| /* In-software asymmetric public-key crypto subtype | 
 |  * | 
 |  * See Documentation/crypto/asymmetric-keys.txt | 
 |  * | 
 |  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. | 
 |  * Written by David Howells (dhowells@redhat.com) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public Licence | 
 |  * as published by the Free Software Foundation; either version | 
 |  * 2 of the Licence, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "PKEY: "fmt | 
 | #include <linux/module.h> | 
 | #include <linux/export.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <keys/asymmetric-subtype.h> | 
 | #include <crypto/public_key.h> | 
 | #include <crypto/akcipher.h> | 
 |  | 
 | MODULE_DESCRIPTION("In-software asymmetric public-key subtype"); | 
 | MODULE_AUTHOR("Red Hat, Inc."); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | /* | 
 |  * Provide a part of a description of the key for /proc/keys. | 
 |  */ | 
 | static void public_key_describe(const struct key *asymmetric_key, | 
 | 				struct seq_file *m) | 
 | { | 
 | 	struct public_key *key = asymmetric_key->payload.data[asym_crypto]; | 
 |  | 
 | 	if (key) | 
 | 		seq_printf(m, "%s.%s", key->id_type, key->pkey_algo); | 
 | } | 
 |  | 
 | /* | 
 |  * Destroy a public key algorithm key. | 
 |  */ | 
 | void public_key_free(struct public_key *key) | 
 | { | 
 | 	if (key) { | 
 | 		kfree(key->key); | 
 | 		kfree(key); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(public_key_free); | 
 |  | 
 | /* | 
 |  * Destroy a public key algorithm key. | 
 |  */ | 
 | static void public_key_destroy(void *payload0, void *payload3) | 
 | { | 
 | 	public_key_free(payload0); | 
 | 	public_key_signature_free(payload3); | 
 | } | 
 |  | 
 | /* | 
 |  * Verify a signature using a public key. | 
 |  */ | 
 | int public_key_verify_signature(const struct public_key *pkey, | 
 | 				const struct public_key_signature *sig) | 
 | { | 
 | 	struct crypto_wait cwait; | 
 | 	struct crypto_akcipher *tfm; | 
 | 	struct akcipher_request *req; | 
 | 	struct scatterlist sig_sg, digest_sg; | 
 | 	const char *alg_name; | 
 | 	char alg_name_buf[CRYPTO_MAX_ALG_NAME]; | 
 | 	void *output; | 
 | 	unsigned int outlen; | 
 | 	int ret; | 
 |  | 
 | 	pr_devel("==>%s()\n", __func__); | 
 |  | 
 | 	BUG_ON(!pkey); | 
 | 	BUG_ON(!sig); | 
 | 	BUG_ON(!sig->digest); | 
 | 	BUG_ON(!sig->s); | 
 |  | 
 | 	alg_name = sig->pkey_algo; | 
 | 	if (strcmp(sig->pkey_algo, "rsa") == 0) { | 
 | 		/* The data wangled by the RSA algorithm is typically padded | 
 | 		 * and encoded in some manner, such as EMSA-PKCS1-1_5 [RFC3447 | 
 | 		 * sec 8.2]. | 
 | 		 */ | 
 | 		if (snprintf(alg_name_buf, CRYPTO_MAX_ALG_NAME, | 
 | 			     "pkcs1pad(rsa,%s)", sig->hash_algo | 
 | 			     ) >= CRYPTO_MAX_ALG_NAME) | 
 | 			return -EINVAL; | 
 | 		alg_name = alg_name_buf; | 
 | 	} | 
 |  | 
 | 	tfm = crypto_alloc_akcipher(alg_name, 0, 0); | 
 | 	if (IS_ERR(tfm)) | 
 | 		return PTR_ERR(tfm); | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	req = akcipher_request_alloc(tfm, GFP_KERNEL); | 
 | 	if (!req) | 
 | 		goto error_free_tfm; | 
 |  | 
 | 	ret = crypto_akcipher_set_pub_key(tfm, pkey->key, pkey->keylen); | 
 | 	if (ret) | 
 | 		goto error_free_req; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	outlen = crypto_akcipher_maxsize(tfm); | 
 | 	output = kmalloc(outlen, GFP_KERNEL); | 
 | 	if (!output) | 
 | 		goto error_free_req; | 
 |  | 
 | 	sg_init_one(&sig_sg, sig->s, sig->s_size); | 
 | 	sg_init_one(&digest_sg, output, outlen); | 
 | 	akcipher_request_set_crypt(req, &sig_sg, &digest_sg, sig->s_size, | 
 | 				   outlen); | 
 | 	crypto_init_wait(&cwait); | 
 | 	akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | | 
 | 				      CRYPTO_TFM_REQ_MAY_SLEEP, | 
 | 				      crypto_req_done, &cwait); | 
 |  | 
 | 	/* Perform the verification calculation.  This doesn't actually do the | 
 | 	 * verification, but rather calculates the hash expected by the | 
 | 	 * signature and returns that to us. | 
 | 	 */ | 
 | 	ret = crypto_wait_req(crypto_akcipher_verify(req), &cwait); | 
 | 	if (ret) | 
 | 		goto out_free_output; | 
 |  | 
 | 	/* Do the actual verification step. */ | 
 | 	if (req->dst_len != sig->digest_size || | 
 | 	    memcmp(sig->digest, output, sig->digest_size) != 0) | 
 | 		ret = -EKEYREJECTED; | 
 |  | 
 | out_free_output: | 
 | 	kfree(output); | 
 | error_free_req: | 
 | 	akcipher_request_free(req); | 
 | error_free_tfm: | 
 | 	crypto_free_akcipher(tfm); | 
 | 	pr_devel("<==%s() = %d\n", __func__, ret); | 
 | 	if (WARN_ON_ONCE(ret > 0)) | 
 | 		ret = -EINVAL; | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(public_key_verify_signature); | 
 |  | 
 | static int public_key_verify_signature_2(const struct key *key, | 
 | 					 const struct public_key_signature *sig) | 
 | { | 
 | 	const struct public_key *pk = key->payload.data[asym_crypto]; | 
 | 	return public_key_verify_signature(pk, sig); | 
 | } | 
 |  | 
 | /* | 
 |  * Public key algorithm asymmetric key subtype | 
 |  */ | 
 | struct asymmetric_key_subtype public_key_subtype = { | 
 | 	.owner			= THIS_MODULE, | 
 | 	.name			= "public_key", | 
 | 	.name_len		= sizeof("public_key") - 1, | 
 | 	.describe		= public_key_describe, | 
 | 	.destroy		= public_key_destroy, | 
 | 	.verify_signature	= public_key_verify_signature_2, | 
 | }; | 
 | EXPORT_SYMBOL_GPL(public_key_subtype); |