value is returned from this function. | 
 |  * | 
 |  * idr_for_each() can be called concurrently with idr_alloc() and | 
 |  * idr_remove() if protected by RCU.  Newly added entries may not be | 
 |  * seen and deleted entries may be seen, but adding and removing entries | 
 |  * will not cause other entries to be skipped, nor spurious ones to be seen. | 
 |  */ | 
 | int idr_for_each(const struct idr *idr, | 
 | 		int (*fn)(int id, void *p, void *data), void *data) | 
 | { | 
 | 	struct radix_tree_iter iter; | 
 | 	void __rcu **slot; | 
 | 	int base = idr->idr_base; | 
 |  | 
 | 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) { | 
 | 		int ret; | 
 |  | 
 | 		if (WARN_ON_ONCE(iter.index > INT_MAX)) | 
 | 			break; | 
 | 		ret = fn(iter.index + base, rcu_dereference_raw(*slot), data); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(idr_for_each); | 
 |  | 
 | /** | 
 |  * idr_get_next() - Find next populated entry. | 
 |  * @idr: IDR handle. | 
 |  * @nextid: Pointer to an ID. | 
 |  * | 
 |  * Returns the next populated entry in the tree with an ID greater than | 
 |  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated | 
 |  * to the ID of the found value.  To use in a loop, the value pointed to by | 
 |  * nextid must be incremented by the user. | 
 |  */ | 
 | void *idr_get_next(struct idr *idr, int *nextid) | 
 | { | 
 | 	struct radix_tree_iter iter; | 
 | 	void __rcu **slot; | 
 | 	int base = idr->idr_base; | 
 | 	int id = *nextid; | 
 |  | 
 | 	id = (id < base) ? 0 : id - base; | 
 | 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id); | 
 | 	if (!slot) | 
 | 		return NULL; | 
 | 	id = iter.index + base; | 
 |  | 
 | 	if (WARN_ON_ONCE(id > INT_MAX)) | 
 | 		return NULL; | 
 |  | 
 | 	*nextid = id; | 
 | 	return rcu_dereference_raw(*slot); | 
 | } | 
 | EXPORT_SYMBOL(idr_get_next); | 
 |  | 
 | /** | 
 |  * idr_get_next_ul() - Find next populated entry. | 
 |  * @idr: IDR handle. | 
 |  * @nextid: Pointer to an ID. | 
 |  * | 
 |  * Returns the next populated entry in the tree with an ID greater than | 
 |  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated | 
 |  * to the ID of the found value.  To use in a loop, the value pointed to by | 
 |  * nextid must be incremented by the user. | 
 |  */ | 
 | void *idr_get_next_ul(struct idr *idr, unsigned long *nextid) | 
 | { | 
 | 	struct radix_tree_iter iter; | 
 | 	void __rcu **slot; | 
 | 	unsigned long base = idr->idr_base; | 
 | 	unsigned long id = *nextid; | 
 |  | 
 | 	id = (id < base) ? 0 : id - base; | 
 | 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, id); | 
 | 	if (!slot) | 
 | 		return NULL; | 
 |  | 
 | 	*nextid = iter.index + base; | 
 | 	return rcu_dereference_raw(*slot); | 
 | } | 
 | EXPORT_SYMBOL(idr_get_next_ul); | 
 |  | 
 | /** | 
 |  * idr_replace() - replace pointer for given ID. | 
 |  * @idr: IDR handle. | 
 |  * @ptr: New pointer to associate with the ID. | 
 |  * @id: ID to change. | 
 |  * | 
 |  * Replace the pointer registered with an ID and return the old value. | 
 |  * This function can be called under the RCU read lock concurrently with | 
 |  * idr_alloc() and idr_remove() (as long as the ID being removed is not | 
 |  * the one being replaced!). | 
 |  * | 
 |  * Returns: the old value on success.  %-ENOENT indicates that @id was not | 
 |  * found.  %-EINVAL indicates that @ptr was not valid. | 
 |  */ | 
 | void *idr_replace(struct idr *idr, void *ptr, unsigned long id) | 
 | { | 
 | 	struct radix_tree_node *node; | 
 | 	void __rcu **slot = NULL; | 
 | 	void *entry; | 
 |  | 
 | 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr))) | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	id -= idr->idr_base; | 
 |  | 
 | 	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot); | 
 | 	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE)) | 
 | 		return ERR_PTR(-ENOENT); | 
 |  | 
 | 	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL); | 
 |  | 
 | 	return entry; | 
 | } | 
 | EXPORT_SYMBOL(idr_replace); | 
 |  | 
 | /** | 
 |  * DOC: IDA description | 
 |  * | 
 |  * The IDA is an ID allocator which does not provide the ability to | 
 |  * associate an ID with a pointer.  As such, it only needs to store one | 
 |  * bit per ID, and so is more space efficient than an IDR.  To use an IDA, | 
 |  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure, | 
 |  * then initialise it using ida_init()).  To allocate a new ID, call | 
 |  * ida_simple_get().  To free an ID, call ida_simple_remove(). | 
 |  * | 
 |  * If you have more complex locking requirements, use a loop around | 
 |  * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use | 
 |  * ida_remove() to free an ID.  You must make sure that ida_get_new() and | 
 |  * ida_remove() cannot be called at the same time as each other for the | 
 |  * same IDA. | 
 |  * | 
 |  * You can also use ida_get_new_above() if you need an ID to be allocated | 
 |  * above a particular number.  ida_destroy() can be used to dispose of an | 
 |  * IDA without needing to free the individual IDs in it.  You can use | 
 |  * ida_is_empty() to find out whether the IDA has any IDs currently allocated. | 
 |  * | 
 |  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward | 
 |  * limitation, it should be quite straightforward to raise the maximum. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Developer's notes: | 
 |  * | 
 |  * The IDA uses the functionality provided by the IDR & radix tree to store | 
 |  * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit | 
 |  * free, unlike the IDR where it means at least one entry is free. | 
 |  * | 
 |  * I considered telling the radix tree that each slot is an order-10 node | 
 |  * and storing the bit numbers in the radix tree, but the radix tree can't | 
 |  * allow a single multiorder entry at index 0, which would significantly | 
 |  * increase memory consumption for the IDA.  So instead we divide the index | 
 |  * by the number of bits in the leaf bitmap before doing a radix tree lookup. | 
 |  * | 
 |  * As an optimisation, if there are only a few low bits set in any given | 
 |  * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional | 
 |  * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits | 
 |  * directly in the entry.  By being really tricksy, we could store | 
 |  * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising | 
 |  * for 0-3 allocated IDs. | 
 |  * | 
 |  * We allow the radix tree 'exceptional' count to get out of date.  Nothing | 
 |  * in the IDA nor the radix tree code checks it.  If it becomes important | 
 |  * to maintain an accurate exceptional count, switch the rcu_assign_pointer() | 
 |  * calls to radix_tree_iter_replace() which will correct the exceptional | 
 |  * count. | 
 |  * | 
 |  * The IDA always requires a lock to alloc/free.  If we add a 'test_bit' | 
 |  * equivalent, it will still need locking.  Going to RCU lookup would require | 
 |  * using RCU to free bitmaps, and that's not trivial without embedding an | 
 |  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte | 
 |  * bitmap, which is excessive. | 
 |  */ | 
 |  | 
 | #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1) | 
 |  | 
 | /** | 
 |  * ida_get_new_above - allocate new ID above or equal to a start id | 
 |  * @ida: ida handle | 
 |  * @start: id to start search at | 
 |  * @id: pointer to the allocated handle | 
 |  * | 
 |  * Allocate new ID above or equal to @start.  It should be called | 
 |  * with any required locks to ensure that concurrent calls to | 
 |  * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed. | 
 |  * Consider using ida_simple_get() if you do not have complex locking | 
 |  * requirements. | 
 |  * | 
 |  * If memory is required, it will return %-EAGAIN, you should unlock | 
 |  * and go back to the ida_pre_get() call.  If the ida is full, it will | 
 |  * return %-ENOSPC.  On success, it will return 0. | 
 |  * | 
 |  * @id returns a value in the range @start ... %0x7fffffff. | 
 |  */ | 
 | int ida_get_new_above(struct ida *ida, int start, int *id) | 
 | { | 
 | 	struct radix_tree_root *root = &ida->ida_rt; | 
 | 	void __rcu **slot; | 
 | 	struct radix_tree_iter iter; | 
 | 	struct ida_bitmap *bitmap; | 
 | 	unsigned long index; | 
 | 	unsigned bit, ebit; | 
 | 	int new; | 
 |  | 
 | 	index = start / IDA_BITMAP_BITS; | 
 | 	bit = start % IDA_BITMAP_BITS; | 
 | 	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT; | 
 |  | 
 | 	slot = radix_tree_iter_init(&iter, index); | 
 | 	for (;;) { | 
 | 		if (slot) | 
 | 			slot = radix_tree_next_slot(slot, &iter, | 
 | 						RADIX_TREE_ITER_TAGGED); | 
 | 		if (!slot) { | 
 | 			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX); | 
 | 			if (IS_ERR(slot)) { | 
 | 				if (slot == ERR_PTR(-ENOMEM)) | 
 | 					return -EAGAIN; | 
 | 				return PTR_ERR(slot); | 
 | 			} | 
 | 		} | 
 | 		if (iter.index > index) { | 
 | 			bit = 0; | 
 | 			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT; | 
 | 		} | 
 | 		new = iter.index * IDA_BITMAP_BITS; | 
 | 		bitmap = rcu_dereference_raw(*slot); | 
 | 		if (radix_tree_exception(bitmap)) { | 
 | 			unsigned long tmp = (unsigned long)bitmap; | 
 | 			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit); | 
 | 			if (ebit < BITS_PER_LONG) { | 
 | 				tmp |= 1UL << ebit; | 
 | 				rcu_assign_pointer(*slot, (void *)tmp); | 
 | 				*id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT; | 
 | 				return 0; | 
 | 			} | 
 | 			bitmap = this_cpu_xchg(ida_bitmap, NULL); | 
 | 			if (!bitmap) | 
 | 				return -EAGAIN; | 
 | 			memset(bitmap, 0, sizeof(*bitmap)); | 
 | 			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT; | 
 | 			rcu_assign_pointer(*slot, bitmap); | 
 | 		} | 
 |  | 
 | 		if (bitmap) { | 
 | 			bit = find_next_zero_bit(bitmap->bitmap, | 
 | 							IDA_BITMAP_BITS, bit); | 
 | 			new += bit; | 
 | 			if (new < 0) | 
 | 				return -ENOSPC; | 
 | 			if (bit == IDA_BITMAP_BITS) | 
 | 				continue; | 
 |  | 
 | 			__set_bit(bit, bitmap->bitmap); | 
 | 			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS)) | 
 | 				radix_tree_iter_tag_clear(root, &iter, | 
 | 								IDR_FREE); | 
 | 		} else { | 
 | 			new += bit; | 
 | 			if (new < 0) | 
 | 				return -ENOSPC; | 
 | 			if (ebit < BITS_PER_LONG) { | 
 | 				bitmap = (void *)((1UL << ebit) | | 
 | 						RADIX_TREE_EXCEPTIONAL_ENTRY); | 
 | 				radix_tree_iter_replace(root, &iter, slot, | 
 | 						bitmap); | 
 | 				*id = new; | 
 | 				return 0; | 
 | 			} | 
 | 			bitmap = this_cpu_xchg(ida_bitmap, NULL); | 
 | 			if (!bitmap) | 
 | 				return -EAGAIN; | 
 | 			memset(bitmap, 0, sizeof(*bitmap)); | 
 | 			__set_bit(bit, bitmap->bitmap); | 
 | 			radix_tree_iter_replace(root, &iter, slot, bitmap); | 
 | 		} | 
 |  | 
 | 		*id = new; | 
 | 		return 0; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(ida_get_new_above); | 
 |  | 
 | /** | 
 |  * ida_remove - Free the given ID | 
 |  * @ida: ida handle | 
 |  * @id: ID to free | 
 |  * | 
 |  * This function should not be called at the same time as ida_get_new_above(). | 
 |  */ | 
 | void ida_remove(struct ida *ida, int id) | 
 | { | 
 | 	unsigned long index = id / IDA_BITMAP_BITS; | 
 | 	unsigned offset = id % IDA_BITMAP_BITS; | 
 | 	struct ida_bitmap *bitmap; | 
 | 	unsigned long *btmp; | 
 | 	struct radix_tree_iter iter; | 
 | 	void __rcu **slot; | 
 |  | 
 | 	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index); | 
 | 	if (!slot) | 
 | 		goto err; | 
 |  | 
 | 	bitmap = rcu_dereference_raw(*slot); | 
 | 	if (radix_tree_exception(bitmap)) { | 
 | 		btmp = (unsigned long *)slot; | 
 | 		offset += RADIX_TREE_EXCEPTIONAL_SHIFT; | 
 | 		if (offset >= BITS_PER_LONG) | 
 | 			goto err; | 
 | 	} else { | 
 | 		btmp = bitmap->bitmap; | 
 | 	} | 
 | 	if (!test_bit(offset, btmp)) | 
 | 		goto err; | 
 |  | 
 | 	__clear_bit(offset, btmp); | 
 | 	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE); | 
 | 	if (radix_tree_exception(bitmap)) { | 
 | 		if (rcu_dereference_raw(*slot) == | 
 | 					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY) | 
 | 			radix_tree_iter_delete(&ida->ida_rt, &iter, slot); | 
 | 	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) { | 
 | 		kfree(bitmap); | 
 | 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot); | 
 | 	} | 
 | 	return; | 
 |  err: | 
 | 	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); | 
 | } | 
 | EXPORT_SYMBOL(ida_remove); | 
 |  | 
 | /** | 
 |  * ida_destroy - Free the contents of an ida | 
 |  * @ida: ida handle | 
 |  * | 
 |  * Calling this function releases all resources associated with an IDA.  When | 
 |  * this call returns, the IDA is empty and can be reused or freed.  The caller | 
 |  * should not allow ida_remove() or ida_get_new_above() to be called at the | 
 |  * same time. | 
 |  */ | 
 | void ida_destroy(struct ida *ida) | 
 | { | 
 | 	struct radix_tree_iter iter; | 
 | 	void __rcu **slot; | 
 |  | 
 | 	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) { | 
 | 		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot); | 
 | 		if (!radix_tree_exception(bitmap)) | 
 | 			kfree(bitmap); | 
 | 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(ida_destroy); | 
 |  | 
 | /** | 
 |  * ida_simple_get - get a new id. | 
 |  * @ida: the (initialized) ida. | 
 |  * @start: the minimum id (inclusive, < 0x8000000) | 
 |  * @end: the maximum id (exclusive, < 0x8000000 or 0) | 
 |  * @gfp_mask: memory allocation flags | 
 |  * | 
 |  * Allocates an id in the range start <= id < end, or returns -ENOSPC. | 
 |  * On memory allocation failure, returns -ENOMEM. | 
 |  * | 
 |  * Compared to ida_get_new_above() this function does its own locking, and | 
 |  * should be used unless there are special requirements. | 
 |  * | 
 |  * Use ida_simple_remove() to get rid of an id. | 
 |  */ | 
 | int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, | 
 | 		   gfp_t gfp_mask) | 
 | { | 
 | 	int ret, id; | 
 | 	unsigned int max; | 
 | 	unsigned long flags; | 
 |  | 
 | 	BUG_ON((int)start < 0); | 
 | 	BUG_ON((int)end < 0); | 
 |  | 
 | 	if (end == 0) | 
 | 		max = 0x80000000; | 
 | 	else { | 
 | 		BUG_ON(end < start); | 
 | 		max = end - 1; | 
 | 	} | 
 |  | 
 | again: | 
 | 	if (!ida_pre_get(ida, gfp_mask)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock_irqsave(&simple_ida_lock, flags); | 
 | 	ret = ida_get_new_above(ida, start, &id); | 
 | 	if (!ret) { | 
 | 		if (id > max) { | 
 | 			ida_remove(ida, id); | 
 | 			ret = -ENOSPC; | 
 | 		} else { | 
 | 			ret = id; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&simple_ida_lock, flags); | 
 |  | 
 | 	if (unlikely(ret == -EAGAIN)) | 
 | 		goto again; | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(ida_simple_get); | 
 |  | 
 | /** | 
 |  * ida_simple_remove - remove an allocated id. | 
 |  * @ida: the (initialized) ida. | 
 |  * @id: the id returned by ida_simple_get. | 
 |  * | 
 |  * Use to release an id allocated with ida_simple_get(). | 
 |  * | 
 |  * Compared to ida_remove() this function does its own locking, and should be | 
 |  * used unless there are special requirements. | 
 |  */ | 
 | void ida_simple_remove(struct ida *ida, unsigned int id) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	BUG_ON((int)id < 0); | 
 | 	spin_lock_irqsave(&simple_ida_lock, flags); | 
 | 	ida_remove(ida, id); | 
 | 	spin_unlock_irqrestore(&simple_ida_lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(ida_simple_remove); |